
Efficient Data-Structures and Parallel Algorithms
for Association Rules Discovery

Christophe Cérin Michel Koskas
Jean-Sébatien Gay

Gaël Le Mahec
Université de Picardie Jules Verne Université de Picardie Jules Verne

LaRIA, Bat Curi, 5 rue du moulin neuf LaMFA/CNRS UMR 6140, 33 rue St Leu
F-80039 Amiens cedex 1- France F-80039 Amiens cedex 1- France

cerin@laria.u-picardie.fr koskas@laria.u-picardie.fr

Abstract

Discovering patterns or frequent episodes in transactions
is an important problem in data-mining for the purpose of
infering deductive rules from them. Because of the huge
size of the data to deal with, parallel algorithms have been
designed for reducing both the execution time and the num-
ber of repeated passes over the database in order to reduce,
as much as possible, I/O overheads. In this paper, we in-
troduce new approaches for the implementation of two ba-
sic algorithms for association rules discovery (namely Apri-
ori and Eclat). Our approaches combine efficient data struc-
tures to code different key information (line indexes, candi-
dates) and we exhibit how to introduce parallelism for pro-
cessing such data-structures.

Keywords: Datamining, Association rules discovery, Radix
Trees and bit vectors, Apriori, Eclat and Count Distribution
algorithms.

1. Introduction

The process of automatic information inferencing is
commonly known as Knowledge Discovery and Datamin-
ing (KDD). We consider in this paper the problem of
isolating association rules. The problem can be formal-
ized [ZPL97] as follows. Let I = {i1, · · · , im} be a
set of m distinct items. A transaction is any subset of
I and each transaction T in a database D of transac-
tions has a unique identifier. A transaction is a p-uple
< TID, i1, · · · , ik > and we call i1, · · · , ik an item-
set or a k-itemset.

An itemset is said to have a support of s if s% of the
transactions in D contains the itemset. An association rule
is an expression of the form A ⇒ B where A, B ⊂ I

and A
⋂

B = ∅. The confidence of the association rule is
simply the conditional probability that a transaction con-
tains B, knowing that it contains A. It is computed as
support(A

⋂

B)/support(A).
Given m items, there are potentially 2m itemsets whose

support is above a given support. Enumerating all itemsets
is thus not realistic. However, for practical cases, only a
small fraction of the whole space of itemsets is above a
given support requiring special attention to reduce mem-
ory and I/O overheads. Efficient parallel methods are intro-
duced in this paper.

The paper is organized in five sections. In section 2 we
introduce basic sequential and parallel frameworks that are
widely used in the literature in order to fix the problems.
In section 3 we introduce Radix Trees data structures and
their potential use in the process of association rules discov-
ery. Section 4 proposes a novel parallel algorithm that uses
Radix Trees for the process of discovering and for the pro-
cess of implementing operation on Radix Trees. Section 5
concludes the paper.

2. Association Mining algorithms

2.1. Sequential algorithm: Apriori

The “Apriori” sequential algorithm forms the core
[AIS93] of all parallel [Zak99, JA] association rules dis-
covery algorithms. It uses the fact that a subset of frequent
itemset is also frequent, then only candidates found "previ-
ously" are used to generate a new candidate set.

This algorithm has three main steps, iterated while new
candidates are generated:

• Construction of the set of new candidates;

• Support evaluation for each new candidate;



• Pruning of candidates that have not a sufficient support
regarding to a minimum support arbitrarily chosen.

The complete sequential algorithm is as follows:

The Apriori algorithm
L1 = { frequent 1-itemset};
for (k = 2; Lk−1 6= ∅; k + +)

Ck = Set of new Candidates;
for all transaction t ∈ D

for all k-subsets s of t
if (s ∈ Ck) s.count++;

Lk = {c ∈ Ck | c.count ≥ minimum support};
Set of all frequent itemsets =

⋃

k
Lk;

Note that in this algorithm, the whole database is read
at each iteration step (see the for all transaction
t ∈ D instruction above). Consequently, the performance
could not be high with such framework.

2.2. Parallel algorithms

2.2.1. Count Distribution The Count Distribution paral-
lel algorithm is simply a parallel version of Apriori algo-
rithm. Each processor has a copy of the database and each
processor computes "local" candidates, evaluates the "local"
supports and transmits them to a dedicated processor to per-
form the prefix sum of all of them to obtain the global sup-
port of the itemset. Since only the values of supports have to
be transmitted to a dedicated processor, the algorithm min-
imizes communication.

The performance of Apriori or Count Distribution al-
gorithms is limited, even in parallel, for various reasons.
First of all, it is required to scan the database at each itera-
tion. Furthermore they enumerate each candidate itemset as
many time as we find it in the database even if the transac-
tions are identical.

Second, the transaction database is considered to have an
horizontal layout: a transaction has an identifier followed by
the items it contains. It appears that this data organization is
not suited for the support evaluation phase of the algorithm.
Searching a k-subset in a transaction of size s implies to

test the

(

s
k

)

subsets of the transaction. Algorithms using

vertical transformations of the database suppress the prob-
lem. These types of algorithmes are of preferable use as we
will see in the next subsection.

2.2.2. The Eclat algorithm An advantage of “Eclat”
[ZPL97] faced to “Count Distribution” is that it scans
the database only two times. A first time to build the
2-itemsets and a second time to transform it into a verti-
cal form. Eclat algorithm has three steps:

• The initialization phase: construction of the global
counts for the frequent 2-itemsets.

• The transformation phase: partitionning of the frequent
2-itemsets and scheduling of partitions over the pro-
cessors. Vertical transformation of the database.

• The Asynchronous phase: construction of the frequent
k-itemsets.

A formal presentation of the algorithm is as follows:

The Eclat algorithm

Initialisation phase:

Scan local database partition
Compute local counts for all 2-itemsets
Construct global L2 count

Transformation phase :

Partition L2 into equivalence classes
Schedule L2 over the set of processors P
Transform local database into vertical form
Transmit relevant tid-lists to other processors

Asynchronous Phase :

for each equivalence class E2 in local L2

ComputeFrequent(E2)

Final Reduction Phase :

Aggregate Results and Output Associations

This algorithm uses an equivalence class partitionning
schema of the database. The equivalence class is based on
common prefix assuming that itemsets are lexicographically
sorted. For instance AB, AC, AD are in the same equiva-
lence SA class because of the common prefix A.

Then candidate itemsets can be generated by joining the
members of the same equivalence class. For our example,
the next candidates of length 3, namely C3 are ABC and
ABD. We can observe that itemsets produced by an equiva-
lence class are always different of those produced by a dif-
ferent class, then the equivalence partitioning scheme can
be used to schedule the work over the processors. This
method is used in other algorithms such as Candidate Dis-
tribution and will be used by ours in a different way (using
Radix Trees).

The transformation phase is known to be the most ex-
pensive step of the algorithm. In fact, the processors have to
broadcast to all other processors the local list correspond-
ing to transaction identifier, for the itemsets.

3. Radix Trees and their use in association
mining

3.1. Introduction

In combinatorics, Radix Trees are used to store sets of
strings over an alphabet. In our case, the binary alphabet



is used because we handle integers representing indexes of
transactions. There are at least two ways to tackle Radix
Trees. It depends on the kind of strings we have. If we use
variable length strings, then every nodes in the tree can store
a word (internal nodes and external nodes or leaves - see
Figure 1). Otherwise if we use fixed length strings, a node
stores a word if and only if it is a leaf (see Figure 1).

0

0

0 1

1

0

0

1

1

fixed length strings

1

0

0

1

1

variable length strings

Stored values : 0, 1, 4 and 7.

Figure 1. Different representations of Radix
Trees

The bottom tree on Figure 1 has two sorts of nodes: black
nodes and white nodes. The white color means that no word
is stored in a node of this color. Conversely, a black node
means that a word is stored in the node. For instance, if we
are looking for the word 10 in a Radix Tree with variable
length strings, we follow the right edge (1), then we follow
the left edge (0) and we check the color of the node. If the
color is white, then the word doesn’t exist in the tree, other-
wise the color is black (see Figure 1) by construction.

In a Radix Tree with fixed length strings, we don’t need
any colour because if a word doesn’t exist then there is no
path for it in the tree. We do prefer to use such structure be-
cause it is more convenient for implementing tree manage-
ment operations efficiently and easily.

Radix Trees have the property to represent sets of string
in a sorted way. Their tree structure makes the set opera-
tions (union, intersection) easier to parallelize. In the oper-
ations we consider now (see Figure 2), the size of data is
constant and known.

0

0

0 1

1

1

1

⋃

0

0

0

1

0

0

1

1

−→
0

0

0 1

1

0

0

1

1

Union of Radix Tree.

0

0

0 1

1

1

1

⋂

0

0

0

1

0

0

1

1

−→
0

0

0

1

1

1

Intersection of Radix Tree.

Figure 2. Basic useful operations on Radix
Trees

3.2. Operations on Radix Trees

The union of two Radix Trees representing sets is the
Radix Tree representing the union of the sets. The intersec-
tion of two Radix trees representing sets is the Radix Tree
representing the intersection of the sets.

A possible implementation of a tree structure consists
in using nodes that contain pointers on successors. This
method has some drawbacks, in particular, it uses a lot of
memory and it limits the principe of spatial locality (the
"next" element to handle is located in memory "near" the
current element).

Note also that multithreading operations of Figure 2 is
straitforward. For the intersect operation for instance, the
principle is as follows. We consider the two roots. If they
have two left children, then we add a left child to the new
tree and we start a new thread in order to build the "left
part" of the intersection. The same construction is made for
the right child.

Some technical problems occur with such algorithm.
First of all, since we deal with tree height of, say 40 e.g. we
handle set of 240 elements, the number of created threads
may overpass the physical limit of the operating system.
Second, unbalanced computation may occur. For instance,
assume that we decide to fix the maximal number of active
threads to 2 and we have no thread scheduling mechanism.
Starting from the root, we decide to start one thread to re-
alize the intersection for the left child and we also start one
thread for realizing the intersection on the right child. If the



left child has many more internal nodes than the right child,
the computation will not terminate at the same time and the
first terminating thread could be reused for the computation
on the left child. So we need also efficient scheduling poli-
cies for thread management.

3.3. Radix Trees storage

Due to the huge quantity of data to deal with in practical
applications, we have to find methods to store them on disk.
Since databases are too important to fit in main memory, we
need to balance in and out-of-core computations.

In [Kos04] a method has been introduced and imple-
mented successfully. This method represents the Radix Tree
by bit vectors stored on disk.

The solution adopted in [Kos04] to implement Radix
trees on disk is to store them on an organization with multi-
ple files.

We choose a file organization with few files by direc-
tory in order to avoid costly file system operations and not
too large files to operate fast database updates. Indeed, too
many files in the same directory could slowdown the appli-
cation and using too large files cause poor response time for
updates. We use a directory tree structure containing small
files quickly updatable.

In [Kos04], the items of the database are indexed by stor-
ing their identifier in a Radix Tree stored in a directory tree
structure where each directory contains three files.

• A file to store the thesaurus (database item lexicon) of
the items and the offset of their bit vector on the sec-
ond file (1).

• A file to store the bit vectors of the identifiers for level
n (2).

• A file to store a permutation of the words giving the
lexicographical order (3).

To store the Radix Trees on disk, we are using a bit vec-
tor of size n per word (file 2) (Radix Trees are using an al-
phabet of size 2n). Each prefix designates the next directory
containing the path to the database’s line of the word. An in-
ternal directory may contain 2n subdirectories.

Let us call k the height of the bit vector hierarchy of Fig-
ure 4. Assume the indexes of a found line are i0, · · · , ik−1

then the corresponding line is ik−1 + 2n[ik−2 + 2n[· · · +
2n[i1 + 2ni0] · · · ]].

The permutation file stores a permutation p from [0, t−1]
onto itself where t is the cardinality of the thesaurus. The i-
th word in lexicographical order is the p[i]-th word of the
thesaurus. Thus, the thesaurus has not to be maintained in
lexicographical order which eases the addition of words be-
cause only the permutation file has to be rewritten. A search

Thesaurus Offset in
2nd file

Permutation

W1
offset

W2
offset

...

W1

W2

file (1)file (3)

file (2)

Figure 3. Radix Trees hierarchical represen-
tation

in the permutation file is equivalent to a search in a sorted ar-
ray, so the complexity is in O(log(n)) (where n is the num-
ber of words in the directory thesaurus).

In order to search the lines where an item appears, we
consult the permutation file (file 3). This gives us the posi-
tion of the word in the thesaurus (file 1) where we can read
its bit vector offset in the file (2). From here, we can de-
duce the next directories to visit.

root
directory

a directory
of level 1

a directory
of level 2

a directory
of final
level

file (2)

file (2)

file (2)

file (2)

a directory
of level 1 file (2)

Figure 4. Radix Trees hierarchical represen-
tation

The representation of integer set with Radix Trees al-
lows us to save space and to implement efficient searches.
Indeed, the common prefixes of different integers are stored
only once. Furthermore, each value is inserted and found
in constant time (depending of the integer’s representation



size), unlike a list structure (linear or logarithmic time de-
pending on the list organization).

Radix Trees are currently used successfully in [Kos04]
for building a sequential SQL service as it is defined for
database systems [UW02]. The key for efficient parallel im-
plementations of tree management operations (union, inter-
sect) is that computation can be achieved concurrently on
each node at a same level in the Radix Tree whose con-
crete implementation follows Figure 4. We also use Radix
Tree structures in the context of association rules discov-
ery, in particular in the context of candidate generation.

4. Radix Tree for parallel association rules
discovery algorithms

4.1. Candidates representation

The aim of this section is to show that using Radix Tree
for association rules discovery algorithm can improve per-
formance of the whole discovery process. Based on our ex-
perience [Kos04] with the use of Radix Trees for the imple-
mentation of an SQL service, performance will be improved
significantly. First results with our codes implementing a
SQL service based partially on Radix Trees demonstrate
sigificant improvements (by a factor at least 5) when we ex-
periment with the TPC-C (Transaction Processing Perfor-
mance Council, benchmark C) and comparing to commer-
cial SQL services.

In [Kos04], Radix Trees are used to code the line indexes
of each item in a database. For instance, consider the Acci-
dent table of Figure 5. It has several columns, and each of
them is treated separately: for each of these columns, one
builds its thesaurus and for each word of the thesaurus we
build the set of line indexes it occurs at.

Client Id Max Amount Seller Kind of Cont. Min Ref. Acc. Id

1

2

3

4

5

6

7

House

Car

House

House

Car

Family

House

1

2

1

1

2

3

4

Contract Date

12−21−1992

02−24−2000

11−28−1996

05−30−2001

07−17−1992

04−13−1998

09−11−1999

450,000

230,000

780,000

830,000

12,000

27,500

1,000,000

2

17

11

2

3

2

2

900

11,000

2,400

1,350

830

912

100

Figure 5. The Accident table.

For instance, the column “Kind of Contract”’s thesaurus
is House, Car, Family and the sets of line indexes
are: House occurs at indexes 1, 3, 4 and 7, Car occurs at
indexes 2 and 5 and Family occurs at index 6.

Now, suppose that we have the following query: find all
items with the property "Kind of Contract = House" and

"Max Amount > 500 000". In order to solve the query, we
intersect the corresponding thesaurus Radix Trees. Here we
find {4, 7}.

The intersection can be implemented efficiently because
the computational cost is bounded by the number of bits in
the representation of integers (in fact we use fixed size al-
phabet) and not by the number of items in the two sets.

Let us now consider the use of Radix Trees in our con-
text of Association Rules Discovery. The first idea is to put
the list of candidates identifier in Radix trees stored locally
on each node. For instance, if we have four items A, B, C,
D, we start with the complete binary tree as depicted on Fig-
ure 6.

A B C D

t1 t2 t4 t1 t4

Figure 6. Candidate representation

By adding for each item (A, B, C, D) a Radix Tree that
contains the line indexes of transaction identifier (we call
such Radix Tree a transaction tree), the support evaluation
phase consists now in the intersection between transaction
trees then by counting the number of leaves. We note here
that building the tree of candidates and all the transaction
identifier lists can be done in one scan of the database.

The candidates k-itemsets are then represented in the
same way. For instance, if the path in the Radix Tree to the
item A is 00 and the path to B is 01, the path to AB will be
0001.

Note also that the cost of computing supports is given by
a very simple intersection operation between trees. More-
over, as we make progress in the computation, we can store
on local disks the partial supports in order to retrieve it effi-
ciently, in case of a reuse.

4.2. Candidates generation

The new candidates for association mining rules discov-
ery can be generated by joining the members of a same



B C D

0

0 1

1

10

AB AC AD

0

1

1

10

A

The equivalence
class based on
prefix A.

Figure 7. Equivalence class on Radix Tree

equivalence class. By coding itemset in Radix Trees as de-
scribed on Figure 6, all the members of an equivalence class
are in the subtree of the itemset defining the class. Indeed,
the itemset that defines a class is the prefix of all the mem-
bers of this class.

In a Radix Tree where all elements of a subtree have the
same prefix, equivalence classes can be viewed as subtrees
of it. For instance, the equivalence class SA is the subtree
rooted in A (see Figure 7).

Now, in order to generate the next candidate sets, we
have to join the members of the equivalences classes. Ac-
cording to our join operation, Radix Tree implementation
of the itemsets consists in rooting the initial subtree on each
leaf, considering only leaves obtained by omitting the left
neighbours ot the current itemset (see Figure 8).

A B C D

AA AB AC AD CA CB CC CD

Figure 8. Candidates generation

For instance, to obtain the ABC candidate, we join AB
and AC with a Radix Tree rooting operation. To get all can-
didate sets, we just have to proceed the rooting of subtrees
(with elimination of left nodes) on each leaf. In our case
ABC = AB ∪ AC, ABD = AB ∪ AD, ACD = AC
∪ CD etc. Unfolding this algorithms leads to the tree pre-
sented on Figure 9.

Moreover, by performing the intersection of the identi-
fier trees list in parallel we obtain the support of the new
candidate. As with the Count Distribution Algorithm, the

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD

Figure 9. Candidate representation (final)

only communication between processors consists in broad-
casting local supports to evaluate the global support.

But before obtaining the distant supports of a candidate
set, we can eliminate from the local tree those candidate
that don’t appear in the local database (i.e supports equal
to 0 for instance). We know that if AB don’t appear in the
base, ABC cannot appear later. We can also overlap the be-
ginning of the next phase of the algorithm with receiving all
the supports from other processors.

Indeed, eliminating an invalid candidate which is de-
tected after total support evaluation corresponds to a low
cost operation. If the items are homogenous distributed over
the transactions, we may assume to anticipate candidates set
construction in a good way.

A formal presentation of our parallel algorithm and ex-
pected performance are now introduced.

5. Parallel algorithm

First of all, if we have p processors, we assume that the
transaction database is splitted into p chunks, one chunck
per processor.

Second, in the first part of the algorithm we have to con-
struct the tree of items and their transactions trees. It can be
done in one scan of the local database and for each proces-
sor in parallel.

To evaluate the support of an itemset, we just have to in-
tersect Radix Trees and proceed to the count of their leaves
(that can be done at the same time during the intersect op-
eration). For instance, the support of ABC is the number
of leaves of the tree produced by intersecting AB and AC
transactions trees. See Figures 8 and 9 for a illustration.

The construction of candidates sets is done as explained
above (4.2). Finally, our main algorithm is stated as follows:



Algorithm executed on each Proc. 0 ≤ i ≤ p.

/* Initially, each processor has locally n/p lines of the
transaction database where n is the total number of lines
and p is the processor number.*/

1- In parallel for each processor:
Scanning of the local database for construction of 1-itemset
tree.

2- In parallel for each processor:
do

Broadcast supports.
/* This part can be de-synchronized */
/* to perform overlapping (see above) */
Wait for all supports from others.
Perform the sum reductions.
Elimination of unsufficient itemsets support.
Lk = rest of Ck

Construction of new candidates sets Ck+1.
while (Ck+1 6= ∅)

3- frequent itemsets =
⋃

Lk

5.1. Hints for complexity analysis

We introduce here some discussion about the cost of
each step of the parallel algorithm in terms of time and
space.

5.1.1. Construction of the item trees As pointed out pre-
viously, our algorithm requires only one pass over the
database. This pass aims to build our Radix Trees. Then we
operate only on Radix Trees.

5.1.2. Support evaluation and bad candidates elimina-
tion We can make the count of tree leaves at the same
time we construct the transaction tree i.e by doing inter-
section operations. The time complexity of an intersection
is bounded by the number of different items in the database
and not by the number of items in the database. This prop-
erty justify the use of Radix Trees.

Thus, the local support is known when the candidate set
is constructed. If an itemset support is null (i.e. the item-
set do not appear in the local database), we can immediatly
eliminate it, even if the itemset appears in another partition
of the database. For all local support that are not null, we
can start a new construction of candidate supersets before
knowing the total support. A candidate elimination consists
in cutting an edge in a tree.

5.1.3. Candidate set construction The construction of
new candidates consists in rooting subtrees on leaves. We
eliminate from the tree the candidates that have unsufficient
supports and the nodes that make repetition in the subtree

rooted (for instance we don’t add the item A to the item-
set ABCxxx).

In doing this, we do not construct unnecessary candi-
dates. To obtain the support of newly created candidates,
we just have to proceed to the intersection of the transac-
tion tree of the added item with the transaction tree of the
leaf where it has been rooted. At any time the algorithm
"knows" the previous level of the itemset’s tree to gener-
ate new candidates and evaluate their supports. So, we can
save memory by deleting the upper levels.

5.2. Scheduling policies for thread management

Radix Trees operations can also be parallelized by us-
ing threads. This is particular useful if we run the algorithm
on a parallel machine with SMP nodes. Let us consider the
union operation, in parallel, of two Radix Trees.

Starting from the roots of the two trees, one strategy is
to activate a thread for computing the union of the two left
children and to activate a thread to compute the union for
the two right children. We apply recursively this principle
until we reach the maximum number tmax of authorized
threads. In this case, we have to wait for the completion of
one thread before going on.

The key idea of our thread management strategy is the
following. When a node has two subtrees and it remains an
idle thread, we use it on one of the subtrees. The other sub-
tree will be managed by the thread running on the current
node.

An operation (union) on a node is completed when it is
also completed on the subtrees of the node. So, to mini-
mize the idle time on each processor, we decide to launch
threads on the subtree containing the less number of nodes.
In the worst case, the thread finishes its work in the same
time than the thread which launched it. At this point, the
thread can declare itsef as an available thread without wait-
ing for the result of the other subtree.

Pictorially speaking, we proceed as depicted on figure
10 where each arrow symbolizes the work of a processor.
Moreover, in the reminder of the subsection, we consider
the case tmax = 4.

Figure 10. Thread management policy.



On figure 11 we can see that we have no idle time when
we use the scheduling policy described above compared to
the opposite scheduling policy illustrated on figure 12.

W = 6

W = 2W = 3 W = 3W = 2

W = 6

T1 T2

T3 T4

Figure 11. Preferred policy with 4 processors.

W = 6

W = 2W = 3 W = 3W = 2

W = 6

T1 T2

T3 T4

Figure 12. Invert policy with 4 processors.

On Figure 11, threads T1 and T2 finish their work one
round after T3 and T4. Then, T3 and T4 can be reused in
other operations.

On Figure 12, threads T1 and T2 finish their work one
round before T3 and T4 but have to wait the completion of
T3 and T4 to root the results.

6. Conclusion

In this paper we have introduced a parallel algorithm us-
ing Radix Tree structures in order to discover association
rules in a transaction database. Our algorithm has many
interesting features. It scans the base only once, performs
candidate generation in parallel with only few integer ex-
changes (representing supports computed locally) between
processors.

Based on our experience [Kos04], we guess that im-
plementations will encompass existing implementation be-
cause we know that one key to get performance for asso-
ciation mining is the way we manadge intersect operation.
In our case, we have proposed a new approach that permit
us to compute the candidate support by the intersection of
Radix Trees.

Radix Trees offers a good compromise [Kos04] between
the storage size required to store them and the efficiency

to retreive any information mapped to integers. We are cur-
rently implementing the association rules discovery algo-
rithm presented in this paper and we also implement an ef-
ficient multithreaded library in order to accomplish, in par-
allel, Radix Tree operations.

References

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N.
Swami. Mining association rules between sets of items
in large databases. In P. Buneman and S. Jajodia, edi-
tors, Proceedings of the 1993 ACM SIGMOD Int. Conf.
on Management of Data, pages 207–216, Washington,
D.C., 26–28 1993.

[JA] Ruoming Jin and Gagan Agrawal. An efficient associa-
tion mining implementation on clusters of SMP. pages
156–156.

[Kos04] Michel Koskas. A hierarchical database management al-
gorithm, To appear in the annales du Lamsade, 2004,
url: http://www.lamsade.dauphine.fr

[UW02] Jeffrey D. Ullman and Jennifer D. Widom. First Course
in Database Systems, A, 2/e. Prentice Hall, 2002.

[Zak99] Mohammed J. Zaki. Parallel and distributed associa-
tion mining: A survey. IEEE Concurrency, 7(4):14–25,
/1999.

[ZPL97] Mohammed Javeed Zaki, Srinivasan Parthasarathy, and
Wei Li. A localized algorithm for parallel association
mining. In ACM Symposium on Parallel Algorithms and
Architectures, pages 321–330, 1997.


	Introduction
	Association Mining algorithms
	Sequential algorithm: Apriori
	Parallel algorithms
	Count Distribution
	The Eclat algorithm


	Radix Trees and their use in association mining
	Introduction
	Operations on Radix Trees
	Radix Trees storage

	Radix Tree for parallel association rules discovery algorithms
	Candidates representation
	Candidates generation

	Parallel algorithm
	Hints for complexity analysis
	Construction of the item trees
	Support evaluation and bad candidates elimination
	Candidate set construction

	Scheduling policies for thread management

	Conclusion

