

Universitat Politècnica de Catalunya Departament de Llenguatges i Sistemes Informàtics

Satisfiability of Graph Constraints

Fernando Orejas in cooperation with Hartmut Ehrig and Ulrike Prange

What is a Graph Constraint?

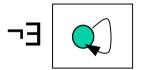
A graph constraint (Ehrig, Habel, Heckel, Penneman, Taentzar, ...) is the description of a pattern that must be (must not be) present on a given graph.

Fernando Orejas - 2 -

What is a Graph Constraint?

A graph constraint (Ehrig, Habel, Heckel, Penneman, Taentzar, ...) is the description of a pattern that must be (must not be) present on a given graph.

For instance:



Fernando Orejas - 3 -

Motivation

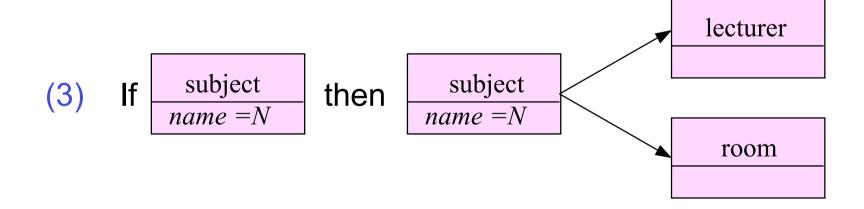
 Specification and validation of XML-like classes of documents

Specification and validation of graph-like models

Fernando Orejas - 4 -

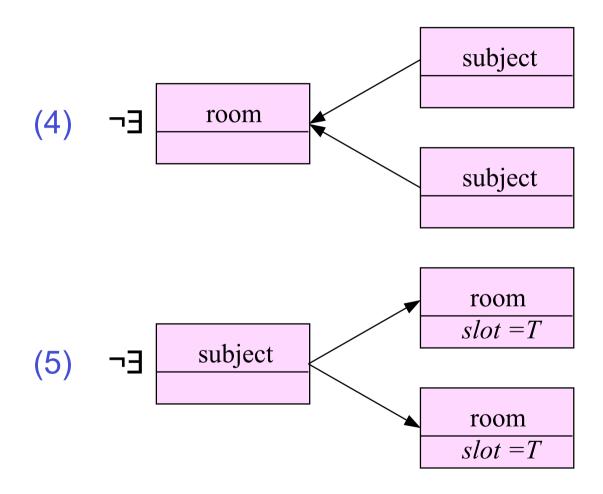
An example

(1)
$$\exists \begin{array}{c|c} \text{subject} \\ \hline name = CS1 \end{array}$$
 (2) $\exists \begin{array}{c|c} \text{subject} \\ \hline name = CS2 \end{array}$



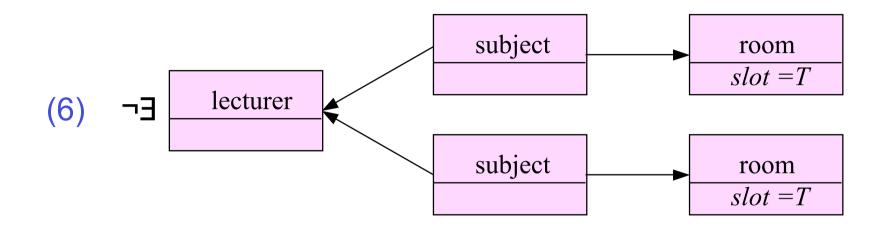
Fernando Orejas - 5 -

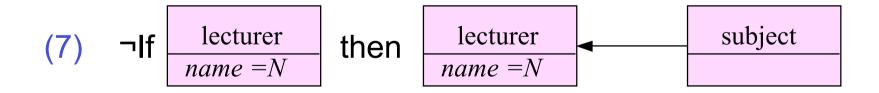
An example



Fernando Orejas - 6 -

An example





Fernando Orejas - 7 -

The problem:

Given a set of graph constraints C, does it exist a graph G that satisfies C?

Fernando Orejas - 8 -

What constraints?

Basic constraints:

▶ ∃C

Atomic constraints:

▶ $A(c:X \rightarrow C)$

What constraints?

Plus ¬, v

Basic constraints:

▶ ∃C

Atomic constraints:

▶ $A(c:X \rightarrow C)$

What constraints?

Plus ¬, v

Basic constraints:

> ∃C

Atomic constraints:

 \rightarrow $A(c:X \rightarrow C)$

If c is a simple (resp. basic) then ¬c is called a negative constraint and c a positive constraint

- 11 -

Satisfaction

Basic constraints:

 $G = \exists C \text{ if there is a monomorphism } h:C \rightarrow G$

Atomic constraints

 $G = \forall (g:X \rightarrow C)$ if for every monomorphism $h:X \rightarrow G$, there exists a monomorphism $f:C \rightarrow G$ such that $f \cdot c = h$.

Fernando Orejas - 12 -

Satisfaction

Basic constraints:

 $G|=\exists C$ if there is a monomorphism h:C \rightarrow G

Atomic constraints

 $G = \forall (g:X \rightarrow C)$ if for every monomorphism $h:X \rightarrow G$, there exists a monomorphism $f:C \rightarrow G$ such that $f \cdot c = h$.

G is a finite graph?

Fernando Orejas - 13 -

Basic Assumption

In the following, we assume that we want to know if a given set of positive and negative basic (resp. atomic, nested) constraints is satisfiable.

Fernando Orejas - 14 -

Refutation

Given a set of constraints *C* and a set of inference rules a refutation procedure is a sequence:

$$C = C_1 \Rightarrow C_2 \Rightarrow ... \Rightarrow C_k \Rightarrow ...$$

such that, C just includes the true clause (i.e. $C = \{\exists \emptyset\}$), and for every i, C_{i+1} is obtained from C_i by the application of a rule from the given set and $C_{i+1} \neq C_i$.

A refutation procedure is fair if every inference that can by applied at a given moment is eventually applied.

A procedure is sound if whenever it generates a false constraint this implies that C is unsatisfiable

Fernando Orejas - 15 -

Refutation

To prove soundness it is enough to prove that the rules are sound. This means that if C_2 is obtained from C_1 by the application of a rule then:

$$G|=C_1$$
 implies that $G|=C_2$

A refutation procedure is (refutationally) complete if whenever C is unsatisfiable it generates a false constraint.

Fernando Orejas - 16 -

1)

If there exists a monomorphism C2 → C1

2)

If there are no monomorphisms $C2 \rightarrow C1$

$$\begin{array}{|c|c|c|c|c|}\hline (1) & \exists & \text{subject} \\ \hline name = CS1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{(2)} & \exists & \text{subject} \\ \hline name = CS2 & \\ \hline \end{array}$$

Fernando Orejas - 18 -

$$\begin{array}{|c|c|c|c|c|}\hline (1) & \exists & \frac{\text{subject}}{name = CS1} \\ \hline \end{array}$$

(2)
$$\exists \frac{\text{subject}}{name = CS2}$$

(8)
$$\exists \frac{\text{subject}}{name = CS1}$$

$$\frac{\text{subject}}{name = CS2}$$

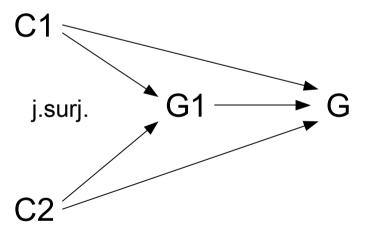
Fernando Orejas - 19 -

Soundness of the inference rules

2) Suppose that

$$G|= \exists C1 \lor \Gamma1 \text{ and } G|= \exists C2$$

The case $G = \Gamma 1$ is trivial. If G = 3C1 there should be G1:



Then
$$G = 3G1$$

Fernando Orejas - 20 -

Completeness of the inference rules

Each inference using rule 2) can be seen as a step in the construction of a model satisfying the given constraints.

Rule 1) "eliminates" invalid constructions. At the end, either we have "eliminated" all the constructions, i.e. we have generated the empty clause or we have a valid minimal model,

Fernando Orejas - 21 -

Soundness, completeness and termination

- ► A refutation procedure always terminates.
- ightharpoonup A set of constraints C is unsatifiable iff a refutation procedure generates the empty clause.
- ▶ A set of constraints *C* is satisfiable iff a refutation procedure does not generate the empty clause.

Fernando Orejas - 22 -

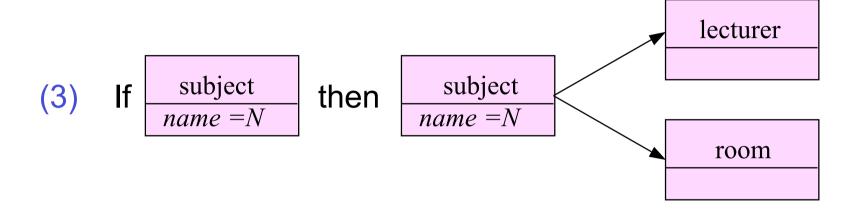
Rules for basic and positive atomic constraints

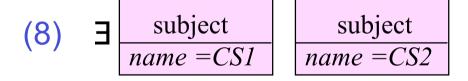
3)

$$\exists C1 \lor \Gamma \quad \forall (g':X \rightarrow C2)$$

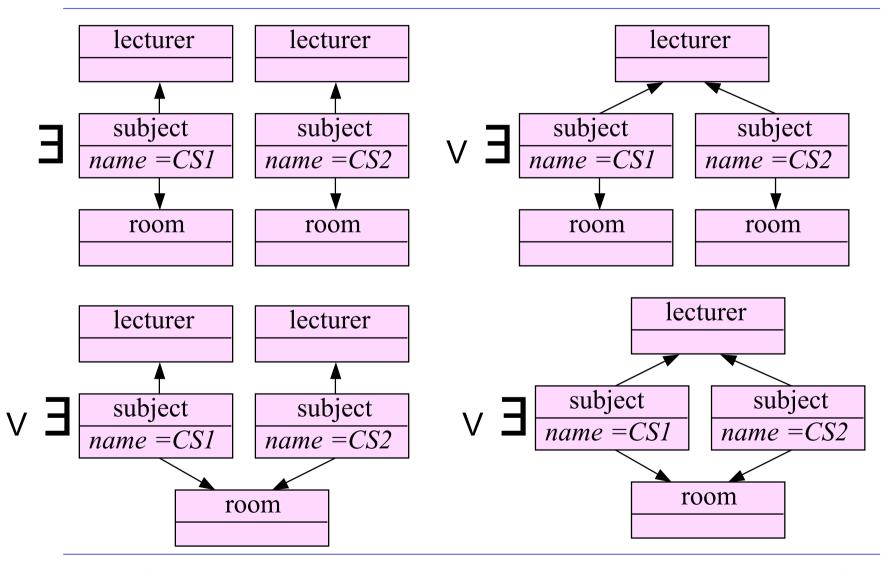
$$\exists G1 \lor ... \lor \exists Gk \lor \Gamma$$

If $X \rightarrow C1$ and:

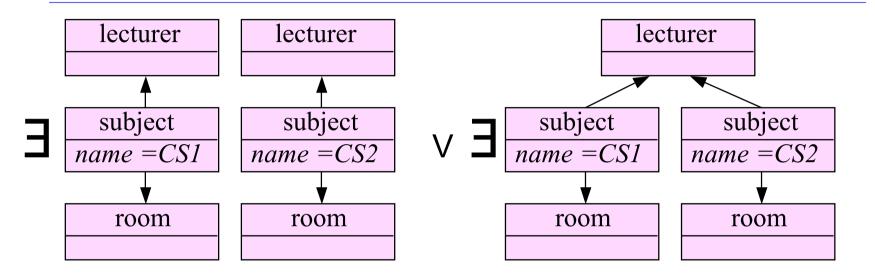




Fernando Orejas - 24 -



Fernando Orejas



Fernando Orejas - 26 -

Completeness of the inference rules

The construction of a valid model is similar to the previous case, but now it may not end. But now we may have the following situation:

$$G1 \rightarrow G2 \rightarrow G3 \rightarrow \rightarrow Gn \rightarrow ...$$

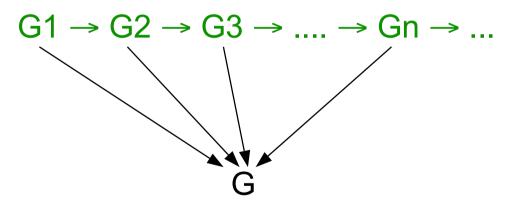
Fernando Orejas - 27 -

Completeness of the inference rules

The construction of a valid model is similar to the previous case, but now it may not end. But now we may have the following situation:

$$G1 \rightarrow G2 \rightarrow G3 \rightarrow \rightarrow Gn \rightarrow ...$$

In this case the model of the constraints would be the colimit:



Fernando Orejas - 28 -

Soundness, completeness and termination

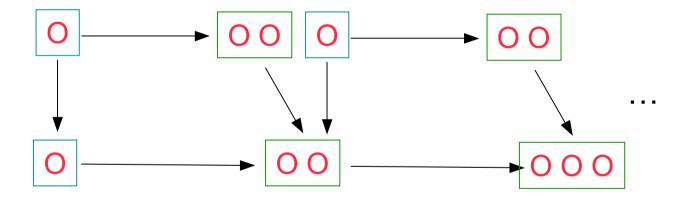
► A refutation procedure may not terminate.

▶ A set of constraints *C* is unsatifiable iff a refutation procedure generates the empty clause.

Fernando Orejas - 29 -

(Non) Termination

▶ Given \exists (O) \lor Γ and \forall (O \to O O), for instance, we may have the following situation:



Fernando Orejas - 30 -

4)

$$\frac{\exists C1 \vee \Gamma1 \qquad \neg \forall (X \rightarrow C2) = c}{\exists G1 \vee ... \vee \exists Gk \vee \Gamma1}$$

Does not work: we cannot ensure that, in the limit, G satisfies

$$\neg \forall (X \rightarrow C2) = c$$

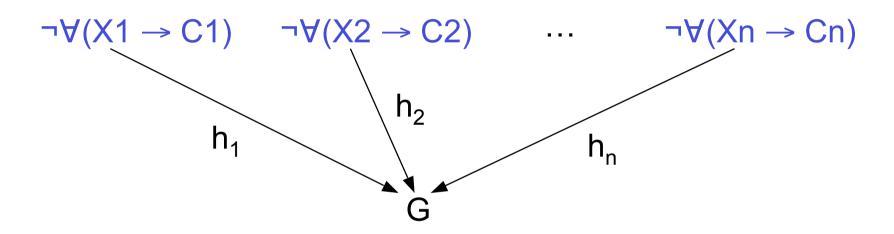
Moreover, we would need some addictional inference rule to generate the empty clause, for instance, when we have the following constraints

$$(1) \ \forall (X \to C) \qquad (2) \ \neg \forall (X \to C)$$

Fernando Orejas - 32 -

Contextual literals

A contextual literal $\exists G[C]$ is given by:

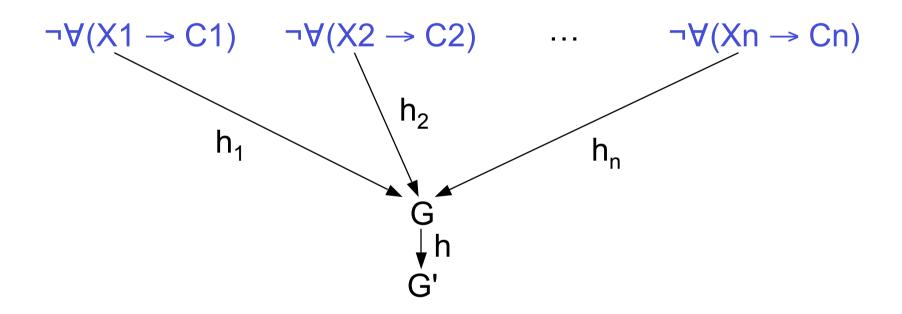


Where $C = \{ \langle \neg \forall (X1 \rightarrow C1), h_1 \rangle ... \langle \neg \forall (X1 \rightarrow C1), h_n \rangle \}$ is the context. G is assumed to satisfy all the constraints in the context via the corresponding morphisms

Fernando Orejas - 33 -

Contextual literals

G' satisfies $\exists G[C]$ if there is a monomorphism h:



and G' satisfies all the constraints in the context via the corresponding composition of morphisms

Fernando Orejas - 34 -

1)

3C1 [*C*] ν Γ1 ¬3C2

Γ1

If there exists a monomorphism C2 → C1

3C1[C] \vee Γ 1 3C2

If there are no monomorphisms $C2 \rightarrow C1$

$$\exists G1[C] \lor ... \lor \exists Gk[C] \lor \Gamma1$$

j.surj.

C1
$$\longrightarrow$$
 Gi

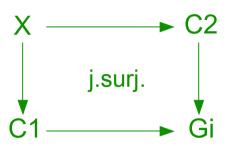
Gi |= C

3)

If
$$X \rightarrow C1$$
 and:

$$\exists C1[C] \lor \Gamma \quad \forall (g':X \to C2)$$

$$\exists G1[C] \lor ... \lor \exists Gk[C] \lor \Gamma$$



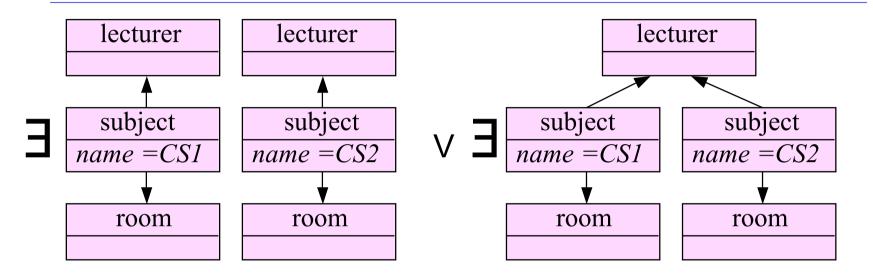
4)

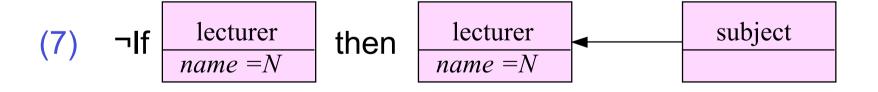
If $c \notin C$ and:

$$\exists C1[C] \lor \Gamma1 \qquad \neg \forall (X \rightarrow C2) = c$$

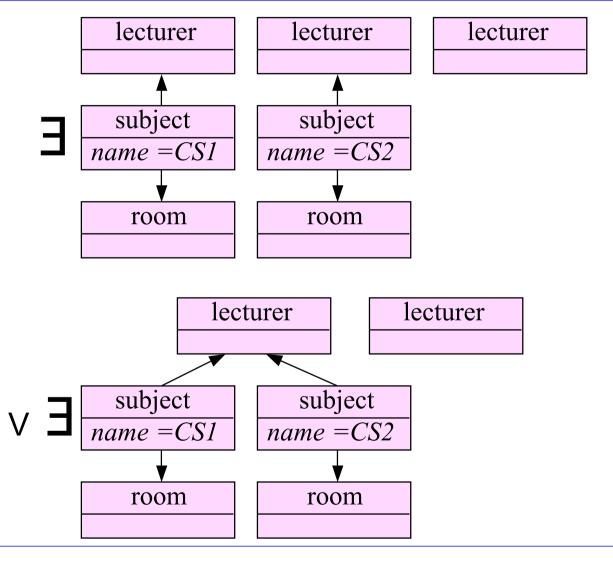
 $\exists G1[C \cup \{c\}] \lor ... \lor \exists Gk[C \cup \{c\}] \lor \Gamma1$

Gi
$$\models C \cup \{c\}$$





Fernando Orejas - 38 -



Fernando Orejas - 39 -

Soundness, completeness and termination

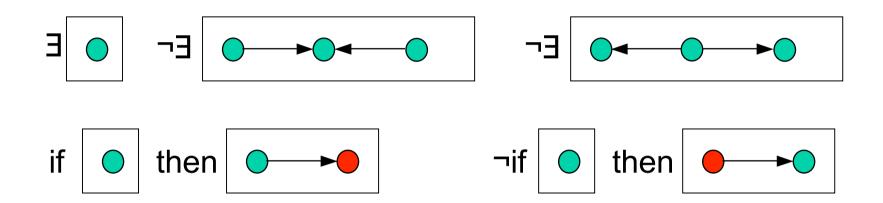
► A refutation procedure may not terminate.

▶ A set of constraints *C* is unsatifiable iff a refutation procedure generates the empty clause.

Fernando Orejas - 40 -

Constraints may be satisfied only by infinite graphs

The set of constraints:



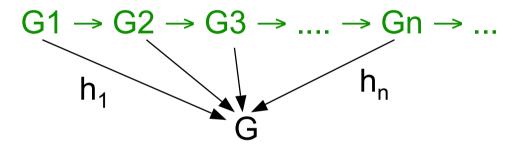
Is not satisfied by any finite graph, but is satisfied by:

Fernando Orejas - 41 -

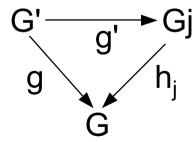
Generality of the results

The previous results apply to any (weakly) adhesive category satisfying:

- ▶ (Finite) pair factorization.
- ► Existence of infinite colimits:



such that for every h:G' \rightarrow G there is a g': G' \rightarrow Gj such that:



Fernando Orejas - 42 -

"Simplification" Rules

Conclusion

We have seen sound and complete procedures for several classes of graph constraints.

Open problems:

- ► (General) Attributed constraints
- Nested constraints
- ▶ "Efficiency"

Fernando Orejas - 44 -