
Mining Traces of Large Scale Systems
Christophe Cérin Michel Koskas

Université de Paris XIII Université de Picardie Jules Verne
LIPN, UMR CNRS 7030 LaMFA/CNRS UMR 6140, 33 rue St Leu

F-93430 Villetaneuse - France F-80039 Amiens cedex 1 - France
cerin@lipn.univ-paris13.fr koskas@laria.u-picardie.fr

Abstract— Large scale distributed computing infras-
tructure captures the use of high number of nodes,
poor communication performance and continously varying
resources that are not available at any time. In this paper,
we focus on the different tools available for mining traces
of the activities of such aforementioned architecture. In this
paper we propose new techniques for fast management of
a frequent itemset mining parallel algorithm. We present
statistical results about the activity of more that one
hundred PCs connected to the web.

Keywords: Parallel algorithms, global computing
platforms, meta-data, data mining application, high per-
formance and distributed databases, trace analysis, data
management, resource management.

I. INTRODUCTION

Frequent itemset mining (FIM) consists in discov-
ering patterns that appear frequently. In this paper
the itemsets are informations about the activities
such as the CPU/MEMORY loads, the number of IP
packets sent or received from/to a dedicated node,
date of the measure. . . of a set of PCs in a research
laboratory. The ultimate goal for that application is
to extract information to be pass to the scheduler in
order to run jobs with a reasonable knowledge of
the “future state” of the global platform.

FIM algorithms are often used in search for
other types of patterns (like sequences, rooted trees,
boolean formulas, graphs). More than one hundred
FIM algorithms were proposed in the literature, the
majority claiming to be the most efficient. In any
case, it is difficult to appreciate the experimental
methodology. For instance it is difficult to have
answers to the following questions: what is the
part of the execution done in/out-of-core? What
is the execution time for generating the 1-itemset
(it corresponds in general to a full reading of the
database) and the execution time for generating the
k > 1 itemsets?

Three algorithms play a central role due to their
efficiency and the fact that many algorithms are
modifications or combinations of these basic meth-
ods. These algorithms are APRIORI [1], ECLAT [2]
and FP-growth [3].

In this paper we introduce challenges, opportuni-
ties and some technical solutions that we believe to
be important for mining the activities of large scale
systems. The discussion is conducted with our par-
allel algorithm for frequent itemset generation [4]
in mind. Besides the algorithmic and data-structure
issues there is a third factor that quite influences
the effectiveness of the different approaches found
in the literature: the programming technique.

According to this remark, the organization of the
paper is the following. In Section II, we introduce
the challenges and those we are concerned about
in the paper. Section III is about the data structure
we use and section IV about the parallel algorithm.
We extract its main properties and we show its
potential for mining large scale systems. Section V
is about the programming techniques and it provides
with experimental results. Section VI concludes the
paper.

II. BUILDING A FIM ALGORITHM FOR LARGE
SCALE SYSTEMS

The main properties that we require for large
scale systems are:

• Scalability: the system must scale to hundreds
of thousands nodes;

• Heterogeneity of nodes across hardware, OS
and basic software;

• Availability: the owner of a computing resource
must be able to decline a policy which will
limits the contribution of the resource (the
resource will be de-connected in a near future);

• Fault tolerance: the architecture must tolerate
frequent faults while maintaining performance;

• Security: all participating computers should be
protected against malicious or erroneous be-
haviors;

• Dynamicity: the system must accommodate to
varying configuration; an event may happen at
any time;

• Usability: the system should be easy to deploy
and to use.

In this paper we discuss only the advantage of
our algorithm [4] in terms of scalability, dynamicity,
fault tolerance and performance at the large.

A. Problem description
One challenge that we address in the paper is how

to represent and how to mine data sets representing
the activities of large scale systems connected to
each other. We may assume that a process on one
node has been setup in order to collect traces of the
activity of all the machines connected to the infras-
tructure. The missions assigned to the process/node
are:

• Collect traces and dispatch them on the clients
or on a dedicated node;

• Discover ”frequent episodes”. For instance, de-
termine which machines had CPU load greater
than 40% during the past hour;

• Build heuristics about the future state of the
global system from the frequent episodes in
order to pass them to the job scheduler(s).

The collect phase necessarily involves disks. Our
experimental data set is from more than one hundred
machines sampled every 15 minute during approx-
imately half a day. The amount of generated data
(for 15 collected events) is about 50Mb in size
(uncompressed). Such volume is enough to exhibit
the main performance of tools that process the data.
We estimate a volume of 11GB if the sampling
occurs every minutes and during 10 hours per day.

Very little work as been done on the different
ways of mining data located on PC and partici-
pating to a global computation. For instance, the
Grid Forum working group DAMED (Discovery
and Monitoring Event Description) has produced
a pre-classification of pertinent events related to
machines. They also evaluates the use of data mod-
els (for example relational, hierarchical, etc.). They

do not yet consider the problem of mining data
and the relation between the representation and the
algorithmic of mining.

We think that the way we represent data will
potentially enforce the efficiency of mining algo-
rithms. Three categories of techniques for mining
are under concern in our project in order to confront
arguments in favor or against one technique.

B. Tools for mining and challenges

Mining can be done in many ways and with
many tools. In the first category of tools we have
Unix (grep, perl) tools. We are currently experi-
menting with nrgrep. It is a fast implementation
of grep with more properties. For instance, you
can do approximate string matching: in the pattern
description, you allow some misses or conversely
we allow the insertion of letters. None of these tools
is able to treat the whole mining purpose. However,
we used them in this paper, because we were only
interested in statistics regarding traces.

In the second category we have the mining
techniques based either on a threshold such as
MINEPI, WINEPI [5] or based on the expression
of constraints directly on the input sequence of
data. SPADE [6] which are two examples related to
the last technique. The current limitations of such
methods are they do not take into account that some
part of the information could disappear partly or
definitely because a machine become disconnected.
We do not know any research work on the best
way to add duplication or redundancy concepts in
mining algorithms. It is a great challenge which
could potentially solve the problems.

The third category of algorithms that can poten-
tially be used in the process of mining is based on
the utilization of generic database tools.

Mining from large databases imposes new chal-
lenges and opportunities [7], [8] to database technol-
ogy itself. There is a need for new query languages
and query processing methods that will address the
requirements posed by database mining. The main
challenge is to develop data mining algorithms that
will present a tighter coupling with ’traditional’
database software.

The main challenge is to store data and also to
discover association rules within a single tool. It
assumes the integration of an efficient facility for

1) the selective generation of patterns matching the
query 2) the management of previously generated
results (i.e. the handling of already mined patterns).

Regarding the former case, techniques for push-
ing constraints down to the mining process have
been proposed, mainly for association rules. In the
application presented in the paper, we focus on the
pattern query, that is, finding all sequential patterns
that contain an ordered set of user-defined elements.
It is a matter of indexing sequential patterns.

To explain our current work, let us consider
the following problem that correspond to a smaller
problem size instance than the original and practical
one.

We reduce the number of events in our table to
three: the IP activity of the machine, the name of
the event (N) and the timestamp of the event (TS).
A user wants to know the number of times that the
table contains the ordered sequence 10 → 20 → 30.
The meaning of such a request is that we want to
count, for instance for the CPU load, the number of
times that we observe (the ordered sequence) a load
of 10%, then a load of 20% than a load of 30%. A
SQL query, implementing the above pattern looks
like:

select IP from R a, R b, R c
where

a.IP = b.IP
and b.IP = c.IP
and a.TS < b.TS
and b.TS < c.TS
and a.N = ’Load’
and b.N = ’Load’
and c.N = ’Load’

Such query can serve to designate a set of ma-
chines that a user estimates as machines with a ’bad
behavior’ because the load ’frequently’ becomes
’high’.

Since SQL language does not contain a sequence
search statement, the above SQL query is imple-
mented with multiple joins or multiple nested sub-
queries. This may presents large query response
time. Moreover, sequential scan may require consid-
erable I/O operations that slowdown the program.

III. THE DATA STRUCTURE

Before introducing our parallel algorithm, we
introduce the data-structures it uses. The parallel

algorithm makes elementary operations on such
data-structures in order to compute the frequent
episodes.

We need some terminology from database sys-
tems to clarify some situations. Usually, in hi-
erarchical databases (databases “made” of several
tables) the different tables are linked by couples of
primary keys – foreign keys.

Definition 1 (Superkey): A superkey is any col-
umn or set of columns that uniquely identifies each
record in a table. Not every superkey is a good
candidate key.

Definition 2 (Candidate): A candidate key is
a superkey containing the minimum number of
columns to uniquely identify each record in a table.
Not every candidate key is a good primary key.

Definition 3 (Primary key): A primary key is the
candidate key used to uniquely identify each record
in a table.

Definition 4 (Foreign key): A foreign key is a
column or set of columns in one table that matches
a candidate key in another table.

Any table must have a primary key even it is
implicit: anyway the index or address of the physical
record of a line is indeed a primary key. When
tables are stored on disks and if we have to sort the
tables, is convenient to associate keys with the line
addresses and to sort the couple (keys, line address)
instead of moving data which is too costly. Assume
now that we have two “sorted lists” of (key, line
address) couple corresponding to two tables.

A. An example

Let us consider the following data basis, com-
posed of three tables, namely Accident, Customer
and Insurance tables. The Accident table has seven
lines as one can see on Figure 1. When considering
Accident table, it’s primary key is ”Acc-id”, which
is the name of the last column of Accident Table.
A foreign key is ”Client id”.

The Customer table has four lines: see Figure 2
and the Insurance table has two lines: see Figure 3

In this case, one may consider that Insurance
and Customer are sub-tables of the Accident table
because of the links made of foreign key - primary
key.

Now, consider the Insurance table. It has several
columns, and each of them is treated separately: for

Client Id Max Amount Seller Kind of Cont. Min Ref. Acc. Id

1

2

3

4

5

6

7

House

Car

House

House

Car

Family

House

1

2

1

1

2

3

4

Contract Date

12−21−1992

02−24−2000

11−28−1996

05−30−2001

07−17−1992

04−13−1998

09−11−1999

450,000

230,000

780,000

830,000

12,000

27,500

1,000,000

2

17

11

2

3

2

2

900

11,000

2,400

1,350

830

912

100

Fig. 1. The root-table: the Accident table.

Client IdIns. IdName Adress City Country

1

2

3

4

1

2

2

1

Italy

Spain

Great Britain

PolandWarsaw

London

Roma

Barcelona

zzz

xxx

yyy

ttt

Thatcher

Valesa

Profi

Carlis

Fig. 2. An intermediate table: the Customer table.

each of these columns, one builds its thesaurus and
for each word of the thesaurus we build the set of
line indexes it occurs at.

For instance, the column “Kind of Contract”’s
thesaurus is House, Car, Family and the sets
of line indexes are: House occurs at indexes 1, 3, 4
and 7, Car occurs at indexes 2 and 5 and Family
occurs at index 6.

Now, let us expand the sub-tables. For in-
stance, the column City of the table customer has
thesaurus Varsaw, Roma, Barcelona and
London. The line indexes the word London oc-
curs in the Accident table are hence 2 and 7.

Finally, we get a full description of the data basis
by computing the thesaurus of each column of each
table and its sub-tables and the line indexes each
word occurs at.

Now, let us return to the building of the indexes.

Ins. IdName Capital Localization Profit

1

2

3,123,123

1,123,341

USA

Europe

12,384,948

21,987,890Truc−Muche Inc.

Tartempion S.A.

Fig. 3. A leaf table: the Insurance table Compagny.

While building or modifying the table indexes,
one has to sort the fields of each column of the
expanded tables. This means for instance that a
table with 5 lines (for instance the “region” table
of the TPC) may be expanded in a table with 6
millions of lines (for instance the “lineitem” table
of the TPC). Thus one has to sort the fields of
each column of the table “region” expanded in the
table “lineitem”. This means that one has to sort
arrays of 6 million of items with only 5 different
values. Special techniques have been devised in [9]
for this purpose but they are out of the scope of this
paper. Please contact the authors for complementary
material.

Let S be a set of integers written in basis b = 2
for instance (it is convenient to chose as basis a
power of 2). It is well known that the integers may
be represented in a radix tree.

A radix tree is a tree which allows to store a set of
words over an alphabet A of same length (here the
alphabet is the set of digits 0 . . . b−1). Consider the
Accident Table depicted on Figure 1 and the ”Kind
of Cont” column.

The thesaurus of the column is
{House, Car, Familly}. The lines where ’House’
appears are {1, 3, 4, 7}, the lines where ’Car’
appears are {2, 5} and the line where ’Family’
appears is {6. A radix tree representation of set
{1, 3, 4, 7} is simply:

ˆ
/ \

0 / \ 1
/ \
/ \

o o
0 /\ 1 0 /\ 1
/ \ / \

o o o o
\ 1 \1 0/ \ 1
\ \ / \

1 3 4 7

Suppose that we have to check if 5 = 1012 key
is present is the previous tree. We descend along
the tree until we encounter the prefix 10 after that,
since the last bit (1) is not present, we conclude that
5 does not belong to the intersection.

The previous scheme, explains also how to an-
swer to a query with an AND clause, for instance:

SELECT ALL FROM Accident
WHERE

= Accident KindOfCont ’Car’
AND
>= Accident MaxAmount 12,000

GROUP {NULL}

IV. THE ALGORITHMIC PART

The problem of association rule discovery can be
formalized [10] as follows. Let I = {i1, · · · , im} be
a set of m distinct items. A transaction is any subset
of I and each transaction T in a database D of
transactions has a unique identifier. A transaction is
a p-uple < TID, i1, · · · , ik > and we call i1, · · · , ik
an itemset or a k-itemset.

An itemset is said to have a support of s if
s% of the transactions in D contains the itemset.
An association rule is an expression of the form
A ⇒ B where A, B ⊂ I and A

⋂
B = ∅. The

confidence of the association rule is simply the
conditional probability that a transaction contains
B, knowing that it contains A. It is computed as
support(A

⋂
B)/support(A).

Given m items, there are potentially 2m itemsets
whose support is above a given support. Enumer-
ating all itemsets is thus not realistic. However,
for practical cases, only a small fraction of the
whole space of itemsets is above a given support
requiring special attention to reduce memory and
I/O overheads.

The “Apriori” sequential algorithm forms the core
of many variants of association rules discovery
algorithms. It uses the fact that a subset of frequent
itemset is also frequent, then only candidates found
”previously” are used to generate a new candidate
set. This algorithm has three main steps, iterated
while new candidates are generated:

• Construction of the set of new candidates;
• Support evaluation for each new candidate;
• Pruning of candidates that have not a sufficient

support regarding to a minimum support arbi-
trarily chosen.

The complete sequential algorithm is as follows:

The Apriori algorithm
L1 = { frequent 1-itemset};
for (k = 2; Lk−1 6= ∅; k + +)

Ck = Set of new Candidates;

for all transaction t ∈ D
for all k-subsets s of t

if (s ∈ Ck) s.count++;
Lk = {c ∈ Ck | c.count ≥ minimum support};

Set of all frequent itemsets =
⋃

k
Lk;

Note that in this algorithm, the whole database
is read at each iteration step (see the for all
transaction t ∈ D instruction above). Con-
sequently, the performance could not be high with
such framework.

In [4] we have introduced new techniques for
association rules discovering. We have revisited the
Apriori algorithm that serves as the main conceptual
block for such purpose in showing how to store and
generate candidates by the mean of Radix Trees.

Surprisingly, the new (parallel) algorithm is based
on the Apriori framework but it uses only operations
on Radix Trees, namely union, intersect operations
for candidate generation and in support computa-
tion. The parallel algorithm is stated as follows:
Algorithm executed on each Proc. 0 ≤ i ≤ p.

/* Initially, each processor has locally n/p lines of
the transaction database where n is the total number
of lines and p is the processor number.*/
1- In parallel for each processor:
Scanning of the local database for construction of
1-itemset tree.
2- In parallel for each processor:
do
Broadcast supports.
/* This part can be unsynchronized */
/* to perform overlapping */
Wait for all supports from others.
Perform the sum reductions.
Elimination of un-sufficient itemsets support.
Lk = rest of Ck

Construction of new candidates sets Ck+1.
while (Ck+1 6= ∅)
3- frequent itemsets =

⋃
Lk

From a “large scale point of view”, the main
properties of the algorithm is:

• The local database is read once. This step
serves in building the 1-itemset, that is to
say the radix-trees coding “where” each item
appears. The k > 1 itemsets are generated

by intersections, locally on each node. If we
assume that a new itemset can arrive at any-
time (a new measure in our application), we
should minimize its insertion time. In our case,
the cost of inserting one item is a constant time,
independent of the number of data since it is
based on the tree high which s a constant (for
instance 20 if we are working with tables with
220 lines). This property is important in the case
of the aforementioned property of dynamicity
of large scale systems.

• When we exchange information about nodes,
only the supports (integers) are exchanged.
There is (p − 1)2 messages during this steps
and the length of each message is proportional
to the number of frequent itemsets that
are generated (k) multiply by the size of
an integer. Thus the volume of information
exchanged in any step of the parallel algorithm
is exactly (p − 1)2 × k × sizeof(int). We
note that it is independent of n the number
of data in the database. We may assume
that in practical cases, this volume is low.
The consequence is that in the case of
faults, the checkpoint will contain not too
much information. For instance, if we use
MPICH-V (a fault-tolerant MPI available on
http://www.lri.fr/˜bouteill/MPICH-V/),
the NAS Benchmark BT B on 25 nodes
(32MB per process image size) leads to the
average time of 68s to perform checkpoint
with MPICH-V. The average time to recover
from failure with MPICH-CL is 65.8s. The
application is much more communication
intensive that our frequent itemset algorithm.
We are optimist to accomplish a checkpoint in
less than 1s on 25 nodes.

However, the number of itemsets generated varies
from one iteration to another one. In the context
of heterogeneous computing (the candidate and fre-
quent itemset generations are computed on different
processors and with different communication band-
widths) it is more difficult to estimate the time cost
of these two steps, hence potential unbalanced work.
Techniques to control the load balancing, such as the
technique used in [11] in the case of sorting and for
a one-communication-step algorithm can not apply.

Thus, the problem of controlling load balancing is
challenging both in theoretical and programming
terms.

V. THE PROGRAMMING TECHNIQUE PART

Let us now comment our implementation choices
in the case of our sequential frequent episode proto-
type. Radix Trees can be implemented with pointers
(for the left and right children) when they are
loaded into the RAM. We know that pointers do not
preserve spacial locality (the next item to be used
is “closed” in memory to the current item) and it
is not also suited for temporal locality (the current
item will be re-used in a near future).

To check this fact for our purpose, we have
implemented tree operations (union, intersect) with
the STL C++ library and lists and with pointers.
We have obtained better experimental results for
pointers than for lists (implemented under the STL
C++ framework).

But the time completion for union or intersect
operation is not good enough for large scale compu-
tation. For instance, 600 intersection operations on
trees containing 150000 elements each last 58.39
seconds on a Sun bi-opteron v20z system. These
600 operations involve 90M of items.

We have decided to shift to bitset abstract data
type in order to implement “the line where an item
occurs” concept. Remind that Radix Trees have
been introduced to store sets of integers. With a
bitset, we set to 1 the k-th bit if integer k is a
member of the set and we set it to 0 otherwise.
The STL C++ library offers an interface to bitsets
but after some tests with the library and under g++
release 3.4.1 we have decided to re-implement it,
partially in assembler code.

The motivation is to use MMX, SSE-2 or Al-
tivec technologies for 32 bits processors. For such
technologies, the processor can address 128 bits
registers and we can use them to implement union
operation (i.e. ”or” operation on two bitsets), inter-
sect operation (i.e. ”and” operation on two bitsets.
The STL C++ library under g++ does not use such
technologies.

We have also introduced (by hand) prefetching
memory instructions. Such optimizations are essen-
tial to fully exploit 128 bits registers and to hide
memory latencies.

We obtain a gain of at least 30% for our
MMX/SSE and Altivec implementations against the
STL C++ codes. For instance, the cost of 5000
”and” operations on two bitsets of size 1048576
bytes (representing two sets of 8388608 elements)
is 7.75 second on a Duron at 1.9Ghz. It is a very
good result comparing to our tree implementation
based on pointers (see above). The effort in coding
the new bitset interface is not too important for a
great result.

A. GCC 4.1

The GNU Compiler Collection (GCC) is the
leading compiler suite for the free and open source
software. The large set of target architectures and
the standard compliant front ends makes GCC
the “de facto” compiler for portable developments.
However, until recently, GCC was not an option for
high performance computing: it had no infrastruc-
ture for data access restructuring nor for automatic
parallelization nor for using specialized hardware.

GCC 4.x (experimental) addresses the challenge
of high performance computing. Modern compilers
implement some of the sophisticated optimizations
introduced for supercomputing applications. They
provide performance models and transformations
to improve fine-grain parallelism and to take into
account the memory hierarchy (prefetching). Most
of these optimizations are loop-oriented and assume
a high-level code representation with rich control
and data structures: do loops with regular control,
constant bounds and strides, typed arrays with linear
subscripts. For instance, the GIMPLE representation
was proposed by Sebastian Pop, and Diego Novillo
from RedHat, for minimizing the effort in the devel-
opment and the maintenance of new analyzes and
code transformations.

Another improvement of GCC 4.x is the possi-
bility to produce SSE2 and Altivec codes in order
to use 128 bits registers. Two new compiling op-
tions were introduced: -ftree-vectorize and
-ftree-loop-linear. We have built a test
based on a loop to observe if GCC 4.1was able to
generate assembler code with prefetching instruc-
tions and SSE2 or Altivec instructions.

The test numbered 1 was:

for(i=0;i<2048;i++)
b[i] = b[i] & a[i];

The test numbered 2 was:

for(i=0;i<2048;i++)
c[i] = b[i] & a[i];

The compiler options were: -S -O4

-fprefetch-loop-arrays -ftree-vectorize

-msse2 -ftree-loop-linear. In the case of the
first example, GCC 4.1.0 20050320 (experimental)
was able to generate prefetching instructions but
no “pand” operation (the SSE2 operation to do a
128 bits and operation). In the case of the second
example, GCC 4.1.0 was able to generate a “pand”
instruction but not prefetching instructions. One
explanation may consider the need to unroll the
loop in order to align the data with the 128 bit
size. GCC has probably no information on the final
loop index, so it fails to unroll, so it fails to put a
pand” instruction.

So we decided to continue to work with our
own library that implements prefetching and “pand”
instructions. We have implemented a sequential
APRIORI based algorithm using bitsets. This code
will serve in the future as the sequential main brick
of the parallel algorithm. We introduce now some
experimental results.

B. Trace analysis and statistics

The trace that we have explored corresponds to
a set of 110 stand alone PCs under Windows in a
laboratory of researchers, engineers and administra-
tion people. The trace records 11 events every 15
min during the day and for a period of 15 days.
The trace represents about 50Mb of uncompressed
data in size. The name of the table is BigTable. We
estimate that if we sample every minute, the file size
will be about 11Gb for 15 days and we are optimist.

In order to get statistics we have developed a
set of programs written in shell, python and
we also use nrgrep-!.1.1 for the matching
of patterns. Our experiments are accomplished on
an Athlon(tm) XP 1800+ processor equipped with
512MB of DDR PC2100 an IDE 80GB hard-disk.

1) Some Statistics: Figure III shows some statis-
tics about the CPU load. We note that for 84% of
the experiments the load is below 10%: the CPU
are under-utilized. We also note a relatively frequent
occurrence of a CPU load between 90-100%. This
may be caused by the measure itself if the process

that make the measure is in the active state during
the measure.

Figure IV shows statistics about the number of
IP datagrams that has been sent during a period
of 15 minutes. Since both the x and y scale are
logarithmic and since the curse drawn when we
consider the middles of ’plateau’ is a line, we
conclude that we have a Zipf law. This measure can
serve as a model of the behavior of the network
in a ”large scale” distributed system. We do not
know if others researchers have observed the same
phenomenon.

We note also on Figure V that the number of
alive processes is under 30, half the time. Figure
VI shows the number of observed disk transfers.
Surprisingly, we found a ”pattern” repeated 3 times.
We do not know any law corresponding to this
phenomenon. We cannot explain it.

2) Experiments with scripting language and shell
tools: The experiments that we have conducted to
mine our trace consider the problem of finding the
number of occurrences of the ’CPU load equals to
10%’ event.

The first one corresponds to Shell programs that
use either nrgrep or Unix cut commands. The
execution time is greater than 45 seconds to find all
the occurrences.

The second one corresponds to the following
Python 2.3a1 code that uses the pattern match-
ing facilities available with Re module. The ex-
ecution time of the code on our Athlon-1800+
processor is about 8.6 seconds to find the 3214
occurrences.

The third one corresponds a nrgrep command
line. The execution time for the command is less
than 1 second to discover the 3214 matching
records. The problem with nrgrep is that we
have a limited power for the expression of queries
comparing to SQL query languages.

The fourth one corresponds to a Perl program
using pre-compiled patterns to speed-up the execu-
tion. The execution time is about 1 second to find
the solutions. All these results give the reader some
indications of the time cost of an elementary search.
Apriori algorithms require many of such elementary
search.

3) Performance of our Apriori data mining al-
gorithm: A Frequent Episode sequential algorithm

based on [4] and on bitsets has also been imple-
mented. We have chosen 40 items in the BigTable
table of 685673 lines.

Our implementation uses libpcre1 for match-
ing patterns. The PCRE library is a set of functions
that implement regular expression pattern matching
using the same syntax and semantics as Perl 5.
PCRE has its own native API, as well as a set
of wrapper functions that correspond to the POSIX
regular expression API.

Since we have 685673 lines in the flat input table,
we have set our bitset sizes with 131072 bytes.
The total memory size is thus about 40MB, that
is to say closed to the table size (47MB). So our
implementation is an in-core one.

Under GCC 3.3.4 (pre 3.3.5 20040809) the exe-
cution time on a Duron 1.8Mhz for counting the
occurrences of these 40 items and including the
setting of bitsets with the line numbers where they
appear is 14.58 seconds.

This means that we need 14.58 seconds for
generating 1-itemsets including one pass over the
input file. With a support equals to 68567, which
represents 10% of the number of lines in the input
table, we get 13 1-itemsets.

The number of 2-itemsets is 17 (we compute it
according to the same support) among potential 78
2-combinaisons.

The number of 3-itemsets is 6 (we compute it
according to the same support) and these is no more
frequent itemsets. One of the 3-itemsets corresponds
to a CPU load greater than 90% and the number
of running processes is greater than 90 and the
available memory is greater than 300MB.

The total number of lines (elements) involved
in intersect operations is 89342969. The execution
time from the end of the 1-itemset production to the
end of the program is less than 1 second (0.91s).
This time includes the generation of 2-itemset, 3-
itemset and 4-itemset.

It is a very good result comparing to the previous
incomplete tests based on scripting languages. The
number of elements involved in intersect operations
is quite impressive and the experiment confirms that
the data structure choice is a good one.

Under GCC 4.1 and the following

1http://www.pcre.org/

option flags -O4 -fomit-frame-pointer

-fprefetch-loop-arrays -ftree-vectorize

-msse2 -ftree-loop-linear we got the same
execution time. In fact, this test cannot allow us
to distinguish the performance of the bitset library
alone because it uses the same ASM bitset library.

If we recode the and operation as follows:

void pandCopy(unsigned char *s,
unsigned char *t, unsigned char *d,
long int nb_bit)

{
int count,i;
int *cs=(int *)s, *ct=(int *)t,

*cd=(int *)d;
count = (int)(nb_bit / 32);
for(i=0;i<count;i++){

cd[i] = ct[i] & cs[i];
}}

and we let GCC 4.1 to do the optimization, we
get the same execution time. It is promising since
we have checked that GCC 4.1 have not produced
“pand” instruction (but prefetcht0 instructions) in
our code. No loop unrolling has been made. In the
future, we will certainly use GCC 4.x stable release
and portable C code instead of our current C and
assembler codes. But it is too early at present time
to get performance with GCC 4.x.

C. Impact of the statistical results on placement
The final aim of the experimental study is to

discover trends in the behavior of PCs connected
on a large scale distributed system. The aim is to
place tasks. One of the frequent 3-itemset that we
have generated according to our algorithm is: “CPU
load > 90% and Memory Available ‘> 300K and
number of processes > 90”. It shows that a high
CPU load is frequent: recommendation to place
tasks is difficult with this information. We have also
another frequent 3-itemset saying that “CPU load
< 10% and Memory Available ‘< 20K and number
of processes < 40”.

It is a little bit surprising and it is due to the
choice of the support. More discriminant method
should accompany the frequent episode algorithm.
For instance, in our result we have 5/6 frequent
episodes saying that the load is < 10% and only
1 frequent episode saying that the load is > 90′.
We have also 4/6 frequent episodes saying that
the memory available is between 20 and 40K. The

others occurrences of frequent items in the frequent
episode is less or equal to 2.

Moreover, if the application is not a critical one
we could spend time on collecting burst events to
examine in deep this phenomenon. In this case,
the key challenge is to master the disk space to
store and/or to factorize massive information with
common properties: if the burst occurs for the CPU
usage, others informations may not vary a lot.

VI. CONCLUSION

In this paper we have presented how we are cur-
rently implementing in the “ACI Masse de donnée
grid project”2 a middleware in charge of controlling
common data structures used in order to store ac-
tivities of participant PCs in a large scale system.
Different techniques have been explored for mining
the trace of the activity and in order to get perfor-
mance.

Our Apriori algorithm is based on Radix Tree
and/or Bitset data structures. Such data structures
have been proved efficient according to a pointer
based implementation but bitsets are more promis-
ing. We are currently developing a multithreaded
version of our bitset library for clusters of SMP. The
multithreaded version of the intersect operation of
two Radix Trees, for instance, introduces problems
with balancing the work among threads. We are
investigating such issues.

Concerning the Apriori algorithm, we will imple-
ment an out-of-core version in order to deal with
large tables and before implementing the parallel
version depicted in [4]. Our objective is to capture
tables until 244 lines. A compromise between space
and efficiency for the Bitset data structures is cur-
rently under concern.

REFERENCES

[1] R. Srikant and R. Agrawal, “Fast algorithms for mining asso-
ciation rules,” in The International Conference on Very Large
Databases (VLDB), 1994, pp. 487–499.

[2] O. Zaki, Parthasarathy and Li, “New algorithms for fast dis-
covery of association rules,” in In D. Heckerman, H. Mannila,
D. Pregibon, R. Uthurusamy and Park editors, Proceedings of
the 3rd International Conference on Knowledge Discovery and
Data Miing - AAAI Press, 1997.

2Acknowledgements: We also address a special thank to Oleg
Lodygensky from LAL loboratory in Orsay - France for his tool that
inspect and collect traces.

[3] P. Han and Yin, “Mining frequent patterns without candidate
generation,” in In proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, 2000.

[4] G. Cérin, Koskas and Le-Mahec, “Efficient data-structures and
parallel algorithms for association rules discover,” in 3rd Inter-
national Conference on Parallel Computing Systems (PCS’04),
Colima, Mexico, September 2004.

[5] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery
of frequent episodes in event sequences,” Data Mining and
Knowledge Discovery, vol. 1, no. 3, pp. 259–289, 1997. [On-
line]. Available: citeseer.nj.nec.com/mannila97discovery.html

[6] M. J. Zaki, “SPADE: An efficient algorithm for mining frequent
sequences,” Machine Learning, vol. 42, no. 1/2, pp. 31–60,
2001. [Online]. Available: citeseer.nj.nec.com/zaki00spade.html

[7] R. Agrawal and K. Shim, “Developing tightly coupled data
mining applications on relational database systems,” in Interna-
tional Conference on Knowledge Discovery in Databases and
Data Mining (KDD’96), 1996.

[8] T. Imieliski and H. Mannila, “A database perspective on knowl-
edge discovery,” in Communication of the ACM 39 (11), 1996.

[9] C. Cérin, M. Koskas, H. Fkaier, and M. Jemni, “Sequential
in-core sorting performance for a sql data service and for
parallel sorting on heterogeneous clusters, revision version for
special issue of future generation computer systems (published
by elsevier) on system performance analysis and evaluation,”
2004.

[10] M. J. Zaki, “Parallel and distributed association mining: A sur-
vey,” IEEE Concurrency, vol. Vol. 7, No. 4, October-December
1999, pp. 14-25.

[11] M. J. Christophe Cérin, Michel Koskas and H. Fkaier, “Im-
proving parallel execution time of sorting on heterogeneous
clusters,” in Proc. 16th International Symposium on Computer
Architecture and High Performance Computing (SBAC’04),
Foz-do-Iguazu, Brazil, 2004.

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60 70 80 90 100

«

ob
se

rv
at

io
ns

 »

« % cpu occupancy »

 Legend
 CPU usage

Fig 3: CPU load statistics

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000

«

ob
se

rv
at

io
ns

 »

« # datagrams »

 Legend
 IP datagrams

Fig 4: IP datagram statistics

 10

 100

 1000

 10000

 100000

 10 100 1000 10000

«

ob
se

rv
at

io
ns

 »

« # transfers »

 Legend
 Disk Transfers

Fig 6: Disk transfers statistics

 0

 50000

 100000

 150000

 200000

 250000

 300000

 10 20 30 40 50 60 70 80 90 100

«

ob
se

rv
at

io
ns

 »

« # processes »

 Legend
 Nb Processes

Fig 5: Processes statistics

