
 Combining Inference and Search

in CafeOBJ Verifications

with Proof Scores

FUTATSUGI,Kokichi

 二木 厚吉

JAIST

(Japan Advanced Institute of Science and Technology)

IFIP WG1.3 in Udine

 2

Introduction

!! Describe an attempt of combining inference and

search in the proof score method with CafeOBJ by

using QLOCK example.

!! This can be seen as an example of combining

behavioral spec and rewriting spec in verification.

!! The methodology described seems to have a

potential of becoming a powerful verification

technique.

IFIP WG1.3 in Udine
!"!!

Proof Score Approach

!! Domain/requirement/design engineers are
expected to construct proof scores together
with formal specifications

!! Proof scores are instructions such that when
executed (or "played") and everything evaluates
as expected, then the desired property is
convinced to hold

!! Proof by construction/development

!! Proof by reduction/computation/rewriting

IFIP WG1.3 in Udine
#"!!

Development of proof scores in CafeOBJ

!! Many simple proof scores are written in OBJ
language from 1980’s; some of them are not
trivial

!! From around 1997 CafeOBJ group at JAIST use
proof scores seriously for verifying
specifications for various examples

•! From static to dynamic/reactive system

•! From ad hoc to more systematic proof scores

•! Introduction of OTS (Observational Transition
System) was a most important step!

Modeling, Specifying, and Verifying (MSV)

in CafeOBJ with Proof Scores

1.! By understanding a problem to be modeled/

specified/verified, determine several sorts of

objects (entities, data, agents, or states) and
operations (functions, actions, or events) over

them for describing the problem

2.! Define the meanings/functions of the

operations by declaring equations over
expressions/terms composed of the operations

3.! Write proof scores for properties to be verified

 5

IFIP WG1.3 in Udine

MSV with proof scores in CafeOBJ

Understand problem

and construct model

Write system spec SPsys and

Write property spec SPprop

Construct proof score of

SPprop w.r.t. SPsys

 6

IFIP WG1.3 in Udine

An example: mutual exclusion protocol

Assume that unboundedly many agents (or

processes) are competing for a common

equipment, but at any moment of time only
one agent can use the equipment. That is, the

agents are mutually excluded in using the

equipment. A protocol (concurrent

mechanism or algorithm) which can achieve

the mutual exclusion is called “mutual
exclusion protocol”.

 7

IFIP WG1.3 in Udine

Modeling and Specification of QLOCK

QLOCK (locking with queue):

a mutual exclusion protocol

Remainder Section

Critical Section

Is i at the top

of the queue?

cs

Put its name i into the

bottom of the queue

Remove/get the
top of the queue

wt

rm

true

false

Each agent i is executing: : atomic action

 9

IFIP WG1.3 in Udine

QLOCK: basic assumptions/characteristics

!! There is only one queue and all agents share the

queue.

!! Any basic action on the queue is inseparable (or

atomic). That is, when any action is executed on

the queue, no other action can be executed until

the current action is finished.

!! There may be unbounded number of agents.

!! In the initial state, every agents are in the

remainder section (or at the label rm), and the

queue is empty.

The property to be shown is that at most one

agent is in the critical section (or at the label cs)

at any moment.

 10

IFIP WG1.3 in Udine

Global (or macro) view of QLOCK

… k j i

i

k

j

is i?

is j?
put

get

get

…

 : queue

 : agents

put

 11

IFIP WG1.3 in Udine

Modeling QLOCK (via Signature Diagram)

with OTS (Observational Transition System)

…
k j i

i

k

j

is i?

is j?
put

get

get

…

put

Queue

Label

Pid

Sys

want

try

pc

queue

exit

init

 12

IFIP WG1.3 in Udine

Signature for QLOCKwithOTS

!! Sys is the sort for representing the state space of the system.

!! Pid is the sort for the set of agent/process names.

!! Label is the sort for the set of labels; i.e. {rm, wt, cs}.

!! Queue is the sort for the queues of Pid

!! pc (program counter) is an observer returning a label where
each agent resides.

!! queue is an observer returning the current value of the
waiting queue of Pid.

!! want is an action for agent i of putting its name/id into the
queue.

!! try is an action for agent i of checking whether its name/id
is at the top of the queue.

!! exit is an action for agent i of removing/getting (its name/id
from) the top of the queue.

 13

IFIP WG1.3 in Udine

Observation declaration

action declaration

visible sort declaration

System sort declaration

CafeOBJ signature for QLOCKwithOTS

-- state space of the system
[Sys]

-- visible sorts for observation
[Queue Pid Label]

-- observations
bop pc : Sys Pid -> Label
bop queue : Sys -> Queue

-- any initial state
init : -> Sys (constr)
-- actions
bop want : Sys Pid -> Sys (constr)
bop try : Sys Pid -> Sys (constr)
bop exit : Sys Pid -> Sys (constr)

 14

IFIP WG1.3 in Udine

QLOCK using operators

in the CafeOBJ module QUEUE

Remainder Section

Critical Section

top(queue)=i

cs

put(queue,i)

get(queue)

wt

rm

true

false

Each agent i is executing: : atomic action

want

try

exit

 15

IFIP WG1.3 in Udine

qlock.mod!

(_ =*= _) is congruent for OTS

 -- an important property of OTS

The binary relation (S1:Sys =*= S2:Sys) is defined to

be true iff S1 and S2 have the same observation values.

OTS style of defining the possible changes of the values of

obervations is characterized by the equations of the form:

 o(a(s,d),d’)
= ...o1(s,d1)...o2(s,d2)...on(s,dn)...
for appropriate data values of d,d’,d1,d2,...,dn .

It can be shown that OTS style guarantees

that (_ =*= _) is congruent with respect

to all actions.

 16

IFIP WG1.3 in Udine

Verification by Inference

RQLOCK (set of reachable states) of

OTSQLOCK (OTS defined by the module QLOCK)

-- any initial state
 op init : -> Sys {constr}
-- actions
 bop want : Sys Pid -> Sys {constr}
 bop try : Sys Pid -> Sys {constr}
 bop exit : Sys Pid -> Sys {constr}

Signature determining RQLOCK

RQLOCK = {init} !
 {want(s,I)|s"RQLOCK,I:Pid} !
 {try(s,I) |s"RQLOCK,I:Pid} !
 {exit(s,I)|s"RQLOCK,I:Pid}

Recursive definition of RQLOCK

 18

IFIP WG1.3 in Udine

Mutual exclusion property

as an invariant

mod* INV1 {
 pr(QLOCK)
-- declare a predicate to verify to be an invariant
 pred inv1 : Sys Pid Pid
-- CafeOBJ variables
 var S : Sys .
 vars I J : Pid .
-- define inv1 to be the mutual exclusion property
 eq inv1(S,I,J)
 = (((pc(S,I) = cs) and (pc(S,J) = cs)) implies I = J) .
}

INV1 |- (#i,j:Pid)inv1(s,i,j)
 for all s:RQLOCK

Formulation of the proof goal for mutual exclusion property

 19

IFIP WG1.3 in Udine

IFIP WG1.3 in Udine

 20

Splitting Proof Goal by

Inductive Structure of RQLOCK

INV1 |- #I,J:Pid.inv1(s,I,J)
 for all s in RQLOCK

INV1 |- #I,J:Pid.inv1(init,I,J)

INV1 ! {#I,J:Pid.inv1(s,I,J)}|-
 #I,J:Pid.inv1(want(s,k),I,J)

INV1 ! {#I,J:Pid.inv1(s,I,J)}|-
 #I,J:Pid.inv1(try(s,k),I,J)

INV1 ! {#I,J:Pid.inv1(s,I,J)}|-
 #I,J:Pid.inv1(try(s,k),I,J)

$!

IFIP WG1.3 in Udine

 21

Correspondence between

Assertion and Proof Passage

open INV1
-- arbitrary objects
 op s : -> Sys .
 ops i j k : -> Pid .
-- assumptions
 eq inv1(s,I:Pid,J:Pid) = true .
-- |-
-- check if the predicate is true.
 red inv1(try(s,k),i,j) .
close

Proof Passage

Logical Statement

of stating that Specification

satisfies property
Logical Statement and

CafeOBJ Code

If reduction part of the CafeOBJ

code returns true then the

assertion holds

%!

INV1 !
{#I,J:Pid.inv1(s,I,J)}
|-
#I,J:Pid.
 inv1(want(s,k),I,J)

IFIP WG1.3 in Udine

 22

 Induction Scheme in Proof Passages

{[1-init],[1-want]*,[1-try]*,[1-exit]*}
 implies [mx]*

Induction Scheme

proof-01.mod

IFIP WG1.3 in Udine

 23

Assertion Splitting via Case Splitting

Because

 INV1 |= c-want(s,k) or ~c-want(s,k)
Holds, the following assertion splitting is
justified.

{[1-want,c-w]*, [1-want,~c-w]}
 implies [1-want]*

Assertion Splitting via Case Splitting

 { (E |- (p1 or p2)), (E U {p1=true} |- p) ,

 (E U {p2=true} |- p) }

 implies E |- p

proof-02.mod

IFIP WG1.3 in Udine

 24

Some properties of E |- p

 E |- ((t1 = t2) implies p) iff

 E U { t1 = t2 } |- p

 E |= (t1 = t2) implies

 (E U { t1 = t2 } |- p iff E |= p)

 E U { t1 = t2 } |- p iff E U { (t1 = t2) = true } |- p

&'()!Level!*+,)(-./!)/0!123'4(!5'6'7!*+,)(-./!

89..:!;)74,7,<!=*/()-7>'/(!?@<('>A!=BA!

IFIP WG1.3 in Udine

 25

89..:!;)74,7,<!=*/()-7>'/(!?@<('>A!=CA!

IFIP WG1.3 in Udine

 26

CafeOBJ codes (system spec, property spec,

and proof score) for verification of the mutual

exclusion property

 27

IFIP WG1.3 in Udine

qlock.mod

inv.mod

proofScore.mod
proofByPS.mod!

-! These codes make a general verification of mutual

exclusion property independent of the number of

agents/processes.
-! The proof score examine all possible cases and do

symbolic test for each of them. Constructing proof

scores sometimes become tedious and time

consuming.

- Some room for improvement! !

Verification by Inference and Search

Transition system for QLOCK

IFIP WG1.3 in Udine

 29

-- pre-transiton system with an agent/process p

mod* QLOCKpTrans { pr(QLOCKconfig)

 op p : -> PidConst . var S : Sys .

 -- possible transitions

 ctrans < S > => < want(S,p) > if c-want(S,p) .

 ctrans < S > => < try(S,p) > if c-try(S,p) .

 ctrans < S > => < exit(S,p) > if c-exit(S,p) .

}

-- transition system which simulates QLOCK of 2 agents i j

mod* QLOCKijTrans {

 -- 2 QLOCKpTrans-es corresponding to two different

 -- PidConst-s i j are declared

 -- by using renaming of modules

 using((QLOCKpTrans * {op p -> i}) +

 (QLOCKpTrans * {op p -> j})) }

Search command of CafeOBJ

 a la Maude’s search command

pred _=(_,_)=>*_ : Any NzNat* NzNat* Any

CafeOBJ System has the following built-in predicate:

 - Any is any sort (that is, the command is available for any sort)

 - NzNat* is a built-in sort containing non-zero natural number

and the special symbol “*” which stands for infinity

(t1 =(m,n)=>* t2) returns true if t1 can be translated (or

rewritten), via more than 0 times transitions, to some term which

matches to t2. Otherwise, it returns false . Possible

transitions/rewritings are searched in breadth first fashion. n is

upper bound of the depth of the search, and m is upper bound of

the number of terms which match to t2. If either of the depth of

the search or the number of the matched terms reaches to the

upper bound, the search stops.

 30

IFIP WG1.3 in Udine

t1 =(m,n)=>* t2

…

…

…

…

…

…

t1

…

n : the depth of

 the search tree

m : the number of

 the searched terms

which match to t2
…

 …

 31

IFIP WG1.3 in Udine

suchThat!condition

pred1(t2) is a predicate about t2 and can

refer to the variables which appear in t2.

pred1(t2) enhances the condition used to
determine the term which matches to t2.

t1 =(m,n)=>* t2 suchThat pred1(t2)

searchCommand.mod

 32

IFIP WG1.3 in Udine

t1 =(m,n)=>* t2 suchThat pred1(t2)

…

…

…

…

…

…

t1

…

n : the depth of

 the search tree

m : the number of

 the searched terms

which match to t2 and
satisfy pred(t2)

…
 …

 33

IFIP WG1.3 in Udine

withStateEq predicate

t1 =(m,n)=>* t2
 withStateEq pred2(S1:Sort,S2:Sort)

searchCommand.mod

pred2(S1:Sort,S2:Sort) is a predicate of two arguments

with the same (or greater) sort of t2.

pred2(S1:Sort,S2:Sort) is used to determine a newly

searched term (a state configuration) is already searched one.

If this withStateEq predicate is not given, the term identity

binary predicate is used for the purpose.

t1 =(m,n)=>* t2 suchThat pred1(t2)
 withStateEq pred2(S1:Sort,S2:Sort)

Using both of suchTant and withStateEq is also possible

 34

IFIP WG1.3 in Udine

t1 =(m,n)=>* t2

withStateEq pred2(S1:Sort,S2:Sort)

…

…

…

…

…

…

t1

…

n : the depth of

 the search tree

…
 …

m : the number of

 the searched terms

which match to t2

: pred2 = true

 35

IFIP WG1.3 in Udine

IFIP WG1.3 in Udine

 36

qlockTrans.mod

mexStarve.mod

qlockObEq.mod
proofBySearchWithObEq.mod!

CafeOBJ Codes for verification

by searching with Observational Equivalence!

This verification is effective only for small finite

number (2, 3, or 4) of agents!!

IFIP WG1.3 in Udine

 37

Simulation of any number of

agents by two agents!

If all the behaviors of the system with any

number of agents with respect to any two

agents can be simulated by the system

with two agents, all the properties checked

by searching all reachable states of the

two-agents system are verified to hold for

the system of any number of agents. !

IFIP WG1.3 in Udine

 38

simOfQLOCKbyQLOCKijPS.mod

csQtopPS.mod!

CafeOBJ proof scores for

verifying the simulation !

These proof scores are almost same amount

to the original proof score for verifying mutual

exclusion. However, once the simulation is
verified, many properties other than mutual

exclusion can be verified by searching over

the two-agents systems.!

IFIP WG1.3 in Udine

 39

 Remarks!

!! OTS style of equations support fast executions/

reductions of proof scores. They are much faster than

search.
!! Developing proof scores requires deep understanding

of problems, and sometimes require serious efforts.

!! OTS style definition of transition directly corresponds

to rewriting transition.

!! Search is sometimes quite effective and easy to use
not only in falsification but also in verification.

Especially for small values of parameters.

!! Proper combination of search and inference (with

proof score) can constitute transparent and effective

verification.!

