
An Interface Theory for Service-Oriented Design

José Luiz Fiadeiro1 and Antónia Lopes2

1Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

jose@mcs.le.ac.uk
2Faculty of Sciences, University of Lisbon
Campo Grande, 1749–016 Lisboa, Portugal

mal@di.fc.ul.pt

Abstract. We revisit the notions of interface and component algebra proposed
by de Alfaro and Henzinger in [7] for component-based design and put forward
elements of a corresponding interface theory for service-oriented design. We view
services as a layer that can be added over a component infrastructure and propose
a notion of service interface for a component algebra that is an asynchronous
version of relational nets adapted to SCA (the Service Component Architecture
developed by the Open Service-Oriented Architecture collaboration).

1 Services vs. Components, Informally

In [7], de Alfaro and Henzinger put forward a number of important insights, backed
up by mathematical models, that led to an abstract characterisation of essential aspects
of component-based software design (CBD), namely in the distinction between the no-
tions of component and interface, and the way they relate to each other. In this paper,
we take stock on the work that we developed in the FET-GC2 integrated project SEN-
SORIA [21] towards a language and mathematical model for service-oriented modelling
[12], and investigate what abstractions can be put forward for service-oriented comput-
ing (SOC) that relate to the notions of interface and component algebra proposed in
[7]. Our ultimate goal is similar to that of [7]: to characterise the fundamental struc-
tures that support SOC independently of the specific formalisms (Petri-nets, automata,
process calculi, inter alia) that may be adopted to provide models for languages or tools.

A question that, in this context, cannot be avoided, concerns the difference between
component-based and service-oriented design. The view that we adopt herein is that, on
the one hand, services offer a layer of activity that can be superposed over a component
infrastructure (what is sometimes referred to as a ‘service overlay’) and, on the other
hand, the nature of the interactions between processes that is needed to support such
a service overlay is intrinsically asynchronous and conversational, which requires a
notion of component algebra that is different from the ones investigated in [7] for CBD.

The difference between components and services, as we see it, can be explained
in terms of two different notions of ‘composition’, requiring two different notions of
interface. In CBD, composition is integration-oriented — “the idea of component-based
development is to industrialise the software development process by producing software
applications by assembling prefabricated software components” [8]. In other words,

1



CBD addresses what, in [10] we have called ‘physiological complexity’ — the ability
to build a complex system by integrating a number of independently developed parts.
Hence, interfaces for component-based design must describe the means through which
software elements can be plugged together to build a product and the assumptions made
by each element on the environment in which it will be deployed. Interfaces in the sense
of [7] – such as assume/guarantee interfaces – fall into this category: they specify the
combinations of input values that components implementing an interface must accept
from their environment (assumptions) and the combinations of output values that the
environment can expect from them (guarantees).

In contrast, services respond to the necessity for separating “need from the need-
fulfilment mechanism” [8] and address what in [10] we have called ‘social complexity’:
the ability of software elements to engage with other parties to pursue a given business
goal. For example, we can design a seller application that may need to use an external
supplier service if the local stock is low (the need); the discovery and selection of, and
binding to, a specific supplier (the need-fulfilment mechanism) are not part of the design
of the seller but performed, at run time, by the underlying middleware (service-oriented
architecture) according to quality-of-service constraints. In this context, service inter-
faces must describe the properties that are provided (so that services can be discovered)
as well as those that may be required from external services (so that the middleware can
select a proper provider). The latter are not assumptions on the environment as in CBD
— in a sense, a service creates the environment that it needs to deliver what it promises.

In the context of modelling and specifying services, one can find two different
kinds of approaches — choreography and orchestration — which are also reflected
in the languages and standards that have been proposed for Web services, namely WS-
CDL for choreography and WS-BPEL for orchestration. In a nutshell, choreography is
concerned with the specification and realizability of a ‘conversation’ among a (fixed)
number of peers that communicate with each other to deliver a service, whereas orches-
tration is concerned with the definition of a (possibly distributed) business process (or
workflow) that may use external services discovered and bound to the process at run
time in order to deliver a service.

Whereas the majority of formal frameworks that have been developed for SOC ad-
dress choreography (see [20] for an overview), the approach that we take in this paper
is orchestration-oriented. More precisely, we propose to model the workflow through
which a service is orchestrated as being executed by a network of processes that inter-
act asynchronously and offer interaction-points to which clients and external services
(executed by their own networks) can bind. Hence, the questions that we propose to
answer are What is a suitable notion of interface for such asynchronous networks of
processes that deliver a service?, and What notion of interface composition is suitable
for the loose coupling of the business processes that orchestrate the interfaces?

The rest of this paper is technical and formal. In Section 2, we present a ‘component
algebra’ that is a variation on relational nets [7] adapted to the Service Component Ar-
chitecture [17]. This leads us to the characterisation of services as an ‘interface algebra’
(again in the sense of [7]), which we develop in Section 3. In Section 4, we compare
our framework with formal models that have been proposed in the last few years for
orchestration, namely [1,3,13].

2



2 A Service Component Algebra

As already mentioned, we adopt the view that services are delivered by systems of
components as in SCA [17]:

“SCA provides the means to compose assets, which have been implemented using a va-
riety of technologies using SOA. The SCA composition becomes a service, which can
be accessed and reused in a uniform manner. In addition, the composite service itself
can be composed with other services [...] SCA service components can be built with a
variety of technologies such as EJBs, Spring beans and CORBA components, and with
programming languages including Java, PHP and C++ [...] SCA components can also
be connected by a variety of bindings such as WSDL/SOAP web services, JavaTM Mes-
sage Service (JMS) for message-oriented middleware systems and J2EETM Connector
Architecture (JCA)”.

In the terminology of [7], we can see components in the sense of SCA as imple-
menting processes that are connected by channels. However, there is a major difference
in the way processes are connected. In [7], and indeed many models used for service
choreography and orchestration (e.g., [1,6,18]), communication is synchronous (based
in I/O connections). In order to capture the forms of loose coupling that SOAs support,
communication should be asynchronous: in most business scenarios, the traditional syn-
chronous call-and-return style of interaction is simply not appropriate. This leads us to
propose a model that is closer to communicating finite-state machines [4] (also adopted
in [2]) than, say, I/O automata [15]. We call our (service) component algebra asyn-
chronous relational nets (ARNs) to be consistent with [7].

In an asynchronous communication model, interactions are based on the exchange
of messages that are transmitted through channels (wires in the terminology of SCA).
For simplicity, we ignore the data that messages may carry. We organise messages in
sets that we call ports. More specifically, every process consists of a (finite) collection
of mutually disjoint ports, i.e. each message that a process can exchange belongs to
exactly one of its ports. Ports are communication abstractions that are convenient for
organising networks of processes as formalised below.

Every message belonging to a port has an associated polarity: − if it is an outgoing
message (published at the port) and + if it is incoming (delivered at the port). This is
the notation proposed in [4] and also adopted in [1].

Definition 1 (Ports and message polarity) A port is a set of messages. Every port M
has a partitionM−∪M+. The messages inM− are said to have polarity − , and those
in M+ have polarity + .

The actions of sending (publishing) or receiving (being delivered) a message m are
denoted by m! and m¡, respectively. In the literature, one typically finds m? for the
latter. In our model, we use m? for the action of processing the message and m¿ for the
action of discarding the message: processes should not refuse the delivery of messages
but they should be able to discard them.

Definition 2 (Actions) Let M be a port and m∈M .

3



– If m∈M−, the set of actions associated with m is Am = {m!} and, if m∈M+,
Am = {m¡,m?,m¿}

– The set of actions associated with M is AM =
⋃
m∈M Am.

In [7], predicates are used as a means of describing properties of input/output be-
haviour, i.e. establishing relations (or the lack thereof) between inputs and outputs of
processes, leading to several classes of relational nets depending on when they are con-
sidered to be ‘well-formed’. In the context of our asynchronous communication model,
behaviour is observed in terms of the actions that are performed, for which the natural
formalism to use is temporal logic (e.g., [14]). For simplicity, we use linear temporal
logic, i.e. we observe traces of actions. In order not to constrain the environment in
which processes execute and communicate, we take traces to be infinite and we allow
several actions to occur ‘simultaneously’, i.e. the granularity of observations may not
be so fine that we can always tell which of two actions occurred first.

Definition 3 (LTL) LetA be a set (of actions). We use a classical linear temporal logic
(see Appendix A for details) where every a∈A is an atomic formula and formulas are
interpreted over infinite traces λ∈(2A)ω . For every collection Φ of formulas, we define:

– ΛΦ = {λ∈(2A)ω:∀φ∈Φ(λ |= φ)}
– ΠΦ = {π∈(2A)∗: ∃λ∈ΛΦ(π≺λ)} where π≺λ means that π is a prefix of λ. Given
π∈(2A)∗ andB⊆A, we denote by (π·B) the trace obtained by extending π withB.

We say that a collection Φ of formulas entails φ — Φ |= φ — iff ΛΦ⊆Λφ. We say that a
collection Φ of formulas is consistent iff ΛΦ 6= ∅.

The fact that, at any given point i, it is possible that λ(i) is empty means that we
are using an open semantics, i.e. we are considering transitions during which the ARN
is idle. This means that we can use the logic to reason about global properties of net-
works of processes, which is convenient for giving semantics to the composition of
ARNs. Infinite traces are important because, even if the execution of individual pro-
cesses in a service session is, in typical business applications, finite, the ARN may bind
to other ARNs at run time as a result of the discovery of required services. Unbounded
behaviour may indeed arise in SOC because of the intrinsic dynamics of the configu-
rations that execute business applications, i.e. it is the configuration that is unbounded,
not the behaviour of the processes and channels that execute in the configuration.

In this paper, we work with descriptions (sets of formulas) over different sets of
actions, which requires that we are able to map between the corresponding languages:

Proposition and Definition 4 (Translation) Let σ:A→B be a function. Given an LTL
formula φ over A, we define its translation σ(φ) as the formula over B that is obtained
by replacing every action a∈A by σ(a). The following properties hold:

– For every λ∈2Bω , λ |= σ(φ) iff σ−1(λ) |= φ where σ−1(λ)(i) is σ−1(λ(i)).
– Any set Φ of LTL formulas over A is consistent if σ(Φ) is consistent.
– For every set Φ of LTL formulas over A and formula ψ also over A, if Φ |= ψ then
σ(Φ) |= σ(ψ).

4



Furthermore, if σ is an injection, the implications above are equivalences.

Proof. The first property is easily proved by structural induction, from which the other
two follow. The properties of injections are proved in the same way on the direct image.

Notice that, in the case of injections, the translations induce conservative extensions,
i.e. σ(Φ) is a conservative translation of Φ. We are particularly interested in translations
that, given a set A and a symbol p, prefix the elements of A with ‘p.’. We denote these
translations by (p. ). Note that prefixing defines a bijection between A and its image.

Definition 5 (Process) A process consists of:

– A finite set γ of mutually disjoint ports.
– A consistent set Φ of LTL formulas over

⋃
M∈γ AM .

Fig. 1 presents an example of a process Seller with two ports. In the port depicted
on the left, which we designate by Lsl, it receives the message buy and sends messages
price and fwd details . The other port, depicted on the right and called Rsl, has in-
coming message details and outgoing message product. Among other properties, we
can see that Seller ensures to eventually sending the messages product and price in
reaction to the delivery of buy. As explained below, the grouping of messages in ports
implies that, whilst price is sent over the channel that transmits buy, product is sent
over a different channel.

Seller

product
details

buy

price

fwd_details

⃞(buy¡⊃◇(price!∧◇product!))

⃞(details¡⊃◇fwd_details!)
...

Fig. 1. Example of a process with two ports.

Interactions in ARNs are established through channels. Channels transmit messages
both ways, i.e. they are bidirectional, which is consistent with [4]. Notice that, in some
formalisms (e.g., [2]), channels are unidirectional, which is not so convenient for cap-
turing typical forms of conversation that, like in SCA, are two-way: a request sent by
the sender through a wire has a reply sent by the receiver through the same wire (chan-
nel). This means that channels are agnostic in what concerns the polarity of messages:
these are only meaningful within ports.

Definition 6 (Channel) A channel consists of:

– A set M of messages.
– A consistent set Φ of LTL formulas over AM = {m!,m¡ : m ∈M}.

Notice that in [2] as well as other asynchronous communication models adopted
for choreography, when sent, messages are inserted in the queue of the consumer. In

5



the context of loose coupling that is of interest for SOC, channels (wires) may have a
behaviour of their own that one may wish to describe or, in the context of interfaces,
specify. Therefore, for generality, we take channels as first-class entities that are respon-
sible for delivering messages.

Channels connect processes through ports that assign opposite polarities to mes-
sages. Formally, the connections are established through what we call attachments:

Definition 7 (Connection) Let M1 and M2 be ports and 〈M,Φ〉 a channel. A connec-
tion between M1 and M2 via 〈M,Φ〉 consists of a pair of bijections µi:M→Mi such
that µ−1

i (M+
i ) = µ−1

j (M−j ), {i, j}={1, 2}. Each bijection µi is called the attachment
of 〈M,Φ〉 to Mi. We denote the connection by 〈M1

µ1←−M
µ2−→M2, Φ〉.

Proposition 8 Every connection 〈M1
µ1←− M µ2−→ M2, Φ〉 defines an injection 〈µ1, µ2〉

from AM to AM1∪AM2 as follows: for every m∈M and {i, j}={1, 2}, if µi(m)∈M−i
then 〈µ1, µ2〉(m!) = µi(m)! and 〈µ1, µ2〉(m¡) = µj(m)¡.

Definition 9 (Asynchronous relational net) An asynchronous relational net (ARN) α
consists of:

– A simple finite graph 〈P,C〉 where P is a set of nodes and C is a set of edges. Note
that each edge is an unordered pair {p, q} of nodes.

– A labelling function that assigns a process to every node and a connection to every
edge such that:
• If p:〈γ, Φ〉 and q:〈γ′, Φ′〉 then {p, q} is labelled with a connection of the form
〈Mp

µp←−M
µq−→Mq, Φ

′′〉 where Mp∈γ and Mq∈γ′.
• For every {p, q}:〈Mp

µp←−M
µq−→Mq, Φ〉 and {p, q′}:〈M ′p µ

′
p←−M

′ µ′
q′−→M ′q′ , Φ

′〉, if
q 6= q′ then Mp 6= M ′p.

We also define the following sets:

– Ap = p.(
⋃
M∈γp AM ) is the language associated with p,

– Aα =
⋃
p∈P Ap is the language associated with α,

– Ac = 〈p. ◦µp, q. ◦µq〉(AM ) is the language associated with γc:〈Mp
µp←−M

µq−→Mq〉.
– Φα is the union of the following sets of formulas
• For every p:〈γ, Φ〉, the prefix-translation Φp of Φ by (p. ).
• For every c:〈Mp

µp←−M
µq−→Mq, Φ〉, the translation Φc=〈p. ◦ µp, q. ◦ µq〉(Φ)

– Λα = {λ∈2Aαω: ∀p∈P (λ|Ap∈ΛΦp) ∧ ∀c∈C(λ|Ac∈ΛΦc)}
The set of infinite traces that are projected to models of all processes and channels.

– Πα = {π∈2Aα∗: ∀p∈P (π|Ap∈ΠΦp) ∧ ∀c∈C(π|Ac∈ΠΦc)}
The set of finite traces that are projected to prefixes of models of all processes and
channels.

We often refer to the ARN through the quadruple 〈P,C, γ, Φ〉 where γ returns the
set of ports of the processes that label the nodes and the pair of attachments of the con-
nections that label the edges, and Φ returns the corresponding descriptions. The fact that
the graph is simple — undirected, without self-loops or multiple edges — means that all
interactions between two given processes are supported by a single channel and that no

6



process can interact with itself. The graph is undirected because, as already mentioned,
channels are bidirectional. Furthermore, different channels cannot share ports.

Notice that nodes and edges denote instances of processes and channels, respec-
tively. Different nodes (resp. edges) can be labelled with the same process (resp. chan-
nel). Therefore, in order to reason about the properties of the ARN as a whole we need
to translate the descriptions of the processes and channels involved to a language in
which we can distinguish between the corresponding instances. The set Φα consists
precisely of the translations of all the descriptions of the processes and channels using
the nodes as prefixes for the actions that they execute. Notice that, by Prop. 4, these
translations are conservative, i.e. neither processes nor channels gain additional proper-
ties because of the translations. However, by taking the union of all such descriptions,
new properties may emerge, i.e. Φα is not necessarily a conservative extension of the
individual descriptions.

A process in isolation, such as Seller (see Fig. 1), defines an ARN. Fig. 2 presents
another ARN that also involves Seller. In this ARN, the port Rsl of Seller is connected
with the portMsp of process Supplier, which consists of the incoming message request
and the outgoing message invoice. The channel that connectsRsl andMsp is described
to be reliable with respect to product: it ensures to delivering product, which Supplier
receives under the name request. Formally, this ARN consists of a graph with two
nodes sl:Seller and sp:Supplier and one edge {sl, sp}:wss, where wss is the connec-
tion

〈Rsl µsl←− {m,n} µsp−→Msp, {�(m! ⊃ 3m¡)}〉

with µsl={m 7→ product, n 7→ details}, µsp={m 7→ request, n 7→ invoice}.
The set ΦSELLERWITHSUPPLIER consists of the translation of all properties of its pro-

cesses and connections. Hence, it includes:

– �(sl.buy¡ ⊃ 3(sl.price! ∧3sl.product!))
– �(sl.details¡ ⊃ 3sl.fwd details!)
– �(sp.request¡ ⊃ 3sp.invoice!)
– �(sl.product! ⊃ 3sp.request¡)

Notice that the last formula, which is the translation of the description of the chan-
nel, relates the languages of Seller and Supplier: the publication of product by Seller
leads to the delivery of request to Supplier. In this context, product and request are
just local names of the ‘same’ message as perceived by the two processes being con-
nected. The ability to operate with local names is essential for SOC because, in the
context of run-time discovery and binding, it is not possible to rely on a shared name
space. This is why it is important that channels are first-class entities, i.e., that commu-
nication is established explicitly by correlating the actions that represent the local view
that each party has of a message exchange.

In [7], joint consistency of the descriptions of the processes and the connections, i.e.,
of Φα, would be required for the ARN to be well defined. However, consistency does
not ensure that the processes will always be able to make progress while interacting
through the channels, which is why we prefer instead to use the following property as a
criterion for well-formedness:

7



⃞(request¡⊃◇invoice!) 

...

request

invoice

SELLERWITHSUPPLIER

⃞(product!⊃◇request¡)

SupplierSeller

product

details

⃞(buy¡⊃◇(price!∧◇product!))

⃞(details¡⊃◇fwd_details!)
...

buy

price

fwd_details

Fig. 2. An example of an ARN with two processes connected through a channel.

Definition 10 (Progress-enabled ARN) We say that an ARN α is progress-enabled iff
∀π∈Πα∃A⊆Aα(π·A)∈Πα.

It is not difficult to see that any ARN α with a single process, such as Seller, is
progress-enabled. This is because the process is isolated. In general, not every port of
every process is necessarily connected to a port of another process. Such ports pro-
vide the points through which the ARN can interact with other ARNs. For example,
SELLERWITHSUPPLIER has a single interaction point, which in Fig. 2 is represented
by projecting the corresponding port to the external box.

Definition 11 (Interaction-point) An interaction-point of an ARN α = 〈P,C, γ, Φ〉 is
a pair 〈p,M〉 such that p∈P , M∈γp and there is no edge {p, q}∈C labelled with a
connection that involves M . We denote by Iα the collection of interaction-points of α.

Interaction-points are used in the notion of composition that we define for ARNs,
which also subsumes the notion of interconnect of [7]:

Proposition and Definition 12 (Composition of ARNs) Letα1 = 〈P1, C1, γ1, Φ1〉 and
α2 = 〈P2, C2, γ2, Φ2〉 be ARNs such that P1 and P2 are disjoint, and a family wi =

〈M i
1
µi

1←− M
µi

2−→ M i
2, Ψ

i〉 (i = 1 . . . n) of connections for interaction-points 〈pi1,M i
1〉 of

α1 and 〈pi2,M i
2〉 of α2 such that pi1 6= pj1 if i 6= j and pi2 6= pj2 if i 6= j. The composition

α1

ni=1...n

〈pi1,Mi
1〉,wi,〈pi2,Mi

2〉
α2

is the ARN defined as follows:

– Its graph is 〈P1 ∪ P2, C1 ∪ C2 ∪
⋃
i=1...n{pi1, pi2}〉

– Its labelling function coincides with that of α1 and α2 on the corresponding sub-
graphs, and assigns to the new edges {pi1, pi2} the label wi.

Proof. We need to prove that the composition does define an ARN. This is because we
are adding to the sum of the graphs edges between interaction-points that do not share
interaction-points, the resulting graph is simple. It is easy to check that the labels are
well defined.

8



Fig. 2 can also be used to illustrate the composition of ARNs: SELLERWITH-
SUPPLIER is the composition of the two single-process ARNs defined by Seller and
Supplier via the connection wss.

Given that we are interested in ARNs that are progress-enabled, it would be useful
to have criteria for determining when a composition of progress-enabled ARNs is still
progress-enabled. For this purpose, an important property of an ARN relative to its
set of interaction-points is that it does not constrain the actions that do not ‘belong’
to the ARN. Naturally, this needs to be understood in terms of a computational and
communication model in which it is clear what dependencies exist between the different
parties. As already mentioned, we take it to be the responsibility of processes to publish
and process messages, and of channels to deliver them. This requires that processes are
able to buffer incoming messages, i.e., to be ‘delivery-enabled’, and that channels are
able to buffer published messages, i.e., to be ‘publication-enabled’.

Definition 13 (Delivery-enabled) Let α=〈P,C, γ, Φ〉 be an ARN, 〈p,M〉∈Iα one of
its interaction-points, andD〈p,M〉={p.m¡:m∈M+}. We say that α is delivery-enabled
in relation to 〈p,M〉 if, for every (π·A)∈Πα andB⊆D〈p,M〉, (π·B∪(A\D〈p,M〉))∈Πα.

The property requires that any prefix can be extended by any set of messages deliv-
ered at one of its interaction-points. Considering again the ARN defined by Seller, if its
description is limited to the formulas shown in Fig. 1, then it is not difficult to conclude
that the ARN is delivery-enabled for both its interaction-points — the constraints put
on the delivery of buy and details are both satisfiable.

Definition 14 (Publication-enabled) Let h=〈M,Φ〉 be a channel and Eh = {m! :
m ∈ M}. We say that h is publication-enabled iff, for every (π·A)∈ΠΦ and B⊆Eh,
we have π·(B∪(A\Eh)) ∈ ΠΦ.

The requirement here is that any prefix can be extended by the publication of a set
of messages, i.e. the channel should not prevent processes from publishing messages.
For example, the channel used in the connection wss is clearly publication-enabled: the
extension of any prefix (π·A) in ΠΦwss with the publication of m (if it was not already
in A) is still a prefix of an infinite trace that satisfies �(m! ⊃ 3m¡) by executing m¡ at
a later stage.

Theorem 15 Let α = (α1

ni=1...n

〈pi1,Mi
1〉,wi,〈pi2,Mi

2〉
α2) be a composition of progress-

enabled ARNs where, for each i = 1 . . . n, wi = 〈M i
1
µi

1←− M
µi

2−→ M i
2, Ψ

i〉. If, for each
i=1. . . n, α1 is delivery-enabled in relation to 〈pi1,M i

1〉, α2 is delivery-enabled in rela-
tion to 〈pi2,M i

2〉 and hi=〈M i,Φi〉 is publication-enabled, then α is progress-enabled.

Proof. See Appendix A

We can use this theorem to prove that the ARN presented in Fig. 2 is progress-
enabled. Because, as already argued, the channel used in this composition is publication-
enabled and Seller is delivery-enabled, it would remain to prove that so is Supplier,
which is similar to the case of Seller.

9



Proposition 16 Let α = (α1

ni=1...n

〈pi1,Mi
1〉,wi,〈pi2,Mi

2〉
α2) be a composition.

– Let 〈p′1,M ′1〉 be an interaction-point of α1 different from all 〈pi1,M i
1〉. If α1 is

delivery-enabled in relation to 〈p′1,M ′1〉, so is α.
– Let 〈p′2,M ′2〉 be an interaction-point of α2 different from all 〈pi2,M i

2〉. If α2 is
delivery-enabled in relation to 〈p′2,M ′2〉, so is α.

3 A Service Interface Algebra

In this section, we put forward a notion of interface for software components described
in terms of ARNs and a notion of interface composition that is suitable for service-
oriented design. As discussed in Section 1, this means that interfaces need to specify
the services that customers can expect from ARNs as well as the dependencies that the
ARNs may have on external services for providing the services that they offer.

In our model, a service interface identifies a number of ports through which services
are provided and ports through which services are required (hence the importance of
ports for correlating messages that belong together from a business point of view).
Temporal formulae are used for specifying the properties offered or required.

Ports for required services include messages as sent or received by the external
service. Therefore, to complete the interface we need to be able to express requirements
on the channel through which communication with the external service will take place,
if and when required. In order to express those properties, we need to have actions on
both sides of the channel, for which we introduce the notion of dual port.

Definition 17 (Dual port) Given a port M , we denote by Mop the port defined by
Mop+ = M− and Mop− = M+.

Notice that (Mop)op=Mop.

Definition 18 (Service interface) A service interface i consists of:

– A set I (of interface-points) partitioned into two sets I→ and I← the members of
which are called the provides- and requires-points, respectively.

– For every interface-point r, a port Mr.
– For every point r∈I→, a consistent set of LTL formulas Φr over AMr

.
– For every point r∈I←:
• a consistent set of LTL formulas Φr over AMr making αr = 〈{r}, ∅,Mr, Φr〉

delivery-enabled (see Def. 13),
• a consistent set of LTL formulas ΨMr over {m!,m¡: m∈Mr}making 〈Mr, ΨMr 〉

a publication-enabled channel (see Def. 14).

We identify an interface with the tuple 〈I→, I←,M,Φ, Ψ〉 where Mr:r∈I , Φr:r∈I ,
Ψr:r∈I← are the indexed families that identify the ports and specifications of each point
of the interface. Notice that different points may have the same port, i.e., ports are types.

The sets of formulas at each interface-point specify the protocols that services re-
quire from external services (in the case of requires-points) and offer to clients (in the

10



case of provides-ports). For example, Fig. 3 presents a service interface with one pro-
vides and one requires-point (we use a graphical notation similar to that of SCA). On
the left, we have an interaction point p through which the service is provided and, on
the right side, the interaction point r through which an external service is required. Ac-
cording to what is specified, the service offers, in reaction to the delivery of the message
buy, to reply by publishing the message price followed eventually by fwd details . On
the other hand, the required service is asked to react to the delivery of product by pub-
lishing details. The connection with the external service is required to ensure that the
transmission of both messages is reliable.

    
⃞(buy¡⊃
 ◇(price!∧◇fwd_details!))

buy

price

fwd_details
⃞(product¡⊃◇details!)

product

details⃞(details!⊃◇details¡)
⃞(product!⊃◇product¡)

ISELLER

product

details

Fig. 3. An example of a service interface.

Notice that the properties specified of the interface-points play a role that is differ-
ent from the assumption/guarantee (A/G) specifications that have been proposed (since
[16]) for networks of processes and also used in [19] for web services. The aim of A/G
is to ensure compositionality of specifications of processes by making explicit assump-
tions about the way they interact with their environment. The purpose of the interfaces
that we propose is, instead, to specify the protocols offered to clients of the service
and the protocols that the external services that the service may need to discover and
bind to are required to follow. This becomes clear in the definition of the notion of im-
plementation of a service interface, which we call an orchestration. Compositionality
is then proved (Theo. 22) under the assumptions made on the requires-points, namely
delivery and publication enabledness, which concern precisely the way processes and
channels interfere with their environments. That is, our interfaces do address the inter-
ference between service execution and their environment, but the formulas associated
with requires-points are not assumptions and those of provides-ports are not guarantees
in the traditional sense of A/G specifications.

Definition 19 (Orchestration) An orchestration of a service interface 〈I→,I←,M,Φ,Ψ〉
consists of:

– An ARN α = 〈P,C, γ, Φ〉 where P and I are disjoint, which is progress-enabled
and delivery-enabled in relation to all its interaction-points.

– A one-to-one correspondence ρ between I and Iα; we will write r ρ−→p to indicate
that ρ(r) = 〈p,Mp〉 for some port Mp.

– For every r∈I→, a polarity-preserving bijection ρr:Mr→Mp where r ρ−→p.
– For every r∈I←, a polarity-preserving bijection ρr:Mop

r →Mp where r ρ−→p.

11



Let α∗ = (α
f
ρ(r),wr,〈r,Mr〉 αr)r∈I← with wr = 〈Mp

ρr←−Mr
id−→Mr, Ψr〉, r ρ−→p. We re-

quire that, for every r∈I→, (p. ◦ρr)−1(Λα∗)⊆ΛΦr — equivalently,Φα∗ |= p.(ρr(Φr)).
A service interface that can be orchestrated is said to be consistent.

The condition requires that every model of the ARN composed with the requires-
points and channels be also a model of the specifications of the provides-points. That
is, no matter what the external services that bind to the requires-points do and how the
channels transmit messages (as long as they satisfy the corresponding specifications),
the ARN will be able to operate and deliver the properties specified in the provides-
points. Notice that, by Theo. 15 the composition is progress-enabled.

Also note that provides-points are mapped to interaction-points of the ARN preserv-
ing the polarity of the messages, but requires-points reverse the polarity. This is because
every requires-point r∈I← represents the external service that is required whereas r ρ−→p
identifies the interaction-point through which that external service, once discovered,
will bind to the orchestration. The ARNs αr represent those external services.

Consider again the ARN defined by Seller as in Fig. 1. It is not difficult to see that,
together with the correspondences p 7→ 〈Seller, Lsl〉 and r 7→ 〈Seller,Rsl〉, Seller
defines an orchestration for the service interface ISELLER. Indeed, according to the
definition above, Seller∗ is the composition

Seller
n

〈sl,Rsl〉,wr,〈r,Ropsl 〉

〈{r}, ∅, Ropsl , {�(product¡ ⊃ 3details!)}〉

Hence, the set ΦSeller∗ includes the following properties:

1. �(sl.buy¡ ⊃ 3(sl.price! ∧3sl.product!)) (from Seller)
2. �(sl.details¡ ⊃ 3sl.fwd details!) (from Seller)
3. �(r.product¡ ⊃ 3r.details!) (from the specification Φr of the requires-point)
4. �(r.details! ⊃ 3sl.details¡) (from the specification Ψr of the required channel)
5. �(sl.product! ⊃ 3r.product¡) (from Ψr)

It is not difficult to conclude that �(p.buy¡ ⊃ 3(sl.price! ∧3sl.fwd details!))) is a
logical consequence of ΦSeller∗ . We just have to produce a chain of implications using
(1), (5), (3), (4) and (2), in this order.

Definition 20 (Match) A match between two interfaces i = 〈I→, I←,M i, Φi, Ψ i〉 and
j = 〈J→, J←,M j , Φj , Ψ j〉 is a family of triples 〈rm, sm, δm〉, m = 1 . . . n, where
rm∈I←, sm∈J→ and δm:M i

rm→M
j
sm is a polarity-preserving bijection such that

Φjsm |= δm(Φirm). Two interfaces are said to be compatible if their sets of interface-
points are disjoint and admit a match.

That is, a match maps certain requires-points of one of the interfaces to provides-
points of the other in such a way that the required properties are entailed by the provided
ones. Notice that, because the identity of the interface-points is immaterial, requiring
that the sets of points of the interfaces be disjoint is not restrictive at all. We typically
use δm:rm→sm to refer to a match.

12



Definition 21 (Composition of interfaces) Given a match δm:rm→sm between com-
patible interfaces i = 〈I→, I←,M i, Φi, Ψ i〉 and j = 〈J→, J←,M j , Φj , Ψ j〉, their
composition (i ‖δm:rm→sm j) = 〈K→,K←,M,Φ, Ψ〉 is defined as follows:

– K→ = I→ ∪ (J→ \ {sm : m = 1 . . . n}).
– K← = J← ∪ (I← \ {rm : m = 1 . . . n}).
– 〈M,Φ, Ψ〉 coincides with 〈M i, Φi, Ψ i〉 and 〈M j , Φj , Ψ j〉 on the corresponding

points.

Notice that the composition of interfaces is not commutative: one of the interfaces
plays the role of client and the other of supplier of services.

We can now prove compositionality, i.e., that the composition of the orchestrations
of compatible interfaces is an orchestration of the composition of the interfaces.

Theorem 22 (Composition of orchestrations) Let i = 〈I→, I←,M i, Φi, Ψ i〉 and j =
〈J→, J←,M j , Φj , Ψ j〉 be compatible interfaces, δm:rm→sm a match between them,
and 〈α, ρ〉 and 〈β, σ〉 orchestrations of i and j, respectively, with disjoint graphs.(

α
nm=1...n

〈pm,Mpm 〉,wm,〈qm,Mqm 〉
β
)

wherewm = 〈Mpm
ρrm←−−Mrm

σsm ◦ δm

−−−−−−→Mqm , Ψ
i
Mrm
〉, ρ(rm)=〈pm,Mpm〉 and σ(sm) =

〈qm,Mqm〉 defines an orchestration of (i ‖δm:rm→sm j) through the mapping κ that
coincides with ρ on I and with σ on J .

Proof. See Appendix B

Compositionality is one of the key properties required in [7] for a suitable notion of
interface. From the software engineering point of view, it means that there is indeed a
separation between interfaces and their implementations in the sense that, at the design
level, composition can be performed at the interface level independently of the way the
interfaces will be implemented. In particular, one can guarantee that the composition
of compatible interfaces can indeed be orchestrated, which is captured by the following
corollary (the theorem provides a concrete way of deriving that orchestration from those
of the component interfaces):

Corollary 23 (Preservation of consistency) The composition of two compatible and
consistent interfaces is consistent.

4 Related Work and Concluding Remarks

In this paper, we took inspiration from the work reported in [7] on a theory of interfaces
for component-based design to propose a formalisation of ‘services’ as interfaces for an
algebra of asynchronous components. That is, we exposed and provided mathematical
support for the view that services are, at a certain level of abstraction, a way of using
software components — what is sometimes called a ‘service-overlay’ — and not so
much a way of constructing software, which is consistent with the way services are
being perceived in businesses [8] and supported by architectures such as SCA [17].

13



This view differs from the more traditional component-based approach in which
components expose methods in their interfaces and bind tightly to each other (based on
I/O-relations) to construct software applications. In our approach, components expose
conversational, stateful interfaces through which they can discover and bind, on the fly,
to external services or expose services that can be discovered by business applications.
Having in mind that one of the essential features of SOC is loose-binding, we proposed
a component algebra that is asynchronous — essentially, an asynchronous version of
relational nets as defined in [7].

As mentioned in Section 1, most formal frameworks that have been proposed for
SOC address choreography, i.e., the specification of a global conversation among a
fixed number of peers and the way it can be realised in terms of the local behaviour gen-
erated by implementations of the peers. A summary of different choreography models
that have been proposed in the literature can be found in [20]. Among those, we would
like to distinguish the class of automata-based models proposed in [2,5,13], which are
asynchronous. Such choreography models are inherently different from ours in the
sense that they study different problems: the adoption of automata reflects the need
to study the properties and realisability of conversation protocols captured as words of
a language of message exchange. It would be tempting to draw a parallel between their
notion of composite service — a network of machines — and our ARNs, but they are
actually poles apart: our aim has not been to model the conversations that characterise
the global behaviour of the peers that deliver a service, but to model the network of
processes executed by an individual peer and how that network orchestrates a service
interface for that peer — that is, our approach is orchestration-based. Therefore, we do
not make direct usage of automata, although a reification of our processes could natu-
rally be given in terms of automata. Our usage of temporal logic for describing ARNs,
as a counterpart to the use of first-order logic in [7] for describing I/O communication,
has the advantage of being more abstract than a specific choice of an automata-based
model (or, for that matter, a Petri-net model [18]). This has also allowed us to adopt a
more general model of asynchronous communication in which channels are first-class
entities (reflecting the importance that they have in SOC). We are currently studying
decidability and other structural properties of our model and the extent to which we can
use model-checking or other techniques to support analysis.

Another notion of web service interface has been proposed in [3]. This work presents
a specific language, not a general approach like we did in this paper, but there are some
fundamental differences between them, for example in the fact that their underlying
model of interaction is synchronous (method invocation), which is not suitable for loose
coupling. The underlying approach is, like ours, orchestration-based but, once again,
more specific than ours in that orchestrations are modelled through a specific class of
automata supporting a restricted language of temporal logic specifications. Another fun-
damental difference is that, whereas in [3] the orchestration of a service is provided by
an automaton, ours is provided by a network of processes (as in SCA), which provides
a better model for capturing the dynamic aspects of SOC that arise from run-time dis-
covery and binding: our notion of composition is not for integration (as in CBD) but for
dynamic interconnection of processes. This is also reflected in the notion of interface:
the interfaces used in [3] are meant for design-time composition, the client being stati-

14



cally bound to the invoked service (which is the same for all invocations); the interfaces
that we proposed address a different form of composition in which the provider (the
“need-fulfilment mechanism”) is procured at run time and, therefore, can differ from
one invocation to the next, as formalised in [11] in a more general algebraic setting.

Being based on a specific language, [3] explores a number of important issues re-
lated to compatibility and consistency that arise naturally in service design when one
considers semantically-rich interactions, e.g., when messages carry data or are corre-
lated according to given business protocols. A similar orchestration-based approach
has been presented in [1], which is also synchronous and based on finite-state machines,
and also addresses notions of compatibility and composition of conversation protocols
(though, interestingly, based on branching time). We are studying an extension of our
framework that can support such richer models of interaction (and the compatibility
issues that they raise), for which we are using, as a starting point, the model that we
adopted in the language SRML [12], which has the advantage of being asynchronous.

Although we consider that the main contribution of this paper is to put forward a no-
tion of interface that can bring service-oriented design to the ‘standards’ of component-
based design, there are still aspects of the theory of component interfaces developed in
[7] that need to be transposed to services. For example, an important ingredient of that
theory is a notion of compositional refinement that applies to interfaces (for top-down
design) and a notion of compositional abstraction for implementations (orchestrations
in the case of services), that can support bottom-up verification.

Other lines for further work concern extensions to deal with time, which is critical
for service-level agreements, and to address the run-time discovery, selection and bind-
ing processes that are intrinsic to SOC. We plan to use, as a starting point, the algebraic
semantics that we developed for SRML [11]. Important challenges that arise here relate
to the unbounded nature of the configurations (ARNs) that execute business applica-
tions in a service-oriented setting, which is quite different from the complexity of the
processes and communication channels that execute in those configurations.

Acknowledgments

We would like to thank Nir Piterman and Emilio Tuosto for many helpful comments
and suggestions.

References

1. B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and managing web service
protocols. Data Knowl. Eng., 58(3):327–357, 2006.

2. A. Betin-Can, T. Bultan, and X. Fu. Design for verification for asynchronously communi-
cating web services. In Ellis and Hagino [9], pages 750–759.

3. D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web service interfaces. In Ellis and Hagino
[9], pages 148–159.

4. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–
342, 1983.

5. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach to design
and analysis of e-service composition. In WWW, pages 403–410, 2003.

15



6. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. In R. De Nicola, editor, ESOP, volume 4421 of LNCS, pages 2–17.
Springer, 2007.

7. L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In T. A.
Henzinger and C. M. Kirsch, editors, EMSOFT, volume 2211 of LNCS, pages 148–165.
Springer, 2001.

8. A. Elfatatry. Dealing with change: components versus services. Commun. ACM, 50(8):35–
39, 2007.

9. A. Ellis and T. Hagino, editors. Proceedings of the 14th international conference on World
Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005. ACM, 2005.

10. J. L. Fiadeiro. Designing for software’s social complexity. IEEE Computer, 40(1):34–39,
2007.

11. J. L. Fiadeiro, A. Lopes, and L. Bocchi. An abstract model of service discovery and binding.
Formal Asp. Comput., to appear.

12. J. L. Fiadeiro, A. Lopes, L. Bocchi, and J. Abreu. The SENSORIA reference modelling
language. In Wirsing and Hoelzl [21].

13. X. Fu, T. Bultan, and J. Su. Conversation protocols: a formalism for specification and verifi-
cation of reactive electronic services. Theor. Comput. Sci., 328(1-2):19–37, 2004.

14. R. Goldblatt. Logics of time and computation. CSLI, Stanford, CA, USA, 1987.
15. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
16. J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Software Eng.,

7(4):417–426, 1981.
17. OSOA. Service component architecture: Building systems using a service oriented architec-

ture, 2005. White paper available from www.osoa.org.
18. W. Reisig. Towards a theory of services. In R. Kaschek, C. Kop, C. Steinberger, and G. Fliedl,

editors, UNISCON, volume 5 of LNBIP, pages 271–281. Springer, 2008.
19. M. Solanki, A. Cau, and H. Zedan. Introducing compositionality in web service descriptions.

In FTDCS, pages 14–20. IEEE Computer Society, 2004.
20. J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a theory of web service choreographies. In

M. Dumas and R. Heckel, editors, WS-FM, volume 4937 of LNCS, pages 1–16. Springer,
2007.

21. M. Wirsing and M. Hoelzl (Eds). Rigorous Software Engineering for Service-Oriented Sys-
tems. LNCS. Springer, to appear.

16



A Full version of Definition 3

Let A be a set (of actions).

– The language of the linear temporal logic (LTL) overA is defined by (where a∈A):

φ ::= true | a | ¬φ | φ ⊃ φ′ | ©φ | φ U φ′

– Formulas are interpreted over λ∈(2A)ω as follows (λi denotes the i-th suffix of λ):
λ |= true
λ |= a iff a∈λ(0)
λ |= ¬φ iff not λ |= φ
λ |= φ ⊃ φ′ iff λ |= φ implies that λ |= φ′

λ |=©φ iff λ1 |= φ
λ |= φ Uφ′ iff there exists 0≤j s.t. λj |= φ′ and, for all 0≤k< j, λk |= φ.

– In addition to the usual propositional abbreviations, we use:
3φ ≡ true Uφ — now or eventually φ
�φ ≡ ¬3(¬φ) — now and forever φ

B Proof of Theorem 15

(To simplify the notation, we consider the case of a single pair of interaction points.)

Let α = (α1

f
〈p,M1〉,w,〈q,M2〉 α2) be a composition of progress-enabled ARNs where

w = 〈M1
µ1←− M µ2−→ M2, Φ〉. If α1 is delivery-enabled in relation to 〈p,M1〉, α2 is

delivery-enabled in relation to 〈q,M2〉 and h = 〈M,Φ〉 is publication-enabled, then α
is progress-enabled.

Proof. Let c = {p, q}, π∈Πα and π1, π2 and πc be the corresponding translations to
the languages of α1, α2 and 〈p. ◦µp, q. ◦µq〉(M), respectively. We know that π1∈Π1,
π2∈Π2 and πc∈ΠΦc . Because α1 and α2 are progress-enabled, let (π1·B1)∈Π1 and
(π2·B2)∈Π2. Let also (πc·Bc)∈ΠΦc . The addition of the new edge c only interferes
with the ability of p and q to move — the language of 〈p. ◦ µp, q. ◦ µq〉(M) only
intersects those of the two interaction-points. Therefore, we need to adjust the compo-
nents of B1 and B2 that intersect D〈p,M1〉 and D〈q,M2〉, respectively — the deliveries
made by the channel — and the intersection of Bc with 〈p. ◦ µp, q. ◦ µq〉(Eh) — the
publications made into the channel.
Let Bp=Bc∩D〈p,M1〉 and Bq=Bc∩D〈q,M2〉:

– Let B′1=Bp ∪ (B1\D〈p,M1〉)). Then, (π1·B′1)∈Π1 because α1 is delivery-enabled
in relation to 〈p,M1〉— that is, α1 progresses by the deliveries made by c and the
publications made by B1.

– Let B′2=Bq ∪ (B2\D〈q,M2〉)).(π2·B′2)∈Π2 because α2 is delivery-enabled in re-
lation to 〈q,M2〉 — that is, α2 progresses by the deliveries made by c and the
publications made by B2.

Let B′c=(B1∪B2)∩〈p. ◦µp, q. ◦µq〉(Eh). Then, (πc·(Bp∪Bq∪B′c))∈ΠΦc because h
is publication-enabled, i.e., the channel progresses by the deliveries made byBc and the
publications made by B1 and B2. We can now conclude that (π·(B′1∪B′2∪B′c))∈Πα.

17



C Proof of Theorem 22

(To simplify the notation, we consider the case of a match between a single pair of in-
terface points.)

Let i = 〈I→, I←,M i, Φi, Ψ i〉 and j = 〈J→, J←,M j , Φj , Ψ j〉 be compatible inter-
faces, δ:r→s a match between them, and 〈α, ρ〉 and 〈β, σ〉 orchestrations of i and
j, respectively, with disjoint graphs. The composition

(
α ‖〈p,Mp〉,w,〈q,Mq〉 β

)
where

ρ(r)=〈p,Mp〉, σ(s)=〈q,Mq〉, and w = 〈Mp
ρr←− M i

r
σs ◦ δ−−−→ Mq, Ψ

i
Mr
〉 defines an or-

chestration of (i ‖δ j) through the mapping κ that coincides with ρ on I and with σ on
J .

Proof. The fact that the composition of the ARNs is delivery-enabled in relation to all
the interaction-points is an immediate consequence of Prop 16, and the fact that it is
progess-enabled follows from Theo. 15.
The connection w is also well defined: because r∈I←, ρr is defined over Mop

i and,
because δ and σs are both polarity preserving, the condition on attachments (cf. Def. 7)
is verified.
It remains to prove that, for every t∈K→ with t κ−→o, Φ∗ |= o.(κt(Φt)) where Φ∗ is
the description associated with the composition of the ARNs and those of the requires-
points.

In the case in which t∈J→\{s}:
Φβ∗ |= o.(σt(Φ

j
t )) because 〈β, σ〉 is an implementation of j.

On the other hand, Φ∗ |= Φβ∗ because J←⊆K←.
Therefore, Φ∗ |= o.(κt(Φt)) because κ coincides with σ and Φ coincides with
Φj on J .

In the case in which t∈I→:
Φα∗ |= o.(ρt(Φit)) because 〈α, ρ〉 is an orchestration of i.
This time, I←*K← because r/∈K←, so we cannot proceed as above — we
are missing αr and its connection to α.
However, we know that, because δ:r→s is a match, Φjs |= δ(Φir). Therefore,
because Φβ∗ |= q.(σs(Φjs)), we conclude that Φβ∗ |= q.(σs(δ(Φir))) .
On the other hand, Φ∗ |= 〈p. ◦ ρr, q. ◦ σs ◦ δ〉(Ψ ir), which results from the
connection between the two ARNs. Therefore, Φ∗ entails the specification as-
sociated with αr and the corresponding channel up to the bijection (q. ◦ σs),
which is immaterial as t and r are different — the actual names used for the
messages in the ports is not relevant.
We can then conclude that Φ∗ |= o.(ρt(Φit)).

18


