
Complexity of Operations on Cofinite Languages

Frédérique Bassino1, Laura Giambruno2, and Cyril Nicaud3.

1 LIPN UMR 7030, Université Paris 13 - CNRS, 93430 Villetaneuse, France.
2 Dipartimento di Matematica e Applicazioni, Università di Palermo, Italy.

3 IGM, UMR CNRS 8049, Université Paris-Est, 77454 Marne-la-Vallée, France.
bassino@lipn.univ-paris13.fr, lgiambr@math.unipa.it, nicaud@univ-mlv.fr

Abstract. We study the worst case complexity of regular operations on
cofinite languages (i.e., languages whose complement is finite) and pro-
vide algorithms to compute efficiently the resulting minimal automata.

1 Introduction

Regular languages are possibly infinite sets of words that can be encoded in dif-
ferent ways by finite objects. One such encoding is based on finite automata that
are very convenient to efficiently answer to most natural algorithmic questions,
such as membership, emptiness, regular constructions, etc. It is why softwares
handling regular languages given by another kind of representation, such as reg-
ular expressions, often start with the computation of an automaton recognizing
the same language.

In this framework all questions about the size of automata in usual algorithms
are important and directly related to the space complexity needed for the com-
putations. One such issue could be: ”Given a regular language L of size n, what
is the number of states required to encode the language L∗?” Here the notion of
size of a language must be specified, since the results depend upon the represen-
tation (regular expression, nondeterministic automata, deterministic automata,
two way automata, etc.) used.

The starting point is often a deterministic automaton. Although determin-
istic automata may require more space than nondeterministic ones, they have
good algorithmic and algebraic properties that make them very useful. In partic-
ular to every regular language is associated its minimal automaton, which is the
smallest deterministic automaton recognizing it and which is unique. The state
complexity of a regular language is then defined as the number of states of its
minimal automaton. The previous question can be reformulated in the following
way: ”Given a regular language of state complexity n, what is the state com-
plexity of its star?” This topic is intensively studied since almost the beginning
of automata theory (see [1–4] for recent results). Researchers are mainly inter-
ested in automata that represent natural subclasses of regular languages such as
finite languages [5] or prefix-free regular languages [6]. Most articles focus on the
worst case state complexity of basic regular operations such as set constructions,
concatenation, Kleene star and reversal.

In this paper we analyze the worst case complexity of regular operations on
cofinite languages (i.e., languages whose complement is finite) and provide algo-
rithms to compute efficiently the resulting minimal automata. We now present
the measure chosen for the size of the input. As finite languages can be described
by the finite list of the words they contain, cofinite languages can be described
by the finite list of words they do not contain. Though elementary, this represen-
tation, is natural and often corresponds to the way the input (a finite or cofinite
language) is given for further algorithmic treatments. Consequently given a finite
language its size is defined as the sum of the length of its words. In other words
it is the number of letters needed to write all the words of the language. The
size of a cofinite language is then defined as the size of its complement. In the
framework of finite languages, our question is changed into: ”Given a finite lan-
guage of size n, what is the state complexity of its star?”. Several articles study
that kind of question. For instance, in [7] it is proved that the state complexity
of the star can be exponential and in [8] the authors study the average state
complexity of the star operation.

In the following we focus on the set of cofinite languages. It is stable for
the regular operations, namely union, concatenation and star and has interest-
ing absorbing properties since combinations of regular and cofinite languages
often produce a cofinite language. To roughly summarize our results the regular
operations applied to cofinite languages tend to produce cofinite languages of
small state complexities, and their minimal automata can be computed quickly.
Therefore in constructions involving cofinite languages together with other reg-
ular languages one can use dedicated algorithms instead of the general ones,
improving significantly the complexity of the computations. This can be seen as
a heuristic method consisting in identifying simpler cases to use specific algo-
rithms on them.

The paper is organized as follows. In Section 2, we present cofinite languages
and their associated automata, along with algorithms to handle them. In Sec-
tion 3 we study the state complexities of basic operations on cofinite languages,
and provide algorithms to compute the resulting minimal automaton. In Sec-
tion 4, we briefly consider operations involving both cofinite languages and reg-
ular languages.

2 Cofinite Languages and Automata

2.1 Automata and State Complexity

In this section we introduce objects and notations used in the sequel. For a
general presentation of automata and regular languages we refer the reader to [9].

We denote automata by tuples (A, Q, T, I, F) where Q is a finite set of states,
A is a finite set of letters called alphabet, the transition relation T is a subset of
Q×A×Q, I ⊂ Q is the set of initial states and F ⊂ Q is the set of final states.
An automaton is complete when for every (a, q) ∈ A × Q, there exist p ∈ Q
quch that (q, a, p) ∈ T . An automaton is deterministic if |I| = 1 and for every
(a, q) ∈ A×Q, if both (q, a, p) and (q, a, p′) belong to T , then p = p′. We denote

deterministic automata by tuples (A, Q, ·, q0, F), where q0 is the unique initial
state and (q, a, p) ∈ T is denoted by q · a. For any word u ∈ A∗ and any state
q ∈ Q in a deterministic automaton, q · u is recursively defined by q · ε = q (ε is
the empty word) and q · ua = (q · u) · a. The regular language recognized by an
automaton A is denoted by L(A).

Let L be a regular language in A∗. Let ML be the deterministic automaton
having the nonempty sets, called the left quotients u−1L = {w ∈ A∗ | uw ∈ L}
for u ∈ A∗ as states, L as initial state, and the states containing the empty word
as final states. Define the transition function, for a state Y = u−1L and a letter
a ∈ A, by Y · a = a−1Y = (ua)−1L. The automaton ML is the unique smallest
deterministic and complete automaton recognizing L, it is called the minimal
automaton of L. If A is an automaton, we denote by MA the minimal automaton
of L(A). There is another way to define the minimal automaton of a regular
language L. Let A = (A, Q, ·, i, F) be a deterministic automaton recognizing L.
For each q ∈ Q, let Lq = {w ∈ A∗ | q · w ∈ F}. Two states p, q ∈ Q are called
inseparable if Lp = Lq, and separable otherwise. The Myhill-Nerode equivalence
on Q is the relation defined by p ∼ q ⇐⇒ p and q are inseparable. Let q ∈ Q and
let u ∈ A∗ such that i · u = q. Then Lq = u−1X . The automaton obtained by
merging the states belonging to the same equivalence classe is isomorphic to the
minimal automaton of L(A) (it is in fact a quotient of A by the Myhill-Nerode
equivalence). The state complexity of a regular language is the number of states
of its minimal automaton.

Given a deterministic and complete automaton A = (A, Q, ·, q0, F), the com-
plement of A is the automaton A = (A, Q, ·, q0, Q \ F). One can check that
L

(
A

)
= L(A), where L(A) = A∗ \ L(A). If A is a deterministic but not com-

plete automaton, the complement of A is the complement of the automaton
obtained by completing A with a sink state.

If u = u1 · · ·un is a word, the reversal (or the mirror image) of u is the word
ũ = un · · ·u1. For any language X the set of all prefixes of words in X is denoted
by Pr(X).

2.2 Cofinite Languages

A language X in A∗ is said to be cofinite if X = A∗ \ X is a finite language.
For a finite language X = {u1, · · · , um}, denote by ‖X‖ =

∑m

i=1 |ui| the sum of
lengths of its elements.

The following properties will be useful throughout this article:

• If X and Y are two languages such that X ⊂ Y and X is cofinite, then Y is
cofinite and ‖Y ‖ ≤ ‖X‖.

• A language X is cofinite if and only if there exists an integer p such that
every word of length at least p is in X .

Cofinite languages have nice stability properties that are described below.

Lemma 1. The set of cofinite languages is stable for the union, the concatena-
tion and the star operation. It is also stable by mirror image, left quotient and
right quotient. The union of a cofinite language and an arbitrary language is
cofinite.

2.3 Automata Recognizing Cofinite Languages

Given a cofinite language X , let TX be the deterministic automaton defined by
TX = (A, QX , ·, {ε}, F), where QX = Pr(X) ∪ {pX} (where pX is an accepting
sink state), the transitions are defined, for all a ∈ A and for all u ∈ Pr(X), by

u · a = ua, if ua ∈ Pr(X)

u · a = pX , if ua /∈ Pr(X)

pX · a = pX

and the set of final states by F = (QX ∩ X) ∪ {pX}. As TX is the complement
of the tree automaton of X, one obtains the following lemma:

Lemma 2. For any cofinite language X, the automaton TX is a deterministic
and complete automaton with at most ‖X‖ + 2 states that recognizes X.

The bound is tight. When X = {u}, u being a nonempty word, ‖Pr({u})‖ =
|u| + 1 and one must add the accepting sink state.

A state of an automaton is useless if it is either not reachable from an initial
state or no final state can be reached from it.

Lemma 3. Let A be a deterministic automaton. The language L(A) is cofinite if
and only if the automaton obtained by removing useless states from A is acyclic.

Lemma 4. Let A be a complete minimal automaton. The language L(A) is
cofinite if and only if A contains an accepting sink state and the graph obtained
after removing it is acyclic.

Using a result on acyclic automata due to Revuz [10], one gets the following
complexities:

Proposition 1. The following computations can be done in linear time:

– Checking if L(A) is cofinite, where A is a deterministic automaton.
– Computing the minimal automaton and therefore the state complexity of a

cofinite language L(A) given by a deterministic automaton A.
– Computing the minimal automaton and therefore the state complexity of a

cofinite language X given by a set of words.

Proof. First one can compute the automaton B obtained by removing useless
states from A, the complement of A. Then check whether B is acyclic, which
can be done in linear time. Second compute B as before, minimize it in MB in
linear time using Revuz’ algorithm [10]. Then compute MB which is the minimal
automaton of L(A). Indeed, if it is not minimal, computing its complement
produce a deterministic and complete automaton recognizing L(A) which is
strictly smaller than MB, which is not possible. Finally starting from a cofinite
language X , compute TX whose number of states is linear in ‖X‖, then proceed
as in the previous construction.

Proposition 2. Let X be a language such that X ⊂ {x1, · · · , xm}, then X is
cofinite and the state complexity of X is at most equal to ‖{x1, · · · , xm}‖ + 2.

Proof. Let Z = {x1, . . . , xm} with ‖Z‖ = n and let TZ be the automaton asso-
ciated to Z, with |TZ | ≤ n + 2. Consider the automaton BX obtained from TZ

by adding the elements of Z \ X to the set of final states of TZ . As every state
in TZ that is not the accepting sink state can be reached by reading only one
word, no other words than the ones of Z \X have been added to the recognized
language. Hence BX recognizes X and |BX | = |TZ | ≤ n + 2.

Note that, under this only hypothesis, it is not true in general that X ⊂
Y implies |MY | ≤ |MX |. For example, if X = {a2b, bab, a2, ba} and Y =
{a2b, bab, ba}, the minimal automaton MY of Y of size 7 is bigger than the
one of X that is of size 5.

3 Operations on Cofinite Languages

In this section we investigate the state complexities of regular operations between
cofinite languages and provide ad hoc algorithms to make the computations.

3.1 Union, Reversal and Quotient

These operations on cofinite languages given by the list of the words they do not
contain are easy to realize.

Proposition 3 (Union of two cofinite languages). Let X1 and X2 be two
cofinite languages, with ‖X1‖ = n1 and with ‖X2‖ = n2. The union X1 ∪ X2

is a cofinite language of state complexity at most min(n1, n2) + 2. The minimal
automaton of X1 ∪ X2 can be computed in time O(n1 + n2).

Proof. Assume by symmetry that n1 ≤ n2. The first part follows from X1 ⊂
X1 ∪ X2 and Proposition 2. Using a classical lexicographic sort [11], one can
compute X1 ∩ X2 in time O(n1 + n2): Form a list made of the element of X1

then those of X2, sort it, and extract words that appear twice. Then build the
associated tree and minimize it in linear time using Proposition 1.

As the the reversal of the complement of a language is equal to the comple-
ment of the reversal the language, we obtain:

Lemma 5 (Reversal of a cofinite language). Let X be a cofinite language
with ‖X‖ = n, the reversal of X is of state complexity at most n + 2 and its
minimal automaton can be computed in linear time.

Proposition 4 (Quotient of a cofinite language). Let X be a cofinite lan-
guage with ‖X‖ = n and let u ∈ A∗. The state complexities of u−1X and Xu−1

are at most n + 2. Their minimal automata can be computed in time O(n).

Proof. For the state complexity, let qu be the state ε · u in TX . Consider the
automaton A obtained by taking qu as initial state and by keeping only the
accessible part of the automaton. Then A recognizes u−1X , its number of states
is at most |TX | ≤ n + 2. This construction is linear in n as one can stop reading
u in TX as soon as pX is reached or if |u| > n.

3.2 Star

Note that the result given in Theorem 1 below shows that the behaviors of finite
and cofinite languages are very different. Recall that Ellul, Krawetz, Shallit and
Wang gives in [7] a finite language Xh, with ‖Xh‖ = Θ(h2), such that the state
complexity of X∗

h is in Θ(h2h).

Theorem 1 (Star of a cofinite language). For any cofinite language X with
‖X‖ = n, the state complexity of X∗ is at most n + 2 in the worst case. There
exists an algorithm that build the minimal automaton of X∗ in quadratic time.

Proof. Since X ⊂ X∗, the state complexity of X∗ is at most n + 2 by Proposi-
tion 2. The time complexity is given in the following.

We propose two algorithms, one based on usual automata constructions and
another one, easier to implement, related to dynamic programming. Both algo-
rithms produce in time O(n2) a deterministic automaton with at most n + 2
states that recognizes X∗. Once computed, the automaton can been minimized
in linear time from Proposition 1.
First Algorithm: First associate to the language X the automaton TX =
(A, QX , T, {ε}, F), as defined in Section 2.3. Build from TX the nondeterministic
automaton A(TX) = (A, QX , T ′, {ε}, F ∪ {ε}), where T ′ is defined by:

T ′ = T ∪ {(u, a, a) | u ∈ F, a ∈ A ∩ QX} ∪ {(u, a, pX) | u ∈ F, a ∈ A \ QX}

The automaton A(TX) is obtained from TX by adding, for every a ∈ A, the
transitions labelled by a from every final state to the state a, when it exists.

Lemma 6. For any cofinite language X, the nondeterministic automaton A(TX)
recognizes the language X∗.

To obtain a deterministic automaton recognizing X∗ from A(TX), we apply a
tuned version of the accessible subset construction: Since all reachable subsets Q
of QX containing pX are inseparable (one always has LQ = A∗), we first create
a state PX and assimilate every built subset containing pX to PX . Hence the
automaton is partially minimized on the fly, while doing the subset construction.
Let DX denote the resulting deterministic automaton, that recognizes X∗.

Lemma 7. Let X be a cofinite language and let Q 6= PX be a state of DX . The
longest word in Q is the label u of the unique path π from ε to Q, and u belongs
to Pr(X).

Proof. By construction if Q = {u1, · · · , ui}, with i ∈ N and each ui ∈ Pr(X), is
a state of DX and a is a letter in A such that neither Q nor Q · a are equal to
PX then Q · a = {a, u1a, · · · , uia} if Q ∩ F 6= ∅, and Q · a = {u1a, · · · , uia} if
Q ∩ F = ∅. As the states of DX are the state PX and the states reachable from
{ε}, the result is obtained by induction on the size of u.

Algorithm 1: inStar(X ,u)

if u ∈ X or u ∈ S then return1

True
if u ∈ N then return False2

forall i ∈ {1, · · · , |u| − 1} do3

v = prefix of length i of u4

w = word such that u = vw5

if inStar(X,v) and w ∈ X6

then

Add u in S7

return True8

end9

end10

Add u in N11

return False12

The algorithm inStar(X,u) is called for
every word u ∈ X. To check whether a
word is in X∗, first test if it is in X or in
S. S is initially empty, and we store in S
every already tested word that belongs to
X∗. If it is not in X ∪ S, check whether
u ∈ N or not, i.e., that is whether from
previous computations it known that u is
not in X∗ or not. Initially N = A ∩ X is
made of letters that do not belong to X.
If the algorithm continues to Step 3, u is
split in all possible ways in u = vw, with v
and w nonempty, and we recursively check
if v ∈ X∗ and w ∈ X. If it is true for
one prefix v, u is known to be in X∗ and
added to S. If for all prefixes v /∈ X∗ or
w /∈ X, then u is known not to be in X∗

and added to N .

Fig. 1. Second algorithm: computation of X∗ with a dynamic programming approach

If one labels the states with integers to avoid handling words, the implemen-
tation of this method can be done in O(n2) since from Lemma 7 there are at
most n+1 states of the form Q 6= PX and each state is a set containing at most
n elements.
Second Algorithm: (see Fig.1)

Remark that as X ⊂ X∗, it is sufficient to determine which words of X are
in X∗, that is, which words u ∈ X can be written u = vw, with v and w different
from ε, such that v ∈ X∗ and w ∈ X . As such a w is strictly smaller in size than
u, this can be checked inductively as described in Fig. 1.

In practice we do not use two sets S and N , but flags on the states of TX ,
to mark whether they correspond to words that are in S or N . In this way, Step
1 and Step 2 are checked in time O(|u|) by reading the path labelled by u in
TX . So it is linear in the length of u when the result is already known. When
it is not, for each i, Step 6 is done in time O(i) + O(|u| − i) = O(|u|) if v is
in X ∪ S ∪ N . Counting separately the first calls for every word, the overall
complexity is therefore O(

∑
u |u|), where the summation is done on all u such

that inStar(X ,u) is called. Since it can be called only for prefixes of elements in
X, the complexity is upper bounded by O(

∑
u∈Pr(X) |u|) = O(n2).

3.3 Concatenation

In this section, we shall show that the state complexity of the concatenation of
two cofinite languages is linear, and propose an algorithm to build the minimal
automaton in linear time.

Let Setn,m be the set of sets of m nonempty words whose sum of lengths is
n: Setn,m = {X = {u1, · · · , um} | ‖X‖ = n, ∀i ∈ {1, · · · , m}, ui ∈ A∗}.

Theorem 2 (Concatenation of two cofinite languages). Let X1 and X2

be two cofinite languages such that X1 ∈ Setn1,m1
and X2 ∈ Setn2,m2

. The state
complexity of X1 · X2 is at most n1 + 1 + min(2m2 , n2 + 2). Moreover, in the
particular case where ε ∈ X2 (resp. ε ∈ X1), the state complexity of X1 ·X2 is at
most n1 + 2 (resp. n2 + 2). The minimal automaton of X1 ·X2 can be computed
in time O(n1 + n2).

Proof. First if ε ∈ X2, then X1 ⊂ X1 ·X2, and the state complexity of X1 ·X2 is
at most n1 + 2 by Proposition 2. Similarly, if ε ∈ X1 then the state complexity
of X1 · X2 is at most n2 + 2. The general upper bound for the state complexity
of X1 · X2 is proved in Lemmas 9 and 12.

Associate to the cofinite languages X1 and X2 the automata T1 = TX1
=

(A, Q1, ·, {ε}, F1) and T2 = TX2
= (A, Q2, ∗, {ε}, F2), as defined in Section 2.3.

Then use the classical construction of the concatenation of two automata: From
each final state q of the automaton T1 and for each letter a ∈ A, add a transition
from q to the state ε∗a in T2. Formally consider the nondeterministic automaton
AX1X2

= (A, (Q1 × {∅}) ∪ ({∅} × Q2), T1 ∪ T2 ∪ T, {(ε, ∅)}, F), with:

– T1 = {((u, ∅), a, (u · a, ∅)) | u ∈ Pr(X1) ∪ {pX1
}, a ∈ A} to form a copy of T1

on the first coordinate.
– T2 = {((∅, u), a, (∅, u ∗ a)) | u ∈ Pr(X2)∪ {pX2

}, a ∈ A} to form a copy of T2

on the second coordinate.
– T = {((u, ∅), a, (∅, ε ∗ a)) | u ∈ F1, a ∈ A}.
– F = F1 × {∅} ∪ {∅} × F2 if ε ∈ F2 and F = {∅} × F2 if ε /∈ F2.

Then AX1X2
recognizes X1 ·X2. Consider the automaton DX1X2

obtained from
AX1X2

using the accessible subset construction. The states of DX1X2
are sets of

pairs. But since only transitions from the copy of T1 to the copy of T2 have been
added, the automaton is deterministic on its first coordinate. Hence each state
Q of DX1X2

can be rewritten as (u, Q), where u is the unique value of the first
coordinate in Q1 and Q ⊂ Q2 is the set of values of the second coordinate.

Lemma 8. Let (u, Q) be a state of DX1X2
, with u ∈ Pr(X1). Every word in

Q \ {pX2
} is a suffix of u. In particular, Q \ {pX2

} is a suffix chain: for every
v, w ∈ Q \ {pX2

} either v is suffix of w or w is suffix of v.

Proof. In T1, for every state u that is not pX1
, there is only one path from the

initial state that reaches it, which is the path of label u. Hence, the path labelled
by u is only one path in DX1X2

that reaches the state (u, Q). Every state v in
Q that is not pX2

is the label of a path from a final state of T1, reading the first
letter a of v while going from the copy of T1 to the copy of T2, then following
the path labelled by a−1v in T2. Hence, as it has been done while following the
path labelled by u in T1, v is a suffix of u.

Lemma 9. Let X1 and X2 be two cofinite languages, with X1 in Setn1,m1
and

X2 in Setn2,m2
. If (pX1

, Q) is a state of DX1X2
, the language L(pX1

,Q) contains
A∗X2. The state complexity of X1 · X2 is at most n1 + 2m2 + 1.

Proof. As stated above, for every u ∈ Pr(X1) there is a unique state (u, Q)
in DX1X2

. Hence there are at most n1 + 1 states in DX1X2
such that the first

coordinate is not pX1
.

Let (pX1
, Q) be a state of DX1X2

and let L(pX1
,Q) be the language recognized

by taking (pX1
, Q) as initial state. Every word u of A∗X2 is in L(pX1

,Q): Let
v ∈ A∗ and w ∈ X2 be such that u = vw, one can loop on pX1

on the first
coordinate while reading v, then since in AX1X2

there is a transition from (pX1
, ∅)

labelled by the first letter a of w to (∅, ε ∗ a), that is the starting point of
a path labelled by a−1w in the copy of T2, u is recognized by DX1X2

. Hence
X2 ⊂ A∗X2 ⊂ L(pX1

,Q). Since X2 contains m2 elements, there are at most 2m2

distinct languages of the form L(pX1
,Q). Hence the states of the form (pX1

, Q)
are in at most 2m2 equivalence classes of Myhill-Nerode equivalence, concluding
the proof.

The property A∗X2 ⊂ L(pX1
,Q) in Lemma 9 is the key of the next results.

The following lemma characterizes languages of the form A∗X2.

Lemma 10. A word u belongs to A∗X2 if and only if all its suffixes belong to
X2. Consequently A∗X2 is the greatest suffix-closed subset of X2 and if ε ∈ X2,
then A∗X2 = A∗.

Lemma 11. Each language L(pX1
,Q) is the set of labels of the successful paths

in the minimal automaton of A∗X2 taking as initial state the initial state of the
automaton if Q is empty, the state corresponding to the equivalence class of pX2

if pX2
∈ Q or to the equivalence class of the longest word of Q otherwise.

Proof. Setting S = A∗X2, let MS be the minimal automaton of S that is A∗X2.
The state corresponding to the class of the state pX2

in MS is still denoted by
pX2

. Note that if Q is the empty set, L(pX1
,Q) = A∗X2 and if pX2

∈ Q then

L(pX1
,Q) = A∗; otherwise L(pX1

,Q) = ∪u∈Qu−1S or L(pX1
,Q) = ∩u∈Qu−1S. As

S is suffix-closed, for any u ∈ Q, u−1S ⊂ S. Moreover If u is a suffix of v, then
when vw ∈ S, then uw ∈ S and v−1S ⊆ u−1S. So L(pX1

,Q) = w−1S where w is
the longest word of Q.

Therefore each language L(pX1
,Q) is the set of labels of paths in MS from one

of the state, says q, to the final states. If Q is the empty set, q = ε, if pX2
∈ Q

then q = pX2
, otherwise q is the state reached in MS reading the longest word

w of Q from the initial state.
Note that as S is suffix-closed the size of the minimal automaton of S is

smaller or equal to 2|S|.

When Q is not empty all the information we need about the state (u, Q)
is given by (u, pX2

) if pX2
belongs to Q and by (u, w) otherwise, w being the

longest word of Q.

Lemma 12. Let X1 and X2 be two cofinite languages, with X1 in Setn1,m1
and

X2 in Setn2,m2
. The minimal automaton of X1 · X2 has at most n1 + n2 + 3

states and can be computed in time O(n1 + n2).

ε

a

b

ab

abb

pX1

a

b

b
a

b

a

a, b

a, b

a, b

0

1

2

3

4 pX2

a, b

a

b

a

b

b

a

b
a

a, b

a

b

a

b

Fig. 2. The automaton A′

X1X2
for X1 = {ε, b, ab, abb} and X2 = {ε, b, aa, ab, bb, aab}.

Proof. We will construct a deterministic automaton recognizing X1 · X2 equiv-
alent to DX1X2

.

First build the automaton MS is time O(n2) from the automaton AX2
: the

reversal X̃2 of X2 is cofinite and a depth-first search in TfX2

is enough to obtain

the greatest prefix-closed subset of the complement of X̃2, which is reversal of
the greatest suffix-closed subset of X2. Denote by X the cofinite set such that
X is the greatest suffix-closed subset of X2. The next step is to build TX and to
minimize it in time O(n2), using Proposition 1.

Then construct the automaton A′
X1·X2

as the automaton AX1·X2
but from

the automata AX1
and MS instead of AX2

. This is done in time O(n1 + n2).

Apply the subset construction to A′
X1·X2

until finding states with pX1
as

first component. The intermediate states of this automaton do not have pX1

as first component, so their number is at most n1 + 1. Moreover the second
component can be reduced to ∅, pX2

and its longest element otherwise. For
each state (pX1

, Q) continue to apply the subset construction to A′
X1·X2

until
finding state (pX1

, pX2
). This part of the algorithm is just the traversal of acyclic

paths in MS and can be done in O(n2). Finally add a loop from (pX1
, pX2

) to
itself for every letter of the alphabet. The final states are the one whose second
component is final in MS . The automaton obtained recognizes X1 · X2 and the
total complexity of the construction is O(n1+n2), and at most (n1+1)+(n2+2) =
n1 + n2 + 3 states have been built.

Example 1. Fig. 2 and Fig. 3 depict an example of the constructions used in the
proofs of this section.

(ε, ∅)(a, ∅) (b, ∅)

(ab, 2)

(abb, 4)

(pX1
, 1)

(pX1
, pX2

)

(pX1
, 3)(pX1

, 4)

(pX1
, 2)

(pX1
, 0)

a
b

b
a

b
a

a, b

a, b

b
aa

a, b

a

b

a, b

b

a

a

b

Fig. 3. The automaton DX1X2
, for X1 = {ε, b, ab, abb} and X2 = {ε, b, aa, ab, bb, aab}.

4 Remarks

As shown in Lemma 1 the union of a cofinite language X , given by the list of the
words in X, with ‖X‖ = n, and a regular language L given by a deterministic
automaton A is a cofinite language. Its minimal automaton can be computed in
time O(n): Compute the standard product automaton of TX and A, identifying
on the fly all states whose first component is the accepting sink state of TX .

For the concatenation, we have not establish any interesting state complexity
result, leaving it as an open problem, but the following lemma characterizes
the conditions in which the concatenation of a cofinite language and a regular
language is cofinite.

Lemma 13. Let Y be a cofinite language and X be a regular language. The
language X · Y (resp. Y · X) is cofinite if and only if there exists a positive
integer p such that, for every word w of length at least p, there exists a prefix
(resp. suffix) of w that is in X.

Proof. From Section 2.2 if X · Y is cofinite then there exists a positive number
p such that for each word w of length greater than p, w is in X · Y . Then there
exists a prefix of w in X .

Conversely as Y is cofinite there exists a positive number pY such that every
word of length at least pY is in Y . Let w be a word of length greater than or
equal to p + pY . Let u be the prefix of length p of w. By hypothesis, there exists
a prefix u′ of u that belongs to X . u′ is also a prefix of w, hence there exists
a word v, with |v| ≥ pY , such that w = u′v. Therefore, v ∈ Y and w ∈ X · Y .

Consequently, X · Y is cofinite since it contains every word of length at least
p + nY .

Note that the condition of Lemma 13 is equivalent to say that X contains a
maximal prefix (resp. suffix) code [12]. Testing whether X contains a maximal
prefix code can be done in time O(|A|), where A is a given deterministic au-
tomaton recognizing X , by removing final states in A and then checking if there
is no cycle accessible from the initial state in the remaining graph.

References

1. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2) (1994) 315–328

2. Holzerand, M., Kutrib, M.: State complexity of basic operations on nondeter-
ministic finite automata. In: In Implementation and Application of Automata
(CIAA’02), LNCS 2608, Springer (2001) 148–157

3. Gruber, H., Holzer, M.: On the average state and transition complexity of finite
languages. Theor. Comput. Sci. 387(2) (2007) 155–166

4. Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way
finite automata. [13] 443–454

5. Campeanu, C., Culik, II, K., Salomaa, K., Yu, S.: State complexity of basic opera-
tions on finite languages. In: WIA ’99: Revised Papers from the 4th International
Workshop on Automata Implementation, London, UK, Springer-Verlag (2001) 60–
70

6. Han, Y.S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fundam. Inf. 90(1-2) (2009) 93–106

7. Ellul, K., Krawetz, B., Shallit, J., wei Wang, M.: Regular expressions: New results
and open problems. Journal of Automata, Languages and Combinatorics 10(4)
(2005) 407–437

8. Bassino, F., Giambruno, L., Nicaud, C.: The average state complexity of the star
of a finite set of words is linear. [13] 134–145

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

10. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theor.
Comput. Sci. 92(1) (1992) 181–189

11. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge
University Press (2007)

12. Berstel, J., Perrin, D.: Theory of Codes. Academic Press (1985)
13. Ito, M., Toyama, M., eds.: Developments in Language Theory, 12th International

Conference, DLT 2008, Kyoto, Japan, September 16-19, 2008. Proceedings. In Ito,
M., Toyama, M., eds.: Developments in Language Theory. Volume 5257 of Lecture
Notes in Computer Science., Springer (2008)

