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Résumé

Cet article décrit un nouvel algorithme1 permettant de gérer des
bases de données. Son champ d’application le plus naturel est néanmoins
le datawarehouse (OLAP). Il repose sur une représentation dénormalisée
de la base. Les données sont stockées dans des thesaurus et des arbres
à préfixes (une représentation hiérarchique de champs de bits) qui ont
des propriétés intéressantes.

Mots clés : base de données, champs de bits, arbres à radicaux,
stockage hiérarchique

Abstract

This paper describes a new algorithm2 dealing with databases. This
algorithm allow to fully manage a database, but their most natural field
of applications is the datawarehouse (OLAP). It lies on a de-normalized
representation of the database. The data is stored in thesauruses and
radix trees (a hierarchical representation of bitmaps) which have inter-
esting properties.

Keywords: database, bitmaps, radix trees, hierarchical storage

1 Introduction

It is often said that database sizes grow by a rate of 10 % a year and that
this growth is greater than the one of the abilities of computers. Databases
are more and more used in more and more fields: social actors, armies,
commercial agents use more and more data. A pertinent use of an enormous
amount of data may show a huge profit to the data owner. For instance
the “wallmart” stores managers realized, thanks to data mining, that on
saturdays, customers who bought pampers for babies usually also bought
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beer. They re-arranged their stores in order to put aside the beer and the
pampers. The result was that the sales of both these articles rose up. (The
admitted explanation is that on saturday, it is more often men who make
home shopping.)

Usually, to deal with databases, one may use multidimensional arrays,
special indexes (bitmaps), relation caching, optimized foreign key joins, B-
trees or approximation. The algorithm presented in this paper uses radix
trees. It shall be denoted the A-algorithm. These trees may be understood
as a hierarchization of bimaps vectors. It allows one to answer to SQL
queries or to manage the base (to add or remove tuples, a primary key,
a foreign key or an attribute from a relation or even to add or remove a
relation to or from a database).

We show in the next relation a comparison between programs written in
C++ designed to use these algorithm and the same requests performed on
the same machine but using the three most popular commercial products
allowing databases management. The requests were taken from the TPC
(see [6]).

When one deals with databases, one may have to answer to two very
different kind of queries: one of them is “What is the content of attribute
C in the relation T at the record Id 17?” and the other is “At which record
Ids may I find this given tuple for the attribute C in relation T?”.

The first query may be very easily answered by reading the relation the
wanted attribute belongs to.

But for this first request, there is a case in which the answer is not that
easy. This is the case when the attribute C does not belong to T but to a
relation T ′ linked to T by foreign keys and primary keys.

One may answer this kind of request (“What is the content of tuple with
record Id 17 of attribute C in relation T with C not belonging to T”) by
using a de-normalized data representation.

One may also answer very easily to a request like “Where may I find
this given tuple in attribute C in relation T?” by using radix trees (radix
trees may be seen as a hierarchical representation of bitmaps indexes). The
bitmaps are widely used in database management. One may refer to ?? for
a recent work in this matter.

The data of databases is very often stored in B-trees (see [4], [3] or [5]
for instance.).

The complexity of the computation of an ”and” request with the A-
algorithm is averagely O(i lnL) where i is the cardinality of the intersection
and L the maximum of the cardinalities of the numbers of records of the
relations involved in the request. In the worst case (whose probability of
appearance tends to 0 when the size of the data tends to infinity), this
complexity of this computation is O(L lnL). This is the complexity of the
algorithms using balanced trees for instance.

The complexity of an ”or” request with the A-algorithm is O(L lnL),
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which is also the case of the use of B-trees. The complexity of insertion,
suppressions or updates are, with the A-algorithm, O(lnL). These opera-
tions are also performed in O(lnL) with algorithms using B-trees.

The reader may refer to [8] or [9].

1.1 Plan of the paper

The paper is organized as follow: the section 1 introduces the problem
discussed in this paper. Its plan is the present subsection (1.1). The next
subsection is dedicated to a presentation of the TPC benchmark (1.2) and
the performances of the A-algorithm are presented in 1.3.

The next section is devoted to an introduction to radix trees (2). The two
next subsections (2.1 and 2.2) explain how one can perform set operations
over radix trees.

The next section deals with the creation of the indexes of a database
using radix trees (3). A fundamental case is when the database is made
of a single relation itself containing a single attribute. The subsection 3.1
explains it. The next subsections detail the creation of the thesaurus (3.1.1),
the storage of the indicative functions (the sets of records ids of each word
of the thesaurus are stored in radix trees, subsection 3.1.2). It is convenient
to use macro words to accelerate the computations of between clauses (sub-
section 3.1.3). The two next subsections give details of the storage of the
attribute (3.1.4 and 3.1.5) and the next one summarizes the storage of an
attribute (3.1.6).

The two subsections are dedicated to cases when a relation has several
attributes (3.2) of when the database has several relations (3.3).

Once the indexes are built, one may request the database (section 4).
The first step is to compute the expansion relation and to remove the join
clauses (4.1). The atomic requests are treated in the subsection 4.2. An
important case is the between (4.2.1) because it has several sub cases (4.2.2,
4.2.3, 4.2.4, 4.2.5). Then one may mix these atomic cases to perform any
“where” clause which does not contain sub requests (4.3). Its logical con-
nectors are the “or” (4.3.1), the “and” (4.3.2) and the “not” (4.3.3). A more
problematic case is the case of comparison between attributes (4.4) which
is very similar to a cartesian product (4.5) Then one has to manage the sub
queries when they are correlated (4.6) or not obviously (4.7). The last step
is to perform computations on the tuples which are at the record ids found
in the “where” clause (4.8).

The next section deals with the base management (5). One may manage
a relation (5.1) by adding or removing records (5.1.1 and 5.1.2), add or
remove an attribute to a relation (5.1.3 and 5.1.4), add or remove a primary
key or a foreign key (5.1.5, 5.1.6, 5.1.7, and 5.1.8), add or remove a relation
(5.2 and 5.2.1)
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Figure 1: The dag of the relations of the TPC

The before to last section (6) is the conclusion and the last section is
dedicated to aknoledgements (7).

1.2 The TPC

The TPC (the Transaction Processing Performance Council, see [6]) is a
benchmark designed to measure the performances of database manager pro-
grams. One can download a relational database made of eight relations:
Lineitems, Partsupp, Part, Supplier, Orders, Customer, Nation and Region.
This base may be scaled by a scale factor as big as 1000. When its tuple is 1,
the size of the database is roughly 1 GB. In this case, the relation Lineitem
is made of 6 millions lines, Partsupp of 800,000 lines, Part of 200,000 lines,
Supplier of 10,000 lines, Orders of 1,500,000 lines, Customer of 150,000 lines,
Nation of 25 lines and Region of 5 lines. The dag of the relations is as follow
(an arrow between two relations T1 and T2 from T1 to T2 means that the
relation T1 contains a foreign key replicating a primary key of T2 (see figure
2).

The attributes of the relations were the following:
The tpc benchmark contains 22 queries : 20 of them are queries of the

data and the two last queries are insertion and suppression of 10% of the
lines of lineitem.

The queries performed for this paper where the Q1, Q6, Q17 and Q19.
These requests are:

Q1:
select
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Figure 2: The attributes of the relations of the TPC
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l returnflag,
l linestatus,
sum(l quantity) as sum qty,
sum(l extendedprice) as sum base price,
sum(l extendedprice * (1 - l discount)) as sum disc price,
sum(l extendedprice * (1 - l discount) * (1 + l tax)) as

sum charge,
avg(l quantity) as avg qty,
avg(l extendedprice) as avg price,
avg(l discount) as avg disc,
count(*) as count order

from
lineitem

where
l shipdate <= date ’1998-12-01’ - interval ’:1’ day (3)

group by
l returnflag,
l linestatus

order by
l returnflag,
l linestatus;

Q6:
select

sum(l extendedprice * l discount) as revenue
from

lineitem
where

l shipdate >= date ’:1’
and l shipdate < date ’:1’ + interval ’1’ year
and l discount between :2 - 0.01 and :2 + 0.01
and l quantity < :3;

Q17:
select

sum(l extendedprice) / 7.0 as avg yearly
from

lineitem,
part

where
p partkey = l partkey
and p brand = ’:1’
and p container = ’:2’
and l quantity < (

select
0.2 * avg(l quantity)
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from
lineitem

where
l partkey = p partkey

);
Q19:
select

sum(l extendedprice* (1 - l discount)) as revenue
from

lineitem,
part

where
(

p partkey = l partkey
and p brand = ’:1’
and p container in (’SM CASE’, ’SM BOX’, ’SM PACK’,

’SM PKG’)
and l quantity >= :4 and l quantity <= :4 + 10
and p size between 1 and 5
and l shipmode in (’AIR’, ’AIR REG’)
and l shipinstruct = ’DELIVER IN PERSON’

)
or
(

p partkey = l partkey
and p brand = ’:2’
and p container in (’MED BAG’, ’MED BOX’, ’MED PKG’,

’MED PACK’)
and l quantity >= :5 and l quantity <= :5 + 10
and p size between 1 and 10
and l shipmode in (’AIR’, ’AIR REG’)
and l shipinstruct = ’DELIVER IN PERSON’

)
or
(

p partkey = l partkey
and p brand = ’:3’
and p container in (’LG CASE’, ’LG BOX’, ’LG PACK’,

’LG PKG’)
and l quantity >= :6 and l quantity <= :6 + 10
and p size between 1 and 15
and l shipmode in (’AIR’, ’AIR REG’)
and l shipinstruct = ’DELIVER IN PERSON’

);
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Request A-algo DBM1 DBM2 DBM3
Q1 8s 47s 370s 33s
Q6 2s 24s 22s 24s
Q17 3s 8s 10s 8s
Q19 3s 19s 24s 25s

RF1 (Insert) 4s 231s 96s 53s
RF2 (Delete) 5s 121s 85s 42s

Cartesian Product 7s non Op. Non Op. Non Op.

Table 1: Performances of the A-algorithm compared to SQL Server 2000,
Oracle 8i and DB2

p partkey = l partkey
and p brand = ’:3’
and p container in (’LG CASE’, ’LG BOX’, ’LG PACK’,

’LG PKG’)
and l quantity >= :6 and l quantity <= :6 + 10
and p size between 1 and 15
and l shipmode in (’AIR’, ’AIR REG’)
and l shipinstruct = ’DELIVER IN PERSON’

);

1.3 Performances

The comparison between programs using the algorithm detailed in this paper
and the main programs one can buy were all performed on the same PC,
using a single processor of 2GH, 1GB of RAM, and all the programs written
in C++ ; the data was the TPC data using a scale factor of 1, so the size of
the database (the flat relations) was roughly 1 GB. The cartesian product
was performed over two copies of the main relation of the TPC, the relation
lineitem, holding 6 millions lines. DBM1 is Microsoft SQL Server 2000,
DBM2 is Oracle 8 and DBM3 is IBM DB2).

The algorithm is based on a full use of hierarchical data representation
(by the use of radix trees), for the data and the record Ids they belong to.

In a first part we recall the use of radix trees. This tool will be very
useful to fully manage the database.
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110 2 5 7

Figure 3: The set {0, 2, 5, 7, 11} stored in a radix tree

2 Radix trees

A radix tree is a convenient mean to store a set of integers or words of a
dictionary, especially when they have all the same length. When dealing
with integers, one can manage to force them to have the same length, by
adding prefixes made of repeated 0s. A radix tree stores its elements in its
leaves. When storing numbers written in basis 2, the nodes may only have
a left son (labeled with 0) or a right son (labeled with 1). The path between
the root of the tree and one of its leaves writes a word onto the alphabet
{0, 1} and this word form the digits of the stored integer.

Let us then consider for instance a set of integers written in basis 2 and
of same length in this basis, S. One can store S in a tree whose paths
between the root and the leaves are the integers of S. For instance, the set
S = {0, 2, 5, 7, 11} = {0000, 0010, 0101, 0111, 1011} may be stored as (see
figure 3).

The advantages of storing a set of integers in such a way are numerous:
the storage is efficient because common prefixes are stored only once in the
tree, and, as we will see in the next subsections, the computations over sets
of integers are quite easy to perform and efficient.

An algorithm to build a radix tree whose leaves are the elements of a set
S is the following:

Algorithme 2.1

1. RadixTree Build(set S, height H)

2. Parameters: a set S and H = 1 + dln2(Max(S))e3

3. Result: a Radix Tree
3the parameter H has got not to be re-computed at each recursive call
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4. Result = Node

5. if (H = 0) return Result.

6. Build S0 = S ∩ [0, 2H−2 − 1] and S1 = S ∩ [2H−2, 2H−1 − 1]

7. if (S0 6= ∅) Result->LeftNode = Build(S0, H-1)

8. if (S1 6= ∅) Result->RightNode = Build(S1 − 2H−2, H-1)

9. return Result

2.1 Intersection

Let S and S′ be two sets of integers. We wish to compute the intersection
S ∩ S′ and let us denote s and s′ their cardinalities.

One way to do it is to sort the two sets (which costs O(s ln s+s′ ln s′)and
to compute this intersection of the sorted sets in time O(max(s, s′)). So this
intersection may be computed in a time like O(s ln s + s′ ln s′).

One may also sort only one of the sets, say S and look for every element
of S′ in the sorted set S. The cost is like O(s ln s+s′ ln s) = O((s+s′) ln s) ≤
O(s ln s + s′ ln s′).

Now if we suppose that S and S′ were stored in radix trees, the cost
of the intersection is like O(i ln s) where i = #(S ∩ S′), where #(S) is the
cardinality of the set S. Indeed, the intersection between the two radix trees
may be performed level by level

2.2 Union

The cost of computing the union of two sets of integers, S and S′, of cardinals
s and s′ is the cost of making a multi-set union plus the cost of computing
the intersection S ∩ S′ in order to remove the common elements to S and
S′.

Here again, one can begin by sorting the two sets and then compute
S ∪ S′. The cost of this algorithm is O(s ln s + s′ ln s′ + s + s′) = O(s ln s +
s′ ln s′).

In a similar manner, one may sort one of the sets, say S and compute
S ∪ S′ by looking for each element of S′ in S. The cost of this algorithm is
O(s ln s + s′ ln s) = O((s + s′) ln s).

Now if we suppose again that S and S′ are stored in radix trees, the
cost of the computation of S ∪ S′ is u ln s where u is the cardinal of S ∪ S′.
Indeed, the two trees may be read simultaneously and the resulting tree may
be computed on the flight.
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3 Creating indexes

In this section we will explain how one can use radix trees to build convenient
indexes to store and manage databases.

In a first subsection, we will suppose that the database is made of only
one relation which contains only one attribute. This case, though artificial,
is fundamental to understand the proceed described in this paper.

Then we will suppose that the database is composed of one single rela-
tion, made of several attributes and at least one Primary Keys. It may be
convenient to suppose that a relation may contain several Primary Keys.
Indeed, in practice, it may so happen that a Primary Key, made of several
attributes, could be only partially filled while another could be fully filled.

The last subsection we be dedicated to the indexes creation of a full
database.

3.1 One relation, one attribute

Primary Keys. A primary key is an attribute, or a set of attributes such
that two different tuples of the relation may not have the same tuples on
this attribute (or all these attributes).

There is one implicit and convenient Primary Key in any relation : the
record Id (it is indeed a Primary Key because no two different lines have
the same record Id). So we will assume that the tuples of the relation are
identified by their record Ids.

If one has to store, request and manage a date base made of one single
relation made of only one attribute, one may compute the thesaurus of the
attribute and then, for each word of this thesaurus compute the set on
integers it appears at.

Then each set may be stored in a radix tree as explained above.

3.1.1 Thesaurus creation

Let us notice that this step necessitates a sort : one has to build the set of
couples (word, record Id), which is sorted according to the first element and
according to the second for the couples which have the same first element.
Then one builds on the thesaurus and the set of record Ids each of these
words appear at.

Let us take an example: let us consider the following relation (see table
2).

(In this example, the record Ids are indicated explicitly.)
One builds the couples (Male, 0), (Female, 1), (Female, 2), (Male, 3),

(Female, 4), (Male, 5), (Male, 6), (Female, 7), (Female, 8), (Male, 9), (Male,
10)

and sorts them according to the first element of the couples:
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0 Male
1 Female
2 Female
3 Male
4 Female
5 Male
6 Male
7 Female
8 Female
9 Male
10 Male

Table 2: An example of simple relation

(Female, 1), (Female, 2), (Female, 4), (Female, 7), (Female, 8), (Male,
0), (Male, 3), (Male, 5), (Male, 6), (Male, 9), (Male, 10).

Then one is able to build the thesaurus and, for each word of the the-
saurus, the set of record Ids this word appears at:

“Female” appears at record Ids {1, 2, 4, 7, 8} and “Male” appears at
record Ids {0, 3, 5, 6, 9, 10}.

When this is done, it is easy to answer a request like ”What are the
record Ids the word “Male” appears at?”, but quite uneasy to answer to
the request “what is the tuple at record Id 7?”. For this last request, see
subsection 5 below.

3.1.2 Storing the indicative functions

Now these sets of record Ids each word of the thesaurus appear at can be
stored in radix trees. This is convenient and powerful to compute intersec-
tions, and so on. . .

In the preceding example, one has: (see Figure ??)

3.1.3 Creating macro-words

Another question one may have to answer to when dealing with the attribute
of a relation of a database is a between: one may want to know for instance
for which record Ids the words lye between two given values.

Let us imagine for instance that an attribute is made of dates, formated
in YYYYMMDD. Compare two dates is compare lexicographically the two
words.

But we may also enlarge the thesaurus, with words that are truncates of
the initial words. Let us indeed add words to the thesaurus of the attribute,
for instance any truncate of six characters or any truncate of four characters.
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Then any word of the thesaurus will be represented three times: one
time as itself, one time as a truncate of six characters and one time as a
truncate of four characters.

Any word of six characters, say aaaamm, will occur each time a word
aaaammxx occurs. In other words, the record Ids the word aaaamm appears
is exactly the union of the sets of record Ids any word aaaammxx appears
at.

In a similar manner, any word of four characters, say aaaa, will occur
each time a word aaaaxxyy occurs and its radix tree will be the union of the
corresponding radix trees.

In summary, one builds not only the radix trees of each word of the
thesaurus but also the thesaurus of each prefix of given lengths of words.
So when one has to solve a “between” clause, one splits the wanted inter-
val with respect to the prefix length pre-computed and read the matching
radix trees. For instance, the interval [19931117, 19950225] would demand,
without the macro words, 466 reading of radix trees because this interval
contains 466 different words. If one splits this interval with respect to prefix
lengths of 6 and 4, one has: [19931117, 19950225] = [19931117, 19931130] ∪
[199312, 199312]∪[1994, 1994]∪[199501, 199501]∪[10050201, 19950225]. The
first interval contains 14 different words (not truncated). The second con-
tains a single truncated word (6 characters), and the reading a single radix
tree gives the set of the records Ids words like 199312dd appear at. The
third interval contains one single truncated word (4 caracters) and the read-
ing of the single matching radix tree gives the set of records Ids words like
1994mmdd appear at, and so on. . . Finally only 42 readings of radix trees
are made necessary instead of 466.

3.1.4 Managing lacks

Now, it may also so happen that some tuples were not filled. But each must
have an attribute, even an attribute meaning that there is no attribute at
this record Id.

The tuples meaning a lack of information should be chosen in a way
as few disturbing as possible, which means we should choose very seldom
tuples. We may for instance chose : #Empty# for a string, −231 for a
signed integer on 32 bits, 232 − 1 for an unsigned integer on 32 bits, −263
for a signed integer on 64 bits, 264−1 for an unsigned integer on 64 bits and
so on. . .

3.1.5 An additional storage

As explained above, the storage of an attribute by thesaurus and radix trees
makes quite uneasy to answer a question like “what is the tuple at record
Id 17?” for instance.
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0 Male
1 Female
2 Female
3 Male
4 Female
5 Male
6 Male
7 Female
8 Female
9 Male
10 Male

Table 3: An attribute

0 Female
1 Male

Table 4: The thesaurus

This is why it is necessary to store the attribute in its natural order.
Of course, instead on storing the attribute itself, it may be much more
affordable to store the word indexes in the thesaurus.

For instance, the preceding attribute shall be stored:
shall be stored as
and the attribute:
remark it sometimes happen that a word could appear or disappear

from a thesaurus while adding or removing records to a relation. In this
case, we might think we have to rewrite the whole attribute each time this
situation happens. This is nevertheless not true: one may store an unsorted
thesaurus and a permutation which stores is contents. Thus when words are
no longer in the s-thesaurus or when a new word appears in it, on has only
to re-write the permutation instead of the whole attribute.

3.1.6 Summary of the full storage of an attribute

3.2 One relation, several attributes

Now when a relation has several attributes, each one of them may be treated
as if it were the only attribute of the relation. This means to say that there
should exist a thesaurus for each attribute and the matching radix trees for
all word of any of these thesauruses.

The only remaining question is the storage of the primary keys.
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0 1
1 0
2 0
3 1
4 0
5 1
6 1
7 0
8 0
9 1
10 1

Table 5: An cheap storage of the attribute

When dealing with a Primary key, one has to be able to answer efficiently
to two questions: at what record Id can we found a given tuple of a primary
key, and what is the tuple of the primary key at a given record Id.

One may answer efficiently to both these questions by storing the at-
tribute or the attributes of the primary key in its (or their) natural order,
namely with increasing record Ids and by storing in more a permutation
allowing one to find a given tuple efficiently.

For instance, let us imagine a primary key made of two attributes, whose
tuples are:

(0) 1 3

(1) 2 1

(2) 3 2

(3) 2 3

(4) 1 2

(5) 3 7

(6) 2 2

(7) 1 1

(8) 3 3

(9) 4 3

In this example, the record Ids are still explicitly expressed between
parentheses. One then store these two attributes exactly as they are and
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a permutation. To store the permutation, one has to chose a comparison
function. For instance one may compare first the first attribute and the
second in case of equality.

In this case, the sorted primary key is:

(7) 1 1

(4) 1 2

(0) 1 3

(1) 2 1

(6) 2 2

(3) 2 3

(2) 3 2

(8) 3 3

(5) 3 7

(9) 4 3

By removing the tuples (but keeping the record Ids) one obtains the per-
mutation (7401632859) and thus is able to find a given value by dichotomy.

When storing a whole relation, it is also convenient to store the number
of its records.

3.3 Several Relations

In a relational database, there are usually several relations linked between
them by foreign keys recalling primary keys.

As we explained, a primary key is an attribute or a set of attributes whose
tuple may be an unique identification of the record within the relation (the
record Id is a fundamental example of primary key. See [1] or [2]).

Let us suppose that a relation is made of several billion of records, but
that some attributes may take only five different tuples (for instance, in
a genealogy database, one may want to store for each client the country,
the continent the customer was born, the country, the continent where his
mother was born and the country and the continent his elder child, if any,
was born). Instead of recalling fully the names of all these countries and
continents for each record, one may build two other relations, one of coun-
tries and another of continents. Then on each record, instead of recalling all
these countries and continents, one may recall only the primary key of the
relation of the countries for the customer, his mother and elder child if any.
And in the relation of the countries, one may also recall only the primary
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key of the relation of the continents the country belongs to. This storage is
much cheaper.

Here is a little example of such a practice:

(li) cn Inc BirCoun BirCont MoCoun MoCont EldCoun EldCont

(0) Dupont 817 France Europe Tunisia Africa England Europe

(1) Gracamoto 1080 Japan Asia Japan Asia USA America

(2) Smith 934 England Europe India Asia England Europe

(3) Helmut 980 Germany Europe Germany Europe Germany Europe

(cn means “customer name”, Inc “Income”, “BirCoun “Birth Country”,
“BirCont “Birth Continent”, MoCoun “Mother’s birth country”, MoCont
“Mother’s birth Continent”, EldCoun “Elder’s birth country” and EldCont
“Elder’s birth continent”.)

This relation may be rewritten in several relations:
Continents:

Continent

(li) Continent

(0) Africa

(1) America

(2) Asia

(3) Europe

Country

(li) Country Continent

(0) France 3

(1) Tunisia 0

(2) England 3

(3) Japan 2

(4) USA 1

(5) India 2

(6) Germany 3
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And the customers’ relation becomes thus:

Customers

(li) cn Inc BirCoun MoCoun EldCoun

(0) Boyer 817 0 1 2

(1) Gracamoto 1080 3 3 4

(2) Smith 934 2 5 2

(3) Helmut 980 6 6 6

and the set of three relations is indeed much shorter to store than the
full relation.

But this also points out that any relational database may be seen as a
set of independent relations.

In the preceding example for instance, we can consider the relation con-
tinent by itself, the relation country with the relation continent expanded
inside and the relation people with the relation country and continent ex-
panded inside (which is the very first relation, the full one, of this example).

These expansion relations are thus:

Expanded Continents

(li) Continent

(0) Africa

(1) America

(2) Asia

(3) Europe
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Expanded Countries

(li) Country Continent

(0) France Europe

(1) Tunisia Africa

(2) England Europe

(3) Japan Asia

(4) USA America

(5) India Asia

(6) Germany Europe

Expanded Customers

(li) cn Inc BirCoun BirCont MoCoun MoCont EldCoun EldCont

(0) Boyer 817 France Europe Tunisia Africa England Europe

(1) Gracamoto 1080 Japan Asia Japan Asia USA America

(2) Smith 934 England Europe India Asia England Europe

(3) Helmut 980 Germany Europe Germany Europe Germany Europe

Of course, it may so happen, like in this example, that a relation should
be expanded several times in another. This means that the attributes of
an expanded relation should be refereed to as the attribute of the expanded
relation expanded in the expansion relation via the list of couples (Primary
Key Foreign Key) allowing one to move from the expansion relation to the
expanded relation.

Now we define an expansion relation as a relation in which as much
relations as possible were expanded in. From now on, we will consider
only expansion relations and the database will be made, from now on, of
independent expansion relations.

For each of these expansion relations, one can build the indexes as ex-
plained above.

And now, we are ready to request or manage the database.

4 Requesting

In this section we explain how one may use the indexes created as explained
below to perform efficient SQL requests. Usually, a request involves several
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relations. It may be split in two parts: the first part means to discriminate
record Ids and the second part (if any) means to perform computations over
the data of the found records.

The first part may contain join clauses (the link between a foreign key
and the matching primary key), comparison between an attribute and a
constant (with arithmetic connectors as “=”, “≥”, “¿”, “≤”, “<”, between,
like, in. . . ), or a comparison between two attributes (for instance like in
a cartesian product), theses requests being logically connected by logical
connectors like “and”, “or”, “not” . . . .

The second part may contain arithmetic operations like a sum, a mean,
a product, a star operator, . . . .

4.1 Removing the join clauses: choice of the expansion rela-
tion

As explained above, each of the relations, say R, is considered as an “ex-
pansion relation” which means that any relation R′ linked to R via a foreign
key are expanded in R.This means that the attributes of R′ are developped
in R, the thesauruses of these attributes are stored as the ones of R and
the matching radix trees are computed. So the join clauses are irrelevant in
such a relation.

But a request involves usually several relations. How should we chose
the appropriated expansion relation? The relations involved in the request
are all expanded in a nonempty set of relations, say T . Exactly one of these
relations is expanded in none of the others. This relation is the expansion
relation appropriated to solve the request.

Now, the where clause may contain some join clauses. These clauses must
be logically linked to the remaining part of the request by an “and” operator.
So the first step consists in simply remove these clauses by replacing the (Join
Clause And Remaining) part by (Remaining).

Now let us study how we can manage the where clause cut down from
its join clauses

4.2 Atomic requests

We call here an atomic request a fundamental part of a where clause, namely
a comparison clause linked to the remaining of the where clause by logical
operators. If t is a relation and c one of its attributes, an atomic clause
may be t.c = 3, t.c between ‘‘HIGH’’ and ‘‘MEDIUM’’, or t.c like
Word% for instance.

We explain in the above subsections how to deal with the atomic re-
quests.
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4.2.1 Equality between an attribute and a constant

This is the simplest case: one has only to find the wanted value in the
thesaurus, read its radix tree which gives him the record ids this word appear
at.

4.2.2 Between

This is the fundamental example of atomic request. Any of the others may
be treated as a between. It is the clause the macro words where made for.

Let us take back the “date” example given below: one made macro words
of length 4 and 6 for an attribute containing dates and wishes to compute
the record Ids dates lying in [19931117, 19950225] appear at.

As explained above, one may split the interval by same common prefixes
length than the macro words lengths. Thus, one obtains [19931117, 19950225] =
[19931117, 19931130] ∪ [199312, 199312] ∪ [1994, 1994] ∪ [199501, 199501] ∪
[10050201, 19950225].

The computation is then simple: one read the radix tree of the 19931117,
“OR” it with the radix tree of 19931118, . . . , “OR” the result with the radix
tree of 199312 (the macro word whose radix tree is precisely the “OR” of
the radix tree of all the dates beginning with 199312), then “OR” the result
with the radix tree of the macro word 1994 (whose radix tree is the “OR”
of the radix trees of all the dates beginning with 1994 and so on. . . .

As explained above, one reads only 42 radix trees to perform this com-
putation instead of 466. . .

Of course one can also manage opened or semi opened intervals by simply
excluding the corresponding word.

4.2.3 Greater than, lower than, greater than or equal, lower than
or equal

Each of these atomic requests is in fact a between. Indeed, if we call m the
minimum value of the thesaurus and M its maximal value, then any of these
requests are either of the form (m,a) or of the form (a,M). So if we can
manage the between clause, we can also manage these atomic requests.

4.2.4 In

The in clause is a way of mixing equality clauses and Or logical connections.
So we can manage them simply.

For instance, t.c in (a, b, c) may be rewritten in t.c = a or t.c
= b or t.c = c. The management of the or clause is explained below.

24



4.2.5 Like

The like clause is another example of between clause: for instance, the clause
t.c like word% may be rewritten in: t.c between [word, wore[. Here
again, manage the between clause also manages the like clause.

4.3 Mixing atomic requests

Now the where clause may mix atomic clauses by using logical operators:
the or, the and and the not clause. The three next subsections are dedicated
to these logical clauses.

We would like to empathize that the result of an atomic request is a
radix tree.

We will suppose (and show) that this is the case of any where clause.

4.3.1 Or

Now we have to OR two radix trees: The clause is (Left Clause OR Right
Clause). The Left Clause and Right Clause when solved, return a radix
tree. So all we have to do is to compute recursively the resulting radix tree
of the full clause.

4.3.2 And

The And clause may be performed exactly as the Or clause. However, the
computation is a little more efficient.

Indeed, we have to and two radix trees; this computation is made re-
cursively, checking the matching nodes of the two trees simultaneously. But
when one of the trees contains a node and the other tree does not contain
the matching node, it is of course irrelevant to perform the and of the sons
of this node.

4.3.3 Not

the not clause is the most difficult atomic clause to perform with radix trees.
Each relation’s size (its number of records) is stored. So perform a not

over a radix tree may be done as follow: (the goal is to perform not T with
T a radix tree).

let us define a n-full radix tree (n-frt) as a tree designed to contain all
the numbers from 0 to n− 1.

Then to perform a not, one may go from a n-frt (where n is the number
of records of the expansion relation the request is solved onto) and remove
the nodes corresponding to T .

To remove a node, one may proceed by removing the node and removing
recursively its father if it has any child left.
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Figure 6: A 13-radix tree before a NOT operation

Figure 7: The same 13-radix tree after the NOT operation

For instance, if the expansion relation has 13 records, the not T with T
the following tree (see Figure 6)

is (see Figure 7)

4.4 Comparison between attributes

The comparison between two attributes is the most complex request to per-
form with this data representation and has a lot to do with the cartesian
products section just below).

Let t be the expansion relation of the request and c and d be two of
its attributes. A comparison between attributes may be a part of a where
clause in which we discriminate the records such that for instance t.c >
t.d. We empathize the fact that this comparison is done at the same record
Ids (this is the difference with the cartesian product).
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So how can we perform this clause?
Let Tc and Td be the thesauruses of the attributes t.c and t.d. We

are looking for the record Ids such that t.c > t.d. Here is how we may
proceed. For each word w of the thesaurus Tc, we can compute the radix
tree r of the interval [md, w

′] where w′ is the greatest word of Td lower than
w. Then by performing an and over the w’s radix tree and r, one obtains
the corresponding record Ids for w.

By Or-ing the results of all the words of Tc, one obtains the wanted radix
tree.

Let us notice that the radix trees r (as above) are not to be computed
independently one of the others: if the words w are read in an increasing
order, one simply has to Or the radix trees corresponding to the intervals
[wi, wi+1[.

The other such clauses may be performed in a similar way.

4.5 Cartesian products

The cartesian product is usually considered as a combinatoric computation
over relation of a relational database. Actually, this computation may be
performed quite simply and efficiently. The authors performed for instance
a cartesian product of two relations (both of them of 6 millions records) in
7 seconds on an average computer.

Let us consider such a request: compute the number of times t.c >
t’.d independently of the record Ids.

For instance, if the attributes t.c and t’.d are:

t.c

z

ab

z

c

da

e

and
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t.d

b

a

as

sa

ca

ba

abra

then the number of times t.c > t.d is 7 + 1 + 7 + 5 + 6 + 6 = 32. The
complexity of the naive algorithm is a constant times the product of the two
relations’ size. It is not possible to actually perform cartesian products of
two relations with modern machines in using this algorithm.

So how can we compute efficiently this result?
The attributes are stored with their thesaurus and the radix trees cor-

responding to each of the words of these thesauruses.
We may, to each word of the thesaurus, compute the number of records

it appears at by a simple reading of the radix trees.
In the preceding example, this gives:

t.c

ab 1

c 1

da 1

e 1

z 2
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t.d

a 1

abra 1

as 1

b 1

ba 1

ca 1

sa 1

One can also, for the attribute t’.d compute, for each word the number
of words lower than or equal to it. This gives:

t.d, cumulated cardinalities

a 1

abra 2

as 3

b 4

ba 5

ca 6

sa 7

Then, by reading the thesauruses and the corresponding numbers, one
can compute the result. For each word w of t.c, one has to look for the
greatest word w’ of the thesaurus of t’.d lower than w and add to the result
the product of the number of occurrences of w multiplied by the cumulated
number of occurrences of w’.

This gives:

w w’ w-card w’-cumul. card. product partial result

ab a 1 1 1 1

c ba 1 5 5 6

d ca 1 6 6 12

e ca 1 6 6 18

z sa 2 7 14 32
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This algorithm’s complexity is a constant time the sum of the sizes of the
thesauruses, which is usually much less than the product of the relation’s
number of records even if the relations do not contain twice any word (a sum
of thesauruses sizes is to be compared to the product of relations sizes. . . )

4.6 Correlated sub queries

This subsection and the following are dedicated to sub-queries. Indeed, the
where clause may contain other where clauses and these sub queries may be
or not correlated to the principal one.

What is a correlated sub query? An example of such request is the
request 17 of the TPC. This request is:

select
sum(l extendedprice) / 7.0 as avg yearly

from
lineitem
part

where
p partkey = l partkey
and p brand = ’[BRAND]’
and p container = ’[CONTAINER]’
and l quantity < (

select
0.2 * avg(l quantity)

from
lineitem

where
p partkey = p partkey

);

In this request, one has to perform the computation of the sub query
in taking into account the condition requested in the principal part of the
query (because the p partkey of the sub-query belongs to the principal part
of the request).

So this kind of requests may be rewritten in order to have to perform a
non correlated sub query. The preceding query would thus become:

select
sum(l extendedprice) / 7.0 as ag yearly

from
lineitem
part

where
p partkey = l partkey
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and p brand = ’[BRAND]’
and p container = ’[CONTAINER]’
and l quantity < (

select
0.2 * avg(l quantity)

from
lineitem
partsupp

where
p partkey = p partkey
and p brand = ’[BRAND]’
and p container = ’[CONTAINER]’

);

So a correlated sub query may be rewritten in a not correlated sub query.
This is the subject of the next sub section.

4.7 General sub queries

Now a SQL request containing not correlated sub queries may be treated
simply: each sub query not containing any sub query is treated as a request
by itself and the result of the computation takes the pace of the full sub
request.

4.8 Perform computations on the found records

Now when dealing with a database, we are able to perform computations of
record Ids of the expansion relation (matching the request) according to the
where clause.

Now let us suppose that the goal of the request is to perform computa-
tions over some attributes of the relation but only for the found record Ids.
For instance, it may be to compute an average tuple like in the preceding
example.

The tuples of any attribute of an expansion relation are stored in the
order they appear in it. So it is easy to read this file only for the record
Ids matching the first part of the SQL request and perform the requested
computation.

5 Managing the database

Now we are able to store a whole database and to perform efficiently SQL
requests onto it. Usually, the quickest the SQL requests are performed, the
slowest the database is managed.
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This is not true in this case: not only are the requests performed fast but
the management of the database are also fast (see the table of performances
?? in the introduction of this paper).

Why is that so? The indexes do not contain sorted data, expect the
permutations linked to the thesauruses. In particular, there is no stored
sorted data upon one or more attributes.

To manage a database, one may wish to add or remove records of a
relation of a base, add or remove a primary key, add or remove a foreign
key, add or remove a relation. We will see successively these items in the
next sub sections.

5.1 Managing a relation

Manage a relation is the most common operation of the management of a
database. Indeed, the most usual case is when the database manager wishes
to add or remove records of a relation. All the other transformations change
the database scheme or organization and these transformations are much
more seldom.

Usually, when removing records of a relation we will refuse to reschedule
the whole relation. This means that some record Ids will be declared free
and the corresponding data will be removed from the expansion relations
(we will see how below). So a relation will usually have “holes’ ’ : some
record Ids will not be considered as filled by anything. These record Ids
shall be stored in a file, containing firstly these record Ids and lastly the
first index from which all the record Ids are free.

5.1.1 Adding records to a relation

So we wish to add records to a relation. Let us keep in mind that for us, all
the relations of the database are expansion relations.

By reading the files of the free record Ids of this relation, we may assign
a record Id to each of these records.

So we complete the records by filling the attributes of the relations that
may be expanded in this relation (for instance if an attribute is a foreign
key, we read the corresponding data in the corresponding relation).

Then we compute the thesaurus and the radix trees of the records to
add to the relation and perform “Or” to the thesauruses and the radix trees
of each attribute of the relation.

5.1.2 Removing records to a relation

We have here number of problems to solve: all the relations of our database
are expansion relations and we do not want to reschedule the whole relation
after to have removed some records of it. (If we did so, we would have to
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rewrite all the thesauruses, all the radix trees of this relation and of all the
relations the first one may be expanded in.)

So we have the Ids of the records of the relation T to be removed (these
record Ids may have found thanks to a where clause). So for each attribute
c of the expansion relation, and for all the words w of the thesaurus of these
records, we build the radix trees that we x-or with the radix tree of w of c.

and then we just store the resulting radix tree in place of the preceding
one.

We assume here that we do not have to change anything to the expansion
relations in which T was expanded. Indeed, if we remove a record expanded
in another relation, we should in this case throw an exception because the
delete instruction was illegal.

5.1.3 Adding an attribute

Add an attribute c to an expansion relation consists in several operations.
We have indeed to treat the relation T the attribute to be added belongs to
and the relations in which T is expanded.

The treatment of T consists in building the thesaurus of c, the radix
trees of each word of it and to store this whole stuff.

The treatment of each relation T’ in which T is expanded consists in
reading the record Ids of T’ that must be added to T. Then one computes
the thesaurus, the radix tree of each word of it and store the whole thing.

Let us take an example.
Related relations

T0

(li) c1 fk1

(0) a 2

(1) b 1

(2) c 0

(3) b 1

(4) e 2

T1

(li) pk1 c2 fk2

(0) 0 S 0

(1) 1 T 1

(2) 2 V 0
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T2

(li) pk2 c3

(0) 0 X

(1) 1 Y

The corresponding Expansion relations are thus:

Expanded T0

(T0) (T1) (T2)

(li) c1 fk1 pk1 c2 fk2 pk2 c3

(0) a 2 2 V 0 0 X

(1) b 1 1 T 1 1 Y

(2) c 0 0 S 0 0 X

(3) b 1 1 T 1 1 Y

(4) e 2 2 V 0 0 X

Expanded T1

(T1) (T2)

(li) pk1 c2 fk2 pk2 c3

(0) 0 S 0 0 X

(1) 1 T 1 1 Y

(2) 2 V 0 0 X

Expanded T2

(li) pk2 c3

(0) 0 X

(1) 1 Y

and let us suppose we wish to add an attribute c2 to T2, whose tuples
are Y and Z.

The (expanded) relation T2 becomes
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Expanded T2

(li) pk2 c3 c2

(0) 0 X Y

(1) 1 Y Z

To compute the new expanded relation T1, one reads the tuples of the
primary key pk2 and copy the matching tuples of T2 in the new attribute
of T1. This gives:

T1

(T1) (T2)

(li) pk1 c2 fk2 pk2 c3 c2

(0) 0 S 0 0 X Y

(1) 1 T 1 1 Y Z

(2) 2 V 0 0 X Y

in a similar manner, one reads the tuples of pk2 in t0 to compute the
new expanded relation T0. This gives:

T0

(T0) (T1) (T2)

(li) c1 fk1 pk1 c2 fk2 pk2 c3 c2

(0) a 2 2 V 0 0 X Y

(1) b 1 1 T 1 1 Y Z

(2) c 0 0 S 0 0 X Y

(3) b 1 1 T 1 1 Y Z

(4) e 2 2 V 0 0 X Y

5.1.4 Removing an attribute

Remove an attribute is a simple operation. It only consists in erasing the
file corresponding to this attribute for the relation T it belongs to and in all
the relations T’ in which T is expanded.
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5.1.5 Adding a Primary Key

A primary key is stored by the data of the involved attributes and a permu-
tation storing the order of the data of the primary key.

Add a primary key is thus simply to store the data of the involved
attributes and the corresponding permutation.

5.1.6 Adding a Foreign Key

Adding a foreign key is quite more complicated.
A foreign key fk, belonging to an expansion relation T is hooked to

a primary key pk, belonging to an expansion relation T’. The relation T’
must be expanded into T according to the couple (foreign key, primary key)
being treated even if this relation is already expanded into T by the mean
of another foreign key.

For each record of T, of index i, the foreign key has a tuple v and we can
find the record Id p(i) of T’ where pk = v.

Then we add al the attributes of T’ in T. To perform this, for each
attribute c of T’ we read the tuple T ′.c[p[i]] for all integers i. Then we do
as usually by building the thesaurus of this attribute and for each word of
this thesaurus the matching radix tree.

5.1.7 Removing a Primary Key

Remove a primary key consists in deleting the corresponding files. Of course,
if this primary key is the target of a foreign key, we should throw an exception
because such an instruction should be illegal.

5.1.8 Removing a Foreign Key

Let us denote fk the foreign key to be removed and T the relation it belongs
to. This foreign key targets a primary key, pk, belonging to a relation T’.

To remove a foreign key breaks the link between two relations. This
means that T’ is no longer expanded in T and in none of the expansions of
T.

5.2 Managing the base

Manage the database itself consists in adding or removing a whole relation. . .

5.2.1 Adding or removing a relation

Adding (removing) a relation consists in adding (removing) all its attributes,
all its primary keys and and all its foreign keys. All these algorithms have
been explained above.
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6 Conclusion

One of the problems of the use of bitmaps is the size of the involved vectors
and the fact that usually many of the bits are equal to 0. In this paper
we exposed a database manager algorithm. It may be used to fully manage
a database with performances showed in the table ??. The use of radix
trees seems to be an interesting hierarchization of bitmaps. They show the
advantages to make possible an affordable storage of bitmaps, only the parts
with 1s are stored. They also allow a computation level by level, which gives
good performances in particular ti solve ”and” requests.

This algorithm is also parallelizable and a possible future work is to
implement a parallel version of the A-algorithm (this work is in progress, in
cooperation with Christophe Cérin). This is to be compared to performances
obtained with parallel B-trees like in [7], for instance

In order to keep the efficiency of the A-algorithm, one has to pre-compute
the join clauses. The use of macro-words makes also faster the resolution of
“between” clauses.

The author would like to apply these ideas to related problems, like find
all the occurrences of a pattern in an image whatever the foreground would
be, or to find a sound in some sounds whatever the noise would be.
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