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1 INTRODUCTION 

It is often said that 25–50% of all the work performed by 
computers is achieved by sorting algorithms (Akl, 1985). 
One reason, among others, for the popularity of sorting 
is that sorted data are easier to manipulate than unordered 
data. For instance a sequential search is much less costly 
when the data are sorted. The quasi non predictable aspects 
of memory references in sorting algorithms make them 
good candidates to appreciate the performance of 
processors in real situations. 

The advent of parallel processing, particularly in the 
context of cluster computing is of high interest with the 
available technology. A special class of non homogeneous 
clusters is under consideration in the paper. We mean 
clusters whose global performance is correlated by a 
multiplicative factor. 

This class of machines is of particular interest for two 
kinds of customers:  

• for those who cannot instantaneously replace the whole 
components of their cluster with a new processor or 
disk generation, but will compose with old and new 
processors or disks 

• second for people sharing cpu-time, because the 
cluster is not a dedicated one. 

We focus here, on the ways that ensure good load balancing 
properties: if a processor is initially loaded with n integers 
and n is related to its performance, then the processor must 
never deal with more than k.n integers with the requirement 
that k should be as low as possible. 

Since our framework is related to external sorting, we also 
explore the ways of performing efficient I/O operations 
in a context larger than our sorting problem. Grand 
challenge applications often process large datasets that 
require high performance I/O systems. For example, the 
amount of data processed at the European particle 
accelerator (LHC/CERN), reaches several Petabytes/year 

(Hoschek et al., 2000) and the San Francisco museum uses  
20 PCs with 368 disks to manage a 3.2 Terabytes digitised 
picture collection (Talagala et al., 2000). To deal with such 
datasets in a ‘cluster architecture’, disk drives are 
aggregated in order to provide a large parallel file system. 

We demonstrate that the overall performance of our 
external sorting algorithms is increased significantly when 
using an efficient library, capable of transferring disk to 
disk data. The design of READ2 library is introduced and we 
explain how to reduce memory transfers in the context of a 
cluster built of SCSI disks and Myrinet cards. 

The remainder of the paper is organised as follows.  
In Section 2, we introduce the problem of incore and out of 
core sorting and the notion of heterogeneity. In Section 3, 
we relate known solutions for parallel sorting on 
homogeneous clusters and we introduce basic concepts for 
sorting on heterogeneous platforms. Section 4 is devoted to 
sorting on heterogeneous clusters. In Section 5 we introduce 
our library for implementing efficient disk to disk transfers. 
Section 6 is related to experiments and Section 7 concludes 
the paper. 

2 RELATED WORK AND DISCUSSION ABOUT  
THE NOTION OF HETEROGENEITY 

‘Out of core’ algorithms process data stored in external 
memories like disks, meanwhile data processed by incore 
algorithms is stored in main memory. Parallel sorting 
algorithms within the framework of ‘out of core’ 
computation is not new. The most valuable and recent 
publications, to our knowledge are Schikuta and  
Kirkovits (1996), Rajasekaran (1998), Cormen and  
Hirschl (1997), Pearson (1999) and Nodine and Vitter (1995). 
Since our work is based on sampling techniques, we shall 
mention DeWitt et al. (1991) that summarises all the work in 
the field prior to 1991. 
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The objective in these papers is to minimise the round disk 
trip or the number of disks we accesses as these are very 
costly, with current disk technology when compared with 
the memory to memory or cache access time. Salem and 
Garcia-Molina (1986), Knuth (1998) and Kim (1986) are 
examples of techniques that efficiently deal with disks of 
and presentation of sequential external sorting algorithms. 
From a model point of view, the papers of Vitter and 
Shriver (1994a, 1994b) and Aggarwal and Vitter (1988) 
offer, in our opinion, the best views of parallel disks 
systems. We introduce below Vitter’s work in order to 
clarify ideas about the challenge of external algorithms. 

2.1 The I/O model 

The I/O model measures the complexity of an algorithm not 
by the number of processing instructions but by the number 
of required I/O operations required. Vitter captures the main 
properties of disk systems by the commonly used parallel 
disk model (PDM) through the following parameters: 

N: Problem size (in units of data items) 

M: Internal memory size (in units of data items) 

B: block transfer size (in units of data items) 

D: Number of independent disk drives 

P: Number of CPUs 

where M < N, and 1 ≤ DB ≤ M/2 for practical reasons 
and to match existing systems. Figure 1 depicts PDM. In a 
single I/O, each disk can simultaneously transfer a block of 
B contiguous data items. It is convenient to refer to the 
following shortcuts: 

, .N Mn m
B B

= =  

 
Figure 1   Parallel disk model (Vitter and Shriver, 1994a)  
(a) P = 1, in which the D disks are connected to a common CPU 
and (b) P = D, where each of the D disks is connected to a 
separate processor. This last organisation is realistic for a 
cluster system 

 

Ideally, algorithms should use linear storage space  
i.e., O(N/B) = O(n) disk blocks of storage. It can be proved 
that the I/O bound on sorting N data items with D ≥ 1 disk is 
given by: 

/( ) log log .M B m
N N nSort N n

DB DB D
   = Θ = Θ      

 

Note that, in practice, the logmn term is a small constant. 
The main theorem for sorting within the framework of 
PDM is the following: 

Theorem 1 (Aggarwal and Vitter, 1988; Nodine and  
Vitter, 1995): The average and worst case number of I/Os 
required for sorting N = nB data items using D disks is: 

( ) log .m
nSort N n
D

 = Θ  
 (1) 

To reach the bound of equation (1), techniques named 
distribution or merge based should be devised. These 
techniques access the D disks independently during parallel 
read operations, but in a striped manner during the parallel 
write operations. Let us examine distribution sort  
(Knuth, 1998) which is very close in spirit to the sampling 
algorithms we will discuss in a forthcoming section. 

Distribution Sort is a recursive algorithm where the inputs 
are partitioned by a set of S – 1 splitters into S buckets. The 
individual buckets are recursively sorted. There are 
logS(n) = logmn recursion levels and the bucket sizes 
decrease by a factor of Θ(S) from one level of recursion to 
the next. If each level of recursion uses Θ(N/DB) = Θ(n/D) 
I/Os, then distribution sort performs with I/O complexity of 
O(n/D)logmn) which is optimal.  

When researchers study performances, the parallel 
execution time is not the only metric used. Blelloch et al. 
(1991) defines the concept of sublist expansion metric as the 
ratio of the size of the largest list treated by a processor in 
one moment of the algorithm on the expected average 
size. In other words, this metric accounts for load 
balancing; ideally, a value one is suspected. In this case, 
load balancing is optimal. 

2.2 What is a heterogeneous cluster? 

The previous discussion was made in the context of sorting 
on a sequential machine or on homogeneous clusters, i.e., 
clusters based on identical motherboards, identical disks, 
identical CPUs. 

We are now interested in a particular class of non 
homogeneous clusters that we define here as usual 
clusters (network based on unique communication layer, 
same installed operating system, same CPU, same memory 
size and disks) but microprocessors may have different 
speeds. It is a first level of heterogeneity and it introduces 
new challenges. 
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In a parallel system the notion of heterogeneity potentially 
covers all the components of the system: 

• Network: heterogeneity concerns here, the possibilities 
of using different media of communication, various 
methods of signalling, various interfaces and  
protocols 

• Memory: it concerns the possibilities of using local 
memory as well as distant memory, of managing 
various levels of hierarchy with various management 
policies 

• Processors: it concerns the possibilities of using 
processors of various manufacturers, with various 
speeds, with different internal architectures i.e., RISC 
(Reduced Instruction Set Computer), VLIW (Very 
Long Instruction Width architecture), multithreadead 
architecture 

• Software running on the systems: it concerns the 
possibilities of using several operating systems or 
different binary codes of the same program 

• Disks: it concerns the possibilities of using several file 
systems, different storage media (hard disks, floppy, 
cartridge), various protocols (IDE ATA, SCSI, 
PCMCIA). 

A parallel heterogeneous environment, as we have just 
defined it, establishes interesting and particularly useful 
problems if the user of a cluster cannot change all the 
processors of the cluster but has to compose with several 
versions of one processor, with various speeds. It also 
seems to us that there is not a lot of literature (to our 
knowledge) on this class of architecture; many papers on 
sorting, treat the homogeneous case only. 

For the problem of effectively measuring the relative 
processor speeds, we assume the availability of precise 
techniques to realise it. 

3 RELATED WORKS ON PARALLEL SORTING  
ON HOMOGENEOUS CLUSTERS 

One algorithm using parallel sampling techniques and for 
the D disk model is the work of DeWitt et al. (1991) which 
is a randomised two steps distribution sort algorithm. 

• They define N buckets for an N-process program. 
Then, each program reads its initial data segment and 
sends each element to the appropriate bucket (other 
process). All elements received are written on disks as 
small sorted runs. 

• Each process merge-sorts its run.1 

The other type of strategy for external sorting is ‘sorting by 
merging’ which is orthogonal to the previous paradigm. 
The principle can by depicted as follows: 

• In the ‘run’s formation’ the n blocks of data are 
streamed into memory, one memory load at a time; 
each memory load is sorted into a ‘single run’, which is 
then output to the disk(s). There are n/m sorted runs. 

• Merging phase: the groups of R runs are merged 
together. During each merge, one block from each run 
resides in RAM. Some recent and later refinements ‘in 
parallel’ of this strategy are presented by Rajasekaran 
(1998) and implemented by Pearson (1997). 

Sorting is also present in several test sets (see the NASA 
website, http://www.nas.nasa.gov/). The NOW (http:// 
now.cs.berkeley.edu/NowSort/index.html/) at Berkeley is, 
without any doubt, the first project (1997) concerning 
sorting on clusters. The project considers a homogeneous 
cluster of SPARC processors and authors measure time 
performances only and not the quality of load balancing. 

We also find people from industry who are specialists in 
sorting. For example, we may mention here, the Ordinal 
company (http://www.ordinal.com/). They distribute 
Nsort for various platforms, generally multiprocessor 
machines. 

The goal is to sort as much data as possible in one minute 
(minute sort). However, the sorting algorithm has little 
interest from a scientific point of view: it is a question of 
reading the disks, of sorting in memory and writing the 
results on disks. It is a brute force, but efficient! It will be 
noted that the total size of the main memory is always 
higher than the size of the problem! 

In March 2004, the Nsort program was able to sort 
34 gigabytes of data (340,000,000 100-byte records) in 
58 seconds on a 32 processor Itanium 2 NEC 
Express5800/1320Xd running Microsoft Windows  
Server 2003 Datacenter Edition. This set new records  
for the MinuteSort (http://research.microsoft.com/barc/ 
SortBenchmark/) benchmark. 

3.1 General principles 

In this section we recall some well known strategies for 
incore sorting in parallel. We focus on a specific technique 
for the homogeneous case. It is now well understood that 
two generic approaches for incore sorting, in parallel, are of 
particular interest and work in practice (implemented 
algorithms are efficient on a variety of multiprocessor 
architectures). 

Merge based: for this kind of algorithm, the different steps 
may be summarised as follows: 

• each processor involves a portion of the list to be sorted 
• each processor sorts the portions and exchanges them 

among all the processors 
• each processor merges portions in one or several steps. 

Quicksort based: for this kind of algorithm, the different 
steps may be summarised as follows: 

• the unsorted list is partitioned into a number of 
progressively smaller sublists defined by selected pivots 

• sort the sublists for which processors are responsible. 

Only a merge based algorithm is under consideration in this 
paper, principally because the bound on load balancing for 
heterogeneous clusters is easier to obtain and experimental 



192 C. CÉRIN, O. COZETTE, G. UTARD, H. FKAIER AND M. JEMNI  

results are good. We specifically focus on one step 
communication algorithms because they match the 
requirement of using a limited number of short messages in 
message passing, programming languages in order to obtain 
good performance.  

We guess that our programs should perform well on 
clusters with a typical network such as fast ethernet. 
Thus, we need a limited number of communication steps in 
order to avoid slowdown by the network bandwith. 

To summarise, one step merge based algorithms have low 
communication cost because they move each element at 
most once (and at the ‘right place’) and they ensure regular 
communication requirements invariant with respect to the 
input distribution as we will see later in the paper. Their 
main drawback is that they have poor load balancing if we 
do not care about it; it is difficult to derive a bound to 
partition data into equal size sublists. 

Let us denote by n, the size of the problem and by p, the 
number of processors. The four canonical stages of the 
sorting by regular sampling algorithm are the following. It is 
the algorithm of Shi and Schaeffer (1992) called PSRS 
(Parallel Sorting by Regular Sampling) which was designed 
for the homogeneous case: 

Step 1: One starts by sorting its n/p data locally, then each 
processor selects p pivots which are gathered on processor 
0 (one passes the details concerning the choice of pivots 
itself). 

Step 2: Sort on processor 0 of p2 pivots; we keep p – 1 
pivots (they are selected at ip + p/2, (1 ≤ i ≤ (p – 1) 
intervals); all the pivots are broadcasted to the other 
processors. 

Step 3: Each processor produces p sorted partitions 
according to the p – 1 pivots and sends the partition i 
(marked by pivots ki and ki+1) to processor i. 

Step 4: The processors received sorted partitions; merge 
them. 

Figure 2 presents an example of unfolding such an 
algorithm. Notice the initial local sorting on each processor 
(which can be implemented with an incore or ‘out of core’ 
sequential algorithm), the choice of the pivots which is done 
at regular intervals, the centralisation of the pivots and their 
sorting and finally the redistribution of the data according to 
values of the pivots. 

 

 
Source:   Shi and Schaeffer (1992) 

Figure 2   An example of PSRS execution 
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The key of success depends on the splitters that must 
partition the bucket into roughly equal sizes. As noted in 
Vitter and Shriver (1994a) for external sorting,  

“It seems difficult to find S = Θ(m) splitters using Θ(n/D) 
I/Os (the formation of the buckets must be done akin to 
this bound to guarantee an optimal algorithm) and 
guarantee that the bucket sizes are within a constant factor 
of one another.” 

However, what makes the force of this algorithm is that, by 
sampling on all the processors, we can consider that 
information on data order is captured. It was shown by  
Shi and Schaeffer (1992) that the computational cost of 
PSRS matches the optimal bound of O(n/p log n). To obtain 
this result, it is necessary to be ensured of the unity of the 
data. In this case, one can show that, under the assumption 
that n > p3, PSRS guarantees a load balancing which differs 
from the optimum by a ratio of two, which is very 
satisfactory. Indeed, that means that, at stage four of the 
algorithm presented above, none of the processors sorts 
more than twice the number of items it had at the beginning. 
In practice, the constant is rather close to the optimal one. 

3.2 Related work on heterogeneous clusters 

The strategy of sampling is studied in this section for sorting 
on a heterogeneous cluster. 

Intuitively it is a question of insulating in the input vector, 
the pivots which would partition it into segments of equal 
size. This phase selects pivots so that between two 
consecutive pivots, there is the same number of objects. 
After a redistribution phase of the data according to values 
of the pivots, it no longer remains to sort the values  
locally. 

A first attempt for this strategy was successfully 
introduced and implemented in Cérin (2002) and Cérin  
et al. (2003). Only the principle of choosing pivots has been 
adapted, the others steps of PSRS framework, namely initial 
sort, distribution and merging are unmodified. 

When different numbers of array elements are assigned to 
processors, one may think that it will create a 
communication imbalance during the distribution of the 
array elements. This may result in endpoint contentions  
(i.e., multiple processors sending data to the same processor 
concurrently). This is true only if we consider that we have 
a point to point network (Myrinet) and not an ethernet 
network which is a shared bus with contention arbitration 
done in hardware and not under the programmer’s 
responsibility. 

In addition, if the processor I/O subsystem is not identical 
from one node to another, data distribution based on 
processor speeds may cause some processors to slowdown 
the total execution. 

As noted previously, we do not study here, the impact of 
the network and I/O subsystems performance at each node. 
Elaborating on the impact of such issues on performance is 
a challenging task. 
 

3.2.1 A general framework for sorting on heterogeneous 
clusters 

The problem is introduced as follows: n data (without 
duplicates) are physically distributed on p processors. Here 
the processors are characterised by their speeds denoted by 
si, (1 < i < p). The rates of transfers with the disks as well as 
the bandwidth of the network are not captured in the model 
which follows. 

Moreover, we are interested in the ‘perfect case’ i.e., the 
case where the problem size can be expressed as p sums. 
The concept of lowest common multiple (l cm) is useful in 
order to specify the matter in a mathematical way. In other 
words, we ask that the problem size n be expressed as 
follows: 

lcm( , ) ( [0] [ 1])n k per f p per f per f p= × × + + −  (2) 

where k is a constant in , per f is a vector of size p 
containing the relative performances of the p  
processors of the cluster and l cm(per f, p) is the smallest 
common multiple of the p values stored in the per f vector. 

The property can be also expressed by the fact that the 
size of the problem must be divisible by the sum of the 
values of the per f vector. If n cannot be written according 
to equation (2), different techniques as those presented in 
Shirazi et al. (1995) can be used in order to ensure 
balancing. 

For example, with k = 1, per f = {8,5,3,1}, we describe a 
processor which is eight times faster than the slowest, the 
second processor is five times faster than the slowest 
processor, the third processor is three times faster than the 
slowest and we obtain that l cm({8,5,3,1}, 4) = 120. 
Therefore, n = 120 + 3 × 120 + 5 × 120 + 8 × 120 = 2,040 is 
acceptable. 

With problem sizes as given by equation (2), it is very 
easy for us to assign to each processor, an amount of data 
proportional to its speed. It is the intuitive initial idea and 
characterises the precondition of the problem. 

3.2.2 The spring of partitioning 

The key point to obtain good performances for load 
balancing is again the choice of the pivots. Indeed, this 
choice allows the partitioning of the input in portions of 
roughly identical size in the homogeneous case. Here, for 
the heterogeneous case, it is necessary to arrange the pivots 
so that they constitute portions of sizes proportional to the 
speed of each processor. 

Let us consider Figure 3 to explain, without giving too 
complex technical details, what are the deep springs of 
partitioning for the heterogeneous case and according to the 
PSRS’s manner. On Figure 3 we have three processors 
which have three different speeds represented by three 
different rectangles of different dimensions. The pivots (not 
the candidate) are taken with regular intervals here within 
the meaning of PSRS and this is materialised by the ←/→ 
symbols. 
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Figure 3   The springs of partitioning on heterogeneous clusters 

The pivots on Figure 3 come from the three processors and 
they are supposed to be sorted. We keep here, in particular, 
the third pivot (on the basis of the left part of the figure). 
The intuitive justification is as follows: in operating that 
way, we notice that the number of data on the left of this 
first pivot is necessarily smaller than twice the size of the 
segment of data contained initially on the left processor (the 
slower one). While maintaining this invariant for the choice 
of the other pivots, one arrives at a result of the type of 
PSRS: none of the processors treats more twice what it has 
at the beginning. 

In fact, we have adapted the proof of the PSRS algorithm 
which is based on similar observations. We obtain a general 
framework, based on sampling and which offer guarantees 
in terms of load balancing. 

We call this algorithm H-PSRS for “Heterogeneous 
Parallel Sorting by Regular Sampling” technique. 

4 NEW INVESTIGATIONS 

In this section, we introduce two new strategies  
for sorting on heterogeneous clusters. Let us begin by a 
comparison of resources used by the three algorithms.  
Then, we will focus on the technical details of the 
algorithms. 

Table 1 summarises the main properties of the different 
algorithms presented in this paper. H-PSS is for 
“Heterogeneous Parallel Sample Sort”, H-PSRS is for 
“Heterogeneous Parallel Sorting by Regular Sampling”  
(see above) and H-PSOP is for ‘Heterogeneous Parallel 
Sorting by OverPartitioning’. 

Table 1   Summary of main properties of algorithms 

Criteria H-PSS H-PSRS H-PSOP 

Number of 
candidates 

6 × p′ × log2(p′) p′ × (p – 1) 4 × p′ × p′ × log2(p′) 

Number of pivots P – l P – l 4 × p′ × log2(p′) – 1 

Initial sort No Yes No 

Load balance 
(theory) 

Algorithm manages partitions of size 
n/p′ with a probability which is a 

function of the number of candidates 

No processor has more that two 
times its initial load 

Algorithm manages partitions 
of size n/p′ with a probability 

which is a function of the 
number of candidates 

Load balance 
(measured) 

±15% of the optimal in the worst 
case on one processor 

±0.1% of the optimal value ±0.01% of the optimal value 

Number of files 
created/proc 

15 + P + 1 15 + P + 1 15 + 4 × p′ × log2(p′) 

Sensitivity to 
duplicates 

? No, until a bound of n/p′ duplicates ? 

Message sizes 32KB 32KB 32KB 

Allocated memory 8K × sizeof(int) + 6 × p′ × log2(p′) 8K × sizeof(int) + p′ × (P – 1) 8K × sizeof(int) + O(p′) 

 
The reader should notice in particular, that the memory 
(RAM) usage as well as the number of files used in the 
implementations is very low. On Table 1, the constant 15 is 
the number of temporary files used by the polyphase merge 
sort we have used, p’ is the sum of values stored in the 
performance vector, P is the number of processors and n is 
the input size. 

4.1 Parallel sample sort revisited 

4.1.1 Introduction 

The key to success in sorting is dependent on the splitters 
that must partition the initial bucket into roughly equal 
sizes. As noted in Vitter and Shriver (1994a) 
 

“It seems difficult to find S = Θ(m) splitters using Θ(n/D) 
I/Os2 (the formation of the buckets must be done akin to 
this bound to guarantee an optimal algorithm) and 
guarantee that the bucket sizes are within a constant factor 
of one another.” 

The Parallel Sample Sort (PSS) algorithm (Huang and 
Chow, 1983) and its improvement (Li and Sevcik, 1994) do 
not sort the portions first but use oversampling to select 
pivots. They pick p – 1 pivots by randomly choosing p × s 
candidates from the entire input data, where s is the 
oversampling ratio, and then selecting p – 1 pivots from the 
sorted candidates. Intuitively, a larger oversampling ratio 
results in better load balancing but increases the cost of 
selecting pivots. 
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We propose the following framework for external sorting 
which is based on PSS: 

• pick pivots 
• broadcast pivot to a master node that sorts them; keep 

p – 1 pivots and broadcast them to each node 
• each node partitions its input according to the pivots; 

broadcast the partitions 
• sort the received partitions (in our case we use again 

polyphase merge sort). 

It can be shown (Li and Sevcik, 1994) that for an unsorted 
list of size n, (pk – 1) pivots (with k ≥  2) partition the list 
into p × k sublists such that the size of the maximum  
sublist is less or equal to n/p with a probability of at least 
1 – 2p(1 – (1/(2p)))pk. 

In the case of a heterogeneous cluster (processors running 
at different speeds), we simulate a p′ machine where p′ is 
the sum of coefficients in the performance vector. We also 
set k = 6 log2 p′ to mimic the framework of Li and Sevcik 
(1994). 

Example: For per f = {1,1,4,4}, k = 3 we obtain that the 
size of the maximum sublist is less or equal to n/p′ with 
probability at least 210 3 log 101 2 10(1 (1/(2 10))) × ×− × − × , that is 
to say, with probability 1 – 20(0.95)996578 = 1 – 0.12 = 88%. 

Now, if we set k = 6 × log2p′ we get a probability of 
99.92739%. From an ‘out of core’ point of view, the 
increase (sustained by k = 3 becomes k = 6) in the number 
of pivots is acceptable because the memory usage remains 
low! 

Finally, let p′ be the sum of values in the performance 
vector. Thus, the total number of pivots selected in our 
implementation of external PSS is p′ × 6 log p′. Note that 
this number is quite low from an ‘out of core’ point of view, 
so it fits in main memory. Moreover, it is necessary a 
divisor of p′. Note also, that the more the cluster is 
unbalanced (for instance a processor is 1,000 times faster 
than the others) the more the probability is high. That is to 
say, we will have more chance to get balanced sublists. The 
choice of p′ is thus justified to capture the heterogeneity of 
the machine. 

4.2 Parallel sorting by overpartitioning revisited 

4.2.1 Introduction 

Li and Sevcik (1994) proposed an algorithm for incore 
sorting on homogeneous platforms with no sequential sort in 
the beginning. The choice and the number of pivots is done 
according to the discussion done in the previous section: for 
an unsorted list of size n, (pk – 1) pivots (with k ≥ 2) 
partition the list into p × k sublists such that the size of the 
maximum sublist is less than or equal to n/p with probability 
at least 1 – 2p(1 – (1/(2p)))pk. 

The algorithm presented in Li and Sevcik (1994) for 
sorting on homogeneous platforms with the overpartitioning 
technique is as follows: 
 

Algorithm 1 (PSOP (Li and Sevcik, 1994)): 

Step 1: Initially, processor i has k, a portion of size n/p of 
the unsorted list l 

Step 2: (Selecting pivots) a sample of p.k.s candidates are 
randomly picked from the list, where s is the oversampling 
ratio and k the overpartitioning ratio. Each processor picks 
s.k candidates and passes them to a chosen processor. 
These candidates are sorted and then p.k – l pivots are 
selected by taking (in a ‘regular way’) the sth, 
2.sth, … ,(pk – 1)th candidates from the sample. The 
selected pivots d1, d2, … ,dPk – i are made available to all 
the processors 

Step 3: (Partitioning) since the pivots have been sorted, 
each processor performs binary partitioning on its local 
portion. Processor j decomposes lj according to the pivots. 
It produces pk sublists per processor denoted ljk where jk 
stands for two consecutive pivots (except for the initial and 
final case). A sublist Sj is the union of lij with i ranging over 
all processors. There are pk sublists. 

Step 4: (building a task queue and sorting sublists) let T(Sj) 
denote the task of sorting Sj. The size of each sublist can be 
computed: 

1

.
p
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i
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=

= ∑  

Also, the starting position of sublist Sj in the final sorted 
array can be calculated: 
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−
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A task queue is built with the tasks ordered from the largest 
sublist size to the smallest. Each processor repeatedly takes 
one task T(Sj) at a time from the queue. It processes the task 
by 

• copying the p parts of the sublist into the final array at 
position σj to σj + |SJ| – 1 

• applying a sequential sort to the elements in that range. 

The process continues until the task queue is empty. 

4.2.2 The heterogeneous case 

The main difference in the heterogeneous case is in the way 
we manage partitions and select pivots. 

• The number of candidates is calculated according to 
4 × p′ × p′ × log2(p′) where p′ is the sum of the values 
stored in the performance vector. After a sorting stage, 
we keep 4 × p′ × log2(p′) – 1 pivots among the 
candidates. Note that this number is independent of the 
problem size and also that if p′ grows (the cluster is 
more ‘unbalanced’), the number of pivots grows and we 
amortise the risk of unbalanced partitions. 
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• Step 4 of Algorithm 1 is modified as follows: the 
partition sizes of task Tj,(1 ≤ j ≤ number of partitions) 
are broadcasted to processors and sorted. In order to 
decide whether processor i keeps or rejects the task of 
sorting partition Tj, processor i computes Tj.size divided 
by its performance where Tj.size is the number of 
elements in partition Tj. The obtained ratio gives an 
estimate of the ‘execution time of task Tj’. We allocate 
task Tj to the processor with the smallest corresponding 
execution time. A special protocol is also deployed in 
case of a draw but we ignore such details here. We also 
keep, when we visit task Tj in order to decide which 
processor will execute it, the sum of the execution 
times of all previous tasks Tk, (1 ≤ k ≤ j) that have been 
allocated to processor i. 

5 EFFICIENT REMOTE DISK ACCESSES 

The aim of this section is to introduce issues about the way 
in which we can implement efficient remote disk accesses, 
in particular, for our sorting application. We provide details 
of the READ2 library (Cozette et al., 2002, 2003) and explain 
why we have to devise a new implementation of external 
parallel sorting in order to cope with the library. 

In order to share data, each cluster’s node must behave 
like a server for other nodes. For example, in distributed 
parallel file systems such as PVFS (Parallel Virtual File 
System (Ligon and Ross, 1999)) or PPFS (Portable Parallel 
File System (Huber et al., 1995)), each cluster’s node has 
the burden of serving local data requested by distant node. 
Whereas good performance may be obtained for 
homogeneous collective parallel I/O by using adequate 
placement and redistribution schemes (Ilroy et al., 2001), 
the overhead is not negligible for general access patterns. 
The overhead can be decomposed into two parts: first, the 
overhead caused by the operating system running on each 
node, and second, the overhead due to the architecture 
hardware. In this paper we only focus on the hardware 
overhead. 

Technological advancements in the last decade made disk 
drives able to achieve up to 90 MByte/s of sustained 
bandwidth. Disk controllers can also achieve several 
hundreds MByte/s of bandwidth, and network cards can 
achieve several Gigabit/s of bandwidth! By adding several 
I/O components to each node, it is possible to get plenty of 
I/O bandwidth for data intensive applications. However, an 
increase of the I/O bandwidth puts more pressure on the I/O 
and memory buses of each node. Unfortunately, these buses 
cannot be scaled, so the maximum bandwidth is bounded. 
An alternative to the technique of using multiple disks on 
the same node is to use NAD (Network Attached Devices) 
where the disks are directly plugged into the network. Many 
works that include GFS (Global File System (Preslan et al., 
1999)) or NASD (Network Attached Secure Disk (Gibson 
and Van Metter, 2000)) have proven the effectiveness of 
such technology. Unfortunately, this approach implies the 

deployment of expensive network infrastructure, e.g., Fiber 
Channel technology. 

We are currently developing READ2 (Remote Efficient 
Access to Distant Device) as an alternative to NAD, which 
is based on affordable network technology. In READ2, we 
exploit the capability of modern network interface cards to 
directly drive and access I/O devices plugged in the I/O bus 
(usually a PCI bus). For instance, in Walton et al. (1998) the 
authors combine two cooperative Myrinet cards on the same 
I/O bus for efficient IP forwarding: data flow directly from 
one Myrinet card to the second one and the processor is not 
involved in the data path. In READ2, we extend this 
technique for remote disk access. 

In this paper, we study the benefit of using the READ2 

library for sorting applications involving parallel I/Os. In 
the next subsection, we present our architectural cluster 
model and describe how READ2 I/O accesses are 
implemented. 

5.1 Architectural model 

A cluster may be considered to be an interconnection of 
different buses. A node is made up of: 

An I/O bus: (Input/Output bus) to connect network card, 
disk controller and I/O bridge; it is usually the PCI bus. 

A memory bus: to connect memory to I/O bridge. 
A processor bus: to connect processor to I/O bridge. 
The interconnection of buses is depicted on Figure 4. 

These buses are also characterised by the following constant 
parameters: 

Md: maximum disk throughput 

Mio: maximum I/O bus throughput 

Mm: maximum memory bus throughput 

Mc: maximum instruction processing time. 

 

 
Figure 4   Architecture and variable description 

Usually, disks are attached to the disk controller by another 
bus such as a SCSI bus: the global disk I/O bandwidth is the 
aggregated bandwidth of disks. For the sake of simplicity, 
we do not consider this class of busses in this paper. 

In a cluster, nodes are interconnected by a network 
interface card plugged into the I/O bus: the network glues 
I/O busses to build a parallel machine. From a logical point 
of view, the network may be considered to be another bus 
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level. The network is characterised by the constant 
parameter Mn which is the maximum network throughput. 

5.2 READ2: remote efficient access to distant device 

As pointed out previously, a cluster is usually considered to 
be a shared nothing architecture: all nodes are independent 
and collaborate by message passing. The processor, memory 
and disk of each node interact with each other. In fact, this 
is a high level point of view. If we consider the transport 
level, some node components (memory, disk) may be shared 
by all nodes. For instance, the SCI network technology 
(Bhoedjang et al., 1998) or some Virtual Shared Memory 
implementation based on remote DMA, allow nodes to 
share memory. 

Usually, in a parallel file system (e.g., PVFS), data sharing 
is made according to a data server model: it is a peer to peer 
server approach (P2PS). A consequence is that when a node 
accesses data on a remote node, the remote memory bus and 
the distant I/O bus are involved two times in the data path. 
Arpaci-Dusseau et al. (1998) have demonstrated that cluster 
architectures are penalised by this overuse of the different 
buses. In particular for streaming applications, the I/O bus is 
usually the bottleneck. Moreover, more stress is put on the 
memory bus by the file system, which may involve buffer 
copying policy. Some works such as DAFS (Collaborative, 
2001) try to remove the overhead of copies by using a 
remote memory access. But DAFS always involves two 
traversals of the I/O bus for the data path. 

Here we consider another technique that we call READ2 

(Cozette and Randriamaro, 2002, 2003) for Remote 
Efficient Access to Distant Device. In READ2 each node is 
able to directly access and control any remote disk; nodes 
share disks. A first consequence is that the memory is no 
more involved in the data path; a second consequence is that 
the I/O bus is involved only one time in the data path. 
Figures 5 and 6 are illustrations of this fact. 

 
Figure 5   Remote read data path with READ2 

 
Figure 6   Remote read data path with READ2 

A work close to ours is OPIOM (Geoffray, 2001; 
Bonhomme and Geoffray, 2000). It was designed for the 
implementation of a distributed video on demand server on 
a Myrinet cluster. In OPIOM data transfers also go from 
disk to network directly through the Myrinet card. OPIOM 
uses the standard kernel driver, but in READ2 the disk driver 
is embedded in the Myrinet card. Reading a remote disk 
does not involve the remote processor. Consequently, the 
remote processor is ‘less’ loaded: it can do more work. 

We investigate now, the benefit of such an approach for 
external parallel sorting application on heterogeneous 
clusters. 

5.3 External parallel sample sort 

We have seen in Table 1 that PSS (Parallel Sample Sort) 
provides a good compromise between load balancing and 
execution time. So, we adapt it to fully exploit the 
characteristic of READ2. Let us recall the six different parts 
of the algorithms. 

1 choice of pivots 
2 distribution of pivots in order to be sorted 
3 pivot sorting stage 
4 redistribution of pivots onto processors 
5 partitioning and redistribution of data 
6 final sorting stage. 

The cost of the algorithm is the sum of all costs involved in 
the six parts. Our problem is to insert the functionalities of 
READ2 in order to speedup the execution time. The first four 
steps involve few data: it is not significant to use READ2 in 
these cases. 

Step 5 and 6 can now be achieved in the following way. 
Instead of partitioning data according to pivots on the local 
disks and then distributing partitions, we propose to read a 
portion of data, then to partition data into buffers and when 
a buffer is full, to distribute it (thanks to READ2) to the final 
disk in order to be merged later (during the last step) with 
other chunks of data. 

Note that, in doing this we have transformed the last step 
into a pure (out of core) merge step instead of a sort step: a 
data reorganisation that sorts them during step 5 avoids at 
least a full file reading that corresponds to the first part of 
any polyphase mergesort program (see the MAKERUN 
procedure inside our codes) and thus we relax the memory 
bus usage. 

We remind also that the sequential ‘out of core’ sorting 
program that we have used until now in step 5 is polyphase 
mergesort. It requires (during the first step) the building of 
auxiliary files such that the sizes of the files follow a 
Fibonacci series. It is too complicated to ensure such a 
property when using READ2 because the latter uses only one 
flow i.e., only one pseudofile descriptor can be used at a 
time. This restriction is due to the fact that the READ2 library 
is implemented below the file system layer. 

Thus, we have revisited our sequential sorting brick and 
we have developed a 2-way like mergesort. To be short, the  
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principle is depicted according to the following example 
that uses two files and we consider blocks of 1 (sorted) 
integer, then blocks of 2, 4 …  data: 

Initial files: 

[3, 8, 2, 4, 1, 10]  
[5, 0, 6, 7, 9] 

After the first step, we have the following auxiliary files: 

[3 5, 2 6, 1 9] 
[0 8, 4 7, 10] 

After the second step, we have the following auxiliary files: 

[0 3 5 8, 1 9 10]  
[2 4 6 7] 

After the third step, we have the following auxiliary files: 

[0 2 3 4 5 6 7 8]  
[1 9 10] 

After the last step, we have the following auxiliary files: 

[0 1 2 3 4 5 6 7 8 9 10]  
[] 

In our implementation, we work with only one file and we 
form (to be read or written) blocks of B data. It is just a 
matter of pointer management and matching of the one 
pseudofile descriptor requirement imposed by the library 
interface. 

5.4 Overlapping of I/O operations and computation 

To fully exploit the gain in bus usage offered by the library, 
we should also count on the overlapping of computation and 
disk transfers. 

In a parallel implementation that will follow the six 
previous steps, it is still possible to overlap I/O operations 
done for the distribution of data and the merging of sorted 
data. The key idea is to exploit the memory bus that is free 
when a transfer of sorted data is done from one processor to 
a distant disk. 

Imagine that a buffer becomes full during step 5 of our 
modified algorithm. Then, a READ2 operation occurs in 
order to transfer the buffer to one disk. Once a second 
READ2 operation occurs for the same disk, the processor 
attached to the disk can potentially merge the two chunks 
concurrently with the reception of yet another chunk. 

We plan to implement this optimisation in the near future 
as we still encounter difficulties in multithreading the code. 
One difficulty in using the library is that we have to manage 
potentially concurrent writings to the same disk... and the 
READ2 library has no support for this. One trick could be to 
force each node working in parallel to write on a distinct  
 
 

remote disk and to proceed by phases. A processor could 
possibly write, but not necessarily during each phase. One 
difficulty is to compute a bound on the number of phases 
and thus on the number of synchronisation points. 

6 EXPERIMENTAL RESULTS 

This section is divided into three parts. In the first and 
second parts we experiment without READ2. We are mainly 
interested in the computation of the load balancing. In doing 
this we validate our approaches for partitioning data in the 
heterogeneous case. We use a small cluster composed of 
one Pentium III (Katmai), 451 Mhz, cache: 512 KB, RAM: 
2,61,668 kB and 3 Celerons (Mendocino), 400 Mhz, cache: 
128 MB, RAM: 64 MB. Disks were FUJITSU MPD3064AT 
disks with 512 KB of cache. Execution times and speedups 
are not our main concern and problem sizes are not so 
important here because we want to demonstrate that load 
balancing is under control. 

Tables 2–5 are divided into five columns. From left to 
right, we have the mean size of data in the last step of the 
algorithm (Mean), the standard deviation of the mean (SD), 
the ratio of the mean over the optimal size, the ratio of the 
mean over the standard deviation and, at least the maximal 
and minimal observed sizes over the 35 experiments. 

In the third part we validate READ2 and exhibit the gain in 
using our library. 

Table 2   Heterogeneous sample sort (2 MB of data, 
heterogeneous configuration of performance vector) 

Mean SD Mean/opt (%) Mean/SD (%) Max Min 

PID0 

1,15,632 10,847 93.88 9.38 196144 100487 

PID1 

3,71,959 15,981 100.09 4.29 392898 335504 

PID2 

6,15,038 20,479 100.10 3.33 652183 571873 

PID3 

9,86,599 20,970 100.36 2.12 1033844 947255 

Table 3   Heterogeneous sample sort (16 MB of data, 
heterogeneous configuration of performance vector) 

Mean SD Mean/opt (%) Mean/SD (%) Max Min 

PID0 

930196 87822 94.62 9.44 1108952 759477 

PID1 

2935879 157911 99.51 5.38 3364108 2616418 

PID2 

4974058 140542 101.2 2.82 5379087 4709106 

PID3 

7871546 211648 100.36 2.69 8153092 7436021 
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Table 4   Heterogeneous sample sort (16 MB of data, 
homogeneous configuration of performance vector) 

Mean SD Mean/opt (%) Mean/SD (%) Max Min 

PID0 

3918862 584064 93.78 14.90 5744959 3045409 

PID1 

4150519 625341 99.34 15.06 6083675 2942227 

PID2 

3935862 579492 94.2 14.72 5423733 2755896 

PID3 

4706443 505979 112.65 10.75 5719919 3699471 

Table 5   Heterogeneous sample sort (2 MB of data, 
homogeneous configuration of performance vector) 

Mean SD Mean/opt (%) Mean/SD (%) Max Min 

PID0 

472349 59876 90.45 12.67 629023 377398 

PID1 

526403 52376 100.79 9.95 604596 434675 

PID2 

525042 62448 100.53 11.89 654503 384518 

PID3 

564548 47235 108.10 8.36 645109 452583 

6.1 Heterogeneous sample sort 

We set the performance vector to {1,3,5,8} and we observe 
the load balancing factor (in the ‘Mean/opt’ column). The 
choice of those values is arbitrary and at the same time 
reflects a significant heterogeneity. Note that it does not 
correspond to the physical machine as we measure here, 
load balancing and not the execution time. 

A first result is presented in Table 2. We sort 
n = 20,88,960 integers and we use our benchmark numbered 
0 (random generated data using the linear congruent 
generator xk+1 = axk(mod 246)). 

After that, we set again the performance vector to 
{1,3,5,8} and observe the load balancing factor (in the 
‘Mean/opt’ column) of Table 3. Here we sort 
n = 1,67,11,680 integers. 

When we compare the results of the load expansion metric 
of Tables 2 and 3, we observe a very good metric. The 
choice made for the number of pivots is appropriate. 

6.1.1 Sample Sort with a performance vector configuration as 
a homogeneous cluster 

We now configure our algorithm with the following setting 
for the performance vector: {1,1,1,1}. 

A first result is presented on Table 4. We sort 
n = 1,67,11,680 integers (the optimal amount of 
data/processor is 41,77,920 integers). We start  
35 experiments and we observe a mean execution time of 
82.15 seconds (the standard deviation is 6.75 seconds). 

Table 6   Heterogeneous PSOP (1973785 integers, 
heterogeneous configuration of performance vector) 

Mean SD Mean/opt (%) Max Min 

PID0 

929386 229 100.059 929858 929018 

PID1 

580687 225 100.027 581129 580170 

PID2 

347791 143 99.85 348123 347339 

PID3 

115920 184 99.84 116121 115202 

A second result is presented in Table 5. Here, we sort 
n = 20,88,960 integers (the optimal amount of 
data/processor is 5,22,240 integers). We start 35 
experiments and we observe a mean execution time of 
6.25 seconds (the standard deviation is 0.56 seconds). 

Table 7   Heterogeneous PSOP (16777215 integers, 
heterogeneous configuration of performance vector) 

Mean SD Mean/opt (%) Max Min 

PID0 

7898307 1690 100.04 7901360 7895160 

PID1 

4936858 1621 100.05 4939629 4933891 

PID2 

2956149 1414 99.84 2959340 2953082 

PID3 

985900 1115 99.89 987923 2953082 

Again, the results of the load expansion metric are good.  
All the results validate the approach for both the 
heterogeneous case and the homogeneous case. So, the 
external parallel sample sort algorithm developed in this 
section is of general use. 

Our last remark concerns the way we fill the performance 
vector. We have previously said that a vector filled with the 
same values (1) represents the ‘homogeneous case’. If we 
entirely set the vector with value 10 we also model the 
‘homogeneous case’. But if we run the program according 
to this setting we will generate more pivots! 

6.2 Heterogeneous parallel sorting by over partitioning 

We set now the performance vector to {8,5,3,1}. Tables 6 
and 7 present two experiments for input sizes of 19,73,785 
and 1,67,77,215 integers stored initially on disks of a cluster 
of four processors. We notice that the load expansion 
metrics (columns Mean/opt) are very good, as well as the 
standard deviation of the observed values (column SD).  
The maximal and minimal values observed on processors 
are also good. We conclude that the number of pivots 
(4 × 17 × log2(17) – 1 = 271 is very low when compared 
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with the input size) and is good enough to ensure a 
quasiperfect load balance of the work. As a consequence, 
the overhead due to the processing of the partitions in the 
last step of the algorithm is kept low because we have fewer 
data to manage. 

6.3 Validation of READ2 through our sequential sorting 
algorithm 

We estimate now, the cost of remote stores and we validate 
READ2 with our sequential ‘out of core’ sorting program that 
requires an important traffic to/from the disks that is mixed 
with computation. The sequential ‘out of core’ sorting 
algorithm is part of the parallel ‘out of core’ algorithm 
which is not yet implemented in full detail. 

The first column of Table 8 corresponds to the input size 
given in number of integers. The second column shows that 
we entirely sort with the local disk. The third column gives 
experiment results when using the remote disk over NFS 
and the fourth column gives results when we use the distant 
disk but our implementation is made over READ2 i.e., with 
the READ2 library implemented in C. The numbers in the 
three last columns correspond to seconds. 

Table 8   Comparison of systems 

#data to sort 
Local 
disk 

Remote with 
NFS 

Remote with 
READ2 

17000000 195 624 232 

19000000 221 613 258 

21000000 240 613 289 

23000000 253 665 319 

25000000 290 703 791 

We use two Alpha AXPs, 433 Mhz with 32 MB of memory, 
a Myrinet card and a 40 MB/s hard disk on each node. We 
fix at eight, the number of integer read or write to the disk 
with a fread, fwrite operation. A value of 
512/4 = 128 corresponding to the disk buffer size in the 
system should be more adequate for performance. But we 
have made the choice to experiment in unfavourable 
conditions. Note that all the sizes in the table correspond to 
input sizes that are larger than the memory size available on 
the nodes: 

We observe that the results for NFS are bad. It was 
expected. It is known that NFS does not perform well, when 
performance is a critical issue (especially, in high 
performance applications). Among other explanations, NFS 
uses a lot of processor resources and the data cross twice, 
the remote bus: the data come from the remote disk to the 
remote memory and then from the remote memory to  
the remote network card. After that, they are sent to the 
local host. 
 
 
 
 

The results, when we use the READ2 library to reduce these 
bus usages, are good when compared with the results 
obtained for sorting on the local disk. In fact, READ2 
includes the disk driver in the network card, so it bypasses 
the remote processor and the data are sent directly from the 
remote disk to the remote network card. 

Except for the last line, we observe a penalty of about  
15–21% in using the library vs. doing the sort on the local 
disk, which is good. We have no explanation for the result 
of the last line: a severe penalty is observed and even  
worth it; the result for NFS is better than the result for the 
library. Such observations have not been made previously 
(Cozette et al., 2002, 2003). 

One assumption about the phenomenon is that NFS uses a 
cache that could improve the performance. Another one is 
that since the disk block size is small (eight integers), the 
overhead due to message headers in transfers becomes 
important. Further experiments in incrementing the block 
size to 128 and for an input size of 2,50,00,000 integers 
have shown that the penalty is about 5% between the 
execution on the local disk and execution with the use of the 
library, which is excellent. Moreover, we do not yet know if 
performance difference gets worse for larger arrays. 

The performance of read2 should be investigated more in 
depth in the future and should be compared also with a 
parallel file system (such as PVFS). 

7 CONCLUSION 

In this paper we devised algorithms for external parallel 
sorting. We depicted solutions when the platform is made of 
processors running at different speeds that remain constant 
during the execution. We also showed how to adapt these 
solutions to exploit efficiently the READ2 library able to do 
fast remote read/write operations to disks. The difficulty lies 
mainly not in the parallel algorithm itself, because its 
principle is simple. It lies in the technical constraints 
imposed by the library interface and also in the choice of the 
‘out of core’ sequential sorting implementation that can 
offer more or less computation/disk transfers overlapping. 

We intend, when the READ2 library will be completed to 
offer a ‘full’ file system interface, to experiment with  
our codes over such a file system in order to benchmark  
it and to compare our results with those of PVFS for 
instance. 
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NOTES 

1A run is a sequence of sorted records. 
2Remind that m and D are defined in Section 2.1. 
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