UNIVERSITE PARIS

 → Multithreading of Kostka Numbers Computation for the BonjourGrid Meta-Desktop Grid Middleware – AOC Team –

Heithem Abbes^{1,2} Franck Butelle¹, Christophe Cérin¹

¹Université de Paris 13, CNRS UMR 7030, Villetaneuse, France ²Research unit UTIC, ESSTT, Tunis, Tunisie

ICA3PP'2010, Busan

→ Table of contents

1 History of Desktop Grids

- History and Challenges
- BonjourGrid

2 The compute intensive mathematical problem• Problem Definition

- Experiments
- 3 Putting it all together

⊖ Desktop Grid Architectures

Desktop Grid

Fir	st Gen A	rchitecture
Centralized an	chitecture +	Monolythique architecture
Coor Params. /results. Params. /results. Para PC Firev	dinator/ urce Disc. PC PC vall/NAT	Use + Actine Interface Acplication Scheduler Task + Data + Net OS + Sandox Protocols

Key Points

- ⇒ Federation of thousand of nodes;

UNIVERSITE PARIS 13

⊙ Desktop Grid Architectures

Jesktop Grid	
Second Gen A	Architecture
Centralized architecture + (split tasks/data mgnt, Inter node coms)	Monolythique architecture
Client application Paramater Presults./ Peramater PC	Application Scheduler Task + Data + Net OS + Sandbox Protocols
Data Manager Scheduler (Tasks) Firewall/NAT working gro	* 7

Future Generation (in 2006)

- Distributed Architecture
- → Architecture with modularity: every component is "configurable": scheduler, storage, transport protocole
- Direct communications between peers;
- → Applications coming from any sciences (e-Science applications)

\odot In search of distributed architecture

First line: publish/subscribe system to notify and coordinate services and multiple DG without a central broker ⇒ BonjourGrid;

Second line: approach based on structured overlay network to discover (on the fly) the next node executing the next task ⇒ PastryGrid;

https://sourceforge.net/projects/pastrygrid/

(main contributions of Heithem Abbes in his PhD)

 ⊕ Count on existing distributed tools for services discovering (publish/subscribe paradigm);

- ⊕ Count on existing distributed tools for services discovering (publish/subscribe paradigm);
- ⊕ Design and implement a platform able to manage multiple instances of DG middleware;

- ⊕ Count on existing distributed tools for services discovering (publish/subscribe paradigm);
- ⊕ Design and implement a platform able to manage multiple instances of DG middleware;
- ⊕ Reduce as much as possible the use of any central element;

- ⊕ Count on existing distributed tools for services discovering (publish/subscribe paradigm);
- ⊕ Design and implement a platform able to manage multiple instances of DG middleware;
- ⊕ Reduce as much as possible the use of any central element;
- ⊕ Create a coordinator, on the fly, without any system administrator intervention; From a vision with a single coordinator towards a vision with multiple coordinators.

- ⊕ Count on existing distributed tools for services discovering (publish/subscribe paradigm);
- ⊕ Design and implement a platform able to manage multiple instances of DG middleware;
- ⊕ Reduce as much as possible the use of any central element;
- ⊕ Each coordinator searches, in a concurrent way, participants (idle machines)

⊕ A user can participate to any Boinc, Condor, XtremWeb project (enhanced 'scalability');

- A user can participate to any Boinc, Condor, XtremWeb
 project (enhanced 'scalability');
- \odot A user access in a uniform way the ressource of others;

\odot Communities we serve

- A user can participate to any Boinc, Condor, XtremWeb
 project (enhanced 'scalability');
- \odot A user access in a uniform way the ressource of others;
- ⊕ A user is not attached (prisoner banking service) to a provider but can count on an universal open source protocol to choose the participants he wants or to become a slave for the servers he wants;

\odot Communities we serve

- A user can participate to any Boinc, Condor, XtremWeb
 project (enhanced 'scalability');
- \odot A user access in a uniform way the ressource of others;
- A user is not attached (prisoner banking service) to a provider but can count on an universal open source protocol to choose the participants he wants or to become a slave for the servers he wants;
- → This paper: a use case with BonjourGrid + parallelization of a computational problem;

°∕ks

UNIVERSITE PARIS 13

Sec.

UNIVERSITE PARIS 13

18 C. Cérin, H. Abbes, F. Butelle

Sec.

UNIVERSITE PARIS 13

26 C. Cérin, H. Abbes, F. Butelle

7

AOC Team

27 C. Cérin, H. Abbes, F. Butelle

29 C. Cérin, H. Abbes, F. Butelle

 \odot The user requests for computation;

- ⊕ The user requests for computation;
- \odot The user provides the control flow graph, binaries, input data;

\odot BonjourGrid vision

- ⊕ The user requests for computation;
- \odot The user provides the control flow graph, binaries, input data;
- ⊕ The user deploys locally a coordinator and requests for participants; We support XtremWeb, Condor, Boinc.

- ⊕ The user requests for computation;
- \odot The user provides the control flow graph, binaries, input data;
- ⊕ The user deploys locally a coordinator and requests for participants; We support XtremWeb, Condor, Boinc.
- → The coordinator selects a set of machines (criteria: RAM, CPU, costs...)

- ⊕ The user requests for computation;
- \odot The user provides the control flow graph, binaries, input data;
- ⊕ The user deploys locally a coordinator and requests for participants; We support XtremWeb, Condor, Boinc.
- → The coordinator selects a set of machines (criteria: RAM, CPU, costs...)
- → Upon completion, the coordinator returns to the idle state, slaves are freed and the coordination protocol:

- \odot The user requests for computation;
- \odot The user provides the control flow graph, binaries, input data;
- → The user deploys locally a coordinator and requests for participants; We support XtremWeb, Condor, Boinc.
- → The coordinator selects a set of machines (criteria: RAM, CPU, costs...)
- → Upon completion, the coordinator returns to the idle state, slaves are freed and the coordination protocol:
 - \oplus manages and controls resources, services and computing elements;
 - \oplus does not depend on any specific machine nor any central element.

- \odot The user requests for computation;
- \odot The user provides the control flow graph, binaries, input data;
- → The user deploys locally a coordinator and requests for participants; We support XtremWeb, Condor, Boinc.
- → The coordinator selects a set of machines (criteria: RAM, CPU, costs...)
- → Upon completion, the coordinator returns to the idle state, slaves are freed and the coordination protocol:
 - \oplus manages and controls resources, services and computing elements;
 - \oplus does not depend on any specific machine nor any central element.

 \oplus Based on Bonjour from Apple;

- ⊕ Based on Bonjour from Apple;
- A publish/subscribe system is easy to use (toolbox = publish(), subscribe(), browse())

- ⊕ Based on Bonjour from Apple;
- A publish/subscribe system is easy to use (toolbox = publish(), subscribe(), browse())
- ⊕ Bonjour is dedicated to LAN (wide area Bonjour? We need some experiments)

- ⊕ Based on Bonjour from Apple;
- A publish/subscribe system is easy to use (toolbox = publish(), subscribe(), browse())
- ⊕ Bonjour is dedicated to LAN (wide area Bonjour? We need some experiments)
- ↔ Concerning the Wide Area implementation: we can also think about Apache Kandula (http://ws.apache.org/kandula/) or even cisco Jabber protocol (http://www.jabber.com):

- ⊕ Based on Bonjour from Apple;
- A publish/subscribe system is easy to use (toolbox = publish(), subscribe(), browse())
- ⊕ Bonjour is dedicated to LAN (wide area Bonjour? We need some experiments)
- Concerning the Wide Area implementation: we can also think
 about Apache Kandula (http://ws.apache.org/kandula/) or
 even cisco Jabber protocol (http://www.jabber.com):
 - € Extensible Messaging and Presence Protocol (XMPP)
 (formerly named Jabber) is an open, XML-based protocol
 originally aimed at near-real-time, extensible instant
 messaging (IM) and presence information, but now expanded
 into the broader realm of message-oriented middleware

UNIVERSITE PARIS 13

\odot The protocol for resources discovering

- ⊕ Based on Bonjour from Apple;
- A publish/subscribe system is easy to use (toolbox = publish(), subscribe(), browse())
- ⊕ Bonjour is dedicated to LAN (wide area Bonjour? We need some experiments)
- Concerning the Wide Area implementation: we can also think
 about Apache Kandula (http://ws.apache.org/kandula/) or
 even cisco Jabber protocol (http://www.jabber.com):
 - ⊕ Extensible Messaging and Presence Protocol (XMPP) (formerly named Jabber) is an open, XML-based protocol originally aimed at near-real-time, extensible instant messaging (IM) and presence information, but now expanded into the broader realm of message-oriented middleware

 → The current protocol has been developed/specified with 'ad-hoc' methods → we need to consolidate the trust (ongoing project to verify it, based on Colored Petri Nets)

⊖ Fault Tolerance with BonjourGrid

⊕ Intrinsic property of any large scale system;

\odot Fault Tolerance with BonjourGrid

- \odot Intrinsic property of any large scale system;
- ↔ We assume that any coordinator is responsible for its FT (it manages the volatility of attached slaves)

⊖ Fault Tolerance with BonjourGrid

- \odot Intrinsic property of any large scale system;
- ↔ We assume that any coordinator is responsible for its FT (it manages the volatility of attached slaves)
- \odot Our solution: tolerate the failure of coordinators

\odot Fault Tolerance with BonjourGrid

- ↔ We assume that any coordinator is responsible for its FT (it manages the volatility of attached slaves)
- \odot Our solution: tolerate the failure of coordinators
 - \oplus For any application we create and manage dynamically copies of the coordinator;
 - \odot We manage k copies; based on passive replication.
 - → When a service disappears: we added a special status flag to distinguish between 'end of the application' / 'failure' ⇒ slaves can redirect the communication to a copy.

 \oplus BonjourGrid has been tested intensively: stressed scenario to more relaxing scenario

⊙ Intensive Experiments

- ⊕ BonjourGrid has been tested intensively: stressed scenario to more relaxing scenario
 - \oplus in terms of #coordinator versus #nodes
 - \odot in terms of using virtual machines to reach 1000 nodes;
 - ⊕ in terms of comparing Boinc, Condor, XtremWeb over our protocol;
 - \odot in terms of robustness in supporting FT;

⊙ Intensive Experiments

⊕ BonjourGrid has been tested intensively: stressed scenario to more relaxing scenario

- \oplus in terms of #coordinator versus #nodes
- \odot in terms of using virtual machines to reach 1000 nodes;
- ⊕ in terms of comparing Boinc, Condor, XtremWeb over our protocol;
- \odot in terms of robustness in supporting FT;
- ⊕ Example Condor: 130 applications (2 to 128 // tasks), 200 nodes, application task: 1s to 500s. Result: with BonjourGrid, 35% of applications generate a delay of about 30s.

(日) (部) (注) (注)

UNIVERSITE PARI

⊖ Problem Definition

Integer Partitions and Ferrer's Diagramms

Definition : Integer Partition

write n as a sum of decreasing integers.

Example : 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

Definition : Ferrer's Diagramm

of a $\lambda = (3,1)$ partition of an integer. $|\lambda| = 4$: $F^{\lambda} = \frac{1}{2}$

Important role :

- group representation theory
- Symmetric functions theory
- Frobenius (1849-1917) : irreductible representations of symmetric groups are indexed by integer partitions...

Ferrer diagrams and tableaux

- Each partition λ specifies a Ferrer diagram F^λ consisting of |λ| boxes arranged in left-adjusted rows of lengths λ_i.
- A semistandard Young tableaux T of shape λ and weight β(T) is a numbering of the boxes F^λ with β_i(T) entries i for i = 1, 2, ..., n that are weakly increasing across rows and strictly increasing down columns.

Example: n = 6, $\lambda = (4, 2, 2, 1)$, $\beta(T) = (1, 3, 1, 1, 2, 1)$ $F^{\lambda} =$ T =

UNIVERSITE PARIS

Calculation of Kostka coefficients

- Theorem: K_{λβ} is the number of semistandard Young Tableau of shape λ and weight β
- Example: n = 3, $\lambda = (3, 2, 0)$, $\beta = (2, 1, 2)$.

Hence $K_{\lambda\beta} = 2$.

- Note: we compute the coefficients according to a dilatation N: stretched Kostka coefficient K_{Nλ,Nβ} and then we have to interpolate on the results to find the Kostka polynome in N;
- Another way to compute Kostka coefficients is using Hives model.

Integer Hives

- ▶ *n*-hive with vertex labels $a_{ij} \in \mathbb{Z}$ for $0 \le i, j, i + j \le n$
- Vertex labels increase from left to right.
- Example : n = 3, $\lambda = (3, 2, 0)$, $\beta = (2, 1, 2)$.

UNIVERSITE PARIS 13

Hives Conditions

Distinct types of rhombi, with vertex labels :

(日) (日) (日) (日) (日) (日) (日) (日)

UNIVERSITE PARIS 13

Hives Conditions

> Two distinct types of rhombi, with vertex labels:

Hive conditions in terms of vertex labels:

$$b + c \ge a + d$$

$$n = 3, \lambda = (3, 2, 0), \beta = (2, 1, 2) \ (x \in \mathbb{Z}).$$

$$n = 3, \ \lambda = (3, 2, 0), \ \beta = (2, 1, 2) \ (x \in \mathbb{Z}).$$

 $\blacktriangleright x + 2 \ge 3 \Leftrightarrow x \ge 1$

- イロト イロト イヨト イヨト 三回 - わへで

$$n = 3, \lambda = (3, 2, 0), \beta = (2, 1, 2) \ (x \in \mathbb{Z}).$$

• $x \ge 1$ • $x + 3 \ge 5 \Leftrightarrow x \ge 2$

$$n = 3, \lambda = (3, 2, 0), \beta = (2, 1, 2) \ (x \in \mathbb{Z}).$$

$$n = 3, \lambda = (3, 2, 0), \beta = (2, 1, 2) \ (x \in \mathbb{Z}).$$

- イロト イロト イヨト イヨト 三回 - わへで

AOC Team

$$n = 3, \lambda = (3, 2, 0), \beta = (2, 1, 2) \ (x \in \mathbb{Z}).$$

AOC Team

UNIVERSITE PARLS

Simple example using K-hives

 $n = 3, \lambda = (3, 2, 0), \beta = (2, 1, 2) \ (x \in \mathbb{Z}).$

- Finally $3 \ge x \ge 2$: 2 solutions so $K_{\lambda\beta} = 2$.
- But when there is more than one free variable, enumeration must be done.

Tools & Results

- Pthreads library: portability;
- ⊕ CPU: Bi-AMD Opteron dual core at 2.8GHz;
- ⊕ Results: performance depends on the size of first interval ($n \ge 1 \Rightarrow n$ threads at the beginning); The number of feasible values tried by each thread depends on the interval it received from the first step; Input dependant;

UNIVERSITE PARIS 13

\odot The view of the user

Facilities

- SDAD: system for deployment; No need for learning XML syntax;
- Programming language: Python, Bonjour for Python;
- ⇒ Embedded code: x86 executable, javac, scripts (Perl, Python, Bash...) ; Depending on the DG used.
- ↔ What you need to install: package containing one DG middleware (Condor, Boinc, XtremWeb) + client + server;

\odot The view of the user

GUI and the engineering part

```
<Table?
       <Task Application="monapp" ApplicationModule="hives"
        Description="hives1" DirIn="/hives/" FileIn="dir.zip" Final="0">
           <Input InputName="x1"/>
           <Output OutputName="v1"/>
           <cmdLine>11.10.8.5 20.17.3 26.25.8.8.7 outl 1</cmdLine>
           <008>
               <Power NbMax="0" ErrorMargin="0.2">3000.0</Power>
       <Task Application="monapp" ApplicationModule="hives"
         Description="hives2" DirIn="/hives/" FileIn="dir.zip" Final="0">
           <Input InputName="x2"/>
           <Output OutputName="v2"/>
           <cmdLine>11,10,8,5 20,17,3 26,25,8,8,7 out2 2 </cmdLine>
              <Power NbMax="0" ErrorMargin="0.2">3000.0</Power>
       </Task>
       <Task Application="monapp" ApplicationModule="buildinter"
           Description="build" DirIn="/hives/" FileIn="dir.zip" Final="0">
           <Input InputName="vl"/>
           <Input InputName="y2"/>
           <Output OutputName="v3"/>
           <cmdLine>2 out interresult </cmdLine>
           <008>
              <Power NbMax="0" ErrorMargin="0.2">3000.0</Power>
           </008>
       <?ask Application="monapp" ApplicationModule="interp"
         Description="interp" DirIn="/hives/" FileIn="dir.zip" Final="1">
           <Input InputName="v3"/>
           <Output OutputName="y4"/>
           <cmdLine>interresult 2 finalresult </cmdLine>
           <008>
             <Power NbMax="0" ErrorMargin="0.2">3000.0</Power>
           </008>
       </Task>
</Deployment>
```

Facilities

- → SDAD: system for deployment; No need for XML learning;
- In this example: command line parameters for tasks; QoS parameters: helping the schedular for selecting machines ⇒ information generated automatically.

From similar to diversity in large scale experiments

 Contrarily to previous works, we do not attempt to exploit
 only one DG middleware → coordination; The user may
 select his favorite tool (we do not impose anything) for
 computing;

 \odot Conclusion

From similar to diversity in large scale experiments

- Contrarily to previous works, we do not attempt to exploit
 only one DG middleware → coordination; The user may
 select his favorite tool (we do not impose anything) for
 computing;
- A full description of steps necessary for using BonjourGrid; A
 use case in E-science;
- \oplus New multithreaded code for the computation of Kostka Numbers;

 \odot Conclusion

From similar to diversity in large scale experiments

- Contrarily to previous works, we do not attempt to exploit
 only one DG middleware → coordination; The user may
 select his favorite tool (we do not impose anything) for
 computing;
- A full description of steps necessary for using BonjourGrid; A
 use case in E-science;
- \oplus New multithreaded code for the computation of Kostka Numbers;
- ⊕ Experiments showed the easy to use approach ; Different contexts for the executions;

UNIVERSITE PARIS

 \odot Conclusion

From similar to diversity in large scale experiments

- Contrarily to previous works, we do not attempt to exploit only one DG middleware → coordination; The user may select his favorite tool (we do not impose anything) for computing;
- A full description of steps necessary for using BonjourGrid; A
 use case in E-science;
- \oplus New multithreaded code for the computation of Kostka Numbers;
- \oplus Experiments showed the easy to use approach ; Different contexts for the executions;
- ⇒ Future work for BonjourGrid: reservation rules; wide area Bonjour or XMPP (Jabber protocol for presence) or Web services ; Formal verification of the protocol.

UNIVERSITE PARIS

 → Multithreading of Kostka Numbers Computation for the BonjourGrid Meta-Desktop Grid Middleware – AOC Team –

Heithem Abbes^{1,2} Franck Butelle¹, Christophe Cérin¹

¹Université de Paris 13, CNRS UMR 7030, Villetaneuse, France ²Research unit UTIC, ESSTT, Tunis, Tunisie

ICA3PP'2010, Busan