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Abstract

We show that the Word Problem in finitely generated subgroups of GLd(Z) can be solved in
linear average-case complexity. This is done under the bit-complexity model, which accounts
for the fact that large integers are handled, and under the assumption that the input words
are chosen uniformly at random among the words of a given length.

1 Introduction

Let G be a group and let Σ be a finite non-empty subset of G. Let also Σ̃ = Σ ∪ Σ−1. The Word
Problem for G relative to Σ is the following: given a word w over alphabet Σ̃, decide whether
the value of w in G is trivial. This problem was introduced by Dehn in the early 20th century
[Deh11], and is considered one of the fundamental problems in algorithmic and combinatorial
group theory. It is known that the Word Problem is not decidable in general (that is: there
exist finitely generated, and even finitely presented groups with undecidable Word Problem), see
Novikov [Nov55] and Boone [Boo59]. However, it is known to be decidable in many important
classes of groups, for instance in automatic groups [ECH+92] (including finite, free, hyperbolic or
braid groups), finitely presented residually finite groups (Simmons [Sim73]), 1-relator groups (see
[MKS66, Theorem 4.14] and also Lyndon and Schupp [LS01]), etc.

Here we consider this problem in the very natural context of subgroups of GLd(Z), the group of
invertible matrices with integer coefficients. We set the following notation: Σ is a finite non-empty
subset of GLd(Z), Σ̃ = Σ∪Σ−1, H is the subgroup of GLd(Z) generated by Σ and M : Σ̃∗ → GLd(Z)
is the natural morphism, which maps the element x ∈ Σ̃ to the corresponding matrix in GLd(Z).
That is, if w is a word on alphabet Σ̃, then M(w) is the value of w in GLd(Z). The Word Problem
in H (relative to Σ), written WPΣ, is obviously decidable: M(w) can be computed and compared
to the identity matrix Id.

In the following, we consider d and Σ as fixed. The coefficients of the matrices in H can
be very large (the coefficients of M(w) may grow exponentially in the length |w| of w), and we
therefore evaluate the complexity of algorithms in the so-called bit-complexity model: integers are
identified with their binary expansion and arithmetic operations require more than constant time.
In particular, we use the recent result of Harvey and van der Hoeven [HvdH21] which states that
multiplying two integers p and q can be done in time O(L logL) where L = max(log p, log q) is
(roughly) the maximal length of the binary expansions of p and q.
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The naive algorithm to solve the Word Problem in H is the following: given w = a1 · · · an,
with each ai ∈ Σ̃, let w0 = Id (the identity matrix) and, for each 1 ≤ i ≤ n, wi = wi−1ai.
Then M(w) = wn and one can decide by inspection whether M(w) = Id. This algorithm has
quadratic worst-case complexity O(n2). A direct application of the classical divide-and-conquer
strategy lowers this complexity to O(n log2 n), as noted already by Olshanskii and Shpilrain [OS25,
Proposition 2] (see Proposition 9 below).

We note that this divide-and-conquer technique yields an O(n) worst-case complexity when the
matrices in Σ are upper-triangular (Proposition 11), a sharpening of Olshanskii’s and Shpilrain’s
result [OS25, Theorem 2]. As noted by these authors, this implies a linear worst-case complexity
for the Word Problem in finitely generated torsion-free nilpotent groups.

Our main result (see Theorem 13 below) is the following.

Main Theorem. WPΣ has linear time average-case complexity in the bitcost model of computation
when inputs follow the uniform distribution on length n words over alphabet Σ̃.

This result was already known in the case of polycyclic groups, which are representable as
subgroups of GLd(Z) [Weh80]. Indeed, Olshanskii and Shpilrain established a linear average-case
complexity of the Word Problem for these groups [OS25, Theorem 3], and in fact, for subgroups
H ≤ GLd(Z) with a non-trivial virtually abelian factor, such as the virtually solvable linear groups
[OS25, Remark 4], which goes beyond polycyclic groups.

In contrast, our result holds for all finitely generated subgroups of GLd(Z), polycyclic or not,
and its proof is seemingly very different from that of Olshanskii and Shpilrain. The two proofs
have however an interesting common point, see Remark 1 below.

Several ideas come into play in the proof of our main result. The first is to use modulo com-
putations: if q is an integer, one first solves the Word Problem in the subgroup Hq of GLd(Z/qZ)
generated by Σ. That can be done by using the standard (divide-and-conquer) algorithm in
GLd(Z/qZ): that is, by computing M(w)q (the matrix M(w) modulo q) and verifying whether it
is equal to Id. Here we benefit from the fact that, at each step of the computation, the entries of
matrices are in the interval [0, q−1], thus lowering the worst-case complexity. If q is constant, this
is faster than computing M(w) in GLd(Z) as the length of w tends to infinity; and if M(w)q is not
the identity, then neither is M(w). Thus, if M(w)q ̸= Id with high probability, we first compute
M(w)q and, if it is the identity, we compute M(w) using the standard O(n log2 n) algorithm.

This however is not sufficient to get our result. Indeed, as we will see, for any value of q, the
probability that M(w)q = h (for any h ∈ GLd(Z/qZ)) tends to a positive value, namely α

|Hq| , where

α = 1 or α = 2 (depending on Σ and q). Thus, with probability tending to α
|Hq| , we need to call

the divide-and-conquer algorithm, yielding an O(n log2 n) average-case complexity.
The next idea is to choose the modulus q as a function q(n) of the length n of the input word

w. The advantage of this algorithm is that, for each input word w, we compute M(w) modulo a
single integer q(n). The challenge is to identify an appropriate function q(n).

More precisely, we analyze the computation of M(w)q(n) in terms of trajectories in a Markov
chain M, which is a technical variant of the natural Markov chain based on the Cayley graph of
the subgroup Hq(n) of GLd(Z/q(n)Z) generated by Σ. We want q(n) to be small enough so that
M(w)q(n) is computed rapidly, and we want the Markov chain M to have low mixing time (that is,
we want it to converge rapidly towards its stationary distribution) and a large dispersion (so that
Hq(n) should have large cardinality and the probability that M(w)q(n) = Id be small). These are
seemingly contradictory requirements, and the technical work of the proof consists in identifying
a function q(n) with these properties.

Concretely, we choose q(n) to be an increasingly long, but slowly increasing, product of distinct
primes, so that we test M(w) modulo all these primes in a single computation (namely, the modulo
q(n) computation), yet q(n) grows sufficiently slowly, see Definition 12.

Remark 1. The proof of [OS25, Theorem 3] also uses computation in a quotient of H, though
not a mod q quotient: the projection onto an abelian factor, whose existence is postulated (and
which should be known for any implementation of their algorithm).
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It is important to note that our algorithm makes no assumption on Σ and on the properties of
the subgroup H it generates. The matrices in Σ may be triangular or not; the subgroup H may
be finite (and it is well known that the Word Problem is simpler in this case) or infinite; it may
be nilpotent, polycyclic or virtually solvable; it may have exponential or polynomial growth (as a
consequence of the Tits alternative): we do not need to identify in which situation we are, and we
always use the same algorithm.

The paper is organized as follows. In Section 2, we lay out the notation and definitions of
the Word Problem and its modulo variant and we give a very quick discussion of models of
computation and of the definitions of worst-case and average-case complexity. In Section 2.3,
we remind the readers of the precise complexity of computing with integers, and in Section 2.4,
we recall the fundamental definitions and results on Markov chains and their convergence to a
stationary distribution, inasmuch as they will be needed in this paper.

In Section 3, we describe and analyze the standard divide-and-conquer algorithm to com-
pute M(w) (Section 3.1), and we briefly discuss its application in the case of triangular matrices
(Section 3.2). Our Algorithm QuickWP, which solves the Word Problem in linear average-case
complexity, is given in Section 3.3. This includes defining the function q(n) mentioned above. We
also reduce the proof of our Main Theorem to a technical statement (Theorem 16) which states
that, if H is infinite, then the probability that a word w of length n satisfies M(w)q(n) = Id is

O(log−2 n). Finally, the proof of Theorem 16 is given in Section 4.

2 Preliminaries and notation

If A is a matrix in GLd(Z), we let ∥A∥∞ = max{|Ai,j | | 1 ≤ i, j ≤ d}. If m ≥ 2, Am denotes the
projection of A modulo m, a matrix with entries in Z/mZ.

If X is a set of matrices in GLd(Z), the subgroup they generate is written ⟨X⟩. We also denote
by Xm the set {Am | A ∈ X}. It is interesting to note the following elementary fact.

Fact 2. Let m ≥ 2. If m is not a prime, then Z/mZ is not a field. However, the projection mod
m of the group GLd(Z) (or of any of its subgroups) is again a group.

2.1 The Word Problem and related algorithmic problems

Let Σ be a fixed, finite, non-empty set of matrices in GLd(Z), let Σ̃ = Σ∪Σ−1 and let Σ̃∗ be the set
of all words on alphabet Σ̃ (i.e., finite sequences of elements of Σ̃). We denote by M : Σ̃∗ → GLd(Z)
the natural (monoid) morphism, which maps each element of Σ to itself.

The Word Problem WPΣ, is the following: given a word w ∈ Σ̃, decide whether M(w) is the
identity matrix Id.

We also consider in this paper the closely related Exact Computation Problem ECΣ: on input
a word w ∈ Σ̃∗, ECΣ computes the product M(w) of that sequence in GLd(Z). We will also discuss
the same problems modulo m, where m ≥ 2 is an integer. More precisely, Problems WPΣ,m (resp.

ECΣ,m) takes a word w ∈ Σ̃ as input, and decides whether M(w)m is the identity matrix (resp.
computes M(w)m).

Remark 3. If an algorithm S solves ECΣ (resp. ECΣ,m) on input w — that is, if we have computed
M(w) (resp. M(w)m), — then a minor tweak solves WPΣ (resp. WPΣ,m): it suffices to examine
the d2 entries of M(w) (resp. M(w)m), which is done in constant time (if m is a constant; in time
O(logm) otherwise).

Convention Throughout the paper, the integer d and the set Σ are fixed. We let k = |Σ|. We
also assume, and this is no loss of generality, that Σ does not contain a matrix A and its inverse.
In particular, it does not contain the identity matrix Id, and |Σ̃| = 2|Σ|.
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2.2 About algorithms and complexity

To evaluate the complexity of an algorithm S, we consider the function S(w), where w is an input
word, which measures the time (number of elementary operations) needed to run Algorithm S on
input w. Observe that, even though Σ — and thus the coefficients of the matrices in Σ̃ — is fixed
in our setting, the integers computed by the algorithms can be huge, and one cannot assume that
arithmetic operations are performed in constant time. To account for this, we consider the bit-cost
model of computation, where an integer n is encoded using roughly log n bits, see Section 2.3.

The worst-case complexity of S is the function on integers given by

Swc(n) = max{S(w) | |w| = n},

and its average complexity Sac(n) is the average value of S(w), when w runs uniformly over inputs
of length n. As is traditional, these functions are considered up to asymptotic equivalence, when
n tends to infinity.

As mentioned earlier, our average-complexity results assume that input words are taken uni-
formly at random among words on Σ̃ of length n.

2.3 Computing with integers

The length (or bit-size) ℓ(n) of a integer n is the length of its binary expansion, namely ℓ(n) =
⌈log(|n| + 1)⌉ + 1 (all logarithms are in base 2), where the additional bit is used to encode the
sign. As a result, the integers of length at most ℓ+ 1 have absolute value less than 2ℓ. We freely
use the following facts, all of them elementary — with the exception of Proposition 4 (ii), which
is a deep result due to Harvey and van der Hoeven [HvdH21].

Proposition 4. Let n, n′ be integers and let L such that ℓ(n), ℓ(n′) ≤ L.

(i) ℓ(nn′) ≤ ℓ(n) + ℓ(n′)− 1.

(ii) The product nn′ is computed in time O(L logL).

(iii) The product nn′ is also computed (by the primary school multiplication algorithm) in time
O(ℓ(n)ℓ(n′)), which is interesting if ℓ(n) is small with respect to ℓ(n′).

(iv) The sum of d integers of length at most L, has length at most 1 + log d+L and is computed
in time O(d log d+ dL).

(v) If A,A′ are d × d matrices with entries of length at most L, the entries of the product AA′

have length at most 1 + log d+ 2L, and each is computed in time O(d log d+ dL logL).

(vi) If the entries of A (resp. A′) are of length at most L (resp. L′), and if L′ is much smaller
than L, the entries of the product AA′ have length at most 1 + log d + L + L′, and each is
computed in time O(d log d+ dLL′).

Remark 5. Proposition 4 (vi) shows that, if w is a length n word on Σ̃, the entries of M(w) have
length at most (1+L+log d)n, where L is the maximum length of the coefficients of the matrices
in Σ̃: the length of the entries of M(w) grows at most linearly in n, and their value in Z at most
exponentially.

In the sequel, we will also compute in Z/mZ for some integer m ≥ 2. We record the following
result on the complexity of computing in this ring, where every element is represented by a non-
negative integer at most equal to m. It follows directly from [vzGG13, Theorem 9.8 and Corollary
9.9], together with Proposition 4 (ii) due to [HvdH21].

Corollary 6. Let m ≥ 2. Every arithmetic operation in Z/mZ is performed in O(logm log logm).
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2.4 Basic results on probability distributions and Markov chains

For a general discussion of probability distributions and Markov chains, we refer readers to [LP17].
Here we fix some notation and state a few standard results on Markov chains, that will be used
in the sequel.

If X is a set, a probability distribution (or probability vector) on X is a vector (µ(x))x∈X , where
each µ(x) lies in the closed interval [0, 1] and

∑
x µ(x) = 1. The corresponding probability function

is given, for every subset Y of X, by µ(Y ) =
∑

y∈Y µ(y). The uniform distribution on X is the

vector all of whose entries are 1
|X| .

If µ and π are two probability distributions on the same finite set X, their total variation
distance is

∥π − µ∥Var = sup
A⊆X

|π(A)− µ(A)| = 1

2

∑
x∈X

|π(x)− µ(x)|. (1)

The second equality is proven in [LP17, Proposition 4.2].
In this paper, a (finite) Markov chain M consists in a directed graph with (finite) vertex set S

(vertices are also called states), edge set a subset of S×S, and, for each edge (called a transition)
from state q to state q′, of a value Mq,q′ ∈ (0, 1), in such a way that, for each q ∈ S, (Mq,q′)q′∈S

is a probability vector. The matrix M = (Mq,q′)(q,q′)∈S×S is called the transition matrix of M.
A path T = (q0, . . . , qn) in the underlying graph of M is called a trajectory. A probability

is assigned to T by M, namely the product Mq0,q1 Mq1,q2 . . . Mqn−1,qn . We note that the (q, q′)-
entry of the n-th power of the transition matrix M is the sum of the probabilities of the length n
trajectories from q to q′.

The Markov chainM is symmetric if its transition matrix is symmetric, that is, ifMq,q′ = Mq′,q

for all states q, q′. The chain M is irreducible if its underlying graph is strongly connected, that is:
for every q, q′ ∈ S, the (q, q′)-entry of some positive power of M is non-zero. The chain M is said
to be aperiodic if, for every q ∈ S and for all n large enough, there exists a length n trajectory
from q to q. Finally, the chain M is primitive if it is both irreducible and aperiodic.

A probability distribution D on X is called stationary if DM = D, that is, if D is a left
eigenvector for the eigenvalue 1.

A Markov chain M with a stationary distribution π is said to be reversible with respect to π
(or just reversible if the stationary distribution is unique) if π(q)M(q, q′) = π(q′)M(q′, q) for all
states q, q′.

The following is a classical result on Markov chains.

Theorem 7. Let M be a primitive Markov chain. Then 1 is an eigenvalue of M and the other
eigenvalues have modulus less than 1. The eigenspace corresponding to eigenvalue 1 has dimension
1 and M has a unique stationary distribution π, which satisfies the following: if µ is any probability
distribution on the state set of M, then limµMn = π.

If M is primitive and symmetric, then the uniform distribution is its unique stationary distri-
bution, all the eigenvalues are real, and M is reversible.

3 Algorithms for WPΣ and ECΣ

With the aim of studying the average-case complexity of WPΣ, we consider several algorithms
solving this problem. We start with standard algorithms, including one with O(n log2 n) worst-
case complexity (Section 3.1). In Section 3.3, we introduce a better algorithm with the announced
linear average-case complexity for the uniform distribution on words of length n. We then state
our main theorem, Theorem 13, and reduce its proof to a technical statement (Theorem 16). The
proof of that statement is given in Section 4.

3.1 First algorithms

The naive algorithm to compute M(w) consists in reading the word w from left to right, one letter
at a time, and performing the corresponding n− 1 matrix multiplications — where n = |w|. The
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right factor in each of these operations is a matrix in Σ̃, a constant set which is independent of
n. A direct application of Proposition 4 (vi) then shows that the worst-case bit complexity of this
algorithm is O(ℓ2n2), where ℓ is an upper bound of the bit-size of the coefficients of the elements
of Σ̃. Since ℓ is fixed in our settings, this naive approach runs in O(n2) time.

This quadratic upper bound can be significantly improved using a divide and conquer strategy.

Algorithm DCΣ

Input : a sequence w of n elements of Σ̃
Output: M(w)

1 if n = 0 (resp. n = 1) then return Id (resp. M(w))
2 w1 ← prefix of w of length ⌊n/2⌋
3 w2 ← suffix of w of length ⌈n/2⌉
4 return DCΣ(w1)× DCΣ(w2)

Before we analyze the complexity of this simple algorithm, let us remind the reader of an
instance of the celebrated Master Theorem (see, e.g., [CLRS22, Theorem 4.1]), which we will use
several times.

Proposition 8. Let C(n) and f(n) be positive-valued non-decreasing functions on N satisfying
the equation C(n) = C(⌊n2 ⌋) + C(⌈n2 ⌉) + f(n) for n ≥ 2.

• If f(n) = O(nh) for some 0 ≤ h < 1, then C(n) = O(n).

• If f(n) = O(n logh n) for some h ≥ 0, then C(n) = O(n logh+1 n).

Proposition 9. Algorithm DCΣ solves Problem ECΣ, with worst-case complexity O(n log2 n). In
addition, Problem WPΣ can be solved with the same worst-case complexity.

Moreover, if H = ⟨Σ⟩ is finite, then the complexity of DCΣ is linear.

Proof. Since w = w1w2, we have M(w) = M(w1)M(w2), so Algorithm DCΣ solves Problem ECΣ.
Proposition 4 (ii) (crucially using [HvdH21]) and Remark 5 show that the complexity C(n) of

this algorithm satisfies the equation

C(n) = C (⌊n/2⌋) + C (⌈n/2⌉) +O(n log n) for n ≥ 2. (2)

Proposition 8 then yields the fact that C(n) is O(n log2 n). The statement on Problem WPΣ

follows from Remark 3.
If H is finite, then the coefficients of the matrices in H have bounded length and the complexity

C(n) now satisfies the equation

C(n) = C (⌊n/2⌋) + C (⌈n/2⌉) +O(1) for n ≥ 2. (3)

Proposition 8 then yields the fact that C(n) is O(n).

The same algorithm can be run on matrices in Z/mZ, where m ≥ 2 is any integer. Let DCΣ,m

be the algorithm with the same steps as Algorithm DCΣ, where all arithmetic operations are
performed in Z/mZ instead of Z. It is immediate that Algorithm DCΣ,m solves Problem ECΣ,m,
and hence also Problem WPΣ,m.

Remark 10. In fact, the same algorithm runs on matrices over any computable ring. Over Q, it
also yields an O(n log2 n) worst-case complexity since the addition and multiplication of rationals
takes asymptotically the same time as the addition and multiplication of integers.
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3.2 The special case of triangular matrices

We note that if A and A′ are upper triangular matrices and if 1 ≤ i ≤ j ≤ d, then the (i, j)-entry

of AA′ is
∑j

h=i Ai,h A
′
h,j .

Now suppose that the matrices in Σ are upper-triangular, and hence so are their inverses. It
is directly verified that, if w ∈ Σ̃∗ has length n and 1 ≤ i ≤ j ≤ d, then the (i, j)-entry of M(w) is
bounded above by a polynomial in the variable n, with degree j − i. In particular, the length of
the entries of M(w) is logarithmic.

Then Proposition 4 shows that if w and w′ are words of length at most n, then the product
M(w)M(w′) is computed in polylogarithmic time. Applying the Master Theorem (Proposition 8)
directly yields a linear worst-case complexity. Since finitely generated torsion-free nilpotent groups
can be represented by subgroups of upper-triangular matrices in GLd(Z), we get the following
statement, which improves on Olshanskii’s and Shpilrain’s results [OS25, Theorems 1 and 2].

Proposition 11. If Σ consists only of upper (resp. lower) triangular matrices, then the worst-case
complexity of WPΣ is O(n).

If G is a finitely generated torsion-free nilpotent group, then the Word Problem in G can be
solved in linear worst-case complexity.

3.3 A linear average-case algorithm for the Word Problem

The key idea to get an algorithm solving WPΣ with a better average-case complexity, is to compute
M(w)q(n), where n is the length of w and q(n) is a function such that

(i) M(w)q(n) is unlikely to be the identity

(ii) M(w)q(n) can be computed in linear time.

In the rest of the paper, we use the following function q.

Definition 12. Let q : N→ N be the function given by q(0) = q(1) = 1 and, for all n ≥ 2,

q(n) =
∏

p ≤ log5 n
p prime

p

Algorithm QuickWP is the following.

Algorithm QuickWP

Input : a sequence w of n elements of Σ̃
Output: True if M(w) = Id, and False otherwise

1 Compute q(n)
2 if DCΣ,q(n)(w) ̸= Id then
3 return False
4 else
5 if DCΣ(w) ̸= Id then
6 return False
7 else
8 return True

We can now give a precise version of our main theorem, stated in the introduction.

Theorem 13. Algorithm QuickWP solves Problem WPΣ with linear time average-case complexity,
when inputs are uniform random words.
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The reader should note that Algorithm QuickWP makes no assumption on the algebraic or
combinatorial properties of Σ or the subgroup H = ⟨Σ⟩. The same algorithm is run, with linear
average-case complexity, whether Σ consists of triangular matrices or not, and whether H is finite
or infinite. The latter property is decidable (Jacob, [Jac78]) in polynomial time (Babai, Beals
and Rockmore [BBR93], see also Detinko and Flannery [DF09]). Similarly, the same algorithm
is run, with the same average-case complexity whether H has polynomial or exponential growth,
or whether it is nilpotent (see Section 3.2), polycyclic or virtually solvable. In the latter two
situations, Olshanskii and Shpilrain recently proved a linear average-case complexity of the Word
Problem [OS25, Theorem 3 and Remark 4], using the properties of these subgroups, namely
computing in a quotient satisfying a specific algebraic condition.

Towards the proof of Theorem 13, we record the following technical statements.

Proposition 14. The function q can be computed in polylogarithmic time, and q(n) has polylog-
arithmic length.

Proof. A rough upper bound is of the form q(n) ≤ (log5 n)log
5 n, so that log q(n) (and hence the

length of q(n)) is bounded above by 5 log6 n, a polylogarithm.
It follows from algorithms proposed by Mairson [Mai77] and Pritchard [Pri87] that one can list

all prime numbers less than or equal to N in (bit-complexity) O(N(logN)(log logN)). In particu-
lar, listing the prime numbers at most equal to log5 n is done in O(log5 n(log log n)(log log log n)).

Computing the product of two numbers at most equal to q(n) (and hence with length at most
5 log6 n) is done in time O(log6 n log log n) by Proposition 4 (ii). It follows that q(n), the product
of at most log5 n numbers less than or equal to q(n), is computed in time O(log11 n log log n):
again a polylogarithm. (Using a divide and conquer method yields a polylogarithm with lesser
degree.)

Lemma 15. Let Pn be the probability that a word w of length n satisfies M(w)q(n) = Id. The aver-

age-case complexity of QuickWP (when inputs are random words of length n) is O(n+Pn n log2 n).
Moreover if H = ⟨Σ⟩ is finite, then the average-case complexity of QuickWP is O(n).

Proof. Once q(n) is computed (in polylogarithmic time, by Proposition 14), the complexity C(n)
of the second step of Algorithm QuickWP, that is, of running DCΣ,q(n) on a word w of length n,
satisfies

C(n) = C (⌊n/2⌋) + C (⌈n/2⌉) +O(log q(n) log log q(n)) for n ≥ 2

since every arithmetic operation in Z/q(n)Z can be performed in time O(log q(n) log log q(n)) (see
Corollary 6). By Proposition 14 again, we have log q(n) log log q(n) = o(n), and Proposition 8
yields the fact that C(n) is linear.

Finally, by Proposition 9, the worst-case complexity of Algorithm DCΣ on inputs of length n
is in O(n log2 n) if H is infinite and is linear if H is finite. The announced result follows.

In Section 4, we prove the following statement.

Theorem 16. If H = ⟨Σ⟩ is infinite, then M(w)q(n) = Id with probability O(log−2 n) (when w is
chosen uniformly at random among length n words).

The proof of Theorem 13 follows directly.

Proof of Theorem 13. It is immediate that Algorithm QuickWP solves WPΣ. Note that the sub-
group H is fixed in our setting (that is: it is not part of the input). If H is finite, the result was
established in Lemma 15.

If H is infinite, then Theorem 16 and Lemma 15 show that QuickWP runs with linear average-
case complexity.

We are now left with proving Theorem 16: this is done in Section 4.
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4 Proof of Theorem 16

Recall that H denotes the subgroup of GLd(Z) generated by Σ, and that Hm denotes the mod m
projection of H.

Throughout this section, we let m be an integer greater than maxA∈Σ̃ ∥A∥∞. We note that
q(n) satisfies this condition for all n large enough.

Remark 17. We have |GLd(Z/mZ)| ≤ md2

. We assumed that Σ does not contain mutually
inverse matrices, see Section 2.1. Our assumption on m guarantees that the matrices Am (A ∈ Σ̃)
are pairwise distinct and, in particular, none is the identity modulo m. In particular, since Hm is
a group, if M ∈ Hm and A,B ∈ Σ̃ with A ̸= B, then M A ̸= M and MA ̸= MB. An elementary
technical consequence is the following: if M,M ′ ∈ Hm and A ∈ Σ̃, there exists at most one matrix
B ∈ Σ̃ such that MAB = M ′.

4.1 Uniform random words as trajectories in a Markov chain

The matrices M(w)m, when w is a random word of length n, are naturally produced by the length
n trajectories in the Markov chain Um defined below. Recall that |Σ| = k.

(i) The state set of Um is the subgroup Hm.

(ii) There is an edge M
1
2k−−→M ′ if and only if there exists a matrix A ∈ Σ̃ such that M A = M ′.

(iii) The initial vector assigns probability 1 to Id and probability 0 to all the other states.

Let Pm be the transition matrix of Um. We formulate the following elementary observations.

• In Item (ii), the matrix A ∈ Σ̃ is uniquely determined (if it exists) by the origin M and the

end M ′ of the edge: we will denote this edge by M
A: 1

2k−−−→ M ′ when needed. We call A the
matrix label of that edge.

• The underlying graph of Um is strongly connected, that is, the Markov chain Um is irre-
ducible.

• The Markov chain Um is symmetric, since Σ̃ contains both the matrices in Σ and their
inverses.

• In the underlying graph of Um, replacing each edge label of the form A : 1
2k by its matrix

label A, yields the Cayley graph of the subgroup Hm. By Remark 17, no edge of Um is a
loop.

• If Tn is a length n trajectory in Um and lab(Tn) denotes the word obtained from Tn by
reading the sequence of matrix labels of the edges traversed by Tn, then w = lab(Tn) is a
uniform random word of Σ̃n, and Tn ends at state M(w)m.

• Let 1⃗ be the (column) vector all of whose entries are 1. Then Pm 1⃗ = 1⃗, so the uniform
distribution vector 1

|Hm| 1⃗ is a right eigenvector for the eigenvalue 1. Since Pm is symmetric,

it is also a left eigenvector for the eigenvalue 1.

As observed, the Markov chain Um is irreducible, but it may not be aperiodic. However, Um

contains cycles of length two (for instance Id
A−→ Am

A−1

−−−→ Id for any A ∈ Σ), and since its period
is the gcd of the lengths of its cycle, it is equal to 1 or 2. To deal with both cases at once, we
consider the Markov chain U2

m, which performs two consecutive steps in Um, and whose transition
matrix is P 2

m. More precisely, if M,M ′ ∈ Hm, then

P 2
m(M,M ′) =

∑
A,B∈Σ̃

M ′=MAB

1

4k2
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(where products are taken in Hm). Given our hypothesis on m, for each A ∈ Σ̃, there is at most
one matrix B ∈ Σ̃ such that MAB = M ′, and hence P 2

m(M,M ′) ≤ 1
2k (see Remark 17).

In the particular case where M ′ = M , for each A ∈ Σ̃, we have MAA−1 = M , so P 2
m(M,M) =∑

A∈Σ̃
1

4k2 = 1
2k .

As it contains self-loops, the Markov chain U2
m is aperiodic. However, if Um has period 2,

then U2
m is not strongly connected. More precisely, if Um has period 2, then U2

m is the disjoint
union of two chains with the same number of states: one for the states at an even distance from
Id in Um, and one for the states at an odd distance from Id. The state set of the former is
{M(w)m : w ∈ Σ̃∗ and |w| even} = ⟨Σ̃2⟩, and it has cardinality 1

2 |Hm|.
Let Ũm be the restriction of Um to the set H̃m of states that are accessible from Id in U2

m. Again:
if Um is aperiodic, then Ũm = Um and H̃m = Hm; and if Um has period 2, then |H̃m| = 1

2 |Hm|.
We let P̃m be the restriction of P 2

m to H̃m, that is, P̃m(M,M ′) = P 2
m(M,M ′) for all M,M ′ ∈ H̃m.

To summarize, we have the following statement.

Proposition 18. Ũm is a symmetric and primitive Markov chain, whose set of states H̃m satisfies
|H̃m| ≥ 1

2 |Hm|. The uniform distribution on H̃m is its unique stationary distribution and Ũm is

also reversible. For every M ∈ H̃m, we have P̃m(M,M) = 1
2k . Moreover, for all M,M ′ ∈ H̃m

such that P̃m(M,M ′) > 0, we have 1
4k2 ≤ P̃m(M,M ′) ≤ 1

2k .

4.2 Probability of being the identity in Ũm

By Proposition 18, the distribution of the states reached after a random length n trajectory,
starting at any state in H̃m, converges to the uniform distribution π. We now need to evaluate
the rate of this convergence.

Lemma 19. Let m be an integer greater than maxA∈Σ̃ ∥A∥∞. If n ≥ 1, the distribution vector of

the state reached after n random steps in Ũm, starting from Id, namely P̃n
m(Id, ·), satisfies∥∥∥∥P̃n

m(Id, ·)− 1

|H̃m|

∥∥∥∥
Var

≤ 1

2

√
|H̃m|

(
1− 1

4k2 |H̃m|2

)n

. (4)

Proof. The proof is a combination of results in [DS91], on the maximal and minimal eigenvalues of
a Markov chain, provided the chain in question is primitive and reversible. The chain Ũm satisfies
these hypotheses, its stationary distribution is the uniform distribution, and its eigenvalues βi

(i ∈ [0, |H̃m| − 1]) are real, say 1 = β0 > β1 ≥ β2 ≥ . . . > β|H̃m|−1 > −1, see Theorem 7.

Let β∗ = max{β1, |β|H̃m|−1|}. Equation (1.9) of [DS91, Prop. 3] states that

∥∥∥P̃n
m(Id, ·)− π

∥∥∥
Var

≤ 1

2

√
1− π(Id)

π(Id)
βn
∗ .

Since π(h) = 1
|H̃m| for every h ∈ H̃m, we have 1−π(Id)

π(Id) = |H̃m| − 1. It follows that∥∥∥∥P̃n
m(Id, ·)− 1

|H̃m|

∥∥∥∥
Var

≤ 1

2

√
|H̃m| βn

∗ .

Thus, we only need to prove that β∗ ≤ 1− 1
4k2 |H̃m|2 .

We first establish that β1 ≤ 1− 1
4k2 |Hm|2 using Poincaré’s inequality, as presented in and with

the notation of [DS91, Prop. 1].
For each edge e of Ũm, from state x to state y, we let Q(e) = P̃m(x, y)π(x) = P̃m(y, x)π(y).

Hence for every edge e we have

1

4k2|H̃m|
≤ Q(e) =

1

|H̃m|
P̃m(x, y) ≤ 1

2k|H̃m|
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For each ordered pair of distinct states x, y ∈ H̃m, we fix a path γx,y from x to y such that

a given edge appears at most once in the path, of length at most |H̃m|. Such a path exists
since the chain is irreducible. We define its path length as |γx,y|Q =

∑
e∈γx,y

Q(e)−1. Then

|γx,y|Q ≤ 4k2|H̃m|2.
Poincaré’s inequality ([DS91, Prop. 1]) states that

β1 ≤ 1− 1

κ
, where κ = max

e edge

∑
x,y such that e∈γx,y

|γx,y|Q π(x)π(y).

For all x, y, we have |γx,y|Qπ(x)π(y) ≤ 4k2 since π(x) = π(y) = 1
|H̃m| . Thus κ ≤ 4k2|H̃m|2. It

follows that β1 ≤ 1− 1
4k2 |H̃m|2 , as announced.

Now we use [DS91, Prop. 2] to prove that β|H̃m|−1 ≥
1
k − 1. For each state x, we let σx be the

trajectory consisting of (a single iteration of) the self-loop at x. By [DS91, Prop. 2], we have

β|H̃m|−1 ≥ −1 +
2

ι
, where ι = max

e edge

∑
x such that e∈σx

|σx|Q π(x).

Since each σx contains only one edge e which satisfies |σx|Q = 2k|H̃m|, we have ι = 2k since
π(x) = 1

|H̃m| and hence β|Hm|−1 ≥ −1 + 1
k . As a result, |β|H̃m|−1| < β1 and therefore β∗ = β1 ≤

1− 1
4k |H̃m|2 , thus concluding the proof.

4.3 Proof of Theorem 16

We use the following linear algebraic results. The first one, Lemma 20, is a slight generalization
of [Kur03, Lemma 11] to matrices of dimension greater than 2. Corollary 21 follows from Lemma 20
and the prime number theorem.

Lemma 20. Let A ∈ GLd(Z) be a matrix of infinite order. The number of primes p such that Ap

has order at most o in GLd(Z/pZ) is O(o2).

Proof. An immediate induction establishes that, for any n ≥ 1, we have ∥An∥∞ ≤ dn−1∥A∥n∞. It
follows that

∥An − Id∥∞ ≤ dn−1∥A∥n∞ + 1 ≤ (d ∥A∥∞)
n
.

Since A has infinite order, An ̸= Id and ∥An− Id∥∞ ̸= 0 for every n ≥ 1. Moreover, Ap always has
finite order in GLd(Z/pZ). If Ap is of order n, then p divides ∥An − Id∥∞, since every coefficient
of An − Id is 0 modulo p.

Observe that if an integer N has x distinct prime factors, then N ≥ 2x, and hence x ≤ logN .
Let N =

∏o
n=1 ∥An− Id∥∞. If p is a prime number such that Ap has order at most o in GLd(Z/pZ),

then p must divide N . Thus the number of primes p such that Ap has order at most o is at most

logN ≤ log

o∏
n=1

∥An − Id∥∞ ≤
o∑

n=1

n log (d ∥A∥∞) ,

which is O(o2) when d and A are fixed.

Corollary 21. Let A ∈ GLd(Z) be a matrix of infinite order, and let q(n) be the function defined
in Definition 12. For each n large enough, q(n) admits a prime factor pn such that Apn

has order
at least 2 log2 n in GLd(Z/pnZ).

Proof. According to the prime number theorem [Had96, DLVP96], which states that the number
of prime numbers less than or equal to N is asymptotically equal to N

lnN , where ln denote the
Napierian logarithm, there exists a positive constant C such that, for N large enough, this number

is at least C N
logN . Therefore q(n) is a product of at least C log5 n

5 log logn different prime numbers.

Since this quantity is asymptotically greater than 4 log4 n, Lemma 20 establishes that q(n) has
a prime factor pn such that |⟨A⟩pn

| > 2 log2 n.
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Connecting Corollary 21 with Lemma 19, we get the following result.

Corollary 22. Let q(n) be the map defined in Definition 12, and let (hn)n be a sequence such
that hn ∈ H̃q(n) for each n. If H is infinite, then the probability that a length n trajectory in Ũq(n)

ends in hn is O(log−2 n).

Proof. By a theorem due to Schur [Sch11], a finitely generated subgroup of GLd(C) where each
element has finite order must be finite. As a result, since H is infinite, it contains an element A
with infinite order. Then by Corollary 21, for each n large enough, q(n) admits a prime factor pn
such that Apn

is of order at least 2 log2 n in GLd(Z/pnZ).
It follows that |H̃pn | ≥ 1

2 |Hpn | ≥ 1
2 |⟨Apn⟩| ≥ log2 n. Moreover, one trivially has |H̃pn | ≤ pd

2

n ≤
(log n)5d

2

, since each prime divisor of q(n) is at most equal to log5 n.

It follows from these two inequalities that log2 n ≤ |H̃pn | ≤ pd
2

n , and hence pn ≥ (log n)2/d
2

.
Thus, for n sufficiently large, pn is greater than maxB∈Σ̃ ∥B∥∞, as required to apply Lemma 19

For each even integer n = 2ν, let ĥn be the projection of hn modulo pn, which is well defined
since pn divides q(n). If ĥn /∈ H̃pn , then P̃ ν

pn
(Id, ĥn) = 0. If ĥn ∈ H̃pn , by Lemma 19, and with

the notation of that statement, we have∣∣∣∣∣P̃ ν
pn
(Id, ĥn)−

1

|H̃pn
|

∣∣∣∣∣ ≤
∥∥∥∥∥P̃ ν

pn
(Id, ·)− 1

|H̃pn
|

∥∥∥∥∥
Var

≤ 1

2

√
|H̃pn

|

(
1− 1

4k2 |H̃pn
|2

)ν

.

Therefore, as log2 n ≤ |H̃pn | ≤ (log n)5d2 , we have

P̃ ν
pn
(Id, ĥn) ≤

1

|H̃pn
|
+

1

2

√
|H̃pn

|

(
1− 1

4k2 |H̃pn
|2

)ν

≤ 1

log2 n
+

1

2

√
(log n)5d2 exp

(
− n

8k2(log n)10d2

)
.

Therefore, Pn
pn
(Id, ĥn) = P̃ ν

pn
(Id, ĥn) is O(log−2 n) if n is even and ĥn ∈ H̃pn

. This also holds if

ĥn /∈ H̃pn
, as the corresponding probability is equal to zero.

Now suppose that n is odd, n = 2ν +1. In that case, Pn
pn
(Id, ĥn) =

(
P̃ ν
pn
× Ppn

)
(Id, ĥn). This

is equal to
∑

kn∈Ĥpn
P̃ ν
pn
(Id, kn)Ppn

(kn, ĥn). Observe that Ppn
(kn, ĥn) = 0 unless kn = ĥn A for

some A ∈ Σ̃ (which holds for exactly 2k values of kn), in which case Ppn
(kn, ĥn) ≤ 1

2k . It follows

that, in this case as well, Pn
pn
(Id, ĥn) is O(log−2 n).

Finally, we note that, if A ∈ GLd(Z) is such that Aq(n) = Id, then Apn
= Id since pn is a

divisor of q(n). Thus, the probability that a trajectory in Ũq(n) ends in hn is bounded above by

the probability that a trajectory following the same steps in Ũpn
ends in ĥn, thus concluding the

proof.

Corollary 22 directly implies the proof of Theorem 16 by taking each hn to be Id.

Remark 23. It is interesting to note that, in the proof of Corollary 22, we are not concerned
with the value of the matrix A or the prime pn, nor with how hard it would be to compute them.
It is enough, for our purpose, to know that they exist.
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