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Abstract. The paper deals with the problem of parallel external sorting in the context of
a form of heterogeneous clusters. Since most common sort algorithms assume high-speed
random access to all intermediate memory, they are unsuitable if the values to be sorted
don’t fit in main memory. This is the case for cluster computing platforms which are made
of standard, cheap and scarce components. For that class of computing ressources a good
use of 1/0 operations compatible with the requirements of load balancing and computa-
tional complexity are the key to success. We explore some techniques inherited from the
homogeneous and in-core cases to show how they can be deployed for clusters with pro-
cessor performances related by a multiplicative factor.
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1 Introduction and motivations

Parallel in-core sorting records whose keys come from a linearly ordered set has been studied
for many years. It is often said that 25 to 50 percent of all the work performed by computers
is being accomplished by sorting algorithms [1]. One reason among others for the 'popular-
ity’ of sorting is that sorted data are easier to manipulate than unordered data, for instance
a sequential search is much less costly when the data are sorted. Studies on parallel sort-
ing algorithms are also guided by fundamental questions about the properties of the inputs
and outputs in order to better capture new architectural paradigms. We should add here that
the quasi non predictable aspects of memory references and the sufficient amount of com-
munication involved in communication phases make it a good candidate to appreciate the
performance of clusters in a real situation.

The advent of parallel processing, in particular in the context of cluster computing! is of
particular interest with the available technology. A special class of non homogeneous clusters
is under concern in the paper. We mean clusters whose global performances are correlated by
a multiplicative factor. Alternatively, the aim is to sort when processors of the homogeneous
cluster are loaded differently - but the initial loads stay constant during the experiment.

This class of machines is of particular interest for two kinds of customers: first, for those
who cannot replace instantaneously whole the components of its cluster with a new processor
or disk generation but shall compose with old and new processors or disks and second for
people sharing cpu-time because the cluster is not a dedicated one. This paper deals with ex-
ternal sorting on this particular class of clusters and it is innovative since all the papers (to our
knowledge) about external parallel sorting algorithms that work (we mean “implemented”)
always consider the special case of homogeneous computing platforms.

! See the 1EEE task force on cluster computing on http://www.ieecetfcc.org



We focus on the ways to ensure good load balancing properties: if a processor is initially
loaded with n integers and n is related to its performance, then the processor must never deal
with more than k.n integers with the requirement that £ should be as low as possible.

Parallel sorting algorithms under the framework of out-of-core computation is not new.
The most valuable and recent publications to our opinion are [2], [3], [4], [5], [6] and since
our work is based on sampling techniques, we shall mention the 'ante-cluster’ reference [7]
which summarize all the work in the field prior to 1991. The objectives in these articles is
to minimize the round disk trip or the number of times we access the disks which is very
costly with current disk technology comparing to the memory to memory or cache access
time. References [8], [9], [10] are examples of techniques to deal efficiently with disks or
a presentation of sequential external sorting algorithms. From a model point of view, the
papers of Vitter and al. [11], [12], [13] offer the best views, to our opinion of parallel disks
systems.

The organization of the paper is along five sections not included this one. In section 2
we fix the additional vocabulary of external sorting and we recall the parallel disk model
(PDM) that we use. In section 3 we review some techniques based on sampling for sorting in
parallel in the case of in-core heterogeneous case for which we have obtained good results in
the past and serve as a foundation to this work. In section 4 we discuss step by step all the
necessary ingredients that we have to combine to drive performance and we introduce one
algorithm. In section 5 is about implementation issues and sketches experimental results.
Section 6 concludes the paper.

2 The parallel disk model and related out-of-core algorithms

Some point of terminology about storage is necessary. Note that the members of the Storage
Networking Industry Association have collaborated to create an on-line dictionary of storage
and storage networking terminology available at http://www.snia.orgin order to fix techni-
cal vocabulary?. From an algorithmic and model point of view, the papers of Vitter and al.
[11], [12], [13] offer the best view, to our opinion of parallel disks systems. The /0 model
measures the complexity of an algorithm not by the number of processing instruction but by
the number of 1/0 operations required. Vitter captures the main properties of disk systems
by the commonly used parallel disk model (PDM) through the following parameters:

N = problem size (in units of data items);

M = internal memory size (in units of data items);
B = block transfer size (in units of data items);

D = number of independent disk drives;

P = number of CPUs

where M < N, and 1 < DB < M/2 for practical reasons and to match existing systems. See
Figure 1 for a picture of PDM. In a single 1/0, each of the D disks can simultaneously transfer
a block of B contiguous data items. It is convenient to refer to the following shortcuts:

N M
m= —

"=Tg B

Ideally, algorithms should use linear space of storage i.e. O(N/B) = O(n) disk blocks of
storage. It can be shown that the 1/0 bound on sorting N data items with D > 1 disk is given

% See also http://hissa.nist.gov/dads/HTML/ for definitions about external sorting
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Fig. 1. The picture comes from [11]. Parallel disk model: (a) P = 1, in which the D disks are connected
to a common CPU; (b) P = D, in which each of the D disks is connected to a separate processor. This
last organization is realistic for a cluster system.

by:

N N n

Note that in practice the log,, n term is a small constant. The main theorem for sorting
under the framework of PDM is:

Theorem 1 ([13], [6]) The average and worst-case number of 1/Os required for sorting N =
nB data items using D disks is:

Sort(N) = © (%logm n) (1)

To get the bound of Equation 1, the techniques named distribution or merge based should
be devised. Those techniques access the D disks independently during parallel read opera-
tions, but in a striped manner during the parallel writes. Let us examine distribution sort [9]
which is very closed in spirit to the sampling algorithms we will examine in Section 3. Distri-
bution Sort is a recursive algorithm in which the inputs are partitioned by a set of S—1 splitters
into S buckets. The individual buckets are sorted recursively. They are logg(n) = log,, n levels
of recursion and the bucket sizes decreases by a factor of @(S) from one level of recursion to
the next. If each level of recursion uses @ (%) = O (%) 1/0s, distribution sort performs with
1/0 complexity of O (4 log,, n) which is optimal.

The key of the success is dependent of the splitters that must partition the bucket into
roughly equal sizes. As noted in [11], “It seems difficult to find S = ©(m) splitters using
©(n/D) 1/0s (the formation of the buckets must be done akin this bound to guarantee an
optimal algorithm) and guarantee that the bucket sizes are within a constant factor of one
another”.

But the closest algorithm in spirit to parallel sampling techniques in the sense of Section
3 for the D disk model is the work of DeWitt et al. [7] which is a randomized two steps
distribution sort algorithm. First they defines N buckets for an N-process program. Then,
each program read its initial segment of the data and send each element to the appropriate



bucket (other process). All elements received are written to disks as small sorted runs. Second,
each process merge-sorts its runs 3

The other type of strategy for external sorting is 'sorting by merging’ which is orthogonal
to the previous paradigm. The principle can by depict as follows: a) in the "run formation”
phase the n blocks of data are streamed into memory, one memory load at a time; each
memory load is sorted into a "single run”, which is then output to the disk(s). There are n/m
sorted runs. b) merging phase: the groups of R runs are merged together. During each merge,
1 block from each run resides in RAM. Some recent and further refinements 'in parallel’ of
this strategy are the paper of Rajasekaran [3] implemented by Pearson in [5].

In this paper we consider a mixture of the two strategies. We mean that according to some
vocabulary acceptance, we have developed a parallel distribution external sort algorithm or a
merge based one. To be precise, a (parallel) distribution phase (according to a specific strat-
egy) occurs followed by a merge phase which can be reduced mainly in applying a sequential
external sorting.

3 Related work on parallel in-core sorting - The case of heterogeneous
clusters

In this section we recall some well known strategies for in-core sorting in parallel. We focus
on a specific technique. It is now well understood that two generic approaches for in-core-
sorting in parallel are of particular interest and work in practice (implemented algorithms are
efficient on a variety of multiprocessor architectures):

MERGE-BASED: for this kind of algorithms, the different steps are summarized as follows:
(1) each processor contains a portion of the list to be sorted (2) sort the portions and
exchange them among all the processors (3) merge portions in one or many steps;

QUICKSORT-BASED: for this kind of algorithms, the different steps are summarized as follows:
(1) the unsorted list is partitioned into a number of progressively smaller sublists defined
by selected pivots (2) sort the sublists for which processors are responsible.

Only a MERGE-BASED algorithm is under concern in this paper, principally because the
bound on load balancing for heterogeneous clusters is easier to obtain and experimental re-
sults are good. We specifically focus on one step communication algorithms because they
match the requirement of limited number of long messages of message passing programming
languages in order to get performances. We guess that our programs should perform well
on clusters with a typical network such as Fast Ethernet. Thus we need a limited number of
communication steps in order to avoid 'to be slowdown' by the bandwith of the network.
To summarize, one step merge-based algorithms have low communication cost because they
move each element at most once (and at the 'right place’) and they ensure regular commu-
nication requirements invariant with respect to the input distribution as we will see later in
the paper. Their main drawback is that they have poor load balancing if we don’t care about
it: it is difficult to derive a bound to partition data into sublists of 'equal sizes'.

3.1 Regular sampling: an efficient technique for in-core sorting

“Sorting by regular sampling” (PSRS) [14-18]. is an efficient technique for in-core sorting. Itis
based on the following ideas that refine the merge based approach we have cited previously:

3 A run is a sequence of records that are in the correct relative order.



initially, each processor contains a portion of the list to be sorted. Then a 'merge based’
approach is set up in order to sort the portions and exchange them among all the processors
and merged. The merging of the sorted portions in a merge based approach can be achieved
either in one step or many steps. References [19,17, 16, 20] belong to the category of one step
merge based algorithms; references [21-28] belong to multi steps merge-based algorithms.

We assume that in the remainder of the paper n denotes the input size and p the processor
number. The implementation of PSRS is as follows:

Step 1: Perform alocal sort; each processor selects p samples which are gathered onto process
Zer0;

Step 2: Perform a local sort of p? samples; pick p — 1 regular pivots k from the sorted p?
samples; (pivots are picked at ip + p/2, (1 < i < (p — 1) intervals); broadcast these pivot
values to all the processors from processor zero.

Step 3: Each processor produces p partitions of its local block using the p — 1 pivots; each
processor sends its partition i (marked by pivots k; and k;; 1) to processor i;

Step 4: Perform a merge of all the received partitions;

In order to observe why the algorithm is correct we shall note that first, in sampling the
locally sorted chunks of all the processors and not just a subset, the entire data is represented
and second that in sampling after the first local sort, the order information of the data is
captured.

Theoretically speaking, it can be shown that the computational cost of PSRS matches the
optimal O(n/plogn) bound. To obtain this result we must ensure that all the data are unique.
In the case of no duplicates, PSRS guarantees to balance the work within a factor of two of
optimal in theory, regardless of the value distribution. In practice we observe a few percent
of optimal. Authors in [17] addressed the effect of duplicate keys and they show that, in
practice, it is not a concern. Further analysis in the paper shows that the presence of duplicates
increases the upper bound on load balancing linearly: if d represents the key with the most
number of duplicates and U = 2.n/p the upper bound, then the upper bound with d duplicates
becomes U + d. Practically speaking, the problem is to find the value of d such that the 2.n/p
term does not dominate the d term; asymptotically speaking it is about O(n/p) times.

3.2 PSRS implementation issues

Until recently processors that sort in parallel according to the PSRS philosophy began by
sequentially sorting their portions in the first phase of the algorithm and than they use regular
sampling to select pivots. Even Shi and Schaeffer, the inventors of the PSRS technique in the
original paper [16] said that “It appears to be a difficult problem to find pivots that partition
the data to be sorted into ordered subsets of equal size without sorting the data first”. In
[29] authors showed that the notion of quantiles can be used, in the homogeneous case,
to partition the inputs in chunks of almost equal sizes and lead to an algorithm that is less
memory consuming than the original PSRS with equal time performances.

3.3 The oversampling technique

Other candidates than PSRS to load balance the work in sorting algorithms are possible. The
Li and Sevcik algorithm [20] can potentially handle nodes that do not make uniform progress.
The key ideas of Li and Sevcik [20] for the homogeneous case is to replace the initial sorting
step that is used for the selection of pivots that partition the input into equal size chunks by
a 'sufficient number’ of random pivots that also have to partition the input into chunks of



approximatively equal sizes. The key technical discussion is about the number of pivots. The
other canonical steps after this initial step of the PSRS technique is identical in the Li and
Sevcik algorithm.

However in [20], authors recognize that “the sublist* expansion decreases as s increases.
However, average sublist expansion for p > 64 is still around 1.3 even when s is high as 128"
(s is a parameter related to the number of pivots and p is the processor number). This means
that some processors receive more or less 25% of work in supplement to the mean: it is quite
big and a serious handicap against PSRS. We know by experience that PSRS is much better
than 257% and it is about a few percents, below two percents. So, before starting our work we
have a negative “a priori” in using the work of Li and Sevcik for sorting on non homogeneous
network and we hope that a “flavor like PSRS algorithm” could preserve the good properties
of PSRS in sorting with non homogeneous processors.

It should be notice at this point that Li and Sevcik gave some pragmatics in order to
calibrate the two main parameters of their model. Moreover Li and Sevcik in [20] shows
their experimental results on KSR1 machines and they also provides experimental results
for the PSRS algorithm but not for the KSR1 but for TC-2000 and iPSC/860 machines. The
comparisons are difficult to obtain. Note also that all the systems are not clusters made with
the current technology and the description pre-suppose a global memory space.

At least, one can remark that the problem of sorting with duplicates is not explored in
the work of Li and Sevcik [20]. Tt is a disadvantage against PSRS which is very stable with
duplicates as we have seen above. We can consider that PSRS is more general than the work
of Li and Sevcik. The main advantage of Li and Sevcik algorithm is that it bypasses the initial
sorting step and preserve only one sequential sort comparing to the PSRS technique.

4 Our framework for out-of-core sorting

The two previous techniques (PSRS and oversampling) has been modified in [29] and [31]
for in core sorting with processors running at different speeds. The lowest common multiple
(lem for short) is necessary to express some properties in a mathematical way and for shorter
explanations. In another words, we require that the input size is as follows:

n =k * perf[0] x lem(perf,p) + ... + k * per f[p — 1] * lem(per f, p) (2)

where k is a constant in N, perf is an array of size p of integers that denotes the relative
performances of the p processors in the machine and lem(per f, p) is the least common multiple
of the p integers stored in array perf. For instance with k = 1, perf = {8,5,3,1} (we have one
processor running 8 times faster than the slower processor, one processor running 5 times
faster, one processor running 3 times faster in the cluster) we have thatlem({8,5,3,1},4) = 120
and thus n = 120+ 3% 120+ 5% 120+8 % 120 = 2040. Then, in the heterogeneous case, we will be
able to assign easily to each processor an amount of data that will be inversely proportional to
its speed. Otherwise, if n cannot be expressed in the above form, techniques as in [32] could
be used. Note also that if the perf buffer contains only one values, we get the homogeneous
case. Our code is implemented in such a way that we have to modify only the code declaration
for the perf array to experiment (simulate) with different situations.

Our strategy, in developing an out-of-core algorithm, is a 'minimal effort strategy’ con-
sisting in the reuse, as much as possible, of the general framework of the heterogeneous PSRS
in-core algorithm.

4 Remind you that the sublist expansion is defined as the ratio of the maximum sublist size to the mean
sublist size in [30]



Thus, we follow the four canonical phases of PSRS. The first step is a sequential sort.
We implement it with a Polyphase Merge Sort [9]. Polyphase merging uses 2m files to get
a 2m — 1 way merge without a separate redistribution of runs after every pass. It thus has
the advantages of an unbalanced sort without the disadvantage of redistribution. Polyphase
merge sort is known to be efficient and matches the bound on sequential sorting. The whole
algorithm is now depicted as follows:

Algorithm 1 (A PSRS scheme for external sorting on heterogeneous clusters)

Preconditions and initial configuration: we deal with a cluster of p = 2 heterogeneous nodes.
The heterogeneous notion is coded in the array ’perf’ of size p of integers that denotes
the relative performances of the p nodes in the machine. The input size is n and n verifies
Equation 2. Initially, disk (or processor) i has!;, a portion of size (n/(X¥_, per f[i])) x per f[i]
of the unsorted list .

Step 1: (sequential sorting) in using polyphase merge sort we get 2.1;(1 + [log,, ;]) 10 opera-
tions on each processor (since we have one disk attached per processor).

Step 2: (selecting pivots) a sample of candidates are randomly picked from the list. Each pro-
cessor i picks L = (p — 1) x per f[i] candidates and passe them to a designated processor.
This step requires I, 10 operations that is very inferior, in practice, to the 10 operations of
step 1. These candidates are sorted and then p— 1 pivots are selected by taking (in a 'reg-
ular way’) st" 2.st" ... (p—1)*" candidates from the sample. Equipped with Equation 2, it

can be checked that s = k % | * perfi] « lem(per ], p)

J . The selected pivots dy,ds,- -, dy,_y

are made available to all the processors; All these computations can be done in-core since
the number of pivots is very small in practice (it is not an order of the internal memory
size);

Step 3: (partitioning) since the pivots have been sorted (and fit in the main memory), each
processor performs binary partitioning on its local portion. Processor i decomposes I;
according to the pivots. It produces p sublists (files) per processor. Since there are ) =
(n/(ZF_,perf[i])) = perf[i] data on processor i, there is no more than 2 x Q/B IOs per
processor to accomplish the work in this step (we count read and write of data).

Step 4: (redistribution of the sublists): we form messages in order that the message sizes can
fit in the local and distant memory. The size is also a multiple of the block size B. If we
have an hardware which is able to transfer data from disk to disk, it will be more efficient.
The number of 10s is no more than 2 x l;/B (we also count read (sender side) and write
(receiver side) of data).

Step 5: (final merge) each processor has in its local disk the p final portions (files) that can
be merged with an external merged algorithm for mono-processor system. We re-use the
mergeSort () procedure of the polymerge sort algorithm used in step 1. The number of 10
operations is lower than 2.1;(1 + [log,, l;]). Note that the constant 2 here stands for the
bound of data given by the 'PSRS Theorem’ that guarantee that in the last step of the
algorithm, no processor has to deal with more than two times the initial amount of data.
This theorem is still true for the heterogeneous case (see [29]) and we apply it.

As we can see, the problem has been decomposed in such a way that is requires only basic
blocks for the PDM with D = 1 and we use disks independently. The number of selected
pivots is a modification of the result in [20, 29] and it ensures that the load is well balanced
across the heterogeneous processors. Concerning processor i with the amount of initial data
of [;, the optimal bound of @ (IE log,, IE) for parallel 10 operations is also obtained with the
algorithm. Remember that /; = n/p in the homogeneous case.

Let us give a sketch of the proof about the load balancing bound of 2. Our strategy to get the
same bound than the PSRS algorithm is to respect the condition required by the PSRS...and



then we apply the theorem. Basically, we have to pay attention to the number of pivots that
we choose after the first initial sort. Since the input verifies Equation 2 we can pick pivots,
in a regular way that is proportional both to the least common multiple of the performance
and to the performance array itself. From a programming point of view, the code that each
processor execute to select pivots is the following (the blocksize variable is the number of
integers local to a processor - note that the value of i is the same on all processors due to
Equation 2):

i = (int) (blocksize / (performance[mypid] #* nprocs)) - 1;
off =i+ 1; k = 0;
while (i <= (blocksize - off - 1)) {
fseek (MYfpIN, (long) (i * sizeof (MPI_INT)), SEEK_SET);
fread(&pivot[k], sizeof (MPI_INT), 1, MYfpIN);
k++;
i += off;

}

The consequence is that we pick a number of pivots that is proportional to the performance
of each processor but we ensure that between any two consecutive pivots there is the same
number of (sorted) elements. This is the main property of the PSRS algorithm that we have
adapted here. Our framework is a generalization of the PSRS algorithm.

5 Implementation issues

Our first implementation has been tuned in MPI whereas our previous codes were developed
under the framework of BSP [33-35]. Note that the authors in [36] propose a paradigm to
mix BSP notions and external memory computation. They introduce a short discussion about
sorting (column sort [25] and merge sort [24]) but no experimental results are provided.

Our codes are freely available at http://www.laria.u-picardie.fr/"cerin/=paladin. Eight
different benchmarks corresponding to eight different inputs are available.

Concerning the technical question about the way to fill the perf array we decided to pro-
ceed according to the following protocol: for an input size of N integers on a p > 1 processors
machine, we first execute the sequential external sort used in the parallel code on N/P data.
We guessed that since the external sort performs both in and out operations and since with
an homogeneous cluster each processor shall receive N/P data, external sorting is a good in-
dicator of the relative performances. The ratios to the slower execution time allow us to fill
the perf array. We will see later, through experiments, the pertinence of the approach.

On Table 1 we have a synthetic view of our small cluster. The /work partition is used as
the storage area and it is an SCSI disk drive.

Table 1: Configuration: 4 Alpha 21164 EV 56, 533Mhz - Fast

Ethernet
Node Cache [3/1L.2/L1 Disk Kernel /work size
helmvige 4Mo/96Ko/8Ko 4Go SCSI Linux 2.2.13-0.9  1Go
grimgerde 4Mo/96Ko/8Ko 4Go SCSI Linux 2.2.13-0.9  4Go
siegrune 4Mo/96Ko/8Ko 4Go SCSI Linux 2.2.5-16 4Go

rossweisse 2Mo0/94Ko/8Ko 8Go SCSI Linux 2.2.5-16 4Go




On Table 2 we show the results for the sequential sort (polyphase merge sort) to fill
the perf array. Note that an input size of 33554432 integers corresponds to 33554432 % 4 =
134217728 bytes, that is to say 134Mb. We conclude that helmvige and grimgerde are 4 times
faster than siegrune and rossweisse. This conclusion contradicts what we have on Table 1: in
fact we have forked processes on siegrune and rossweisse to obtain loaded processors. We
decide to configure our perf vector with {1,1,4,4} values and we keep, in the remainder of
our experiments, our initial loads!

Table 2: External sorting on architecture depicted on Table 1

Input size Exe. Time (s) Deviation[[Input size Exe. Time (s) Deviation
Helmvige Rossweisse
2097152 22.92146 0.45283 || 2097152 95.40269 1.09854
4194304 51.17832 1.99283 || 4194304 204.66360 4.59815
8388608 111.40898 1.48268 || 8388608 428.42470 3.35943
16777216 235.74163 2.67709 ||16777216 951.22738 77.4042
33554432 492.02380 9.74561 |[33554432 1998.72261 152.8972
Siegrune Grimgerde
2097152 88.94593 1.85451 || 2097152  24.88658 10.20334
4194304 188.71978  3.41997 || 4194304 44.55758 0.86754
8388608 409.09711 36.13593 || 8388608 96.29102  1.46595
16777216 909.34783 81.67 ||16777216 212.82059 2.54191
33554432 1910.8261 160.60827|33554432 443.86681 10.12

Execution time metrics for benchmark 0
Algorithm: polyphase merge sort

With a performance array containing only 1 values (we configure our machine as an homo-
geneous cluster) we are able to find (with fast-Ethernet) experimental results that are worst
than the sequential execution. For instance, with packet size of 8 integers, we need 133.61
seconds to sort 2097152 (see also Table 2). But, with message size of 8 K integers we sort in
32.6s the 2097152 integers. It seems that 8K gives the best time performance.

On Table 3 we have the experimental results for sorting with disks 224 = 16777216 integers
on our 4 processors cluster. We set the performance vector either with {1,1,1,1} or with
{1,1,4,4}. We have also mixed two communication libraries: Fast-Ethernet and Myrinet.

Table 3: External Sorting on Cluster (see. Table 1), message
size : 32Kb, 15 intermediate files, 30 experiments

Input Size Exe Time (s) Deviation Mean Max  S(max)
Performance : {1,1,1,1}; Fast-Ethernet
16777216 303.94 9.173 4193043.8 4204494 1.00273
Performance : {1,1,4,4}; Fast-Ethernet
16777220 155.41 3.645 6816502.47342910 1.094
Performance : {1,1,4,4} ; Myrinet
16777220 155.43 3.465 6293368.57341545 1.093

Execution time metrics for benchmark 0
Algorithm: external PSRS



The six columns of Table 3 correspond to (from left to right): problem size (number of
integers), mean execution time in seconds, standard deviation, mean of the size of partitions
in the last step of the algorithm (the optimal for the case where the performance array contains
only one values is: 4194304), maximal partition size, the sublist expansion metric (the ratio
between column 5 and value 4194304 in the case of performance buffer filled with 1 values).

In any case, we note that the sublist expansion metric is very close to 1. So, we master
the load very efficiently. However, regarding to the experiment with the performance buffer
filled with 1 values, we find that the execution time is greater than the sequential execution
time (235s) to sort the same amount of data on Helmvige. It is better than the sequential
execution time on Siegrune (909s). In this case, the gain with four processors is 3.

Since the least common multiple of {1,1,4,4} is 4, we are able to choose the size of
16777220 as the problem size for the two last lines of Table 3. These two lines correspond
to an experiment with fast-Ethernet and the other one with Myrinet. The optimal size on
the two slowest processors (Siegrune and Rossweisse) is 1677722 whereas the optimal size
on the two fastest processors (Helmvige and Grimgerde) is 6710888 integers. On Table 3, the
column entitled 'Mean’ of the heterogeneous cases gives the mean sizes handled on the two
fastest processors and the column entitle S(Max) gives the sublist expansion metric for the
two fastest processors. We also note a value close to the optimal which is once again 1.

Comparing to the most favorable sequential execution time (212s) we get a gain of 1.37; and
comparing to the most unfavorable sequential execution time (951s) we get againof 6.13...0on
a 4 processors machine. There is no mystery about that since the cluster is a heterogeneous
one. The results on Table 3 validate our approaches since we note an improvement of the
execution time comparing to the "homogeneous’ configuration.

At least we note that the executions with Myrinet as the communication layer does not
improve performance. The explanations are the following: first the application does not com-
municate so much (when data move, they go to the right place) and second, the execution
time does not comprise neither the initial distribution of data (since they are generated on a
sole node) nor the gather time. The results was expected and confirm that our sort performs
well when the communication layer is not 'the best we can use’.

6 Conclusion

In this paper we have introduced our approach to tackle the problem of external sorting on
non homogeneous clusters. The algorithm that we describe combines very good properties
for load balancing. The algorithm is an adaptation of a known technique called PRSR (Parallel
Sorting by Regular Sampling).

To our knowledge, little work has been performed about external sorting on non homo-
geneous network. If we try to reuse the main results [19,17,16, 20] about sorting on homo-
geneous clusters as a general strategy, the main difficulty is to show that it will lead to good
properties for load balancing, for execution time and also that the underlying algorithm is
suitable for a concrete implementation. We are not yet convinced that other technique than
the sampling technique will have so much properties. It is still challenging to explore in deep
quicksort based approaches and randomized parallel sorting algorithms (external and not) in
the context of non homogeneous clusters. We think that our approach is promising in many
ways.

Today, accessing a disk is an order of magnitude greater than accessing RAM. Thus, 10
intensive algorithms are designed to minimize the number of times we access disks. If we
guess first that in a very near future the gap between accessing main memory and accessing
cache stay identical to nowadays performance and second that disks will be accessed much



faster than today by the use of an appropriate technology (InfiniBand or RapidIO or bigger
caches) making a memory access time 'comparable’ to a disk access time then the design
of cache conscious algorithms will play a central role. For the case of sorting, the papers
[37] and [38] tackle the problems. However, no one of the two papers consider the case of
heterogeneous platforms, in particular heterogeneous caches.
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