
CASL and SOS

IFIP WG 1.3 Meeting
Schloss Etelsen, 4 July 2010

Peter Mosses
Swansea University

Why CASL and SOS?
CASL benefits:

‣ a further use for it

‣ making it known to another community

SOS benefits:

‣ increased expressiveness

‣ unified framework for data and
programming language specifications

Flavours of SOS
‣ Plotkin-style, small-step

‣ ‘Natural semantics’, big-step

‣ Transition system specifications

‣ Bi-algebraic

‣ Modular

‣ …

Flavours of CASL

Plain CASL

‣ subsorts, partial operations, predicates, first-order, …

CASL sublanguages

‣ many-sorted, total, algebraic, equational, …

CASL extensions

‣ HASCASL, COCASL, CSP-CASL,
CASL-LTL, CASL-MDL, CASL4SOA, …

Signatures
Plain CASL: (S, ≤, TF, PF, P)

‣ sorts, subsorts, total and partial functions, predicates

Plain transition system specifications: (TF, P)

‣ unsorted terms and labels

‣ total term constructor functions

‣ labelled transition relations and predicates

Signatures
CASL-SOS (a sublanguage of plain CASL?)

‣ abstract syntax: ΣL = (SL, ≤L, TFL, ∅, ∅)

- datatype declarations

- assoc, comm attributes

- extensible (when loose)

‣ auxiliary entities: ΣA = (SA, ≤A, TFA, PFA, PA)

- ΣA extends ΣL

‣ transition relations: ΣR = (SA, ≤A, TFA, PFA, PR)

- PR extends PA

Queries
Variables

‣ include in signatures?

Transition rules

‣ specify as Horn clauses?

Models

‣ free?

- OK for positive rules

- OK for undefined terms

I-MSOS example

Exp → Exp’
cond(Exp, Cmd1, Cmd2) → cond(Exp’, Cmd1, Cmd2)

cond(true, Cmd1, Cmd2) → Cmd1

cond(false, Cmd1, Cmd2) → Cmd2

Cmd ::= cond(Exp, Cmd, Cmd)

cond(true,) cond(true,)

Cmd → Cmd’

Exp → Exp’

{ Exp ::= Bool }

envisaged online repository

Modular structure

condblock …assigncond-loopseq skip

Dcl Cmd Exp …

Env StoreBool …

Conclusion ?
CASL benefits:

‣ a further use for it

‣ making it known to another community

SOS benefits:

‣ increased expressiveness

‣ unified framework for data and
programming language specifications

