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Abstract

We show how to efficiently count and generate uniformly at random finitely gen-
erated subgroups of the modular group PSLy(Z) of a given isomorphism type. The
method to achieve these results relies on a natural map of independent interest, which
associates with any finitely generated subgroup of PSL2(Z) a graph which we call its
silhouette, and which can be interpreted as a conjugacy class of free finite index sub-
groups of PSLy(Z).

Keywords Combinatorial group theory; subgroups of the modular group; exact enumera-
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1 Introduction

The modular group PSLy(Z) is a fundamental object in the field of modular forms and
hyperbolic geometry. It is well-known that PSLy(Z) is isomorphic to the free product of
two cyclic groups, of order 2 and 3 respectively. That is,

PSLy(Z) = (a,b | a® = b* = 1).
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The finitely generated subgroups of the modular group have been extensively studied
and classified, leading to deep connections with various areas of mathematics, including
number theory, algebraic geometry, and geometric group theory. Much work has been
devoted in particular to the combinatorial study of the finite index subgroups of PSLy(Z):
exact enumeration results for the index n subgroups (Dey, 1965 [5]; Stothers, 1978 [22])
and results on the asymptotic behavior of that number as n tends to infinity (Newmann,
1976 [18], Miiller & Schlage-Puchta, 2004 [17] and others). Here, we deal instead with all
finitely generated subgroups of PSLy(Z), without index restriction.

The main purpose of this paper is to present enumeration and random generation results
for finitely generated subgroups of PSLy(Z) of a given size and isomorphism type, where
both measures are natural parameters.

Let us first make the notions underlying these results more explicit. Since PSLy(Z) is
the free product of a copy of Zy and a copy of Zs3, Kurosh’s theorem (see, e.g., [14, [15, [19])
states that any finitely generated subgroup H of PSLy(Z) is isomorphic to a free product
of £y copies of Zs, ¢3 copies of Z3 and r copies of Z: the isomorphism type of H is the triple
(L9, l3,7). It is a natural parameter, which generalizes the rank in free groups.

Our results also refer to a notion of size for finitely generated subgroups of PSLy(Z),
that we now explain: each finitely generated subgroup H of PSL2(Z) can be represented
uniquely by a finite edge-labeled graph I'(H), called its Stallings graph. Stallings graphs,
and their effective construction, were first introduced by Stallings [21] to represent finitely
generated subgroups of free groups. The idea of using finite graphs to represent subgroups
of infinite, non-free groups first appeared in work of Gersten and Short [8, 20], Arzhantseva
and Ol'shanskii [2] [1], Gitik [9] and Kapovich [II]. Markus-Epstein [16] gave an explicit
construction associating a graph with each subgroup of an amalgamated product of two
finite groups, which is very close to the one used here. Here we follow the definition
and construction of Kharlampovich, Miasnikov and Weil [12]. In a nutshell, the Stallings
graph of a subgroup H of PSLy(Z) is the fragment of the Schreier (or coset) graph of H,
spanned by the cycles at vertex H reading a geodesic representative of an element of H,
see Section 2] for more details.

We take the number of vertices of I'(H) to be the size of the subgroup H. In partic-
ular, there are only finitely many subgroups of a given size and we assume the uniform
distribution on this finite set.

In [3] the authors counted the finitely generated subgroups of PSL2(Z) by size and
they showed how to generate uniformly at random a subgroup of a given size. They also
computed the expected value of the isomorphism type of a random subgroup as a function
of its size and proved a large deviations theorem for this isomorphism type. It follows
that randomly generating a size n subgroup of PSLs(Z) will, with high probability, yield
a subgroup whose isomorphism type is close to the average value. In particular, this
algorithmic result does not help generate uniformly at random subgroups of a given size
and isomorphism type. The proof strategy to obtain these results was based on counting
Stallings graphs and using the classical tools of analytic combinatorics [6], in particular



the notion of exponential generating series.

In this paper, we use a completely different enumeration method for finitely generated
subgroups of PSL2(Z), to get a polynomial time random generation algorithm for subgroups
of PSLy(Z) of a given size and isomorphism type. It turns out that we can proceed with
direct computations and we therefore avoid introducing generating series. More precisely
the proofs rely on a combination of graph decomposition techniques and combinatorial
methods. As is classical in the field, these methods are used on labeled graphs (graphs
equipped with a bijection from their vertex set to an initial segment of N).

A key construction which occurs naturally in this approach is what we call the silhou-
etting of the Stallings graph of a finitely generated subgroup of PSLo(Z). It consists in a
sequence of “simplifications” of the graph, leading (except in extremal cases) to a uniform
degree loop-free graph, which represents a conjugacy class of finite index, free subgroups
of PSLo(Z).

The operation of silhouetting is not just useful for our enumeration and random gen-
eration purpose: it also has very interesting algebraic and probabilistic properties. As an
example of the former, we establish that silhouetting preserves the free rank component
of the isomorphism type of a subgroup (Proposition B.6]). Probabilistic properties of the
silhouetting operation, and their use in proving asymptotic properties of finitely generated
subgroups of PSLy(Z), are discussed in a separate paper [4].

Organization of the paper Readers can find in Sections 2] and the precise definitions
of the Stallings graph of a subgroup of PSLs(Z) and its combinatorial type, and results
from the literature relating this combinatorial information with algebraic properties of the
subgroup such as its isomorphism type, its index or its freeness.

Section [3] introduces combinatorial operations on Stallings graphs. Iterating these op-
erations leads to so-called silhouette graphs. The fine description of these operations is
first exploited in Section ] to give exact counting formulas for the number of subgroups of
PSLy(Z) of a given combinatorial or isomorphism type.

In Section B3] we show that the iteration of the operations defined in Section @ is a
confluent process (Proposition B.4)), which leads to defining the silhouette of a given graph
or subgroup. It is interesting to note that silhouetting preserves the free rank component
of the isomorphism type of a subgroup (Proposition [3.6)).

Finally, Section Bl uses the operations from Section Blin a different way to design an al-
gorithm (which includes a rejection algorithm component) to efficiently generate uniformly
at random a subgroup of a given size and isomorphism type.

2 Preliminaries

We work with the following presentation of the modular group:

PSLy(Z) = (a,b| a® = b =1).



The elements of PSLy(Z) are represented by words over the alphabet {a,b,a=*,b~1}. Since
a~! = a in PSLy(Z), we can eliminate the letter a~! from this alphabet. Each element
of PSLy(Z) then has a unique shortest (or normal, or geodesic) representative, which is a
freely reduced word without factors in {a?,b?,b=2}. That is, the normal representatives
are the words of length at most 1 and the words alternating letters a and letters in {b,b='}.

2.1 Stallings graph of a subgroup of PSLy(Z)

The Schreier graph (or coset graph) of a subgroup H of PSL2(Z) is the graph whose vertices
are the cosets Hg of H (g € PSL2(Z)), with an a-labeled edge from Hg to Hga and a b-
labeled edge from Hg to Hgb, for every g € G. We think of b-edges as 2-way edges, reading
b in the forward direction and b~! in the backward direction. Since a = a?, there is an
a-edge from vertex v to vertex v’ if and only there is one from v’ to v: as a result, we
think of the a-edges as undirected edges, that can be traveled in either direction, each time
reading a. A path in such an edge-labeled graph is called a cycle if its initial vertex is
equal to its final vertex. The sequence of edge labels along a path p spells a word w over
alphabet {a,b,b"'}, and we say that w labels the path p, or that p reads w.

Note that a word is in H if and only if it labels a cycle at vertex vg = H in the Schreier
graph of H. The Stallings graph of H, written (I'(H), vp), is defined to be the fragment of
the Schreier graph of H spanned by the cycles at vy reading the geodesic representatives of
the elements of H, rooted at vg: that is, the subgraph of the Schreier graph of H consisting
of all the edges participating in a cycle at vy which reads a geodesic representation of an
element of H, and of all the vertices adjacent to these edges. In particular, a word is in H
if and only if its geodesic representative labels a cycle in I'(H) at vertex vyg. We refer the
reader to Remark and to [12] for more details on these graphs. We note in particular
that H has a finite Stallings graph if and only if it is finitely generated, and that I'(H) is
efficiently algorithmically computable if H is given by a finite set of generators (words on
the alphabet {a,b,b"'}) [12, 3.

Example 2.1 Figure[llshows examples of Stallings graphs. To be more precise: the graphs
in Figure M are labeled graphs, meaning that their vertices are labeled by an initial segment
of N, see more details on this useful notion further down in Section The definition of
Stallings graphs does not entail labeling vertices — only designating a base vertex. ad

Remark 2.2 The definition of Stallings graphs given above is a generalization of that
introduced by Stallings in 1983 [21] for finitely generated subgroups of free groups, and a
particular instance of the definition first introduced by Gitik [9] in 1996 under the name
of geodesic core, and systematized by Kharlampovich, Miasnikov and Weil [12] in 2017.
Given a finitely presented group G = (A | R), a language L of representatives for G (a set
of words over the alphabet AU A~!) and a subgroup H, one considers the fragment of the
Schreier graph of H spanned by the L-representatives of the elements of H. It is effectively



Figure 1: Top: the Stallings graphs of the subgroups H = (abab~!,babab) and K =
(abab, b ') of PSLy(Z), where g" stands for h~'gh. Bottom: the Stallings graph of
L = (bab'ab gbab q(ab)® ah=labab=1 (ab)2(ab1)3). In each case, the root is the vertex
labeled 1.

computable if G is equipped with an automatic structure [I12] and H is L-quasi-convex. In
the particular case where G = PSLy(Z), we take L to be the language of normal forms. It
is well-known that G is automatic with respect to this language, and that every finitely
generated subgroup of PSLy(Z) is quasi-convex. The algorithm to compute the Stallings
graph of a subgroup, given a tuple of its generators, is quite straightforward, we refer the
reader to [3] for an outline. 0

It is immediate from the definition of Stallings graphs that I'(H) is connected and that
its a-edges (respectively, b-edges) form a partial, injective map on the vertex set of the
graph. Moreover, because a®> = b® = 1, distinct a-edges are never adjacent to the same
vertex: we distinguish therefore a-loops and so-called isolated a-edges. Similarly, if we
have two consecutive b-edges, say, from v; to vy and from vy to vz, then I'(H) also has a
b-edge from v3 to v1. Thus each b-edge is either a loop, or an isolated b-edge, or a part of
a b-triangle. Finally, every vertex except maybe the root vertex is adjacent to an a- and
to a b-edge.



A rooted edge-labeled graph satisfying these conditions is called PSLy(Z)-reduced and
it is not difficult to see that every finite PSLs(Z)-reduced graph is the Stallings graph of a
unique finitely generated subgroup of PSLy(Z). That is, the mapping H — (I'(H),v) is a
bijection between finitely generated subgroups of PSLy(Z) and PSLy(Z)-reduced graphs.

An edge-labeled graph is said to be PSLa(Z)-cyclically reduced if every vertex is adjacent
to an a- and a b-edge or, equivalently, if it is PSLg(Z)-reduced when rooted at every one of
its vertices. We also say that a finitely generated subgroup of PSLy(Z) is PSL2(Z)-cyclically
reduced if its Stallings graph is.

Example 2.3 The PSLy(Z)-cyclically reduced graphs I' with 1 or 2 vertices are represented

in Figure 2l
a a b b
a b b
() o—=0 ) .
a
Al AQ A3 A4

Figure 2: All PSLy(Z)-cyclically reduced graphs with at most 2 vertices.

There is only one with 1 vertex, and three with 2 vertices. O

2.2 Combinatorial type, isomorphism type of a subgroup of PSLy(Z)

The combinatorial type of a PSLa(Z)-reduced graph T' is the tuple (n, ko, k3, f2, {3) where
n is the number of vertices of I', k9 and k3 are the numbers of isolated a- and b-edges, and
{5 and {3 are the numbers of a- and b-loops. We sometimes talk of the combinatorial type
of a subgroup to mean the combinatorial type of its Stallings graph, and we refer to n (the
number of vertices of a PSLy(Z)-reduced graph) as the size of the graph or even the size
of the subgroup. See [3] for a discussion of the possible combinatorial types.

Let us also record the following results (see, e.g., [3, Lemma 2.3, Propositions 2.7, 2.9,
8.18 and Section 8.2]).

Proposition 2.4 A subgroup H < PSLo(Z) has finite index if and only if its Stallings
graph is PSLa(Z)-cyclically reduced and has combinatorial type of the form (n, ka,0, €2, (3).
It is free if and only if its combinatorial type is of the form (n, ko, ks,0,0).

Free PSLa(Z)-cyclically reduced subgroups have even size. Free and finite index sub-
groups are PSLa(7Z)-cyclically reduced and their size is a multiple of 6. The combinatorial
type of a free and finite index subgroup is of the form (n, %n, 0,0,0).

PSLy(Z)-cyclically reduced subgroups are conjugates if and only if the (unrooted) edge-
labeled graphs underlying their Stallings graphs are isomorphic.



By Kurosh’s classical theorem on subgroups of free groups (e.g., [15, Proposition
I11.3.6]), a subgroup H of PSL2(Z) is isomorphic to a free product of ry copies of Zga, 73
copies of Z3 and a free group of rank r, for some non-negative integers ro,r3,r. The triple
(rg,73,7), which characterizes H up to isomorphism (but not up to an automorphism of
PSL2(Z)) is called the isomorphism type of H. We record the following connection between
the combinatorial and the isomorphism types of a subgroup [3, Proposition 2.9].

Proposition 2.5 Let H be a subgroup of PSLa(Z) of size at least 2 and let (n, ka, k3, (2, (3)
be the combinatorial type of I'(H).
If T'(H) is PSLa(Z)-cyclically reduced, the isomorphism type of H is

<€2’€371+n—2k3—3€2—4£3> '

6
IfT'(H) is not PSLa(Z)-cyclically reduced, the isomorphism type of H is

1 — 2kg — 3ly — 4L

(@2,63, 3 + 1 3 63 2 3) if the base vertex is adjacent to an a-edge
1
2

n — 2k3 — 3@2 —463
6

> if the base vertex is adjacent to a b-edge.

2.3 Labeled graphs

One of our objectives in this paper is to count subgroups by isomorphism type or by
combinatorial type. Since subgroups are in bijection with PSLy(Z)-reduced graphs (their
Stallings graphs), it is equivalent to count these graphs. For technical reasons, it is easier to
count labeled graphs, that is, graphs whose vertex set is equipped with a (labeling) bijection
onto a set of the form [n] = {1,... ,n. The graphs in Figure [l are in fact labeled graphs.

Example 2.6 The PSLy(Z)-cyclically reduced graphs Ay and Asz in Example 23] admit
two distinct labelings, while Ay and A4 have only one. We record here what we call the

preferred labeling of Ay, where the b-edge goes from 1 to 2, see Figure B O
b
O—__ =@
a

Figure 3: The preferred labeling of A

Tt is important to distinguish this notion of labeling, which injectively assigns an integer to each vertex,
from the edge labeling used so far, where each edge is labeled by either the order 2 generator a of PSL2(Z),
or by its order 3 generator b and each path is labeled by a word.



Since we are going to count graphs, rooted or not, labeled or not, it is important to
clarify that we consider these combinatorial objects up to isomorphism. Concretely, if T’
and IV are graphs, an isomorphism from I' to I is a pair of bijections ¢ = (¢v, ¢g) from
the vertex set of I" to the vertex set of IV and from the edge set of I' to the edge set of I”,
respectively, which preserve the incidence relation (that is, if I' has an edge e from vertex
v to vertex w, then pg(e) is an edge from ¢y (v) to py(w). If T and I” are rooted, then
oy must also map the root of I' to the root of I"V. If, finally, I' and I"” are edge-labeled,
then pgr must also preserve these labels.

It is important to note that, an n-vertex PSLa(Z)-reduced graph admits exactly n!
distinct labeling functions. Let indeed vy be the root of I' and let us fix a total order
on the alphabet {a,b,b~'}. Assigning to each vertex v the lexicographically least geodesic
word labeling a path from v to v, yields a total order on the vertex set of I'. A labeling of I'
is therefore equivalent to a permutation of [n]. Another way of formulating this observation
is that a PSLy(Z)-reduced graph admits no non-trivial automorphism.

3 The silhouetting operation on PSLy(Z)-cyclically reduced graphs

We will see in Sections M1l and [ that counting and randomly generating subgroups of
PSLy(Z) reduces to counting and randomly generating labeled PSLy(Z)-cyclically reduced
graphs. Before we embark on this task, we introduce a combinatorial construction on this
class of graphs.

More precisely, we define in Section [B.1] certain moves on a labeled PSLy(Z)-cyclically
reduced graph, depending on its geometry. They are used in Sectiond.2to count subgroups
of PSLy(Z) and in Section [f] to randomly generate them. They also bring to the fore an
interesting structure associated with a PSLy(Z)-cyclically reduced graph, which we call its
silhouette. Some of its algebraic and combinatorial properties are discussed in Section

Very roughly speaking, these moves “simplify” a labeled PSLg(Z)-cyclically reduced
graph by first iteratively removing all loops and the paths that lead to them, until we
are left (except in degenerate cases) with a graph which consists only of b-triangles and
paths connecting them. The process then “simplifies” these connecting paths so that the
resulting graph consists only of b-triangles connected by isolated a-edges. As we know, such
graphs represent conjugacy classes of free finite index subgroups (see Proposition 2.7]).

For technical reasons, we use the notion of weakly labeled graphs [0, Definition II.1]:
if I' is a PSLa(Z)-cyclically reduced graph of size m, a weak labeling of I' is an injective
map from the vertex set of I' to [n], where n is an integer at least equal to m. To lighten
up notation, we often abusively identify the vertices of a weakly labeled graph with their
labels. We also abusively write A; (i = 1,2,3,4) for any weakly labeled version of the
graphs in Example 2.3

Observe that a weak labeling a of T' gives rise to a labeling of I' by a uniquely defined
order-preserving bijection from the range of « to [m]. The labeled graph obtained this way



is called the normalization of I, denoted by norm(I").

3.1 Moves on a labeled PSLy(Z)-cyclically reduced graph

Here we define so-called A3-, A2 1-, A22-, k3- and exceptional moves on weakly labeled
PSLy(Z)-cyclically reduced graphsﬁ But for the exceptional moves, each of these moves
deletes vertices from the input graph without changing their label, so that the resulting
graph is, again, weakly labeled.

In the following, I' is a weakly labeled PSLy(Z)-cyclically reduced graph with combina-~
torial type T = (n, ka, k3, {2, (3).

Ag-moves If I' has a b-loop at vertex v (in fact, at the vertex labeled v) and there is an
isolated a-edge between v and a distinct vertex w, then the (A3, v,w)-move consists in
deleting vertex v and the adjacent edges, and adding an a-loop at vertex w. The resulting
weakly labeled graph A (see Figure[) is PSLy(Z)-cyclically reduced and has combinatorial
type T + A3, where A3 = (—1,—-1,0,1, —1).

s SR S

Figure 4: (A3, v, w)-move

Lemma 3.1 Suppose that n > 2 and €3 > 0. The A\3-moves establish a bijection from the
set of pairs (I',£) with T' a labeled PSLo(Z)-cyclically reduced graph of combinatorial type
T and ¢ a b-loop in T, to the set of triples (A, ¢',v) formed by a labeled PSLy(Z)-cyclically
reduced graph A with combinatorial type T + A3, an a-loop ¢' in A and an integer v € [n].

Proof. Given a pair (I',¢) with ' a labeled PSLy(Z)-cyclically reduced graph of combi-
natorial type 7 and ¢ a b-loop in I', we associate to it the triple (A,v,w) — and we
write (T',£) — (A, ¢',v) — defined as follows: v is the vertex carrying the loop ¢ in T}
since n > 1, v is adjacent to an isolated a-edge and we let w be the other end of that a-
edge; finally, we let A’ be the weakly labeled graph obtained from I" by a (A3, v, w)-move,
A = norm(A’) and ¢ be the a-loop in A at the vertex labeled w in A’.

Conversely, let A be a labeled PSLy(Z)-cyclically reduced graph with combinatorial
type T + As, let £ be an a-loop in A and let v € [n]. Let A’ be the weakly labeled graph

2This operation is called reduction in [6, Section I1.2.1].

3The denomination of Az-move is chosen because these moves deal with loops labeled by the order 3
generator b, which are counted by the parameter ¢3. Similar justifications hold for the moves that deal with
a-loops (counted by ¢2) and with isolated b-edges (counted by k3).



obtained from A by “making space for v”, that is, by incrementing the labels of all the
vertices greater than or equal to v. Finally, let w be the label of the vertex of A’ carrying
the loop /. Now let I" be the graph obtained from A’ by deleting the loop ¢ and adding
vertex v, an isolated a-edge between v and w and a b-loop at v: it is directly verified that
T is properly labeled, of combinatorial type 7, and that (T, ¢) — (A, ¢, v). O

Ago-moves Let I' be a weakly labeled PSLy(Z)-cyclically reduced graphs of size n > 3 and
let v be a vertex carrying an a-loop. Two situations occur, depending on whether v sits on
a b-triangle or not, giving rise to two flavors of As-moves.

If v sits on a b-triangle, let w and w’ be the other extremities of the b-edges ending
and starting at v, respectively. Then w # w’ and T has a (non-isolated) b-edge from w’
to w. The (Ag,1,v,w’)-move consists in removing from I' vertex v and the adjacent edges
(the a-loop ¢ and two b-edges). The resulting graph A (see Figure [) is PSLy(Z)-cyclically
reduced, it has an isolated b-edge from w’ to w and combinatorial type 7 + Ag 1, where
A2 =(—1,0,1,-1,0).

If instead v does not sit on a b-triangle, there exist vertices w,w’ such that v, w,w’
are pairwise distinct, there is an isolated a-edge between w and w’, and an isolated b-edge
between v and w (two directions are possible for that edge). The (A22,v — w,w’)-move
(respectively, (Ag2,v < w,w’), depending on the orientation of the b-edge adjacent to v)
consists in deleting from I' the vertices v and w and the edges adjacent to them, and adding
an a-loop ¢ at w’. The resulting graph A (see Figure [ is PSLy(Z)-cyclically reduced and
has combinatorial type T + Ag 2, where Ag o = (—2,—1,—1,0,0).

o
&
50

Figure 5: Above: (A1, v, w’)-move. Below: (A2 2,v  w,w’)-move

Lemma 3.2 Suppose that n > 3 and f5 > 0.

1. The Ag1-moves establish a bijection from the set of pairs (I',¢) with I' a labeled
PSLy(Z)-cyclically reduced graph of combinatorial type T and ¢ an a-loop adjacent to

10



a b-triangle in T, to the set of triples (A, e,v) formed by a labeled PSLy(Z)-cyclically
reduced graph A with combinatorial type T + Xa1, an isolated b-edge e in A and an
integer v € [n].

2. Similarly, the A 2-moves establish a bijection from the set of pairs (I',¢) with T
a labeled PSLy(Z)-cyclically reduced graph of combinatorial type T and £ an a-loop
adjacent to an isolated b-edge in T', to the set of 4-tuples (A, 0 v,w,e) formed by a
labeled PSLy(Z)-cyclically reduced graph A with combinatorial type T+ X2 2, an a-loop
0 in A, distinct integers v,w € [n] and some € € {—1,+1}.

Proof. Given a pair (I',#¢) with " a labeled PSLy(Z)-cyclically reduced graph of combina-
torial type 7 and ¢ an a-loop in I' adjacent to a b-triangle, we associate to it the triple
(A,e,v) — and we write (I', £) — (A, e,v) — defined as follows: v is the vertex carrying
the loop ¢ in I'; since v is adjacent to a b-triangle and we let e be the b-edge in that triangle
not adjacent to v (going from w’ to w); finally, we let A’ be the weakly labeled graph
obtained from I" by a (Ag,1, v, w’)-move, A = norm(A’) and e be the isolated b-edge in A
starting at the vertex labeled w’ in A’.

Conversely, let A be a labeled PSLy(Z)-cyclically reduced graph with combinatorial
type T+ Az,1, let e be an isolated b-edge in A and let v € [n]. Let A’ be the weakly labeled
graph obtained from A by “making space for v”, that is, by incrementing the labels of all
the vertices greater than or equal to v. Now let I' be the graph obtained from A’ by adding
a new vertex v, completing e to a b-triangle through vertex v: it is directly verified that I'
is properly labeled, of combinatorial type 7, and that (I",¢) — (A, e, v). This completes
the proof of the first statement.

The second statement is proved in a similar fashion. Given a pair (I", ¢) with I" a labeled
PSL2(Z)-cyclically reduced graph of combinatorial type 7 and ¢ an a-loop adjacent to an
isolated b-edge in ', we associate with it a 4-tuple (A, ¢', v, w, ¢) as in the statement, where
v is the vertex carrying ¢, w is the other extremity of the adjacent isolated b-edge and e
records whether a (A22,v — w,w’)-move or a (Ag2,v < w,w’) can be performed. The
converse mapping, reconstructing (I, ¢) from (A, ¢, v, w,e) follows the same steps as for
Ag2,1- Or Az-moves. O

k3-moves Let I' be a weakly labeled PSLg(Z)-cyclically reduced graph of size at least 4,
and let v, w,v’,w’ be pairwise distinct vertices such that there is an isolated b-edge from
v to w, and isolated a-edges connecting v and v’ on the one hand, and w and w’ on
the other. The k3-move (k3,v — w,v',w’) consists in deleting vertices v and w and the
adjacent edges, and adding a new isolated a-edge between v’ and w’. The resulting graph
A (see Figure [f]) is PSLg(Z)-cyclically reduced and has combinatorial type T + k3, where
k3 = (—2,-1,—1,0,0).
Similarly to the other moves, we record the following lemma.

11



Figure 6: (k3,v — w,v',w')-move

Lemma 3.3 Suppose that n > 4, £s = 0 and ks > 0. The k3-moves establish a bijection
from the set of pairs (T, e) withT" a labeled PSLa(Z)-cyclically reduced graph of combinatorial
type T and e an isolated b-edge, to the set of triples (A, e',v,w,e) formed by a labeled
PSLo(Z)-cyclically reduced graph A with combinatorial type T + K3, an isolated a-edge €’
in A, distinct integers v, w € [n] and some € € {—1,+1}.

Proof. The assumption that /o = 0 guarantees that every isolated b-edge is adjacent to
two isolated a-edges, and the fact that n > 4 guarantees that these a-edges are distinct.

Now let (I',e) be a pair formed by a labeled PSLy(Z)-cyclically reduced graph I' of
combinatorial type 7, and an isolated b-edge e in T, say, from vertex v to vertex w. Let v/
and w’ be the other extremities of the isolated a-edges adjacent to v and w, respectively.
We associate with it the tuple (A,e/,v,w,e) — and we write (I',e) — (A, €/, v,w,¢)
— where A’ is the weakly labeled graph obtained from T' by a (k3,v — w,v’, w’)-move,
A = norm(A’), ¢’ is the isolated a-edge in A adjacent to the vertex labeled v’ in A’, e =1
if vy <w ande=-1if v > w'.

Conversely, let A be a labeled PSLy(Z)-cyclically reduced graph with combinatorial
type T + k3, let € be an isolated a-edge in A, connecting vertices v" and w’, and let
v,w be distinct integers in [n]. Let A’ be the weakly labeled graph obtained from A by
“making space for v, w”, that is, by incrementing the labels of all the vertices greater than
or equal to max(v,w) — 1 by 2 units, and those in [min(v, w), max(v, w) — 2] by 1 unit. Let
then I' be the graph obtained from A’ by deleting the a-edge ¢’; adding new vertices v, w
and a b-edge from v to w; and adding a-edges between v and min(v’, w’) and between w

and max(v',w') if e = 1 — between v and max(v’, w') and between w and min(v/, w') if
¢ = —1. It is directly verified that I' is properly labeled, of combinatorial type 7, and that
(Tye) — (A, €, v,w,¢). O

Exceptional moves Finally, we introduce three so-called exceptional moves. The first can
be applied only to a weakly labeled version of the 1-vertex graph A; that does not use
label 1, turning it into A; properly labeled.

The second can be applied only to a weakly labeled version of Ag, turning it into
A (with its only vertex labeled 1). This move can be seen as a degenerate version of
a Ago-move. Note that it modifies the combinatorial type by the addition of exc =
(—=1,0,—1,—1,1), the difference between the combinatorial types of A; and As.
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The last exceptional move can be applied to any weakly labeled version of Ay different
from the so-called preferred labeling (see Example[2.0]), turning it to that preferred labeling.

3.2 Silhouette graphs

We can see the moves described in Section 3] as a rewriting system on weakly labeled
PSLy(Z)-cyclically reduced graphs, which we show to be confluent (Section 3.3 below). The
following definition will be convenient: we say that a PSLa(Z)-cyclically reduced graph
I' (weakly labeled or not) is a silhouette graph if it is equal to A; or Ag, or if it has
combinatorial type (n,n/2,0,0,0) (where n is a positive multiple of 6, see Proposition [24]).
Observe that no move is defined on a silhouette graph of size at least 3, whichever way it
is weakly labeled.

Silhouette graphs play a foundational role in the recursive process for the random
generation of subgroups of PSLy(Z) described in Section Bl They also play a central role
in [4].

3.3 Silhouetting a labeled PSL,(Z)-cyclically reduced graph

In general, several moves can be applied to a weakly labeled PSLy(Z)-cyclically reduced
graph I'. Our next proposition states that, however, the end result of a maximal sequence
of moves is independent of the choice of that maximal sequence.

Proposition 3.4 Let T' be a weakly labeled PSLo(Z)-cyclically reduced graph T'. If A and
A are weakly labeled graphs obtained from T', respectively, after maximal sequences of A3-,
A2,1-, A22- and K3- and exceptional moves, then A = A'.

Proof. We proceed by induction on the number of vertices of I'. The result is immediate
if no move is possible on I'. If I has 1 or 2 vertices, either no move is possible, or only one
exceptional move is possible, and the result is again immediate.

Suppose now that I has n > 3 vertices and that the sequences of moves leading from I"
to A and A’ start with the same move (the same type of move, with the same parameters),
taking ' to I”. Since I" is a weakly labeled graph with less than n vertices, the announced
result holds by induction.

Finally, suppose that the first moves from I'" to A and I' to A/, say m and m/, are
distinct. Note that since I' has size at least 3, neither m nor m’ is an exceptional move.
Let 'y (resp. T'}) be the weakly labeled graph obtained from I' after the move m (resp.
m’), so that there exists a maximal sequence of moves from I'y to A (resp. I'} to A’). Let
us consider the possible values of m and m/.

If m = (A3,v,w) and m’ = (A3,v’,w’), there are two possibilities. If T' is a weakly
labeled version of Ay (so that v = w’ and v/ = w), then I'; and I'} are weakly labeled
versions of Ay, so A = T'y, A’ = I'] and their normalizations are equal. If instead I' is
not a weakly labeled version of Ay, then v,v’, w,w’ are pairwise distinct, and the moves m
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and m’ commute in the following sense: an m’-move is possible on I'y, leading to a weakly
labeled graph I'y; an m-move is possible on I'}, leading to a weakly labeled graph I'}, and
I'y =T%. Let A” be the graph obtained from I'y by a maximal sequence of moves. Since
I'y and I} are weakly labeled graphs with n — 1 vertices, the induction hypothesis shows
that A = A” and A’ = A", so that A = A’.

We now verify that, similarly, other combinations of first moves m and m’ also commute,
leading to the same conclusion that the statement in the proposition holds, except in a few
degenerate cases that yield the same conclusion by other arguments.

It is readily verified that any A3-move commutes with any Ag 1-move.

If m = (A3,v,w) and m’ = (A2, — y,9) (or m' = (A\g2, 2 < y,y')), we again
distinguish two cases. If 3/ = v, then y = w and T consists of exactly three states z,y, 1/,
with a b-edge between x and y, an a-edge between y and 3/, an a-loop at state x and a
b-loop at state 3/, see Figure[ll Any maximal sequence of moves from I leads to Ay, where

b a
o(_Iw) ® WL
Figure 7: Case where a A3- and a A 2-moves are possible

the only vertex is labeled 1, and the announced statement holds. If instead 3’ # v, then I’
has more than three states and the moves m and m’ commute.

If m = (\3,v,w) and m’' = (k3,z — y,2,y") (or m' = (k3,z < y,2',y’)), there are
again two possibilities. If v # /.9, then m and m’ modify disjoint parts of I" and they
clearly commute. If instead v = 2/, then w = x — or if, symmetrically, v = ¢ and w =y
—, see Figure [§, then a direct verification shows the following: m can be followed by a
(A2,2, w — y,y')-move (or a (A22,w < y,y')-move, as the case may be), leading to a graph
where vertices v, w,y have been deleted and 3’ carries an a-loop; and m’ can be followed
by a (A3, v,y')-move, leading to that same graph.

(@@

Figure 8: Case where a A3- and a k3-moves are possible

The only situation where two Ags-moves do not commute is when they are both Ag -
moves or both A3 92-moves, modifying overlapping parts of I'.

The first case arises if two a-loops sit on the same b-triangle, so that m = (A1, v, w)
and m’ = (Ag,1,v’, w) are possible, see Figure [l If w also carries an a-loop (so that I' has
3 vertices), then A = A’ = A;. Otherwise, an isolated a-edge connects w and a vertex
w’, distinet from v, v, w, a (Ag2,v" — w,w)-move is possible (or some other orientation of
a b-edge between v’ and w) after carrying out the m-move and, together these two moves
amount to deleting vertices v, v’ and w, and adding an a-loop at w’.
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Figure 9: Cases where Ay 1-moves interfere with each other

In the second case, we have, say, m = (A\22,2 — y,2) and m' = (Ag2,2" — ¢/, 2’) (or
any other combination of directions for the b-edges between z and y on one hand, and
2’ and 3’ on the other) satisfying ' = 2z and 2’ = y. Then T" has exactly 4 vertices, see
Figure [I0, and applying either move to I' yields a weakly labeled version of Ag, on which

D@t @Da

Figure 10: Case where g 2-moves interfere with each other

one can only apply an exceptional move. It follows that A = A’ = A;.

It is directly verified that any Ao 1-move commutes with any x3-move. Consider now the
case where m = (A22,v = w,w’) and m' = (k3,z — y,2/,y’) (or any other combination
of directions for the b-edges between v and w, and between x and y). If w # 2/ (and
hence w' # x), then m and m’ modify disjoint parts of I' and clearly commute. If instead
w = 2’ and w' = z (see Figure [[1), a direct verification shows that after applying either

b b

Figure 11: Case where a Az 2- and a k3-moves are possible

m or m/, a Ay 2-move can be applied (a (A22,2 — y,y’)-move can be applied to I'y and a
(A2,2,v = w,y')-move to I'}), leading to the same weakly labeled graph with an a-loop at
vertex g': again m and m’ commute.

Similarly, suppose that m = (k3,v — w,v,w’) and m' = (k3,2 — y,2',y) (or
any other combination of directions for the b-edges). We distinguish three cases. If
z, 2’ y,y ¢ {v,v',w,w'}, then m and m’ clearly commute. If (w,w’) = (2/,2) and y # o'
(see Figure[I2)), then a (k3,2 — y,v’,y')-move can be applied to I'; and a (k3,v — w,v’,y')-
move to I'}, leading to the same weakly labeled graph (with an a-edge between v" and ¢/,
and no vertices labeled z,y,v,w). If now (w,w’) = (2/,x) and y = v’ (so that y' = v),
then I' has exactly four vertices, both I'y and I'} are weak labelings of Ay, on which only
an exceptional move is defined, so that A = A/.

This concludes the proof of the proposition. O
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Figure 12: Cases where two k3-moves are possible

If T' is a labeled PSLy(Z)-cyclically reduced graph, we define the silhouette silh(I') of
I" to be the labeled graph resulting from the application of a maximal sequence of moves,
followed by a normalization: Proposition B.4] guarantees that silh(I') is well defined.

Example 3.5 Consider the three (labeled) Stallings graphs in Figure[Il The first is equal
to its own silhouette, and is also equal to the silhouette of the third. The silhouette of the
second graph is Ay (with its preferred labeling). O

The silhouetting operation preserves some important algebraic information about a
subgroup, namely the free rank component of its isomorphism type.

Proposition 3.6 Let H be a PSLy(Z)-cyclically reduced subgroup of PSLo(Z), with Stallings
graph T and isomorphism type (2, 3,7). If silh(T') has isomorphism type (¢4, 05, r"), then
r = r'. In particular silh(T') = Ay (respectively, As) if and only if r = 0 (respectively,
r=1).

Proof. Let 7 be the combinatorial type of I'. Proposition shows that the free rank r
in the isomorphism type of H is a function of 7; more precisely, if 7 = (n, ko, k3, {2, {3),
then 6(r — 1) = n — 2kg — 30y — 4¢3 = (7), and we observe that ¢ is a linear map.

By construction, silh(I') is obtained from I' by a succession of Az-, A2 1-, A2 2-, K3-moves
and maybe one exceptional move (followed by normalization). Each of these moves modifies
the combinatorial type by adding to it the vector A3, A21, A22, k3 or exc. Every one of
these vectors lies in the kernel of ¢, so the free rank component of the isomorphism types
of I' and silh(I") coincide.

It is immediate that this free rank component is 0 for Aq, 1 for Ay and 1+n/6 > 2 for
each silhouette graph of size n > 2. The proposition follows immediately. O

4 Counting subgroups by isomorphism and by combinatorial type

Our aim in this section is to count subgroups of a given size, under some additional con-
straint: with a fixed isomorphism type or with a fixed combinatorial type. Since each
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subgroup is uniquely represented by its Stallings graph, i.e., by a PSLy(Z)-reduced graph,
this is equivalent to counting these graphs (up to isomorphism).

As noted in Section 23] an n-vertex PSL(Z)-reduced graph admits exactly n! distinct
labelings. As a result, our strategy to count n-vertex PSLy(Z)-reduced graphs will be to
count labeled n-vertex PSLy(Z)-reduced graphs, and then divide that count by n!. The
same applies for the counting of n-vertex PSLy(Z)-reduced graphs of a particular combina-
torial type, or for n-vertex rooted PSLa(Z)-cyclically reduced graphs. Note that there is no
such easy correlation between the number of labeled and unlabeled (non-rooted) cyclically
reduced graphs, as counting is perturbed by the existence of symmetries (automorphisms).

Thus our task reduces to counting labeled PSLy(Z)-reduced graphs. It further reduces
to counting labeled PSLy(Z)-cyclically reduced graphs, as we explain below.

4.1 Reduction to the count of labeled PSLy(Z)-cyclically reduced graphs

If 7 = (n, kg, ks, l2,03) is a tuple of integers, we let H(7) (respectively, L(7), s(T)) be
the number of subgroups (respectively, labeled PSLa(Z)-reduced graphs, labeled PSLy(Z)-
cyclically reduced graphs) of combinatorial type 7.

Example 4.1 In view of Example 23] the non-zero values of H, L and s for tuples
(n, ko, ks, 02, l3) where n = 1,2 are as follows:

e H(t) = L(r) = 1 for 7 = (1,0,0,1,1),(1,0,0,1,0),(1,0,0,0,1) and s(7) = 1 for
T =(1,0,0,1,1);

e [(t)=4and H(T) =s(1) =2 for = (2,1,1,0,0),(2,0,1,2,0);
o L(t)=2and H(T) =s(1) =1 for 7= (2,1,0,0,2);
e [(t)=2and H(t) =1 for 7 = (2,0,1,1,0), (2, ,0,0,1); O

We first establish the connection between the parameters H(7), L(7) and s(7).

Proposition 4.2 Let T = (n, ks, k3, l2,l3) be a combinatorial type with n > 2. The num-
bers H(T), L(7T) and s(T), respectively of subgroups, labeled PSLa(Z)-reduced graphs and
labeled PSLa(Z)-cyclically reduced graphs of combinatorial type T are related as follows.

L('T) =n- s(n, ko, k‘g,gg,fg) + (52 + 1) . s(n, ko, k‘g,fg + 1,63) + (53 + 1) . S(TL, ko, ks, lo, f3+ 1)

Proof. Let (I',v) be a PSLa(Z)-reduced graph with n > 2 vertices, such that I' is not
PSLy(Z)-cyclically reduced. Then v is adjacent to an a-edge but no b-edge, or the opposite.
Adding a b-loop at v in the first case, an a-loop in the second case, yields a rooted PSLy(Z)-
cyclically reduced graph (I,v). Conversely, if TV is PSLy(Z)-cyclically reduced, we get
PSLy(Z)-reduced graphs either by rooting I at any one of its vertices, or by rooting I'" at
a vertex that carries a loop and deleting that loop. The first equality follows directly.
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The second equality follows from the first since a size n PSLy(Z)-reduced graph has n!
distinct labelings (see Section 2.3)). 0

Based on Proposition 2.5 which relates the isomorphism type and the combinatorial
type of a subgroup, we get the following statement.

Proposition 4.3 Let o = ({3, 03,7) be an isomorphism type and let ky = £(n — {s).

The number of PSLy(Z)-cyclically reduced subgroups of size n and isomorphism type o
isn - s(n, ka, ks, l2,03), where ks = %(n — 30y — 443 — 61 4 6).

The number of non-PSLa(Z)-cyclically reduced subgroups of size n and isomorphism
type o, where the base vertex is adjacent to an a-edge, is (€3 + 1) - s(n, kg, kb, (2, (3 + 1),
where kfy = 2(n — 30y — 405 — 67 + 2).

The number of non-PSLy(Z)-cyclically reduced subgroups of size n and isomorphism
type o, where the base vertex is adjacent to a b-edge, is ({2 + 1) - s(n, ko, k%, 0o + 1,03),
where kY = 3(n — 3y — 403 — 61 + 4).

Propositions and [£.3] effectively reduce the counting of subgroups to the count-
ing of labeled PSLy(Z)-cyclically reduced graphs of a given combinatorial type, which is
investigated in Section below.

4.2 Counting labeled PSLy(Z)-cyclically reduced graphs

Let T = (n, ko, k3, l2,¢3) be a combinatorial type. We give (multi-)recurrence relations to
compute s(7) when n > 2. For n < 2, see Example .11
The bijections established in Lemmas B.1] and show the following.

Proposition 4.4 Let 7 = (n, ko, k3, l2,03) be a combinatorial type such that n > 2 and
ls > 0. If A has combinatorial type T + A3, then the set of labeled PSLy(Z)-cyclically
reduced graphs I' of combinatorial type T, such that a Az-move takes I" to A, has %:1)

elements. More generally,

s(r) = n(%—l—l) s(T + As3), that is:
3
. 1
s(n, kz,kg,ﬁg,fg) = 7n <£€2 + ) s(n - l,k‘g - 1, /{3,€2 + 1,53 - 1). (1)
3

Proposition 4.5 Let 7 = (n, ko, k3,2, ¢3) be a combinatorial type such that n > 3 and
ly > 0. If A has combinatorial type T + X1 (resp. T + X22), then the set of labeled
PSLy(Z)-cyclically reduced graphs T' of combinatorial type T, such that a Ay ;-move (resp.

18



a Ag2-move) takes I' to A, has %;rl) (resp. 2n - (n — 1)) elements. More generally,

s(r) = ”UZ“) S(T+ Asy)
+2n-(n—1) s(T + Ae2), that is:
s(n, ko, k3, lo,l3) = n(?_{_l) s(n—1,ko, ks + 1,00 —1,¢3)
+2n?(n71) s(n—2,ko —1,kg — 1,09, 03). (2)

Proposition 4.6 Let 7 = (n, ko, k3, l2,l3) be a combinatorial type such that n > 4, by =
0 and k3 > 0. If A has combinatorial type T + K3, then the set of labeled PSLy(Z)-

cyc(lica%iy rec;’uced graphs I' of combinatorial type T, such that a k3-move takes I' to A, has
2n-(n—1)(ka—1

T elements. More generally, if {2 = 0, we have
(n—1)(ky—1
s(t) =2 n(n k:)( 2~ 1) s(T + K3), that is:
3
S —1) (ks — 1
S(n. ko, ks, 0,05) = 2 k)(]” ) s(n— 2,k — 1,k — 1,0, 05). (3)
3

We can use Equations (1), (@) and ([B) to compute the coefficient s(n, ks, k3, l2, l3),
where n > 3: if one of k3, £s or {3 is greater than zero, we can apply at least one of these
equations, thus reducing the first argument of the coefficients to compute by 1 or 2.

More precisely, one may first iterate the use of Equation (II) until n < 2 or ¢35 = 0.
One can then use repeatedly Equation (2]), thus reducing the computation of s(7) to
the computation of a number of smaller coefficients, until n < 2 or ¢, = 0 (note that
Equation (2]) never increases ¢3). Finally, if n > 3 and 3 = ¢3 = 0, then in fact n > 4 and
one can use repeatedly Equation ([B]) until n < 2 or k3 = f5 = ¢35 = 0. The computation of
the coefficients when n < 2 was done in Example 1l As for the coefficients of the form
s(n, k2,0,0,0) (n > 2), we note that they count the size n labeled silhouette graphs.

The latter numbers were computed in [3, Appendices A.3 and A.4] (see also the com-
putation by Stothers [23] of the number of finite index, free subgroups of PSL2(Z), that is,
of subgroups whose Stallings graph is a silhouette graph of size at least 3).

Proposition 4.7 Let ty (respectively, t3) be given, forn > 1, bgﬂ

(2n)!
2n !

= [ @i—1), and ts(3n) = (3?;”72: = I Gi-nGi-2).

1<i<n 1<i<n

ta(2n) =

“What is written t2(2n) (respectively, t3(3n), s(6m,3n,0,0)) here, is written téo)(2n) (respectively,
15(3n), g5 (6n)) n [
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Then the number s(6n,3n,0,0,0) of size 6n labeled silhouette graphs (n > 1) satisfies the
following recurrence relation:

n—1
5(6m,3n,0,0,0) = to(6n) t3(6n) — Z t2(6m) t3(6m) s(6(n —m),3(n —m),0,0,0).

m=1

5 Random generation of subgroups of PSLy(Z)

Our objective in this section is to produce an algorithm which generates uniformly at
random subgroups of PSLy(Z) with a given size and isomorphism type.

As we saw in Example[4.]], there are exactly four size 1 subgroups, with pairwise distinct
combinatorial and isomorphism type: the trivial subgroup, the subgroups generated by a
and b, respectively, and PSL2(Z) itself. We now concentrate on generating subgroups of
size at least 2, and we assume that the parameters L(7) and s(7) have been pre-computed
for all types of sufficient size.

Like in Section [l generating uniformly at random a subgroup of a given combinatorial
or isomorphism type reduces to randomly generating a labeled PSLy(Z)-reduced graph of
a given combinatorial type and, before that, to randomly generating a labeled PSLy(Z)-
cyclically reduced graph of a given type. Indeed, the label-forgetting map, from the set of
labeled PSLg(Z)-reduced graphs of combinatorial type T = (n, ko, k3, £2,¢3) to the set of
PSL2(Z)-reduced graphs of type 7, is such that the inverse image of each PSLy(Z)-reduced
graph of type T contains exactly n! elements (see the discussion at the end of Section 2.3)).

As we saw in Proposition 25 the isomorphism class of a PSLg(Z)-reduced graph is
determined by its combinatorial type, and a given size and isomorphism type arises for a
finite number of combinatorial types only. As a result, we only need to randomly generate
a PSLg(Z)-reduced graph with a given combinatorial type, and this starts with randomly
generating a labeled PSLy(Z)-cyclically reduced graphs of a given combinatorial type.

We first deal with the particular case of labeled silhouette graphs, then proceed to the
general case of labeled PSLy(Z)-cyclically reduced graphs and, finally, to labeled PSLy(Z)-
reduced graphs.

5.1 Random labeled silhouette graphs

Let n be a positive multiple of 6. The procedure random_silhouette_graph(n) to generate
a size n labeled silhouette graph, summarized below, is well known (see [3] for instance).
If s is a permutation on n elements, we denote by shuffle(s) the permutation ¢t~'st where
t is a random permutation on n elements.
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Algorithm 1: random_silhouette_graph(n)

1 do

2 sg = shuffle((1 2) (34)...(n—1n))

3 sg = shuffle((123)(456)...(n—2n—1n))

4 while The graph I' determined by so and sz is not connected

Note that the random permutations so and s3 may well determine a disconnected graph,
but the proof of [3, Proposition 8.18] shows that this happens with vanishing probability
(precisely: with probability 2n~! + o(n™!)). Therefore this algorithm (a rejection algo-
rithm) produces a silhouette graph after k iterations, with E(k) ~ 1.

5.2 Random PSLy(Z)-cyclically reduced graphs

We exploit, again, the bijections established in Section [B.I] which we already used to
derive the recurrence relations in Section This yields the following algorithm, called
random_cyclically reduced _graph(7), to randomly generate a PSLy(Z)-cyclically reduced
graph of combinatorial type (7).

We use the following notation: if v is an integer, shift, is the map defined on integers
by shift,(z) = z if x < v and shift,(z) = x + 1 if > v; if v, w are distinct integers, shift, ,,
is the map defined on integers by shift, ,(x) = = if * < min(v,w), shift, ,(z) =  + 1 if
min(v, w) < z < max(v,w) — 1, and shift, ,,(z) = x + 2 if z > max(v,w) — 1. Note that
shift, “pushes” all integers greater than or equal to v by one unit, so that the range of
shift, misses v; similarly, the range of shift, ,, misses v and w.

We extend this notation to any graph A labeled by integers: if v is an integer, the
graph shift,(A) is a relabeling of the vertices of A using shift, on each vertex label; if v
and w are two distinct integers, the graph shift, ,,(A) is a relabeling of the vertices of A
using shift, ,, on each vertex label.
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Algorithm 2: random _cyclically reduced_graph(n)

[

N

if r=(1,0,0,1,1) then
L return the unique labeled A;

s if 7=(2,1,1,0,0) then

10
11
12
13

14
15
16
17

18
19
20

21
22
23
24
25

26
27

28
29
30

31

| return any one of the two labeled A,

if 7=(2,0,1,2,0) then
L return any one of the two labeled Ag

if 7=(1,0,0,1,1) then
L return the unique labeled Ay

// At this stage n is necessarily greater than 2

if 7= (n, ko, ks, l2,¢3) and {3 > 0 then

A = random_cyclically.reduced graph(7T + As)

w = uniform random vertex with an a-loop ¢ in A

v = uniform random integer in {1,...,n}

return I' constructed from A by relabeling its vertices using shift,, removing the
a-loop ¢ at shift,(w), adding a new vertex labeled v and a b-loop at v, and adding an
a-edge between v and shift, (w)

if 7= (n, ks, ks, {2,0) and ¢2 > 0 then

x = uniform integer in [s(n, k2, k3, £2, 0)]
ifx<n-(ks+1) s(n—1,ksks+ 1,2 —1,0) then
A = random_cyclically reduced_graph(T + Az 1)

(w LN w’) = uniform random isolated b-edge in A

v = uniform random integer in {1,...,n}

return I' constructed from A by relabeling its vertices using shift,, adding a new
vertex labeled v and an a-loop at v, and adding b-edges from shift, (w’) to v and
from v to shift, (w)

else

A = random_cyclically reduced_graph(T + Az 2)

w’ = uniform random vertex with a a-loop ¢ in A

(v,w) = uniform random pair of distinct integers in {1,...,n}

return I' constructed from A by removing the a-loop ¢, relabeling the vertices of
A using shift,, ,,, adding new vertices labeled v and w, an a-edge between w and
shift, ,(w'), a b-edge between v and w (choosing orientation uniformly at
random) and an a-loop at v

if 7 = (n,ka,ks,0,0) and k3 > 0 then
A = random_cyclically reduced graph(T + K3)

(v’ 2w ) = uniform random isolated a-edge in A

(v,w) = uniform random pair of distinct integers in {1,...,n}

return I' constructed from A by removing the the a-edge €', relabeling the vertices
using shift, ,,, adding a b-edge between v and w (choosing its orientation uniformly at
random) and a-edges between v and shift, ,,(v'), and between w and shift, ,, (w’),
respectively

// At this stage ly =03 =k3 =0
return random silhouette_graph(n) 929




Theorem 5.1 Algorithm random_cyclically reduced graph, described above, produces,
on input a combinatorial type T, a random PSLa(Z)-cyclically reduced graph of type T.

Proof. Let 7 = (n, ko, k3, l2,¢3). We proceed by induction on n. Note that Algorithm
random_cyclically._reduced_graph is recursive, and that, for any 7, only one of the outer
if statements (Lines [l Bl Bl [ @ 04 and 26) holds. Moreover, the algorithm stops
immediately after the if statements of Lines[I Bl Bl [7l and strictly decreases the value of
n for the other ones. As a result, Algorithm random_cyclically reduced _graph stops on
any input 7 (which is a proper combinatorial type).

The statement of the theorem holds trivially if n < 2. Let us now assume that n > 2.

If /5 > 0 (that is, if the condition of Line [0 holds), Lemma [3I] describes a bijection be-
tween the set of pairs (I', £), where I is a PSLy(Z)-cyclically reduced graph of combinatorial
type 7 and £ is a b-loop in T, and the set of triples (A, ¢/, v) where A is a PSLy(Z)-cyclically
reduced graph of type 7+ As, ¢’ is an a-loop in A and v € [n]. This bijection, between two
finite sets, preserves uniformity. Thus the first steps in this case (selecting uniformly at
random A, ¢ and v) translate into the selection, uniformly at random, of a pair (T, £) where
I' has combinatorial type 7 and ¢ is one of the {3 b-loops in I" (a number that depends
on 7 but not on I'). Forgetting the ¢-component of this pair yields a randomly chosen
PSLy(Z)-cyclically reduced graph of type 7.

The reasoning is exactly similar if the condition of Line 2@ holds, relying on Lemma 3.3l

For the condition of Line [I4] we need to handle the two options, corresponding to Aa ;-
and Ag2-moves. The set of pairs (I', ), where I' is a PSLy(Z)-cyclically reduced graph of
combinatorial type 7 and ¢ is an a-loop in I', is partitioned in two subsets S; and Seo:
(T',¢) € Sy if £ is adjacent to a b-triangle, and (I',¢) € Sy if ¢ is adjacent to an isolated
b-edge. Lemma describes the sets S7 and Sy are in bijection with. This determines the
cardinalities of S1 and S, which correspond precisely to the probability tested at Line
The reasoning is then identical to Lines [@ and

Finally, if none of these conditions holds (so that 7 is the combinatorial type of a
silhouette graph), the algorithm uses the return command on Line 3Tl to produce a random
silhouette graph, see Section [B.11 O

5.3 Random subgroups of PSLy(Z)

We show how to randomly generate subgroups of a given combinatorial type, and then of
a given size and isomorphism type.

Random generation for a given combinatorial type

Let T = (n, ko, k3, l2,¢3) be a combinatorial type. The formula for the number L(7) of
labeled PSLs(Z)-reduced graphs of type 7, in Proposition [£.2] above, suggests the following
algorithm to draw uniformly at random a labeled PSLy(Z)-reduced graph of combinatorial
type 7.
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(1) Draw an integer 0 < p < L(7) uniformly at random.

(2) If p < n-s(t) and ¢ is the quotient of p by s(7) (so that 0 < ¢ < n), draw uniformly
at random a labeled PSLy(Z)-cyclically reduced graph with combinatorial type 7 and
root it at vertex q + 1.

B) Ifn-s(r) <p<n-s(t)+ (la+1)-s(n,ka, ks, o+ 1,¢3) and q is the quotient of
p—n-s(T) by s(n, ka, k3, 2+ 1,¢3) (so that 0 < ¢ < f3), draw uniformly at random a
labeled PSLy(Z)-cyclically reduced graph with combinatorial type (n, ko, ks, lo+1, £3)
(as in Section [5.2]), delete the (g + 1)st a-loop (following the order of vertex labels)
and root the graph at the vertex where that loop used to be.

(4) Ifn-s(m)+ (b2 + 1) - s(n, ko, k3, o+ 1,43) < p and ¢ is the quotient of p —n - s(7) —
(EQ + 1) . s(n, ko, ks, by + 1,63) by s(n, ke, ks, 2,05 + 1) (SO that 0 < ¢ < 63), draw
uniformly at random a labeled PSLy(Z)-cyclically reduced graph with combinatorial
type (n, ka, k3, l2, 03+ 1) (as in Section [5.2]), delete the (¢ + 1)st b-loop (following the
order of vertex labels) and root the graph at the vertex where that loop used to be.

To draw uniformly at random a subgroup of combinatorial type 7, we first draw a
labeled PSLy(Z)-reduced graph of type 7, and then forget the labeling.

Remark 5.2 To draw uniformly at random a PSLy(Z)-cyclically reduced subgroup of com-
binatorial type 7, the algorithm is modified as follows: in step (1), one draws an integer p
between 0 and n - s(7) — 1; one then applies only step (2). 0

Random generation for a given size and isomorphism type

Now let n be a positive integer and let o = (¢3,¢3,7) be an isomorphism type. Let
ko = %(n — 52), ks = %(n — 30y — 403 — 6r + 6), ké = %(n — 30y — 403 — 67 + 2) and
kj = (n— 30y — 4l — 6r + 4).

Proposition B3] suggests the following algorithm to draw uniformly at random a sub-
group of size n and isomorphism type o.

(1) Draw uniformly at random an integer p between 0 and
n-s(n, ko, ks, lo, €3) 4+ (L341) - 5(n, ko, k3, €o, €3+ 1) + (b + 1) -s(n, ko, k3, la+1,03) — 1.

(2) If p < n - s(n, ke, ks, la,l3), draw uniformly at random a labeled rooted PSLy(Z)-
cyclically reduced graph with combinatorial type (n, ko, k3, £2, (3).

(3) Ifn-s(t) <p < n-s(T)+(l3+1)-s(n, ko, kb, €2, (3+1) and q is the quotient of p—n-s(T)
by s(n, kg, k%, 2,03 + 1) (so that 0 < ¢ < {3), draw uniformly at random a labeled
PSLy(Z)-cyclically reduced graph with combinatorial type (n, ko, k5, 2, {3+ 1), delete
the (¢ + 1)st b-loop (following the order of vertex labels) and root the graph at the
vertex where that loop used to be.
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(4) If n-s(T)+ (b3 +1) - s(n, ka, kb, €2, 03 + 1) < p and ¢ is the quotient of p —n - s(7) —
(U3 + 1) - s(n, ko, k5, la, 03 + 1) by s(n, ko, k5,02 + 1,03) (so that 0 < ¢ < f3), draw
uniformly at random a labeled PSLy(Z)-cyclically reduced graph with combinatorial
type (n, ko, ks, l2 + 1,/3), delete the (¢ + 1)st a-loop (following the order of vertex
labels) and root the graph at the vertex where that loop used to be.

This algorithm can be modified as in Remark to draw uniformly at random a
PSLy(Z)-cyclically reduced subgroup of a given isomorphism type.

5.4 Implementation and complexity remarks
Two models of computation to measure complexity

For the complexity analysis, we consider two classical models: the unit-cost model (also
known as RAM model) where each elementary operation, including operations on integers,
takes O(1) time; and the bit-cost model where an integer N is encoded using O(log N)
space, the number of bits of its representation, and where arithmetic operations are not
performed in constant time anymore. This is more realistic in our settings because we are
led to handling large integers. For instance, O(nlogn) bits are required to represent the
number of size n silhouette graphs (see [3, Proposition 8.18]). To simplify the discussion
below, we use the following classical notation: for any o > 0, a non-negative sequence uy, is
in O(n®) if there exist constants C, 8 > 0 such that u, < C'n®log®n for all n sufficiently
large. Informally, it means that w, is in O(n®) “up to a poly-logarithmic factor”. Note
that, in the bit-cost model, adding or multiplying two numbers encoded with at most NV bits
costs O(NN) time. It is elementary for addition and a consequence of, for instance, Harvey
and van der Hoeven’s result [10] for multiplication. Comparing two numbers encoded with
at most N bits costs O(N) time.

In the unit-cost model, we consider that, for any positive integer n, we can generate
uniformly at random an integer in [n] in O(1) time. In the bit-cost model, we consider
that we can generate uniformly at random a bit value of {0,1} in O(1) time. If n is a
positive integer encoded with N bits, we can therefore produce an element of [n] uniformly
at random using a rejection algorithm consisting in repeatedly generating a number made
of N independent random bits until the result is in [n]. The expected running time of this
algorithm is O(N) as the expected number of attempts is at most 2.

Precomputing

Since the parameters n, fs, f3, ko and k3 are non-negative and satisfy n = 2ks + £5 and
n > 2ks + {3, there are at most n* non-zero values for s(n, ko, k3, £2, £3) for a given positive
integer n. They can be computed recursively using Equations (), [2) and (@), the base
cases being either trivial (for n > 2) or given by Proposition EE7l This yields an O(n?)
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time and space algorithm in the unit-cost model and 6(n5) time and space algorithm in
the bit-cost model.

Random generation

We assume in this section that all the required values of s(n, kg, k3, £2, £3) have been pre-
computed and are accessible in time O(1) in the unit-cost model, O(1) in the bit-cost
model.

Algorithm random_cyclically.reduced_graph was written with the proof of Theo-
rem [5.1] in mind. This is the reason why, in particular, it calls for randomly choosing an
integer v, or integers v and w. One can also choose v =n, or v =n and w = n — 1, that is,
disregard the randomness of the labeling of the graph we constuct, and add a very last step
to the algorithm, which relabels I" by a random permutation. This is a classic trick in the
literature on the random generation of labeled combinatorial objects (see for instance [T,
footnote on p. 12]).

In the unit-cost model, random_silhouette_graph runs in O(n) average time, using
the Fisher-Yates shuffling algorithm [I3, p.145] and the fact that the number of itera-
tions in random_silhouette_graph is bounded in expectation, see Section Bl If we use
the trick mentioned above (relabeling the graph at the end), every call of the function
random_cyclically reduced _graph is performed in O(1). As each call decreases the value
of n by at least 1, Algorithm random_cyclically reduced _graph runs in O(n) expected
time.

In the bit-cost model, observe that n is encoded using O(logn) bits, so that all arith-
metic operations on n, f2, {3, ko, k3 are performed in O(1) time. The bottleneck for the
running time of the algorithm lies therefore in Lines [[3HI6}, as generating = and comparing
x with the threshold in Line [I6] both cost O(n) time. The overall expected running time
of the algorithm in the bit-cost model is therefore O(n?).

This process (generating x and comparing it with a theshold) can be improved using
the following idea. Assume that we have two large integers s and ¢, and the sum s+ ¢ has
already been computed. Let zq- - zy—_1 be the binary encoding of s+t (with z9 = 1). Let
also sg---sy—1 be the binary encoding of s (here sy may be 0). Generating z in [s + ]
and comparing it to s, amounts to simulating a Bernoulli law of parameter si—i-t (in the
bit-cost model). This is performed using Algorithm bernoulli_attempt, which generates
a uniform random integer, say =, between 0 and 2V — 1 bit by bit, halting as soon as we
are guaranteed that one of the three possible situations holds : = > s+t (Failure), x < s
(True) and s <z < s+t (False).
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Algorithm 3: bernoulli attempt(z,y, N)

1 smallersy; =)

2 smallers =)

3 for i€ {0,...,N—1} do

4 bit = Uniform({0,1})

5 if smallers,; = () then

6 if bit > z; then return Failure

7 if bit < z; then smallersyy = True

8 if smallers = () then

9 if bit > s; then smallers = False

10 B if bit < s; then smallery = True
11 if smallersiy # 0 and smallers # () then
12 L return smaller,

13 if smallersiy = () then
14 L return Failure // the generated number is > s+t

15 return False // the generated number is equal to s

The main algorithm to simulate the Bernoulli law of parameter s%t consists in repeat-
edly calling bernoulli_attempt until the result is not Failure. The analysis of the expected
number of bits generated in the process is straightforward, as smallers,; and smaller, are
determined with probability % at each iteration of the first loop: the number of iterations
required to determine each one of them is bounded above by a geometric law of parameter
%. Since s +t > 2NV~ the expected number of calls to bernoulli_attempt is bounded
above by a constant. Hence the expected bit-cost complexity of our procedure to simulate
the Bernoulli law is O(1).

To implement the announced improvement, we modify the precomputation step by
storing not only the values of s(n, ke, k3, 2, ¢3), but also their bit-lengths and the values
n-(ks+1)-s(n—1, ka, ks+1,02—1,0) (used Line[I6). Simulating a Bernoulli law of parameter
n-(ks+1)-s(n—1,ko,ks+ 1,00 —1,0)/s(n, ke, ks, l2,¢3) instead of performing Lines
and [T lowers the expected time complexity of random cyclically reduced graph to

O(n).

Remark 5.3 When /3 > 0, one can directly choose ¢35 a-loops of the graph A built at
Line to apply the inverse of a As-move ¢3 times directly. This does not change the
overall complexity of random_cyclically reduced graph in both models of computation.
Similarly, if £o = ¢35 = 0 and k3 = n/2, the generated graph is a cycle made of an alternation
of a-transitions and b-transitions, which could be generated directly without making several
recursive call. Again, this does not change the complexity. O
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