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1 Introduction
The problem we consider in this paper is the generic complexity of the White-
head minimization problem for finitely generated subgroups of a free group
F (A). Every such subgroup H is a regular subset of F (A) and can be rep-
resented uniquely by a finite, edge-labeled graph Γ(H) subject to particular
constraints, called the Stallings graph of the subgroup; this discrete structure
constitutes a natural tool to compute with subgroups, and it also provides a
notion of size for H: we denote by |H| the number of vertices of Γ(H).
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A natural equivalence relation on subgroups is provided by the action of
the automorphism group of F (A): the subgroups H and K are in the same
orbit if K = ϕ(H) for some automorphism ϕ of F (A) — that is, H and K

are “the same” up to a change of basis in the ambient group. The Whitehead
minimization problem consists in finding a minimum size element in the orbit
of a given finitely generated subgroup H. This problem is decidable in polyno-
mial time (Roig, Ventura and Weil (16), following an early result of Gersten
(7)). We refer the readers to (13) for the usage of this problem in solving the
more general orbit membership problem.

Here we are rather interested in the notion of generic complexity, that is,
the complexity of the problem when restricted to a generic set of instances
(a set of instances such that an instance of size n sits in it with probability
tending to 1 when n tends to infinity; precise definitions are given below). Our
main result states that the generic complexity of the Whitehead minimization
problem is constant, and more precisely, that the set of Whitehead minimal
subgroups is generic (see (14) for an early discussion of the generic complexity
of this problem, especially in the case of cyclic subgroups).

An implicit element of the discussion of complexity is the notion of size
of inputs. In the case of finitely generated subgroups of a free group, we can
use either a k-tuple (k fixed) of words which are generators of the subgroup
H (and the size of the input is the sum of the lengths of these words), or
the Stallings graph of H (and the size is |H|). These two ways of specifying
the subgroup H give closely related worst-case complexities (because of linear
inequalities between the two notions of size), but they can give very different
generic complexities: it was shown in (2) that malnormality (an important
property of subgroups) is generic if subgroups are specified by a tuple of
generators, whereas non-malnormality is generic if subgroups are specified by
their Stallings graph. Our results show that Whitehead minimality is generic
in both set-ups.

A key ingredient of our proofs is a purely combinatorial characterization
of Whitehead minimality in terms of the properties of the graph Γ(H) (Propo-
sition 2.2 below), proved in (16), which involves counting the edges labeled
by certain subsets of the alphabet in and out of each vertex. This is what al-
lows us to turn the algebraic problem into a combinatorial one, which can be
tackled with the methods of combinatorics and theoretical computer science.

Interestingly, the reasons why Whitehead minimality is generic when sub-
groups are specified by their Stallings graph, and why it is generic when sub-
groups are specified by a k-tuple of words, are directly opposite. The Stallings
graph of the subgroup generated by a k-tuple of words of length at most n
generically consists of a small central tree and long loops connecting leaves
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of the tree, so much of the geometry of the graph is along these long loops,
where each vertex is adjacent to only two edges. In contrast, an n-vertex
Stallings graph generically has many transitions and each vertex is adjacent
to a near-full set of edges.

The origins of this work go back to discussions with Armando Martino
and Enric Ventura in 2009.

2 Preliminaries
Let r > 1, let A be a finite r-element set and let F (A) be the free group on
A. We can think of F (A) as the set of reduced words on the symmetrized
alphabet Ã = A ∪ Ā, where Ā = {ā | a ∈ A}. Recall that a word is reduced if
it does not contain occurrences of the words of the form aā or āa (a ∈ A). The
operation x 7→ x̄ is extended to Ã∗ by letting ¯̄a = a and ub = b̄ū for a ∈ A,
b ∈ Ã and u ∈ Ã∗.

We denote by [n] the set of positive integers less than or equal to n, and
by Rn (resp. R≤n) the set of reduced words of length exactly (resp. at most)
n. A reduced word u is called cyclically reduced if u2 is reduced, and we let
Cn (resp. C≤n) be the set of cyclically reduced words of length exactly (resp.
at most) n.

2.1 Stallings graph of a subgroup

It is now classical to represent the finitely generated subgroups of a free group
by finite rooted edge-labeled graphs, subject to certain combinatorial con-
straints. An A-graph is a finite graph Γ whose edges are labeled by elements
of A. It can be seen also as a transition system on alphabet Ã, with the con-
vention that every a-edge from p to q represents an a-transition from p to q
and an ā-transition from q to p. Say that Γ is reduced if it is connected and if
no two edges with the same label start (resp. end) at the same vertex: this is
equivalent to stating that the corresponding transition system is deterministic
and co-deterministic. If 1 is a vertex of Γ, we say that (Γ, 1) is rooted if every
vertex, except possibly 1, has valency at least 2.

IfH is a finitely generated subgroup of F (A), there exists a unique reduced
rooted graph (Γ(H), 1), called the Stallings graph of H, such that H is exactly
the set of reduced words accepted by (Γ(H), 1): a reduced word is accepted
when it labels a loop starting and ending at 1. Moreover, this graph can be
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effectively computed given a tuple of reduced words generating H, in time
O(n log∗ n) (19; 20). We denote by |H| the number of vertices of Γ(H), which
we interpret as a notion of size of H. Observe that if H is the cyclic subgroup
generated by a cyclically reduced word w, then |H| is the length of w. This
algorithmic construction and the idea of systematically using these graphs to
compute with finitely generated subgroups of free groups, go back to Serre’s
and Stallings’ seminal papers ((18) and (19) respectively).

1

2 3

4

b

a

a
a

b

b Fig. 1. The Stallings graph of H = 〈aab, abab, abbb〉. The reduced
word u = aabab is in H as it is accepted by Γ(H): it labels a path
starting from 1 and ending at 1, with edges being used backward
when reading a negative letter. Since every vertex has valency at
least 2, this graph is cyclically reduced.

We record the following fact, which will be useful in the sequel. Say that an
A-graph Γ is cyclically reduced if it is reduced and every vertex has valency at
least 2. The A-graph in Fig. 1 is cyclically reduced. If H is a finitely generated
subgroup of F (A) and Γ(H) is not cyclically reduced, then the distinguished
vertex 1 has valency 1. Let Γ′ be the graph obtained from Γ(H) by repeatedly
erasing every vertex of valency 1 (and the edges adjacent to them): then Γ′ is
cyclically reduced and if v is a vertex of Γ′, then (Γ′, v) is the Stallings graph
of some conjugate Hg = g−1Hg of H.

2.2 Whitehead minimality

Say that a subgroup H is Whitehead minimal if it has minimum size in its
automorphic orbit, that is if |H| ≤ |ϕ(H)| for every automorphism ϕ of F (A).
It is strictly Whitehead minimal if |H| < |ϕ(H)| for every automorphism ϕ

that is not length preserving (i.e., that is not induced by a permutation of
Ã). Strict Whitehead minimality means that H is the only minimum size
representative of its orbit, up to a permutation of the letters (that is, up to a
relabeling of the edges of its Stallings graph).

Observe, following the discussion at the end of Section 2.1, that if Γ(H)
is not cyclically reduced, then H is not Whitehead minimal.

A crucial characterization of (strict) Whitehead minimality can be ex-
pressed in terms of the so-called Whitehead automorphisms. More precisely
Whitehead exhibited a finite family Wh(A) of automorphisms of F (A), with
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the remarkable property that a subgroup is Whitehead minimal if and only if
|H| ≤ |ϕ(H)| for every ϕ ∈ Wh(A) (this is a result of Whitehead himself for
cyclic subgroups, see (13), and of Gersten in the general case (7)).

In this paper we will use a combinatorial formulation of this characteriza-
tion of Whitehead minimality, which was proved in (16), and which we now
explain. We distinguish three kinds of Whitehead automorphisms. Firstly, the
length-preserving automorphisms of F (A), which permute the letters of Ã
and for which we always have |ϕ(H)| = |H|: they can be disregarded when
assessing whether a subgroup is Whitehead minimal. Secondly the inner au-
tomorphisms of the form g 7→ gv = v−1gv for some letter v ∈ Ã. As discussed
above, Γ(H) is not cyclically reduced if and only if one of these automorphisms
satisfies |ϕ(H)| < |H|.

The third and last kind of Whitehead automorphisms is in bijection with
the set of pairs (Y, v) where Y is a subset of Ã and v is a letter in Ã such
that v ∈ Y , v̄ 6∈ Y and 2 ≤ |Y | ≤ 2|A| − 2. Such a pair (Y, v) is called a
Whitehead descriptor. The corresponding Whitehead automorphism fixes the
letters v and v̄ and maps each letter a ∈ Ã \ {v, v̄} to

ϕ(a) = vλavρ where λ =

{
−1 if ā ∈ Y ,
0 otherwise;

ρ =

{
1 if a ∈ Y ,
0 otherwise.

Let Γ be a reduced graph, and let (Y, v) be a Whitehead descriptor. Then we
let positive(Γ, Y, v) be the set of vertices of Γ with at least one incoming
edge labeled by a letter in Y , at least one incoming edge labeled by a letter
not in Y , and no incoming edge labeled v. Let also negative(Γ, Y, v) be the
set of vertices with an incoming edge labeled v, and all other incoming edges
labeled by letters in Y .

Example 2.1. Consider the Whitehead descriptor (Y, v) with v = a and
Y = {a, b}. For the graph Γ depicted on Fig. 1, vertex 1 is in negative(Γ, Y, v)
since its incoming edges are labeled by b and a (obtained by flipping the
edge 1 a−→ 4). Vertex 3 is in positive(Γ, Y, v) since its incoming edges are
labeled by a, b and b, one not in Y , one in Y and all different from v. One
can also verify that vertices 2 and 4 are neither in positive(Γ, Y, v) nor in
negative(Γ, Y, v). ut

The following statement is a reformulation of the Whitehead-Gersten char-
acterization of Whitehead minimality mentioned above in terms of these pa-
rameters; it is a consequence of (16, Proposition 2.4).
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Proposition 2.2. A finitely generated subgroup H of F (A) is Whitehead min-
imal (resp. strictly Whitehead minimal) if and only if it is cyclically reduced
and, for every Whitehead descriptor (Y, v), we have | positive(Γ(H), Y, v)| ≥
| negative(Γ(H), Y, v)| (resp. | positive(Γ(H), Y, v)| > | negative(Γ(H), Y, v)|).

Proof. Proposition 2.4 in (16) actually states that, if (Y, v) is a White-
head descriptor and ϕ is the corresponding Whitehead automorphism, then
|ϕ(H)| − |H| = |C(H)| − |D(H)|, where C(H) is the set of vertices of Γ(H)
with incoming Y -labeled and Y c-labeled edges, and D(H) is the set of vertices
with an incoming v-labeled edge. The intersection B(H) = C(H) ∩ D(H) is
the set of vertices with an incoming v-labeled edge and some incoming Y c-
labeled edge. Moreover, positive(Γ(H), Y, v) is the complement of B(H) in
C(H) and negative(Γ(H), Y, v) is the complement of B(H) in D(H). The
proposition follows immediately. ut

2.3 Distributions over finitely generated subgroups

Let S be a countable set, the disjoint union of finite sets Sn (n ≥ 0), and let
Bn =

⋃
i≤n Si. Typically in this paper, S will be the set of Stallings graphs,

of partial injections, of reduced words or of k-tuples of reduced words, and Sn
will be the set of elements of S of size n.

A subset X of S is negligible if the probability for an element of Bn to be
in X, tends to 0 when n tends to infinity; that is, if limn

|X∩Bn|
|Bn| = 0.

The notion is refined as follows: we say thatX is exponentially (resp. super-
polynomially, polynomially) negligible if |X∩Bn||Bn| is O(e−cn) for some c > 0
(resp. O(n−k) for every positive integer k, O(n−k) for some positive inte-
ger k). The set X is exponentially (resp. super-polynomially, polynomially,
simply) generic if its complement is exponentially (resp. super-polynomially,
polynomially, simply) negligible. We note the following elementary lemma.

Lemma 2.3. With the above notation, if C ⊆ S satisfies lim infn |C∩Bn||Bn| =
p > 0 and X is exponentially (resp. super-polynomially, polynomially, simply)
negligible in S, then so is X ∩ C in C.

Proof. The verification is immediate if we observe that, for n large enough,

|X ∩ C ∩Bn|
|C ∩Bn|

≤ |X ∩Bn||C ∩Bn|
= |X ∩Bn||Bn|

|Bn|
|C ∩Bn|

≤ 2
p

|X ∩Bn|
|Bn|

.

ut
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Genericity and negligibility can also be defined using the radius n spheres
Sn instead of the balls Bn. The same properties are generic or negligible, ex-
ponentially, super-polynomially, polynomially or simply, provided |Bn| grows
fast enough, see for instance (2, Sec. 2.2.2).

The graph-based distribution. The uniform distribution on the set of size
n Stallings graphs was analyzed by Bassino, Nicaud and Weil (3). Here we
summarize the principles of this distribution and the features which will be
used in this paper.

In a Stallings graph, each letter labels a partial injection on the vertex
set: in fact, such a graph can be viewed as an A-tuple ~f = (fa)a∈A of partial
injections on an n-element set, with a distinguished vertex, and such that the
resulting graph (with an a-labeled edge from i to j if and only if j = fa(i))
is connected and has no vertex of valency 1, except perhaps the distinguished
vertex. We may even assume that the n-element set in question is [n], with 1
as the distinguished vertex, see (3, Section 1.2) for a precise justification.

Let In denote the set of partial injections on [n] and let Bn be the set of
r-tuples in Irn which define a Stallings graph (recall that |A| = r). Let also
Dn be the subset of Bn, of those r-tuples which define a cyclically reduced
Stallings graph. Then Dn (and hence Bn) is generic in Irn (3, Corollary 2.7)

The fundamental observation, used in (3) to achieve this result, is the
following: the functional graph of a partial injection f ∈ In (that is: the
pair ([n], E) where i → j ∈ E whenever j = f(i)), is made of cycles and
sequences.This allows the use of the analytic combinatorics calculus on expo-
nential generating series (EGS) (6, Sec. II.2). Recall that, if In is the number
of partial injections on [n], the corresponding EGS is I(z) =

∑
n≥0

1
n!Inz

n.
From (3, Sec. 2.1 and Proposition 2.10), we get

I(z) = 1
1− z exp

(
z

1− z

)
and In

n! = e−
1
2

2
√
π
e2
√
nn−

1
4 (1 + o(1)). (1)

The formula for I(z) is based on the fact that a partial injection is a set of
sequences (whose EGS is z

1−z ) and of cycles (whose EGS is log
( 1

1−z
)
). We

refer the readers to (6, Sec. II.2) and (3) for further details. We use again this
calculus in Section 3.1.

The word-based distribution. The distribution more commonly found in
the literature (e.g. (11; 9; 10)), which we term word-based, originated in the
work of Arzhantseva and Ol’shanskĭı (1). It is in fact a distribution on the
k-tuples ~h = (h1, . . . , hk) of reduced words of length at most n, where k is
fixed and n is allowed to grow to infinity; one then considers the subgroup H
generated by ~h.
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This is a reasonable way of defining a distribution on finitely generated
subgroups of F (A), and even on rank k subgroups, in spite of the fact that
different tuples may generate the same subgroup (see for instance (2, Sec.
3.1)).

The literature also considers Gromov’s so-called density model, which uses
much larger random tuples (of positive density within Cn). This model is usu-
ally considered to study the asymptotic properties of finite group presentations
rather than subgroups of F (A) and we will not discuss it here (see for instance
(15)).

We will use the following statistics on the number of reduced and cyclically
reduced words, which can be easily verified:

∀m ≥ 1, |Rm| = 2r(2r − 1)m−1 and 2r(2r − 1)m−2(2r − 2) ≤ |Cm| ≤ |Rm|.

Summing over all m ≤ n, we find that

|R≤n| =
r(2r − 1)n − 1

r − 1 and 2r
(
(2r − 1)n−1 − 1

)
≤ |C≤n| ≤ |R≤n|.

In particular, both |R≤n| and |C≤n| are Θ
(
(2r − 1)n

)
and lim infn |C≤n||R≤n| > 0

(see Lemma 2.3).

3 The graph-based distribution
We now study the genericity of strict Whitehead minimality for the graph-
based distribution. The proof of Theorem 3.1 below is given in Sections 3.1
and 3.2.

Theorem 3.1. Strict Whitehead minimality is super-polynomially generic for
the uniform distribution over the set of cyclically reduced Stallings graphs.

3.1 Statistical properties of size n partial injections

If f is a partial injection on [n], we let
– sequence(f) be the number of sequences in the functional graph of f ; a

sequence has at least one vertex;
– extr(f) = {i ∈ [n] | f(i) is undefined or i has no preimage by f}; it is

the set of extremities of sequences in the functional graph of f .
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We note that, for every f ∈ In, because of length 1 sequences,

sequence(f) ≤ | extr(f)| ≤ 2 sequence(f). (2)

Proposition 3.2. For the uniform distribution, the probability that the num-
ber of sequences of a size n partial injection is not in ( 1

2
√
n, 2
√
n) is super-

polynomially small (of the form O(e−c
√
n) for some c > 0).

Proof. If T (z) is a formal power series, we denote by [zn]T (z) the coefficient
of zn in the series. For any k ≥ 0, let Sk(z), S≤k(z) and S≥k(z) be the EGSs
of the partial injections having respectively exactly k, at most k and at least k
sequences. Observe that an injection with k sequences is a set of k sequences
together with a set of cycles; the symbolic method (6, Sec. II.2) therefore
yields:

Sk(z) = 1
k!

(
z

1− z

)k 1
1− z .

The radius of convergence of this series is 1, and Cauchy’s estimate for the
coefficient of a power series (17, Theorem 10.26) states that for any positive
real ζ < 1, we have

[zn]Sk(z) ≤ Sk(ζ)
ζn

.

Taking ζ = 1 − 1√
n
approximatively minimizes the right hand quantity, and

after basic computations we obtain that for n large enough,

[zn]Sk(z) ≤
√
n e2+

√
n n

k+1
2

k! .

Since S≤
1
2
√
n(z) =

∑ 1
2
√
n

k=0 Sk(z) and S≥2
√
n(z) =

∑n
k=2
√
n S

k(z) we get

upper bounds for coefficients of both series by bounding
∑ 1

2
√
n

k=0
1
k!n

k
2 and∑n

k=2
√
n

1
k!n

k
2 from above. The term 1

k!n
k
2 is increasing in the first sum and

decreasing in the second one, so we can bound each term of each series by its
maximum value. This yields the following inequalities:

1
2
√
n∑

k=0

n
k
2

k! ≤
1
2
√
n∑

k=0

n
1
4
√
n

( 1
2
√
n)!

, [zn]S≤
1
2
√
n(z) ≤ n

3
2 + 1

4
√
n

( 1
2
√
n)!

e2+
√
n and

n∑
k=2
√
n

n
k
2

k! ≤
n∑

k=2
√
n

n
√
n

(2
√
n)!

, [zn]S≥2
√
n(z) ≤ n2+

√
n

(2
√
n)!

e2+
√
n.

Using the Stirling bounds (5, Eq. (9.15), p. 54) n! ≥ nne−n and the asymp-
totics of In in Eq. (1), we obtain upper bounds of the announced form for

[zn]S≤
1
2
√
n(z)

[zn]I(z) and [zn]S≥2
√
n(z)

[zn]I(z) ,
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respectively the probabilities for a partial injection on [n] to have at most
1
2
√
n and at least 2

√
n sequences. ut

We use Proposition 3.2 to bound the number of vertices that are simulta-
neously extremities for two partial injections.

Proposition 3.3. For the uniform distribution over size n pairs of partial
injections, the probability

P
(
| extr(f) ∩ extr(f ′)| ≥

√
n

4(r − 1)

)
is super-polynomially small (of the form O(e−c

√
n) for some c > 0).

Proof. Let f and f ′ be partial injection on [n]. By Proposition 3.2 and Eq. (2),
the probability that one of them has more than 4

√
n extremities is super-

polynomially small — so we can restrict the analysis to the cases where both
f and f ′ have at most 4

√
n extremities, up to a super-polynomially small error

term.
Let m = b4

√
nc. Let Ef and Ef ′ be two sets obtained by adding uni-

formly at random elements of [n] to extr(f) and extr(f ′) respectively, until
|Ef | = |Ef ′ | = m. Note that by symmetry, and since f and f ′ are chosen
independently, both Ef and Ef ′ are uniform and independent size m subsets
of [n]. Moreover, since extr(f) ⊆ Ef and extr(f ′) ⊆ Ef ′ , we have

P
(
| extr(f) ∩ extr(f ′)| ≥

√
n

4(r − 1)

)
≤ P

(
|Ef ∩ Ef ′ | ≥

√
n

4(r − 1)

)
.

It suffices therefore to show that, super-polynomially generically, the inter-
section of two m-element subsets of [n] has less than

√
n

4(r−1) elements. Let
X(n,m, k) be the number of pairs of m-subsets whose intersection has size k.
Then

X(n,m, k) =

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
.

Therefore the probability that the intersection has size k is

P(|Ef ∩ Ef ′ | = k) = X(n,m, k)(
n
m

)2 = k!

(
m

k

)2
(n−m)!2

n!(n− 2m+ k)! .

Note that (n−m)!2
n!(n−2m+k)! < (n−m)−k, that

(
m
k

)
< 2m. Let α = 1

4(r−1) . Then

P(|Ef ∩ Ef ′ | ≥ α
√
n) =

m∑
k=α
√
n

P(|Ef ∩ Ef ′ | = k) < 22m
m∑

k=α
√
n

k!
(n−m)k .
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Moreover k 7→ k!
(n−m)k is decreasing for k ≤ m (for n large enough), so we

have

P(|Ef ∩ Ef ′ | ≥ α
√
n) < 22mm

(α
√
n)!

(n−m)α
√
n
< 28

√
n4
√
n

(
α
√
n

n− 4
√
n

)α√n
.

This concludes the proof since the dominant term is of the form n−
α
2
√
n. ut

3.2 From partial injections to Stallings graph

Notice that if (Y, v) is a Whitehead descriptor, the definitions of the functions
negative(−, Y, v) and positive(−, Y, v) make sense for all r-tuple of size n
partial injections, even if they do not form a (cyclically reduced) Stallings
graph. We will use the following combinatorial bounds to establish Theo-
rem 3.1.

Lemma 3.4. Let (Y, v) be a Whitehead descriptor and let ~f = (fa)a∈A ∈ Irn.
If v ∈ Ā, we let fv = f−1

v̄ . Then we have

| negative(~f, Y, v)| ≤
∑
a 6=v

| extr(fv) ∩ extr(fa)|,

| positive(~f, Y, v)| ≥ sequence(fv)−
∑
a6=v

| extr(fv) ∩ extr(fa)|.

Proof. Recall that a vertex p in negative(~f, Y, v) has an incoming v-edge
and all its incoming edges have labels in Y . Since v̄ 6∈ Y , it follows that
p ∈ extr(fv). Moreover, if a 6∈ Y and a 6= v̄ (there exists such an a since
|Y | ≤ 2r− 2), p has no incoming a-edge, so p ∈ extr(fa). This establishes the
first inequality.

Similarly, if v ∈ A and p is the initial vertex of a sequence of fv (and hence
a v-extremity), and if in addition p is not an a-extremity for any a 6= v, v̄, then
p ∈ positive(~f, Y, v). Therefore, if begin(fv) denotes the set of initial vertices
of sequences of fv, we have

begin(fv) \
⋃
a6=v,v̄

extr(fv) ∩ extr(fa) ⊆ positive(~f, Y, v),

and the announced inequality follows since | begin(fv)| = sequence(fv).
If v̄ ∈ A we consider instead the set of final vertices of sequences in fv̄. ut
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Proof of Theorem 3.1. Let Dn be the set of r-tuples of size n partial injec-
tions which define a cyclically reduced Stallings graph, and let En be the set of
r-tuples ~f of size n partial injections which fail to satisfy | positive(~f, Y, v)| >
| negative(~f, Y, v)| for some Whitehead descriptor (Y, v). By Proposition 2.2,
we want to show that En ∩ Dn is super-polynomially negligible within Dn.

Since Dn is generic in the full set of r-tuples of partial injections, namely
Irn (see Section 2.3), Lemma 2.3 shows that we only need to show that En is
super-polynomially negligible in Irn.

For each Whitehead descriptor (Y, v), let En(Y, v) denote the set of r-
tuples ~f ∈ Irn such that | positive(~f, Y, v)| ≤ | negative(~f, Y, v)|. Then En is
the (finite) union of the En(Y, v) and it suffices to prove that each En(Y, v) is
super-polynomially negligible in Irn.

For a fixed Whitehead descriptor (Y, v), Lemma 3.4 shows that

P
(
En(Y, v)

)
≤ P

(
sequence(fv) ≤ 2

∑
a6=v

| extr(fv) ∩ extr(fa)|
)
.

We observe that if | extr(fv) ∩ extr(fa)| < 1
4(r−1)

√
n for each a ∈ A, a 6=

v, v̄ and sequence(fv) > 1
2
√
n, then 2

∑
a6=v | extr(fv) ∩ extr(fa)| < 1

2
√
n <

sequence(fv), so that ~f 6∈ En(Y, v). Therefore, by considering the complements
of these properties, we see that P(En(Y, v)) is at most equal to

P
(

sequence(fv) ≤
1
2
√
n
)

+
∑
a6=v

P
(
| extr(fv) ∩ extr(fa)| ≥

1
4(r − 1)

√
n
)
.

This concludes the proof since each of the summands is super-polynomially
small by Propositions 3.2 and 3.3. ut

Theorem 3.1 is stated for the uniform distribution on cyclically reduced
Stallings graphs. One may wonder if a similar result holds for the uniform
distribution on Stallings graph. We show the following.

Corollary 3.5. Strict Whitehead minimality is polynomially, but not super-
polynomially, generic for the uniform distribution over Stallings graphs.

Proof. As per the proof of Theorem 3.1, an r-tuple ~f ∈ Irn satisfies
super-polynomially generically the constraint that | positive(~f, Y, v)| >

| negative(~f, Y, v)| for any Whitehead descriptor (Y, v), – and hence a
Stallings graph (Γ(H), 1) super-polynomially generically satisfies the con-
straint | positive(Γ(H), Y, v)| > | negative(Γ(H), Y, v)| for any (Y, v).

For H to be strictly Whitehead minimal, Γ(H) must also be cyclically
reduced. Equivalently, vertex 1 must be of valency at least 2, that is, it must
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not be an extremity for one letter and isolated (i.e., the extremity of a length
1 sequence) for all other letters.

The probability that a vertex p is an extremity for the partial injection f
is 1

n | extr(f)|, which is Θ( 1√
n

) by Proposition 3.2. The probability that p is
isolated is In−1

In
, which is Θ( 1

n ) by Eq. (1). Therefore, vertex 1 is of valency
less than 2 with probability Θ(n−(r−1)− 1

2 ), which concludes the proof. ut

In other words, the uniform distribution on Stallings graphs exhibits the
same behavior as that on cyclically reduced graphs with respect to strict
Whitehead minimality, but with a weaker error term.

4 The word-based distribution
Let k ≥ 2 be a fixed integer. We discuss the genericity of strict Whitehead
minimality for the subgroups generated by a random k-tuple of cyclically
reduced words and we show the following.

Theorem 4.1. For the uniform distribution over k-tuples of cyclically re-
duced words of length at most n, strict Whitehead minimality is exponentially
generic.

4.1 Shape of the Stallings graph

The following elementary statement combines results established in (1; 9) and
in (2, Sec. 3.1).

Proposition 4.2. Let α ∈ (0, 1) and 0 < β < 1
2α, let ~h = (h1, . . . , hk) be

a tuple of elements of R≤n and let H be the subgroup generated by ~h. Then,
exponentially generically,
– min |hi| > dαne and the prefixes of the hi and h−1

i of length bβnc are
pairwise distinct;

– the Stallings graph Γ(H) consists of a central tree of height bβnc – whose
vertices can be identified with the prefixes and suffixes of length at most
bβnc of the hi – and of k outer loops, one for each hi, of length |hi|−2bβnc,
connecting the leaves of the central tree.
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Proposition 4.2 describes the typical shape of a Stallings graph under the
word-based distribution: as β can be taken arbitrarily small and α arbitrarily
close to 1, an overwhelming proportion of the vertices are in the outer loops,
and in particular have valency exactly two.

4.2 Counting the occurrences of short factors

If u is a word over an alphabet B, we denote by Zn(u) the function that counts
the occurrences of u as a factor in a word in Bn.

Lemma 4.3. Let B be a finite alphabet with k ≥ 2 letters and let u ∈ Bm.
Then the mean value of Zn(u) is asymptotically equivalent to n

km . Moreover,
for any ε > 0 there exists a constant c > 0 such that

P
(∣∣∣Zn(u)− n

km

∣∣∣ ≥ εn) ≤ e−cn.
Proof. For i ∈ [n+ 1−m], the probability X(i)

n that u is a factor at position
i in a random word of length n is k−m, with the convention that the first
letter is at position 1. For each ` ∈ [m], let Z(`)

n (u) =
∑

j X
(mj+`)
n , for 0 ≤

j ≤ bn+1−`
m c. Each Z(`)

n (u) is the sum of independent random variables since
there is no overlap in the portions of the length n word considered. Therefore
Z

(`)
n (u) follows a binomial law of parameters k−m and bn+1−`

m c: by Hoeffding’s
inequality (8), it is centered around its mean value which is equivalent to
n

mkm , and it satisfies P
(∣∣∣Z(`)

n (u)− n
mkm

∣∣∣ > ε
mn
)
≤ e−c`n for some c` > 0

and for each n large enough. The announced result follows from the fact that
Zn(u) = Z

(0)
n (u) + . . .+ Z

(m−1)
n (u). ut

Now if u is a reduced word over the alphabet Ã, we denote by Z̃n(u) the
function that counts the occurrences of u as a factor in a reduced word in Rn.

Lemma 4.4. Let u = u1u2 be a reduced word of length 2. Then for any ε > 0
there exists a constant c > 0 such that, for n large enough,

P
(
Z̃n(u) >

(
1

(2r − 1)2 + ε

)
(n− 1) + 1

)
≤ e−cn

and
P
(
Z̃n(u) <

(
2r − 2

(2r − 1)3 − 2ε
)

(n− 1)
)
≤ e−cn
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Proof. We first consider the case where u1 6= u2. The idea is to use Lemma 4.3
via an encoding of reduced words. For every a ∈ Ã, let ϕa be a bijective map
from Ã \ {ā} to [2r − 1]. Let ϕ be the map from the set of reduced words to
Ã× [2r − 1]∗ defined for every reduced word z = z1 · · · zn by

ϕ(z) = (z1, ϕz1(z2)ϕz2(z3) · · ·ϕzn−1(zn)).

Observe that for every n > 0, ϕ is a bijection from Rn to Ã × [2r − 1]n−1,
which is computed by an automaton with outputs: the states are the elements
of Ã and for every a ∈ Ã and b 6= ā, there is a transition from a to b on input
b with output ϕa(b). Moreover, the uniform distribution on Rn is obtained by
choosing z1 uniformly in Ã, z′ uniformly in [2r−1]n−1, and taking ϕ−1(z1, z

′).
We now choose particular functions ϕa: for every a 6= ū1, we choose

ϕa(u1) = 1. This way every occurrence of u1 (except possibly for the first
letter of z), is encoded by a 1 (note that the 1s provided by ϕū1 do not encode
an occurrence of u1). We also require that ϕu1(u2) = 2 and ϕa(ū1) = 3 for
every a 6= u1: thus every occurrence of u = u1u2 in z translates to an occur-
rence of 12 in ϕ(z), and every occurrence of ū1 translates to a 3 in ϕ(z). See
Figure 2 for an example.

a a b b

ϕa 1 − 3 2
ϕa − 3 1 2
ϕb 1 3 2 −
ϕ
b

1 3 − 2

z b a b a b b b a a b a b a b a

ϕ(z) b 1 2 3 1 2 2 1 1 2 1 3 1 2 1

Fig. 2. An example of the encoding used in the proof of Lemma 4.4. The word z above is
encoded using the construction associated with the pattern u = ab: a is always encoded
by a 1, b by a 2 and the inverse of the first letter, a, by a 3. An occurrence of u always
corresponds to an occurrence of 12 in ϕ(z), but the opposite is not true: there are false
positives, which are always preceded by a 3. Note also that an occurrence of 312 does not
always correspond to a false positive.

Then for any t, we have P(Z̃n(u) > t + 1) ≤ P(Zn−1(12) > t) (the value
t+1 in the left-hand side of the inequality corresponds to the possibility of an
occurrence of u in the leftmost position). For t =

(
1

(2r−1)2 + ε
)

(n − 1), this
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yields

P
(
Z̃n(u) > ( 1

(2r − 1)2 + ε)(n− 1) + 1
)

≤ P
(
Zn−1(12) > ( 1

(2r − 1)2 + ε)(n− 1)
)

≤ P
(
|Zn−1(12)− n− 1

(2r − 1)2 | ≥ ε(n− 1)
)
.

The first inequality to be proved then follows from Lemma 4.3 since the pattern
12 is taken in [2r − 1]n−1 equipped with the uniform distribution.

Observe that counting occurrences of 12 overestimates the number of
occurrences of u. More specifically, if a false positive occurs, then the said
occurrence of 12 is preceded by a 3 in ϕ(z). Hence, the number of false
positives is bounded above by the number of occurrences of 312 in ϕ(z).
Therefore P(Z̃n(u) < t) ≤ P(Zn−1(12) − Zn−1(312) < t). Let then t =(

2r−2
(2r−1)3 − 2ε

)
(n− 1) =

(
n−1

(2r−1)2 − ε(n− 1)
)
−
(

n−1
(2r−1)3 + ε(n− 1)

)
. Then

P
(
Z̃n(u) <

(
2r − 2

(2r − 1)3 − 2ε
)

(n− 1)
)

≤ P
(
Zn−1(12)− Zn−1(312) <

(
2r − 2

(2r − 1)3 − 2ε
)

(n− 1)
)

≤ P
(
|Zn−1(12)− n− 1

(2r − 1)2 | > ε(n− 1)
)

+ P
(
|Zn−1(312)− n− 1

(2r − 1)3 | > ε(n− 1)
)
.

The second inequality to be proved again follows from Lemma 4.3.
The case u = u1u1 is handled in the same fashion, except that we have to

set ϕu1(u1) = 2 instead of 1. ut

Remark 4.5. The statement of Lemma 4.4, and even a slighty stronger state-
ment, can also be obtained using the theory of Markov chains: a reduced word
can be seen as a path in a specific Markov chain – where the set of states is
Ã, and there is a transition from a to b with probability 1

2r−1 whenever a 6= b̄.
The result in Lemma 4.4 then follows from (12, Thm 1.1). We chose instead
to give the elementary and self-contained presentation above. ut
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4.3 Proof of Theorem 4.1

Let α ∈ (0, 1), β ∈ (0, α2 ) and ε > 0 be real numbers, to be chosen later. Let
Wn,α,β be the set of k-tuples ~h = (h1, . . . , hk) of reduced words of length at
most n, such that min |hi| > dαne and the prefixes of the hi and h−1

i of length
bβnc are pairwise distinct.

For each word h of length greater than 2bβnc, let mid(h) be the factor of
h obtained by deleting the length bβnc prefix and suffix.

Now let (Y, v) be a Whitehead descriptor and let H be the subgroup
generated by ~h ∈Wn,α,β . We denote by Y c the complement of Y . The central
tree of Γ(H) has at most 2kβn vertices, and the outer loops of Γ(H) are labeled
by the mid(hi). All the vertices in these loops have valency 2. Any one of these
vertices is in negative(Γ(H), Y, v) if and only if it has an incoming v-edge and
an outgoing y-edge for some y ∈ Y c \ {v}. Let N = (Y v̄ ∪ vȲ ) \ {vv̄}. Then
the number of negative vertices in the outer loops is equal to the number of
occurrences of elements of N as factors in the mid(hi). That is:

negative(Γ(H), Y, v) ≤
k∑
i=1

∑
xy∈N

Z̃| mid(hi)|(xy) + 2kβn.

By Proposition 4.2, Wn,α,β is exponentially generic. Moreover, the map
h 7→ mid(h) turns the uniform distribution on words in R` (` > αn) into the
uniform distribution on R`−2bβnc: indeed, if u ∈ R`−2bβnc, then P(mid(h) =
u) = (2r − 1)−2bβnc, which does not depend on u. It follows that the same
map also turns the uniform distribution on the set of reduced words of length
greater than αn and less than or equal to n, into the uniform distribution on
its image. Therefore, exponentially generically, we have

negative(Γ(H), Y, v) ≤ 2kβn+ k|N |
(( 1

(2r − 1)2 + ε
)
(1− 2β)n+ 1

)
≤ 2kβn+ 2k(|Y | − 1)

((
1− 2β

)( 1
(2r − 1)2 + ε

)
n+ 1

)
.

Similarly, a loop vertex is in positive(Γ(H), Y, v) if it has an incoming x-edge
with x ∈ Y \ {v} and an outgoing y-edge with ȳ ∈ Y c: if P = (Y \ {v})Y c ∪
Y c(Ȳ \ {v̄}), then the number of positive vertices in the outer loops is equal
to the number of occurrences of elements of P as factors in the mid(hi). That
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is, exponentially generically,

positive(Γ(H),Y, v) ≥
k∑
i=1

∑
xy∈P

Z| mid(hi)|(xy)

≥ k|P |
(

2r − 2
(2r − 1)3 − 2ε

)
((α− 2β)n− 1)

≥ 2k(|Y | − 1)(2r − |Y |)
(

2r − 2
(2r − 1)3 − 2ε

)
((α− 2β)n− 1) .

In order to conclude, we only need to show that we can choose α, β and ε

such that

(2r − |Y |)
( 2r − 2

(2r − 1)3 − 2ε
)

((α− 2β)n− 1)

> (1− 2β)
( 1

(2r − 1)2 + ε
)
n+ 1 + βn

|Y | − 1 .

for all n large enough. The first term is Θ(γn) with γ = (2r − |Y |)( 2r−2
(2r−1)3 −

2ε)(α−2β) and the second term is Θ(δn) with δ = (1−2β)( 1
(2r−1)2 +ε)+ β

|Y |−1 ,
so we need to select α, β and ε such that γ > δ. This is possible by continuity,
since the limits of these two quantities when (α, β, ε) tends to (1, 0, 0) are
respectively (2r − |Y |) 2r−2

(2r−1)3 and 1
(2r−1)2 , and we have 2r − |Y | ≥ 2 and

2r−2
2r−1 ≥

2
3 , so that (2r − |Y |) 2r−2

(2r−1)3 ≥ 4
3

1
(2r−1)2 .

This establishes that if H is generated by a k-tuple of reduced words,
then exponentially generically positive(Γ(H), Y, v) > negative(Γ(H), Y, v)
for each Whitehead descriptor. The same exponential genericity holds for k-
tuples of cyclically reduced words in view of Lemma 2.3 and the discussion
at the end of Section 2.3. Together with Proposition 2.2, this concludes the
proof since a subgroup generated by a tuple of cyclically reduced words has a
cyclically reduced Stallings graph. ut

To complete the picture, we observe that given a random k-tuple of re-
duced words, instead of cyclically reduced words, there is a non-negligible
probability that the graph is not cyclically reduced.

Proposition 4.6. For the uniform distribution over k-tuples of reduced words
of length at most n the Stallings graph is not generically cyclically reduced.

Proof. Let ~h = (h1, . . . , hk) be a random k-tuple of reduced words of length
at most n and let Γ(H) be the Stalling graph of the subgroup H generated
by ~h.
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We show that with probability tending to ( 1
2r )2k−1, Γ(H) is not cyclically

reduced and, more precisely, there exists a letter a ∈ Ã such that every hi
starts with a and ends with a.

For every pair of letters a and b in Ã, let Ra,b be the set of reduced words
that start with a and end by b. Let Ra,b(z) be the (ordinary) generating series
associated with Ra,b defined by

Ra,b(z) =
∑

u∈Ra,b

z|u|.

Assume that b /∈ {a, ā}. Since a word of Ra,b is either ab or a word in some
Ra,c (c 6= b̄) followed by b, we have

Ra,b(z) = z2 +
∑
c 6=b̄

Ra,c(z)z,

and similarly

Ra,a(z) = z2 +
∑
c 6=ā

Ra,c(z)z and Ra,ā(z) =
∑
c6=a

Ra,c(z)z.

Now observe that if b, c ∈ Ã \ {a, ā}, then Ra,b(z) = Ra,c(z) by symmetry.
Hence, fixing a letter b ∈ Ã \ {a, ā}, the equations above rewrite as

Ra,b(z) = z2 + (2r − 3)Ra,b(z)z +Ra,a(z)z +Ra,ā(z)z
Ra,a(z) = z2 + (2r − 2)Ra,b(z)z +Ra,a(z)z
Ra,ā(z) = (2r − 2)Ra,b(z)z +Ra,ā(z)z.

Solving this system yields (thank you maple!)

Ra,ā(z) = 2z3(r − 1)
(1− z2)(1− (2r − 1)z)

= 2r − 2
2r − 1 −

1
2(1− z) −

r − 1
2r(1 + z) + 1

2r(2r − 1)(1− (2r − 1)z) .

It follows that the number of words of length n in Ra,ā is asymptotically
equivalent to 1

2r (2r−1)n−1, and the probability that a reduced word of length
n begins with a and ends with ā is asymptotically equivalent to 1

(2r)2 . This
result also holds for words of length at most n, as they are generically of length
greater than 1

2n.
Thus the probability that the k-words of ~h all begin with the same letter

a and end with ā is asymptotivally equivalent to 1
(2r)2k , and the probability

that they all begin with the same letter and end with its opposite is equivalent
to 1

(2r)2k−1 , which concludes the proof. ut
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5 Application to random generation
Proposition 2.2 and the fact that there are finitely many Whitehead descrip-
tors immediately yield algorithms MinimalityTest and StrictMinimalityTest
to test whether H is (strictly) Whitehead minimal: it suffices to verify
whether Γ(H) is cyclically reduced (in time at most linear) and to com-
pute, for each Whitehead descriptor (Y, v), | positive(Γ(H), Y, v)| and
| negative(Γ(H), Y, v)|. The time required is linear in |H| for each (Y, v),
but the number of Whitehead descriptors is exponential in A: the resulting
algorithm is linear in |H| but not in |A|.

In this section, our purpose is different: we want to design efficient ran-
dom generators – in the graph-based or the word-based distribution – for the
Stallings graphs of subgroups that are (strictly) Whitehead minimal.

Our algorithms will be rejection algorithms. In general, suppose that S
is a countable set, S is the disjoint union of the Sn, and C ⊆ S is such that
lim infn |C∩Bn||Bn] = p > 0 (see Section 2.3 and Lemma 2.3). If RandomS is a
random generator for elements of S and TestC is an algorithm to test whether
an element of S is in C, then the algorithm in Figure 3 is a random generator
for elements of C.

RandomC(n)
1 keep ← False
2 repeat
3 x = RandomS(n)
4 keep ← TestC(x)
5 until keep == True
6 return x

Fig. 3. An algorithm to randomly generate an element of C of size n

In such an algorithm, the loop (lines 3–4) is performed in average 1
p times.

in particular, if both RandomS and TestC take linear time in average, then so
does RandomC.

A random generator RandomStallingsGraph working in linear average
time, is available for the graph-based and the word-based distributions.
– For the graph-based distribution, such an algorithm is given in (3).
– For the word-based distribution, one first generates a k-tuple of reduced

words (in linear time); next one applies Touikan’s algorithm (20) to com-
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pute the associated Stallings graph; it was noted in (4, Theorem 4.1) that
the average time complexity of this algorithm is linear.

Following the model of the algorithm in Figure 3, a rejection algorithm to
randomly generate Whitehead minimal subgroups is shown in Figure 4.

RandomWhiteheadMinimalGraph(n,A)
1 keep ← False
2 repeat
3 Γ = RandomStallingsGraph(n,A)
4 keep ← MinimalityTest(Γ)
5 until keep == True
6 return Γ

Fig. 4. An algorithm to randomly generate Whitehead minimal subgroups

Similarly, an algorithm RandomStrictlyWhiteheadMinimalGraph to ran-
domly generate strictly Whitehead minimal subgroups, is obtained by replac-
ing the call to MinimalityTest by a call to StrictMinimalityTest. In view
of the discussion at the beginning of this section, this yields the following
statement.

Proposition 5.1. For the graph-based and the word-based distributions, the
average time complexity of the algorithms RandomWhiteheadMinimalGraph and
RandomStrictlyWhiteheadMinimalGraph is linear.
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