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Motivations

Wanted. A framework for the semantics of effects.

Monads. For two kinds of morphisms:
◮ in general f : X→Y “stands for” some f ′ : X → T (Y )

◮ sometimes v : X→Y is pure, then v ′ = η ◦ v

Wanted. Several kinds of objects, of arrows, of equations,...
each kind “stands for” something...



In this talk

A category of logics

◮ objects: “logics” with models and proofs

◮ morphisms: “stands for” should be a morphism



“stands for”?

E.g., a monad.

◮ in general f : X → Y “stands for” some f ′ : X → T (Y )

X
f

Y X
f T (Y )

Far Near



“stands for” is part of a “zoom”

E.g., a monads

◮ in general f : X→Y “stands for” some f ′ : X → T (Y )

◮ sometimes v : X→Y is pure, then v ′ = η ◦ v
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“zooms” are spans
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Slogan.
First be wrong,

then add corrections,
in order to finally get right.



This talk

◮ Diagrammatic logics (categories...)
with Christian Lair.

◮ Zooms for parameterization
with César Domı́nguez.

◮ A zoom for sequential product
with Jean-Guillaume Dumas and Jean-Claude Reynaud.
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A diagrammatic logic

Definition. A logic L is a functor
with a full and faithful right adjoint R:

S
L

⊥ff
T

R

In addition, this is induced by a morphism of limit sketches.

Properties.
◮ R makes T a full subcategory of S
◮ L(R(Θ)) ∼= Θ for each theory Θ

◮ S and T have colimits, and L preserves colimits



Models
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Definitions.
◮ S is the category of specifications
◮ T is the category of theories
◮ Σ presents Θ when Θ ∼= L(Σ).
◮ Σ and Σ′ are equivalent when L(Σ) ∼= L(Σ′).

Models. Mod(Σ,Θ) = T[L(Σ),Θ] ∼= S[Σ, R(Θ)]

The models form a category iff T is a 2-category.



Proofs
Theorem. [Gabriel-Zisman 1967] (for homotopy theory)
Up to equivalence, L is a localization:
it adds inverses to some morphisms in S.

Definition. An entailment is τ : Σ → Σ′ in S
such that L(τ) is invertible in T.
Then Σ and Σ′ are equivalent.

Hence: the bicategory of fractions S2.

Definition. A proof is a fraction.

in S2 :

Σ
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Morphisms of logics
Definition. A morphism of logics F : L1 → L2

is a pair of functors (FS , FT ) such that:
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In addition, they are induced by morphisms of limit sketches.

Definition. A 2-morphism of logics ℓ : F ⇒ F ′ : L1 → L2

is a pair of natural transformations (ℓS , ℓT ) such that:
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Altogether...

◮ A 2-category of logics DiaLog
with a 2-functor that focuses on the theories:

DiaLog → Cat

(L : S → T) 7→ T

◮ “Everything” happens in the bicategory of fractions:
a specification Σ should be seen up to equivalence.
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Parameterization

Starting point: Sergeraert’s software for effective homology.

Goal: formalize the process of:
◮ adding a parameter to some operations
◮ then passing a value (an argument) to the parameter

A kind of benchmark, that may be treated with
monads (T (X ) = X A), hidden algebras, coalgebras,
institutions...



Parameterization and diagrammatic logics

◮ Parameterization: a zoom
◮ Parameter passing: a zoom and a 2-morphism



Example: Differential monoids

A specification of monoids Mon:
◮ type G
◮ operations prd : G2 → G, e : → G
◮ equations prd(x , prd(y , z)) = prd(prd(x , y), z),

prd(x , e) = x , prd(e, x) = x

A specification of differential monoids DMon:
◮ Mon with
◮ operation dif : G → G
◮ equations dif (prd(x , y)) = prd(dif (x), dif (y)),

dif (e) = e, dif (dif (x)) = e



A specification of decorated differential monoids DecDMon:
◮ Mon with
◮ operation dif : G → G
◮ equations dif (prd(x , y)) = prd(dif (x), dif (y)),

dif (e) = e, dif (dif (x)) = e

A specification for monoids with a parameterized differential
ParDMon:

◮ Mon with
◮ type A
◮ operation dif ′ : A × G → G
◮ equations dif ′(p, (prd(x , y))) = prd(dif ′(p, x), dif ′(p, y)),

dif ′(p, e) = e, dif ′(p, dif ′(p, x)) = e



A zoom for parametererizing
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Parameter passing

Each parameterized differential monoid PM
together with an argument α ∈ PM(A)
⇒ a differential monoid Mα with:

– the same underlying monoid as PM

– the differential x 7→ Mα(dif )(x) = PM(dif ′)(α, x)

In the specifications:
Add a constant a : 1 → A in the “near” logic.



A zoom for parameter passing...
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...with a 2-morphism of logics
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Sequential product

Goal: formalize the fact that the order of evaluation of the
arguments does matter when there are effects.

Monads: the strength.

In the framework of diagrammatic logics:
A zoom, from an ordinay product to a sequential product.

There are two kinds of morphisms
And two kinds of equations!



About products

X = X1 × X2, Y = Y1 × Y2, Z = Y1 × X2.

Without effects:

g × f = (id × g) ◦ (f × id)
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A zoom for the sequential product
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Zooms
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