Parallelism and Concurrency of Stochastic Graph Transformations

Reiko Heckel, University of Leicester Joint work with Hartmut Ehrig, Ulrike Golas, Frank Hermann

IFIP WG 1.3 Meeting, Aussois 06/01/2011

Motivation

- Quantitative analysis of processes with dynamic reconfigurations, modelled as stochastic graph transformations
- Analysis through
 - Model checking: limited in scale
 - Stochastic simulation: statistical results only
 - Symbolic calculation

Question: What is the *distribution of completion times of a stochastic process* (deterministic, concurrent), given the *distribution of delays of its constituent steps*.

Basic Notions of Probability

Delays and durations are real-valued random variables, known to fall into certain intervals with probabilities described by distributions.

- $-F: \mathbb{R}_+ \to [0, 1]$ is distribution of real-valued random variable v if F(x) is the probability for $v \leq x$.
- A value chosen randomly based on F is denoted $v = RN_F$.
- Sum and maximum of independent random variables correspond to operations on distributions, such as convolution

$$F_1 * F_2(u) = \int_{-\infty}^{\infty} F_1(x) F_2(u-x) dx$$

and product

$$F_1 \cdot F_2(x) = F_1(x) \cdot F_2(x)$$

Stochastic Graph Transformation Systems

SG = (TG, P, π , F)

- **TG** type graph
- P set of rule names
- $\pi(\mathbf{p}): \mathbf{L} \rightarrow \mathbf{R}$ rules typed over **TG**
- F: P \rightarrow (R \rightarrow [0,1]) distribution functions for delay

Exponential distribution

- given by rate λ
- \rightarrow 1/ λ avg. delay

Normal distribution

 given by mean and deviation

Generalised Semi-Markov Processes

Transitions do not depend on history prior to the current state

$$\mathcal{P} = \langle S : State set$$

- E: Event set
- $\Gamma: State \rightarrow \wp(Event set)$
- $\Sigma: State \times Event \rightarrow State$
- $\Delta: Event \to (\mathbb{R} \to [1,0])$

 $s_0: State$

Timed Runs and Simulation

SG* - sequences of transformations labelled by time stamps

$$G_0 \rightarrow_{p1,t1} G_1 \rightarrow_{p2,t2} \dots \rightarrow_{pn,tn} G_n$$

- ***** Sampled by *stochastic simulation* Initialisation
 - compute all enabled events (rule, match)
 - for each event determine randomly (based on distributions) their delay

Iteration

- select next event and apply (rule, match)
- update enabled events and remaining delays

Properties of Runs

For $r = (G_0 \stackrel{p_1, m_1, t_1}{\Longrightarrow} \cdots \stackrel{p_n, m_n, t_n}{\Longrightarrow} G_n)$, $ct(r) = t_n$ is completion time.

 $-G_{i-1} \stackrel{p_i,m_i}{\Longrightarrow} G_i$ has application time $at(i) = t_i$, enabling time et(i)- If m_i exists at the start of the run, et(i) = 0.

- Otherwise, if enabled by $G_{i-j} \stackrel{p_j, m_j}{\Longrightarrow} G_j$ with j < i, et(i) = at(j)
- delay(i) = at(i) et(i) is random variable with distribution $F(p_i)$

Run r follows sequence s if both contain the same steps (rules and matches) in the same order.

Completion time distribution of (runs following) sequence s assigns conditional probability for a run to complete within time ctd(s) if the run follows s.

 $ctd(s)(x) = Prob\{ct(r) \le x \mid run \ r \text{ follows } s\}$

Completion Time Distribution

Proposition 1 (completion time distribution). Assume a sequence $s = (G_0 \stackrel{p_1,m_1}{\Longrightarrow} \cdots \stackrel{p_n,m_n}{\Longrightarrow} G_n)$ in SG. The set of critical steps $CS(s) \subseteq \underline{n} = \{1, \ldots, n\}$ of s is the smallest subset of indices of steps such that

- $-n \in CS(s)$
- For all $k \in CS(s), j \leq k$ with $j \rightsquigarrow k$, such that for all $j' \leq k$ with $j' \rightsquigarrow k$ implies $j \geq j'$, also $j \in CS(s)$

The completion time distribution of runs following s is given by

 $ctd(s) = *_{i \in CS(s)} F(p_i)$

Lifting the Basic Theory of Graph Transformation

- ***** Complex transformations via composed rules
 - Parallel transformation
 - Concurrent transformations
- General pattern
 - Define composition operation #
 - Define relation of sequences (G#)* using composed rules to basic sequences G*
- ***** Stochastic GTS
 - Lift definition of ctd from G* to (G#)*
 - Fine delay distribution F(c) for composed rules c such that F(c) = ctd(G →_c H)

Series-parallel Productions

Using + for disjoint and ; for dependent concurrent productions, series-parallel rule expressions are

$$c ::= p \mid c;_{e_1,e_2} c \mid c + c$$

- Assignments π of productions and F of distribution functions are extended inductively
- ***** Exact s-p productions, recursively
 - in c ; d all components in d depend on all components in c
 - in **c** + **d**, both **c** and **d** are s-p

Series-parallel Transformations

- x If d is a step using an exact s-p production c, then ctd(d) = F(c)
- If c is not exact, then F(c) is an upper bound, i.e., for each deadline t, F(c) is less likely to meet it than ctd(t)

$F(c)(t) \leq ctd(d)(t)$

Proof: Induction on the structure of rule expressions, using parallelism and concurrency theorems as induction steps.

Conclusion

- Basic theory of algebraic GTS lifted
- Symbolic computation of completion time distribution for series-parallel processes
- ***** Connections to be explored
 - Scheduling theory: *makespan* of a partially ordered network of tasks with stochastic durations
 - Concurrent semantics: deterministic graph processes, non-deterministic unfoldings
- Potential applications
 - Local optimisation of processes
 - Refinement of stochastic system