% PALADIN

[1

LaRIA On-Line Homepage [3]

BIBLIOGRAPHY:

To view and print the PDF files, the free Adobe Acrobat
Reader [7] is required.

See also this web link. [8] or our own bibliogra-
phy [9].

Christophe Cérin and Jean-Luc Gaudiot,
“Algorithms for stable sorting to minimize
communications in networks of workstations
and their implementations in bsp”, in IEEE
Computer Society International Workshop on
Cluster Computing (IWCC'99), 1999, pp.
112-120.

L.G. Valiant, “A bridging model for parallel
computation”, Communications of the ACM,
vol. 33, no. 8, august 1990.

Groupe Paladin au LaRIA

Page developped with

Towards Parallel Sorting
with Sampling Techniques on
non Homogeneous Clusters

Christophe Cérin
Université de Picardie Jules Verne,
LaRIA, Bat CURI, 5 rue du moulin neuf,
80000 AMIENS - France
Email: cerin@laria.u—picardie.fr

Abstract:

In this note we introduce some parallel in—core technique for sorting
integer keys which is based on the regular sampling technique. We
sketch an algorithm which is devoted to clusters of non homoge-
neous processors (the speeds of processors and/or the speeds to
access distributed disks in the clusters are correlated by a muilti-
plicative constant factor and/or the bandwidth of the underlying net-
work interconnected processors by a switch is not to be supposed to
be identical in whole the network). This note is devoted to show that
sampling techniques are independant (in some way) to the archi-
tecture of the computing system on which we run the sorting program.
In our case, "independence” means that we can guarantee load

Amaya [2] - W3C'’s Editor/Browser.
With Amaya you can edit complex mathematical expressions
within HTML pages through a WYSIWYG interface.

5- Sorting on two sorts of processors with the
sampling technique

In this section we exemplify a sorting problem for which we have
n data to sort on a system of p=4 processors: two processors are
running at 400Mhz and two processors are running at 200Mhz.
Moreover assume that the fastest processors are labelled from 1 to

2 and the slower to 3 to 4. Thus, the speed ratio is k = % =Z,

Let n, be the number of data that the processors at 400Mhz should
have to deal with to ensure optimal load balancing and let n, be

the number of data that processors at 200MHz should deal with to
ensure optimal load balancing on the 4 processors system. We
have:

()n, +n,=n, 2)n, - kn, =0.
From the two previous equations, it is not difficult to derive:

n, = L and n, = L
27 K+l 17kl
In the remainder of the note we impose that n,, n, 00O .
To go further in our case study we choose now
n =720 n, =48, n, =24 . Thatis to say that the two fastest pro-
cessors have 24 data each and the slower processors have 12

Parallel Sorting on Clusters

A. Fabri F. Dehne and A. Rau-Chaplin,
“Scalable parallel computational geometry
for coarse grained multicomputers”, in Pro-
ceeding ACM Symposium on Computational
Geometry, 1993, pp. 298-307.

D. Culler R. Karp D. Patterson A. Sahay K.E.
Schauser E. Santos R. Subramonian T. von
Eicken, “Logp: Towards a realistic model of
parallel computation”, in Proceeding 4th
ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming,
1993, pp. 1-12.

R. Miller and J.L. Reed, “The oxford bsp li-
brary : User's guide.”, Tech. Rep., Oxford
University Computing Laboratory, 1994.

J. H. Reif and L. G. Valiant, “A Logarithmic
time Sort for Linear Size Networks”, Jour-
nal of the ACM, vol. 34, no. 1, pp. 60-76,
Jan. 1987.

John H. Reif and Leslie G. Valiant, “A log-
arithmic time sort for linear size networks”, in
Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing,
Boston, Massachusetts, 25-27 Apr. 1983,
pp. 10-16.

Hanmao Shi and Jonathan Schaeffer, “Par-
allel sorting by regular sampling”, Journal
of Parallel and Distributed Computing, vol.
14, no. 4, pp. 361-372, 1992.

balancing in any case.

1-Introduction and motivations

Sorting in parallel records whose keys come from a linearly ordered
set has been studied for many years. The advent of parallel pro-
cessing, in particular in the context of cluster computing, is pushed
(boosted) by technology and maxims, for instance, one of them say
that the processing time doubles each 18 months or that remote
Read/Write in RAM becomes faster than local Read/Write with the
use of new protocols and network interfaces. Therefore, we need
faster sorts every 18 months build on the top of the technology. But
studies on parallel sorting algorithms are also guided by fundamental
questions about the properties of the inputs and outputs in order to
better capture new architectural paradigms. An important paper dated
from 1993 by Guy E. Blelloch, Leonardo Dagum, Stephen J. Smith,
Kurt Thearling, Marco Zagha is available on line at
http://www3.shore.net/~kht/text/nasa/nasa.htm [12]. Authors propose
that sorting be considered an important benchmark for both scientific
and commercial applications of supercomputers. As quoted in the
previous web link, sorting algorithms can be categorized into three
general classes: counting-based sorts (counting the number of oc-
currences of each possible value), fixed—topology sorts (use a
fixed interconnection network between the processors, such as a
hypercube or a grid, and that require no data—dependent communi-
cation patterns), and partitioning sorts (select a subset of the keys
that partition the data and then use these partition elements to route
keys to separate sets of processors). There are two main subcate-
gories of partitioning sorts: parallel quicksorts, and sample sorts. Only
sample sorts is under concern in this note as we will see later.

A sorting algorithm is stable if equal keys appear in the output buffer
in the same order as in the input buffer (reader should have a look at
this page about Shellsort [13] and also Robert Sedgewick pages
[14] here). Such tasks typically require that we deal with repeated
applications of comparisons and data-movement operations. Even if
these operations are performed in parallel, in order to obtain good
performance, concrete implementations must take into account not
only the algorithmic techniques for merging/partitioning (pipelining,
divide and conquer, ranking...) but also the constraints due to the
architecture of the machine and the parallel programming language

data each in the initial state. First, each processor sorts the data,
then make a selection of pivots.
Let us now considerer the pivots selection problem. The number

of selected pivots is p (p — 1) = 12. We pick them at position:
. | nl
° 6, 12, 18 i.e. H

p*k
fastest processors;

O
E and we keep the floor; for the two

On, O
ie. 0—2 0 >
° 3,6,9 ie Hp k 0 and we keep the floor; for the two
slower processors.

The p (p - 1) = 12 pivots are gathered onto processor 1 (we
guess it is a processor at 400Mhz). On this processor, the 12 pivots
are sorted. Then we keep p — 1 = 3 pivots that define p buckets
as follows. It is the part that is a little bit tricky... and we stay on an
“informal level" of presentation!

Consider the first pivot in the sorted list. Either there is 3 or 6
elements "at his left" depending on the fact that the pivot was se-
lected from a fast or a slow processor. For each pivot, from 1 from
12 we sum the number of elements the pivot traverses until the sum
reaches 24 or 12 depending on the processor we consider (fast or
slow). It is clear that the sum does not necessary reach 24 or 12
exactly, so we stop at the pivot position such that the sum does not
overpass the desired value (24 or 12).

Then the selected (we select first pivots for the slower proces-
sors) pivots are distributed to all the processor. After that step we
continue with steps 3 and 4 of the PSRS (Parallel Sorting by Reg-
ular Sampling) algorithm - see above.

Let us now examine a concrete example. The initial configuration
is as follows:

° pl (400Mhz) contains: 4, 6, 9, 15, 20, 21, 22, 30, 31, 33,
35, 40, 41, 44, 46, 50, 51, 54, 59, 60, 64, 65, 66, 68 and
select pivots: 21, 40, 54.

e D2 (400Mhz) contains: 3, 5, 10, 11, 13, 18, 19, 26, 27, 29,
32, 42, 45, 47, 48, 49, 52, 53, 56, 57, 61, 62, 63, 69 and
select pivots: 18, 42, 53.

p3 (200Mhz) contains: 2, 7, 12, 14, 23, 24, 25, 34, 37, 58,

Parallel Sorting on Clusters

10

11

12

13

14

15

X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S.
Wong, and H. Shi, “On_the versatility of
parallel sorting by regular sampling [10]”,
Parallel Computing, vol. 19, pp.
1079-1103, Oct. 1993.

David R. Helman, Joseph Ja'Ja’, and David
A. Bader, “A new deterministic parallel
sorting algorithm with an experimental eval-
uation”, Technical Report CS-TR-3670 and
UMIACS-TR-96-54, Institute for Advanced
Computer Studies, University of Maryland,
College Park, MD, Aug. 1996.

Ivan Stojmenovic, “Constant time bsr solu-
tions to parenthesis matching, tree decod-

ing, and tree reconstruction from its
traversals”, IEEE Transaction of Parallel
and Distributed Systems, vol. 7, no. 2,

February 1996.

Helman and JaJa, “Sorting on clusters of
SMPs”, INFRMTCA: Informatica: An Inter-
national Journal of Computing and Infor-
matics, vol. 23, 1999.

David R. Helman and Joseph Ja'Ja’, “Sort-
ing on clusters of SMPs”, Technical Report
CS-TR-3833, University of Maryland, Col-
lege Park, Nov. 1997.

M.J. Quinn, “Analysis and benchmarking of
two parallel sorting algorithms: Hyperquick-
sort and quickmerge”, BIT, pp. 239-250,
1989.

used. Despite the great deal of work done in the past on sorting
problems using the PRAM (Parallel Random Access Model), it is still
challenging to specify algorithms and to implement them efficiently on
cluster based systems, we mean systems equipped with fewer com-
monly used processors interconnected by high speed network with
low latency. The special case of non homogeneous clusters, we
mean clusters with processors at different speeds but from the same
manufacturer (a priori) or processors with the same clock speed but
with different speeds to access disks and interconnected in the same
way (with the same bandwidth), is of particular interest for those who
cannot replace instantaneously with a new generation whole the
processors of its cluster but shall compose with old and new pro-
cessors, with old and new disks.

The organization of the note is as follows. In section 2 we review
some techniques based on sampling for sorting in parallel. In Section
3 we briefly introduce the BSP model of parallel computation. In
section 4 we describe a new parallel algorithm based on the regular
sampling technique but we deal with the case of non homogeneous
cluster in Section 4. We exemplify the case with two kinds of pro-
cessors. Sections 6 concludes the paper.

2-Related work on sorting

It is well known that the speedup achieved on a parallel distributed
machine depends largely on the pertinence of strategies for reducing
memory and communication latencies and also on the ways that
overhead of scheduling and synchronization are treated. It is now
well understood that two generic approaches for sorting in parallel
are of particular interest and work in practice (implemented algorithms
are efficient on a variety of multiprocessor architectures) :

MERGE-BASED:
for this kind of algorithms, the different steps are summa-
rized as follows: (1) each processor contains a portion of
the list to be sorted (2) sort the portions and exchange
them among all the processors (3) merge portions in one
or many steps;

QUICKSORT-BASED
for this kind of algorithms, the different steps are summa-
rized as follows: (1) the unsorted list is partitioned into a
number of progressively smaller sublists defined by se-

.
67, 71 and select pivots: 12, 24, 37.

o p4 (200Mhz) contains: 1, 8, 16, 17, 28, 36, 38, 39, 43, 55,
70, 72 and selects pivots 16, 36, 43.

(We gave the values after the first initial sorting step which oc-
curs in sequential). The 12 pivots are gathered on processor 1 and
sorted. We obtain the following sorted list: 12, 16, 18, 21, 24, 36,
37, 40, 42, 43, 53, 54 The final desired pivots are 18 (because
between 12..18 we found 12 elements), 36 (between 21..36 we
found 12 elements) and 53 (because between 37 and 53 we found
24 elements). Thus the distribution of data is as follows:

o pl keeps 40, 41, 44, 46, 50, 51; receives 42, 45, 47, 48,
49, 52, 53 from p2; receives 37 from p3 and receives 38, 39,
43 from p4. Thus pl produces: 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53. (17 data)
o p2 keeps 56, 57, 61, 62, 63, 69 receives 54, 59, 60, 64,
65, 66, 68 from p1l; receives 58, 67, 71 from p3 and receives
55, 70, 72 from p4. p2 produces: 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72. (19 data)
° p3 receives 4, 6, 9, 15 from p1; receives 3, 5, 10, 11, 13,
18 from p2 and receives 1, 8, 16, 17 from p4. It keeps 4, 6, 9,
15. It produces 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18 (18 data)
o p4 receives 20, 21, 22, 30, 31, 33, 35 from pl, receives
19, 26, 27, 29, 32 from p2. It receives 23, 24, 25, 34 from p3.
It keeps 28, 36. It produces 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36. (18 data)
Then we conclude that the ordered final sequence is given by
the data contained on p3, p4, pl, p2.
Conijecture : under the assumption that k < 2 O (p, = p,) , in
the last step of the algorithm, each processor merges less than
2n, or 2n, data respectively.

Note: we can rearrange at the initial step the processors so that
the slower processors are labelled p1l and p2 and the fastest are
labelled p3 and p4.

6— Conclusion

In this note we presented some approaches to implement and
specify algorithms for (stable) sorting on clusters. The algorithms
combine either the good algorithmic and the theoretical properties

Parallel Sorting on Clusters

16

17

18

19

20

21

Hui Li and Kenneth C. Sevcik, “Parallel
sorting by overpartitioning”, in Proceedings
of the 6th Annual Symposium on Parallel
Algorithms and Architectures, New York,
NY, USA, June 1994, pp. 46-56, ACM
Press.

K. E. Batcher, “Sorting networks and their
applications”, Proceedings of AFIPS Spring
Joint Computer Conference, pp. 307-314,
1968.

David T. Blackston and Abhiram Ranade,
“SnakeSort: A family of simple optimal ran-
domized sorting algorithms”, in Proceedings
of the 1993 International Conference on
Parallel Processing. Volume 3: Algorithms
and Applications, P. Bruce Hariri, Salim;
Berra, Ed., Syracuse, NY, Aug. 1993, pp.
201-204, CRC Press.

A. Borodin and J. E. Hopcroft, “Routing,
merging, and sorting on parallel models of
computation”, in ACM Symposium on Theo-
ry of Computing (STOC °'82), Baltimore,
USA, May 1982, pp. 338-344, ACM Press.

R. Cole, “Parallel merge sort”, SIAM Jour-
nal of Computer, vol. 17, pp. 770-785, Aout
1988.

T. Leighton, “Tight bounds on the complexity
of parallel sorting”, in ACM Symposium on
Theory of Computing (STOC '84), Baltimore,
USA, Apr. 1984, pp. 71-80, ACM Press.

lected pivots (2) sort the sublists for which processors are
responsible.

Only a MERGE-BASED algorithm is under concern in this paper,
principally because the result is easier to obtain: it is closed in spirit
to the regular sampling technique (we recall in the next section) for
which we have some result in the case of homogeneous clusters. We
have experimented in [1 [15]] with such technique for stable algo-
rithms and with the Bulk Synchronous Parallel (BSP) toolkit as the
target programming tool. We recall now some information about both
about BSP and about sampling techniques that are widely used.

3-BSP: a concrete an efficient programming model

The bulk synchronous parallel model, introduced by Valiant [2 [16]]
is a general-purpose model in which the properties of the parallel
architectures are captured by four parameters: the number of pro-
cessors p, the time to synchronize the processors, |, the ability of a
network to deliver messages under continuous traffic, g, and the
speed of the machine.

We obtain the value of these parameters experimentally. For a
given architecture, the parameters measured are obtained by utiliz-
ing simple programs: dot product and matrix multiplication for g, cost
of BSP synchronizations (bsp_sync() primitive for |, one-to-all
and all-to-all for g.

In BSP, programmers predict the run length of any computation in
terms of these parameters and they can rely on performance tools to
automatically perform the task. Thus, one advantage of BSP against
competing approaches (CGM [3 [17]], LogP [4 [18])) is that some li-
braries (see for instance [5 [19]]) are available for a large number of
platforms on which they can effectively run BSP programs. We use
the standard BSPIlib 1.4 library from Oxford university.

The BSP model can be regarded as a generalization of the PRAM
model where the ideal PRAM is obtained for I=g=1 (unitary commu-
nication cost and no parallel slackness).

4-Regular sampling: an efficient technique for sorting

In the Bulk Synchronous Programming model (BSP) the sorting
problem is approached with a technique known as “sorting by reg-
ular sampling” [6 [20],7 [21],8 [22],9 [23],10 [24]]. The following link
[25] about Parallel Sorting by Regular Sampling (PSRS) is very in-
teresting and provides some codes. Note that the BSP implementation

of sorting by the (regular) sampling technique.

I o our knowledge, little work has been performed in BSP
about the efficiency of load balancing for sorting programs, in
particular in the context of non-homogeneous clusters. The
methodology exposed in this note is currently under study. We
have shown experimentally in [1 [55]] that the algorithms devel-
oped for stable sorting in homogeneous clusters are promising.
More research involving experiments with input sizes greater than
512kB and 4MB (which are the cache size of our processors)
should reveal the impact of cache on performance. The experi-
mental study of the choice of the number of pivots is also important
in order to improve performance. Our experiments with the Sujithan
implementation (not stable) seem to demonstrate that performance is

2.5 better with p2 pivots instead of p in all of our implementations
in [1 [56]] which are stable.

In conclusion, it should be pointed out that we expect and hope
that the results in this note will serve to improve in the future the
results of sorting on Network of Workstations in the context of the

fastest Disk-to-Disk sort challenge (see
http://now.CS.Berkeley. EDU/NowSort/ [57]) which is stated

as follows: “how much data can you sort in one minute of elapsed
time?” For the 1998 competition, the Berkeley team sorted 8.41 GB
in just 1 minute on 95 Ultral machines. The reference [27 [58]]
about a "Simple randomized mergesort on parallel disks" is also
important in the context of out of core computation. The example of
Section 5 sketches a solution in the case of two processors which
are not identical. This problem is very fundamental

Addendum:

SORTING ON RISC:
If you are interested by sorting problems for RISC pro-
cessors, please refer to [29 [59], 30 [60], 31 [61]].

OUT-OF-CORE SORTING:

The first reference that we should talk about is the Com-
pact Guide to Sorting and Serching [62] by Thomas Nie-
mann which covers in and out of core sorting. For
instance you could get the C-code of the polyphase
merge sort of D. Knuth. If you are interested by out of core

Parallel Sorting on Clusters

22

23

24

25

26

27

D. Nassimi and S. Sahni, “Parallel permuta-
tion and sorting algorithms and a new gen-
eralized connection network”, J. ACM, ,
no. 29, pp. 642-667, 1982.

C. G. Plaxton, “Efficient computation on
sparse interconnection networks”, Tech.
Rep. STAN-CS-89-1283, Department of
Computer Science, Stanford University,
Sept. 1989.

A. Tridgell and R.P. Brent, “An implementa-
tion of a general-purpose parallel sorting
algorithm”, Tech. Rep. TR-CS-93-01,
Computer Science Laboratory, Australian
National University, Feb. 1993.

W. D. Frazer and A. C. McKellar. Sample-
sort: A sampling approach to minimal storage
tree sorting. Journal of the ACM,
17(3):496-507, 1970.

J. H. Reif and L. G. Valiant. A logarithmic
time sort for linear size networks. Journal of
the ACM, 34(1):60-76, January 1987.

Y. Won and S. Sahni. A balanced bin sort
for hypercube multicomputers. Journal of
Supercomputing, 2:435-448, 1988.

J. S. Huang and Y. C. Chow. Parallel sorting
and data partitioning by sampling. In Pro-
ceedings of the IEEE Computer Society's
Seventh International Computer Software
and Applications Conference, pages
627-631, November 1983.

Parallel Sorting on Clusters

28

29

30

31

32

33

34

35

36

R. D. Barve, E. F. Grove, and J. S. Vitter.
Simple randomized mergesort on parallel
disks. In Proc. ACM Symp. on Parallel Al-
gorithms and Architectures, pages
109-118, 1996. To appear in special issue
on parallel 1/0O in “Parallel Computing” (see
also Parallel Computing, 23(4):601-631,
1997).

R. Agarwal, A Super Scalar Sort Algorithm
for Risk Processors, Proc. of the 1996 ACM
SIGMOD International Conference on Man-
agement of Data, Montreal, québec, june
4-6, 1996, pp 240-246

Chris Nyberg, Tom Barclay, Zarka Cve-
tanovic, Jim Gray, Dave Lomet, AlphaSort:
a Risk Machine Sort, Proc. of the 1994
ACM SIGMOD International Conference on
Management of Data, Minneapolis, Min-
nesota, may 24-27, 1994, pp 233-242

Larriba-Pey, J.L.; Jimenez, D.; Navarro,
J.J. An analysis of superscalar sorting algo-
rithms on an R8000 processor, Proceedings
of the 17th International Conference of the
Chilean Computer Science Society (SCCC
'97), November 12-14, Valpariso, |IEEE
Computer Society

A Framework for Simple Sorting Algorithms
on Parallel Disk Systems (extended ab-
stract), SPAA: Annual ACM Symposium on
Parallel Algorithms and Architectures, 1998

Alok Aggarwal and Jeffrey Scott Vitter,
The Input/Output Complexity of Sorting and
Related Problems, Communications of the
ACM, Vol 31, num 9, pp 1116-1127, sep,
1988

Jeffrey Scott Vitter and Elizabeth A. M.
Shriver, Algorithms for Parallel Memory {1}:
Two-level Memories, Algorithmica, 1994,
aug and sep, vol 12, number 2/3, pp
110--147

Thomas H. Cormen and Melissa Hirschl,
Early experiences in evaluating the parallel
disk model with the {ViC}* implementation,
Parallel Computing, vol 23, num 4-5, pp
571--600, may 23, 1997.

Matthew D. Pearson, Fast Out-of-Core
Sorting on Parallel Disk Systems, Tech Re-
port, 1999, number: PCS-TR99-351, Dept.
of Computer Science, Dartmouth College,
Hanover. NH url:

by Ronald Sujithan (see
http://www.comlab.ox.ac.uk/oucl/users/ronald.sujithan/

[26]) is not stable. The primary goal of the paper referenced [1 [27]]
is to introduce BSP implementations for sorting which are stable and
based both on the regular sampling technique which provides good
experimental results and on a BSR algorithm [11 [28]] for sorting
which is stable and stated in a concise way. One of the results ob-
tained in [1 [29]] demonstrate that the use of ShellSort with k parti-
tions as the basic stable sequential brick achieves the best
performances. Note that in [12 [30],13 [31]], J4ja and Helman say
that their algorithm “can be easily implemented as a stable sort” and
it is devoted to cluster systems, more precisely to multilevel hierar-
chical memory systems.

The Sujithan implementation describes an efficient implementation
of ideas presented in [6 [32],7 [33],8 [34]]. It is based on the follow-
ing ideas: initially, each processor contains a portion of the list to be
sorted. Then a merge-based approach is set up in order to sort the
portions and exchange them among all the processors and merged.
The merging of the sorted portions in a merge based approach can
be achieved either in one step or many steps. References [14
[35],9 [36],8 [37],15 [38]] belong to the category of one step merge
based algorithms; references [16 [39],17 [40],18 [41],19 [42],20
[43],21 [44],22 [45],23 [46]] belong to multi steps merge—based algo-
rithms.

In this note we only consider one step merge-based algorithms.
Such algorithms have low communication cost because they move
each element at most once (and at the “right place”). Their main
drawback is that they have poor load balancing if we don't care
about it: it is difficult to derive a bound to partition data into sublists of
“equal sizes”. A variation of partition based sort is sample sort [24
[47], 27 [48], 25 [49], 26 [50]] which is very simple in spirit: (1) a set
of splitters selected among keys are picked that partition the input
into p buckets (2) based on their values, the keys are sent to the
appropriate bucket — the i th bucket goes to the i th processor (3)
the keys are sorted within each bucket (processor).

It is now well understood that the main practical advantage of
sample sort is that it greatly reduces the communication required
over most of the other sorting algorithms. If there are enough keys per
processor (more than p) then the splitters can be broadcast to all the
processors without a serious overhead, and the data can be routed
to its final destination with a single message. However, because of
the need to distribute the splitters and the need to sort the sample, it
does not work well when there are a small number of keys per pro-
cessor. The cost of distributing the p splitters to each processors
can be alleviated by running multiple passes but this adds to the
communication costs. Another disadvantage of sample sort is that the
buckets are not perfectly balanced at the end. This can require extra
memory and extra communication to balance the data.

The Sujithan implementation is as follows (the size of the regular
sample is n/pz):
Step 1:
Perform a local sort; each processor select p samples which

are gathered onto process zero;
Step 2:

Perform a local sort of p 2 samples; pick p -1 regular pivots

k from the sorted p 2 samples; (pivots are picked at ip+p/2 (1
< i < p-1) intervals); broadcast these pivot values to all the
processors from processor zero.

Step 3:
Each processor produces p partitions of its local block using
the p-1 pivots; each processor sends its partition i (marked
by pivots k and kj,q to processor i;

Step 4:
Perform a local sort to merge all the partitions received;

With regard to the time complexity of the above algorithm, it is not
difficult to observe that the worst case is dominated by the time cost of
step 4 which is ? in the Sujithan implementation because it uses
Quicksort. Moreover, some probabilistic arguments (see [6 [51],7
[52],8 [53]]) about pivots arrangements and the redistribution of data
can be used to show that the computational cost can match the op-
timal ? bound.

The other important property of the code is that during step 3, the
maximal amount of data communicated by a processor is at most

n/p thus incurring a BSP communication cost of gﬂ In practice,
p

the cost is much smaller.

The implementation of Sujithan is not stable: it is based on
Quicksort which is not stable and the problem to make Quicksort
Stable is still open (see Robert Sedgewick home page at
http://www.cs.princeton.edu/~rs/ [54])). However, it is an
“a priori” efficient code.

sorting research papers, please refer to [28 [63], 32 [64],
33 [65], 34 [66], 35 [67], 36 [68]]. See also the excellent
survey by Jeff Vitter about External Memory Algorithms
and Data Structures [69]. An introduction to external Sort
can be found here [70]. Please, refer also to the pages
about the Dictionary of Algorithms, Data Structures, and
Problems [71] and The Stony Brook Algorithm Repository

[72].

A PRESENTATION ABOUT SAMPLING:
An introduction to sampling techniques for sorting with
many examples which is the presentation (part) that | gave
for IWCC'99 and that | use for our master program is
available here [73].

CODES:

Find in this section our available codes that implement
PSRS and that are developped with PUB7 [74] (universi-
ty of Paderborn, Germany) and _BSPLib [75] (university
of Oxford, UK):

T:

psrs_pub.c [76]: use only bsp_put communication
primitives and Quicksort as sequential sorting rou-
tine.

psrs pub _opt.c [77]: use bsp_sendmsg communi-
cation primitives (message passing routines) and
Quicksort as sequential sorting routine.
psrs_pub_opt stable.c [78]: use bsp_sendmsg
communication primitives (message passing rou-
tines) and Shellsort as sequential sorting routine.
The implementation provides a stable sort.
psrs_pub_trick_stable.c [79]: use bsp_sendmsg
communication primitives (message passing rou-
tines), QuickSort plus a trick as sequential sorting
routine in order to provide a stable sort. The imple-
mentation requires approximatively two times more
memory storage comparing to the previous codes.
bench_psrs.tar [80] includes 7 codes (for PUB dis-
tribution) with 8 benchmarks (based on those of the
university of Mariland [81]): a) psrs_pub_bench.c
(implementation ~ with DRMA routines), b)
psrs_pub_opt_bench.c (implementation with
send/receive routines) c) psrs_pub_op-
t_stable_bench.c (stable sorting implemented
with send/receive) d) psrs_pub_trick_bench.c

Parallel Sorting on Clusters

28

R. D. Barve, E. F. Grove, and J. S. Vitter.
Simple randomized mergesort on parallel
disks. In Proc. ACM Symp. on Parallel Al-
gorithms and Architectures, pages
109-118, 1996. To appear in special issue
on parallel 1/0 in “Parallel Computing” (see
also Parallel Computing, 23(4):601-631,
1997).

29
R. Agarwal, A Super Scalar Sort Algorithm
for Risk Processors, Proc. of the 1996 ACM
SIGMOD International Conference on Man-
agement of Data, Montreal, québec, june
4-6, 1996, pp 240-246

30
Chris Nyberg, Tom Barclay, Zarka Cve-
tanovic, Jim Gray, Dave Lomet, AlphaSort:
a Risk Machine Sort, Proc. of the 1994
ACM SIGMOD International Conference on
Management of Data, Minneapolis, Min-
nesota, may 24-27, 1994, pp 233-242

31

Larriba-Pey, J.L.; Jimenez, D.; Navarro,
J.J. An analysis of superscalar sorting algo-
rithms on an R8000 processor, Proceedings
of the 17th International Conference of the
Chilean Computer Science Society (SCCC
'97), November 12-14, Valpariso, IEEE
Computer Society

32
A Framework for Simple Sorting Algorithms
on Parallel Disk Systems (extended ab-
stract), SPAA: Annual ACM Symposium on
Parallel Algorithms and Architectures, 1998

33

the need to distribute the splitters and the need to sort the sample, it
does not work well when there are a small number of keys per pro-
cessor. The cost of distributing the p splitters to each processors
can be alleviated by running multiple passes but this adds to the
communication costs. Another disadvantage of sample sort is that the
buckets are not perfectly balanced at the end. This can require extra
memory and extra communication to balance the data.

The Sujithan implementation is as follows (the size of the regular
sample is n/pz):
Step 1:
Perform a local sort; each processor select p samples which
are gathered onto process zero;
Step 2:
Perform a local sort of p Z samples; pick p =1 regular pivots

k from the sorted p 2 samples; (pivots are picked at ip+p/2 (1
< i < p-1) intervals); broadcast these pivot values to all the
processors from processor zero.

Step 3:
Each processor produces p partitions of its local block using
the p-1 pivots; each processor sends its partition i (marked
by pivots k and ki, 1 to processor i;

Step 4:
Perform a local sort to merge all the partitions received;

With regard to the time complexity of the above algorithm, it is not
difficult to observe that the worst case is dominated by the time cost of
step 4 which is ? in the Sujithan implementation because it uses
Quicksort. Moreover, some probabilistic arguments (see [6 [51],7
[52],8 [53]]) about pivots arrangements and the redistribution of data
can be used to show that the computational cost can match the op-
timal ? bound.

The other important property of the code is that during step 3, the
maximal amount of data communicated by a processor is at most

. ; - n .

n/p thus incurring a BSP communication cost of g— . In practice,
p

the cost is much smaller.

The implementation of Sujithan is not stable: it is based on

(stable sorting for many duplicates i.e. O(n/p) du-
plicates) e) All the previous codes are implemented
with a Quicksort in the first and last steps of the
PSRS algorithm. We have also developped codes
that use Mergesort (psrs_pub_merge-
sort_bench.c in the last step and we also devel-
opped psrs_pub_merge_bench.c that merge
sorted chuncks in the last step. Note that merge
operations require extra memory (O(n/p)) to do the
job. So we have developped a version that do not
have the previous drawback: psrs_pub_guan-
tile_bench.c (implementation based on the
search of quantiles in the first step of the PSRS al-
gorithm — Quantiles are a set of 'cut points’ that di-
vide a sample of data into groups containing (as far
as possible) equal numbers of observations. The
search of one quantile is linear in time). The last
step of the PSRS is implemented through a Quick-
sort because quantile search does not produce
sorted chunks. It is our most efficient implementation
of PSRS. This tar file also includes the shell script
gosh in order to do the measures and
test-sort.c which is a PUB program to evaluate
the performance of sequential Quicksort on a single
node.

bspsort.tar.gz [82]: some codes for sorting (stable
and not stable) that we developped (historically
speaking) for BSPLIB 1.4. The implementation of
Sujithan is also included.

Experimental Parallel Algorithmics [83] at the uni-
versity of Mariland. This link provides papers and
sorting benchmarks both for integers and double
precision floating point numbers. Pay attention: the
code to generate the benchmarks is available
here [84]. See also: EXPAR [85].

NEW

(sept 2001): all.tar [86] our source codes for
out-of-core sorting with a PSRS like algorithm on
clusters with processors at different speed. The im-
plementation is done with MPI.

Parallel Sorting on Clusters

Alok Aggarwal and Jeffrey Scott Vitter, Quicksort which is not stable and the problem to make Quicksort
The Input/Output Complexity of Sorting and stable is stil open (see Robert Sedgewick home page at

Related Problems, Communications of the http:/www.cs.princeton.edu/~rs/ [54])). However, it is an
ACM, Vol 31, num 9, pp 1116-1127, sep, “a priori” efficient code.
1988

34
Jeffrey Scott Vitter and Elizabeth A. M.
Shriver, Algorithms for Parallel Memory {l}:
Two-level Memories, Algorithmica, 1994,
aug and sep, vol 12, number 2/3, pp
110--147

5]
Thomas H. Cormen and Melissa Hirschl,
Early experiences in evaluating the parallel
disk model with the {ViC}* implementation,
Parallel Computing, vol 23, num 4-5, pp
571--600, may 23, 1997.

36
Matthew D. Pearson, Fast Out-of-Core
Sorting on Parallel Disk Systems, Tech Re-
port, 1999, number: PCS-TR99-351, Dept.
of Computer Science, Dartmouth College,
Hanover, NH, url:
ftp://ftp.cs.dartmouth.edu/TR/TR99-351.ps.Z

37
Christophe Cérin and Jean-Luc Gaudiot
Benchmarking Clusters of Workstations
Through Parallel Sorting and BSP Librairies,
available at this URL [11]

Link Media Centre

Parallel Sorting on Clusters

P _IEEE Computer Society [87]

With nearly 100,000 members, the IEEE Computer Society is the world's leading organization of computer professionals. Founded in 1946, it is the largest of the 35 societies organized under the umbrella of the Institute of Electrical and
Electronics Engineers (IEEE). The Computer Society's vision is to be the leading provider of technical information and services to the world’'s computing professionals. See also the Task Force on Cluster Computing [88] and the list
[89] of the most efficient clusters built today. You must also visit the _Distributed Systems Online_Channel [90] on Cluster Computing.6.12.99

P The Institute of Electrical and Electronics Engineers (IEEE). [91]

The IEEE ("eye-triple-E"), The Institute of Electrical and Electronics Engineers, Inc., helps advance global prosperity by promoting the engineering process of creating, developing, integrating, sharing, and applying knowledge
about electrical and information technologies and sciences for the benefit of humanity and the profession. For more on the history of the IEEE see "Our Heritage." [92] The IEEE History Center [93] also has information on the develop-
ment of electrical and computer engineering and their roles in modern society. 4.12.99

P _The Collection of Computer Science Bibliographies [94]

This is a collection of bibliographies of scientific literature in computer science from various sources, covering most aspects of computer science. The about 1200 bibliographies are updated monthly from their original locations such that
you'll always find the most recent versions here. The collection currently contains more than one million references (mostly to journal articles, conference papers and technical reports) and consists of 660 MBytes of BibTeX entries. More than
9000 references contain crossreferences to citing or cited publications. More than 80,000 references contain URLs to an online version of the paper. There are more than 2000 links to other sites carrying bibliographic information.
1.12.99

P _Researchindex [95]

Researchindex is a scientific literature digital library that aims to improve the dissemination and feedback of scientific literature, and to provide improvements in functionality, usability, availability, cost, comprehensiveness, efficiency, and
timeliness. Rather than creating just another digital library, Researchindex provides algorithms, techniques, and software that can be used in other digital libraries. Researchindex indexes Postscript and PDF research articles on the Web.
30.1.01

P _IEEE Xplore [96]

Introducing IEEE Xplore , the dynamic new online delivery system for IEEE technical and scientific information. You can now conduct your research from a single, desktop platform. Browse the complete collection of tables of contents of
IEEE. transactions, journals, magazines, conference proceedings, and standards. Search and view all IEEE abstract/citation records starting from 1988 (expansion of service previously provided through Bibliographies Online). Browse,
search and view full-text articles of your personal online subscriptions (previously provided through OPeRA, the Online Periodicals and Research Area), and "IEEE Spectrum" magazine (available to IEEE members only). For additional
information refer to the Frequently Asked Questions [link to http://ieeexplore.ieee.org/pdocs/epic03/fag.htm [97] on the IEEE Xplore home page. 1.12.99

P Computer Science Bibliography (dblp.uni-trier.de 98]
2.10.99

P Collection of Lecture Notes, Surveys, and Papers [99]

This is a collection of some lecture notes, papers, ... that we have found in Internet. By no way this is a complete archieve, its primary aim is to serve the local needs of our research group and our students. So many of items are accessible only
from Paderborn. —— Artur Czumaj (artur@uni-paderborn.de) —— Miroslaw Kutylowski (mirekk@uni-paderborn.de) 2.10.99

} THE WWW VIRTUAL LIBRARY at INRIA (FRANCE) [100]

2.10.99

» BSP (Bulk Synchronous Parallel model) Worldwide _ [101]

Parallel Sorting on Clusters

BSP Worldwide is an association of people interested in the development of the Bulk Synchronous Parallel (BSP) computing model for parallel programming. It exists to provide a convenient means for the co-ordination of all kinds of work
on BSP including: Research into properties of the model, Application of the model to programming tasks of all kinds including the scheduling, of parallel execution, Performance benchmarking and comparison with other approaches, Cost
modelling and performance prediction, Definition of standard functions for programming in the BSP style and for the standardisation of these functions, Implemenation of programming tools to support the use of the model. The organisation
has yet to formalise its structure. 2.10.99
P BSP Headquaters [102]

This page contains links to my tutorials which demonstrate how to use BSP. Most of these tutorials were originally written for Quake, but | have added Hexen2 and Quake2 versions, so you can use them to familiarize yourself with the editor
while working on a game you enjoy. So, pick a lesson from the list and get started. Note, a zip file of each lesson is provided if you would prefer to download it and read it offline. 2.10.99
RESSOURCES INTERNET, Mathématiques, Informatique [103]

This site is located at the university of Jussieu (Paris, France). It is developped for the university library and you will find many resources. The page is in french only. 2.10.99
P NCSTRL: This server operates at UW Madison Computer Sciences Technical Reports. Fielded search of the collection [104] can be done on this server. 2.10.99

» Supercomputing Centers and Parallel Computing [105]

This site is located at the university of Mannheim (Germany). See also the Linux Parallel Computing at the University of Mannheim here [106] and also Linux Parallel Processing Using SMP here [107]. However, these two last links
seem not to be up to date. 2.10.99

B The sites listed below are about RAID architecture : Raid Advisory board [108]

For a definition see: RAID [109] Reffer to the article entittled RAID Performance Evaluation [110] and the article entited A Performance Evaluation of RAID Architectures [111] by Shenze Chen and Don Towsley. The Berkeley IS-
TORE [112] Project is building adaptive, highly-available, self-maintaining, self-tuning back-end servers for storage-intensive network services, and is ir the pr for defining their adaptive behavior. At
Berkeley, see also the Tertiary Disk Project [113]. 2.10.99

¥ virtual Librarian at Monash University [114]

This site has been written by Monash University librarians to teach the skills and tools needed to find information. More tutorials and subject guides will be added in the near future. Your comments on the pages currently available are
appreciated by the library, and can be sent via email, or by filling in a short survey. 2.10.99

WiC IR

AT 2B 2 115 Page developped undeopyright[116] © 1999-2000, Christophe Cérin. Al rights reservetiast modified: 30/1/2000117),

Parallel Sorting on Clusters

http:/fwww laria.u-picardie. fr/~cerin/=paladin/

Towards Parallel Sorting
with Sampling Techniques on
non Homogeneous Clusters

Abstract:.

2-Related work on sorting
3-BSP: a concrete an efficient programming model
4-Regular sampling: an efficient technique for sorting.
5- Sorting on two sorts of processors with the sampling technique. . .
6-Conclusion.

Parallel Sorting on Clusters

[1] href=http://www.laria.u—-picardie.f/PALADIN/
[2] Amayahref=http://www.w3.org/Amaya.
[3] LaRIA On-Line Homepagéref=http://www.laria.u-picardie.fr.
[4] News href=
[5] Partnershref=
[6] Frenchhref=
[7] Acrobat Reader
href=http://www.adobe.com/prodindex/acrobat/readstep.html#reader . .
[8] web link. href=http://now.cs.berkeley.edu/NowSort/sort.long-bib.html . . .
[9] bibliographyhref=http://www.laria.u-picardie.fr/~cerin/=paladin/these.hih .
[10] On the versatility of parallel sorting by regular sampling
href=http://www.cs.utoronto.ca/~paullu/Papers/psrs.ps.Z.
[11] URL href=ftp://www.laria.u-picardie.fr/~cerin/=paladin/ppl.ps.gz.
[12] http://www3.shore.net/~kht/text/nasa/nasa.htm
href=http://www3.shore.net/~kht/text/nasa/nasa.htm.
[13] Shellsorthref=http://www.bell-labs.com/user/suel/papers/papers.html. .
[14] pageshref=http://www.cs.princeton.edu/~rs/cs226/lectures/lectures.txt.
[15] 1 href=paladin-sorting.html#CERIN99
[16] 2 href=paladin-sorting.html#valiant
[17] 3 href=paladin-sorting.html#Dehne L P
[18] 4 href=paladin-sorting.html#culler93
[19] 5 href=paladin-sorting.html#MR94
[20] 6 href=paladin-sorting.html#reif87. . L P
[21] 7 href=paladin-sorting.html#STOC::ReifV1983
[22] 8 href=paladin-sorting.html#ShiHanmaoal992a
[23] 9 href=paladin-sorting.html#LiXandLuPa1993a. . .
[24] 10 href=paladin-sorting.html#HelmanDavi1996b . . L P
[25] link href=http://sdcd.gsfc.nasa.gov/ESS/eazydir/inhouse/mobarry/sorting/
[26] http://www.comlab.ox.ac.t ujithan/
href=http://www.comlab.ox.ac.uk/oucl/users/ronald.sujithan/.
[27] 1 href=paladin-sorting.htmI#CERIN99 P
[28] 11 href=paladin-sorting.html#S96.
[29] 1 href=paladin—sorting.htm#CERIN99
[30] 12 href=paladin-sorting.html#HelJaJ9a R
[31] 13 href=paladin-sorting.html#UMCP-CSD__CS-TR-3833.
[32] 6 href=paladin-sorting.html#reif87.
[33] 7 href=paladin—sorting.html#STOC::ReifV1983 . . .
[34] 8 href=paladin-sorting.html#ShiHanmaoa1992a . .
[35] 14 href=paladin—sorting.html#Quinn. L P
[36] 9 href=paladin-sorting.html#LiXandLuPa1993a.
[37] 8 href=paladin-sorting.htmi#ShiHanmaoal992a
[38] 15 href=paladin-sorting.html#spaa94_46

PR

[N

~~~



Parallel Sorting on Clusters

[39] 16 href=paladin-sorting.htmi#Batc68. . . . . .. ... ............
[40] 17 href=paladin-sorting.html#icpp93-3_201. . . . . .. ... ... .....
[41] 18 href=paladin—sorting.htmi#STOC82_338. . . . . ... ... ... ....
[42] 19 href=paladin—sorting.html#C88 L P
[43] 20 href=paladin—sorting.htmi#STOC84_71. . . . . ... . ... ... ....
[44] 21 href=paladin-sorting.html#NS82. . . . . ... ...............
[45] 22 href=paladin-sorting.html#plaxton
[46] 23 href=paladin—sorting.html#tridgell
[47] 24 href=paladin-sorting.html#FrazerM7Q
[48] 27 href=paladin-sorting.html#HuangC83
[49] 25 href=paladin-sorting.html#Reifv87 . . . . .. ..

[54] http://www.cs.princeton.edu/~r&fef=http://www.cs.princeton.edu/~rs/ . .
[55] 1 href=paladin-sorting.htmI#CERIN99 . . . . . . ... ............
[56] 1 href=paladin-sorting.html#CERIN99 . . . . . .. ..............
[57] http://now.CS.Berkeley.EDU/NowSort/
href=http://now.cs.berkeley.edu/NowSort/ . . . .. .............
[58] 27 href=paladin—sorting.html#vitter@6. . . . . .. ... ............
[59] 29 href=paladin-sorting.html#aga96 . . . ... ... .............
[60] 30 href=paladin—sorting.html#nyberg94. . . . . . ..

[62] Compact Guide to Sorting and Serching
href=http://fepaperpress.com/s_man.html. . . . ... ............
[63] 28 href=paladin-sorting.html#vitterQ6.
[64] 32 href=paladin-sorting.html#Rajasekaran98b. . . L P
[65] 33 href=paladin-sorting.html#Aggarwal . . . ... ..............
[66] 34 href=paladin-sorting.html#vitter:parmem1. . . ... ... ... .....
[67] 35 href=paladin—sorting.html#Cormen:1997:EEE. . L P
[68] 36 href=paladin-sorting.html#pearson. . . . . ... .............
[69] External Memory Algorithms and Data Structures
href=http://www.cs.duke.edu/~jsv/Papers/catalag/ . . . .. ... .....
[70] herehref=http://csc208.csudh.edu/makinde/csc353/ch6.html. . . . . . ..
[71] Dictionary of Algorithms, Data Structures, and Problems
href=http://hissa.nist.gov/dads/terms.html . . . . .. ... ... ... ..
[72] The Stony Brook Algorithm Repository
href=http://www.cs.sunysb.edu/~algorith/index.html. . . . . ... ... ..
[73] herehref=expose.ps. . . . ... ... ...
[74] PUBTY href=http://www.uni-paderborn.de/~pub . . . . . ... ... .....
[75] BSPLibhref=http://www.BSP-Worldwide.org/implmnts/oxtool/. . . . . . .




Parallel Sorting on Clusters

[76] psrs_pub.dref=psrs_pub.c. . . . ... ... 7
[77] psrs_pub_opt.bref=psrs_pub_opt.c . . .. ... ... ... L 7
[78] psrs_pub_opt_stabletref=psrs_pub_opt_stable.c. . . ... ... ... .. 7
[79] psrs_pub_trick_stablelwef=psrs_pub_trick_stable.c L Lo 7
[80] bench_psrs.taref=bench_psrs.tar. . . . .. ................. 7
[81] university of Mariland
href=http://www.umiacs.umd.edu/research/EXPAR/dx/dx.html . . . . . . 7
[82] bspsort.tar.ghref=bspsort.tar.gz 7
[83] Experimental Parallel Algorithmics
href=http://www.umiacs.umd.edu/research/EXPAR/dx/dx.html . . . . . . 7
[84] here
href=http://www.umiacs.umd.edu/research/EXPAR/dx/expar-dx-code/dx—c
odehtml . ... .. ... 7
[85] EXPAR href=http://www.umiacs.umd.edu/research/EXPAR/. . . . . . .. 7
[86] all.tarhref=all.tar. . . ... ... ... . . T 4
[87] IEEE Computer Societyhref=http://www.computer.org. . . . ... ..... 8
[88] Cluster Computindref=http://www.ieeetfcc.org/. . . . ... ... ... ... 8
[89] list href=http://www.top500clusters.org/ . . . . . ... ............ 8
[90] Distributed Systems Online Channel
href=http://www.computer.org/channels/ds/Cluster/index.htm. . . . . . . 8
[91] The Institute of Electrical and Electronics Engineers (IEEE).
href=http://www.ieee.org. . . . . ... .. .. ... 8
[92] "Our Heritage."href=http://www.ieee.org/about/whatis/heritage.html . . . 8

[93] IEEE History Centehref=http://www.ieee.org/organizations/history_center/ 8
[94] The Collection of Computer Science Bibliographies

href=http://flinwww.ira.uka.de/bibliography/index.htm! . . . . . ... .. .. 8
[95] Researchindexhref=http://citeseer.nj.nec.com/. . . . L ... 8
[96] IEEE Xplore href=http://www.ieee.org/ieeexplore . . . . ... ... .... 8
[97] http:/lieeexplore.ieee.org/Ipdocs/epic03/fag.htm

href=http://ieeexplore.ieee.org/lpdocs/epicO3/fag.htm. . . . . . ... ... 8
[98] Computer Science Bibliography (dblp.uni-trier.de)

href=http://sunsite.informatik.rwth-aachen.de/dblp/db/. . . . .. ... .. 8

[99] Collection of Lecture Notes, Surveys, and Papers
href=http://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/scripts.h

Ml 8
[100] THE WWW VIRTUAL LIBRARY at INRIA (FRANCE)

href=http://www.inria.fr/InfowWeb/Virtual_library—fra.html. . . . ... .. .. 8
[101] BSP (Bulk Synchronous Parallel model) Worldwide

href=http://www.bsp-worldwide.org/. . . . . ... ...... ... ..... 8
[102] BSP Headquaters href=http://www.bsphg.com/bsptutor.shtml. . . . . . . 9

[103] RESSOURCES INTERNET, Mathématiques, Informatique
href=http://bleuet.bius.jussieu.fr/intinfo.html. . . . .. ... ... ... ... 9



Parallel Sorting on Clusters

[104] collectionhref=http://www.cs.wisc.edu/Dienst/Ul/2.0/Search . . . . . . .
[105] Supercomputing Centers and Parallel Computing
href=http://suparum.rz.uni-mannheim.de/docs/ind.html. . . . . . ... ..
[106] herehref=http://suparum.rz.uni-mannheim.de/Linux/ . . . . ... ... ..
[107] herehref=http://suparum.rz.uni-mannheim.de/Linux/parallel/ppsmp.html
[108] Raid Advisory boardref=http://www.raid-advisory.com/ . . . . . ... ..
[109] RAID href=http://linas.org/linux/Software-RAID/Software-RAID.html . .
[110] RAID Performance Evaluation
href=http://web.cps.msu.edu/~ni/slides/raidl/index.htm . . . . . ... ..
[111] A Performance Evaluation of RAID Architectures
href=http://computer.org/tc/tc1996/t1116abs.htm .
[112] ISTOREhref=http://iram.cs.berkeley.edu:80/istore/ P
[113] Tertiary Disk Projechref=http://now.cs.berkeley.edu:80/Td . . . . . ...
[114] Virtual Librarian at Monash University
href=http://www.lib.monash.edu.au/vl/index.htm . . . . .. .........
[115] href=http://www.w3.0rg/Amaya . . . . . .. ...

9

[116] Copyrighthref=http://www.u-picardie.fr/~cerin/ieee/section/computer.html 9

[117] Last modified: 30/1/200kref=http://www.u-picardie.fr/~cerin/ieee . . . .

9



