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Nominal calculi

» At the end of the eighties, it was realised that novel features of programming
languages, such as mobility of network components, required new programming
paradigms and new models

» The m-calculus is the prototypical example: exploiting a name generation
construct, reflected by a scope extrusion mechanism in the semantics, it achieves
mobility

» Nowadays, name generation and name passing have proved fundamental for new
trends in computing: e.g. sessions in service oriented computing, objects in
object-oriented programming, keys and nonces in security protocols ..



The quest for a good model

The switch of programming paradigm required to change the underlying models, as set

theory proved not to be at the right level of abstraction (no notion of binding in
algebras, or fresh name generation in coalgebras).
Set theory needs to be enriched with names.

We want to be able to reason about the semantics:

» Proof systems: prove properties using inference rules

» Model checking: prove properties of finite-state systems in a fully automated
fashion (e.g. deadlock-freeness)

» Equivalence checking: prove that two different programs behave in the same way

» Minimisation: find the system that has less states up-to behavioral equivalence



T hree models

» Nominal sets / permutation algebras: names are implicit as the action of
injective substitutions. Syntax [Gabbay, Pitts LICS 1909,...] semantics
[Montanari, Pistore MFCS 2000,...] of name passing.

» Presheaf models [Fiore, Moggi, Sangiorgi LICS 1996,...], [Cattani, Sewell,

Winskel CSL 1997,...]: names are indexes of stages of a staged set construction:
Set! where | is the category of finite sets and injections. Actually, the
pullback-preserving full subcategory of Set': the Schanuel Topos

» Named sets [Montanari, Pistore, Yankelevich ESOP 1997], named sets with
symmetries [Pistore (Thesis) 1999,...]: names are finite sets, with an associated
symmetry, attached to elements of a set

[Gadducci, Miculan, Montanari 2006], [Fiore, Staton IC 2006]: the three models are
categorically equivalent.



Implementing nominal computation

» Presheaf models and nominal sets: good abstract models, a simple specification
formalism for nominal calculi. Infinite in very simple cases.

» How do we implement the semantics? How do we find the minimal system, and
define model-checking algorithms?

» [Ferrari, Montanari, Tuosto - TCS 2005]: we can minimise the finite control
m-calculus agents and mechanically check bisimulation.

» Presence of various “tricks” that proved fundamental to correctly deal with name
passing and name generation.
The minimisation tool finds the optimal symmetry reduction up-to bisimulation.



New results

» provide a set of operations that can be used for arbitrary calculi: each operation
corresponds to a functor, is proved correct by the means of category theory

» provide a close correspondence with functors, algebras and coalgebras in nominal
sets, so translation from specification to implementation is easy and well-known.

» provide a final coalgebra theorem: abstract semantics and minimisation

» generalise the “tricks”, or techniques, used for the mw-calculus, that can now be
applied to a wide range of cases, and recover history-dependent bisimulation for
place-transition Petri Nets in the standard coalgebraic framework.

» Possibly high impact on applications. Example: remove redundant variables and
find optimal symmetry reduction of a programming language, by just giving the
operational rules in the formalism of nominal sets, that allows names and binding.
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Global vs. local names

» Presheaves and permutation algebras have global names, that have an "absolute”

meaning
P(x.y)=xy.0|| yx0 # P(z.t)=zt0]| tz.0

» Up-to injective relabelling, the behavior of P(x,y) and of P(z.t) is the same so
keeping them distinct is somewhat artificial.

» Named sets handle names as local resources, or placeholders.
P(x.y) and P(z.t) (and any other injective substitution) are identified.

» Many consequences. In a sentence: categorical constructions over named sets
(name abstraction, product, power set, non-deterministic choice) do reflect
common practice when dealing with name generation and name passing, e.g.
modelling garbage collection, or wiring up systems when composing them.



Named Sets

» Basic idea: model states of a system as a set whose elements have a set of “local

names’, or placeholders, attached

» Morphisms trace the history of names using an associated injection from names of
the destination to names of the source

Figure: The action of a morphism on a single element of a named set



Avoid Observing too Much: states with name symmetries

If a and b are related by the symmetry, then morphisms should not distinguish them:
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Nominal Sets as a category of algebras

Nominal Sets

give me a set, and tell me how injective substitution acts.
This is all that is needed to properly define binding

» Autf:finite-kernel permutations over the set of natural numbers w,
with axioms for identity and composition
Names are identified with any countable set

» Algebras for the permutation signature are permutation algebras

(A {ma : A— A| 7w €Autf})

A is the carrier set, w4 is the interpretation of the operation w

Axioms: 7w (W (X)=mwom’(x) 1d(x)=x



“Group-theoretical” properties

Nominal Sets

finitely supported permutation algebras FSAlg™

nominal sets by Gabbay and Pitts

» Symmetry (stabiliser, isotropy group) of a € A:

Gala) = {7 €Autf| ma(a) = a}
» S supports a if fix(S) C Ga(a)
» S is the support supp4(a) if it is finite and least supporting set

» The orbit of a is the set {m4(a) | # €Autf}



“Nominal” transition systems

» A labelled transition system is a function f : A — Pn:(L x A) for a set of states
A.

» |If we require A and L to be permutation algebras, and f to respect the
permutation action, we have obtained an enriched transition system featuring
names in states, and along transitions.

» Ais not a set! f is no longer called “transition system” but “coalgebra”.
The theory of coalgebras in the category FSAIg™ is the theory of transition

systems enriched with names.

» Bisimulation is a standard notion. The final system is equipped with a
permutation action (it is a bialgebra).



The symmetry grows, the support shrinks

Respecting the permutation action has two consequences:

» The symmetry can never shrink along morphisms.
» Consequently, the support can never grow along morphisms.

» Thus, we cannot generate new names. Actually we can, by defining a “"name
abstraction functor” as we shall see.



Consequence: the final system

» The final system (final coalgebra, minimal system) contains the minimum number
of names up-to bisimulation

» The final system has the greatest possible symmetry group on its names

» A finite representation of the final system provides a representation of the
greatest symmetry group over names of a system, up-to bisimulation.
History-dependent automata provide such a finite representation.



Name Abstraction

» Using finitely supported permutation algebras (a.k.a. nominal sets) we have many
different isomorphic versions of the name abstraction functor §(.A).

» The definition by Gabbay and Pitts [LICS 19099] (extended later to a functor, e.g.
[Klin, MFPS07] ~ quotient systems by a-conversion.

» Many other possible choices. In [Ciancia, Montanari - CMCS08] we present a pair
of adjoint functors derived from a simple theory morphism. One adjoint is
abstraction, the other one is concretion.

1. It gives rise to abstract syntax using De-Bruijn indexes

2. It is isomorphic to the notion by Gabbay and Pitts

3. It is equivalent to the & functor on Set' (from the literature on presheaves)

4. It recovers the fully abstract semantics of the w-calculus using permutation algebras

that was used by Montanari and Pistore

O((A,{my})) = (a,{m,"1})  d(H) =1



Infinite models

Two relevant sources of infinity
» Name allocation generates infinite systems:
P(x) = (vy)xy.P(y)
» Input transitions (name passing) generate infinite systems, too:
a(x).P == P[F /] for all z

Question: how do we minimise a system featuring name passing and name allocation?
How do we model check it?
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Named Sets and HD-Automata

» Named sets are a category for modelling name passing that is capable of garbage
collection

» Coalgebras over named sets are called history-dependent automata

» Main feature: names are handled as bindable, local resources, rather than global
constants

» Local names = relabellings along morphisms == garbage collection



Named Sets

» An object is a pair (N.S).
N is a set of elements, § : N — |Symset| is a map associating a symmetry to
each element of .

» An arrow from {N;.S;) — (N>.S5} is a pair (h.X).
h: Ni — N> is a function, and X is the representative of an equivalence class of
injective relabellings

X(q) : [S2(h(q)) — S1(a)]/ sa(n(q))

» A category of sets enriched with local names, their symmetry, and injective
relabellings tracing the history of names along morphisms for each element

Definition 4.1 (Symset) Let Grp(S) be the set of permutation groups over
S. The set of objects of the category Symset is Usern(w) Grp(S). An arrow
from @1 to @y is a set of functions io®y such thati : dom(Py) — dom(Ps) and
$yo0i Ciody. We defineide = ido® = P and GoF = {gof|ge GAf € F}.



Equivalence between nominal sets and named sets

» From each permutation algebra we obtain a named set as the set of canonical
representatives of an equivalence class:

m(qg) =q for all «

» Example: (xy.0 || yx.0) = (3b.0 || ba.0) = d.0 || dc.0, ...

all are represented by xy.0 || ¥x.0

» From each named set we obtain a permutation algebra by freely re-generating the
orbit:
{m(q) | g€ N}

» |f we don’t record the symmetry of g when we quotient, we will create too many

elements when going back, e.g. because we consider swap(x.y)(Xxy.0 || ¥x.0)
different from xy.0 || ¥x.0.
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Four fundamental problems

When dealing with automated verification of basic name passing formalisms such as
the m-calculus, we face four fundamental problems:

1.

W

Dynamic allocation of names (generation of fresh names)

Deallocation of unused fresh names (garbage collection)

. Composition of smaller systems into a bigger one

(binding of local names among different systems)

Non-deterministic choice of a name over the infinite set of all names (both fresh
and already known) (name passing)

We will see how these four problems can be solved using history-dependent automata,
and how this is sufficient to model the m-calculus and the history-preserving semantics
of place-transition Petri nets.



Abstraction “breaks” orbits

Generating fresh names

Back to permutation algebras:

» Abstraction creates new orbits
== a faithful representation of abstraction must create new elements in a
named set

» In principle, one new orbit for each name i € supp .4 (a). But this would allow to
distinguish two symmetric names.

» One new orbit for each name / € supp 4 (a) /= where = is induced by the
symmetry
i=j — dn € Gala) . w(i)=



The name abstraction functor

» Let N = (Qn.Sy). We define the abstraction functor H

Qu(n) = Qn U {(q- i) ‘q € Qn.i € dom(SN(Q))/E}

» One new element for each “hideable” name

» The symmetry of each new element is
the subgroup of the symmetry of g that fixes i

Exactly corresponds to

O((A,{ma})) = (a,{my"'})  d(H)=f



T he functor on arrows

» An element with an hidden name is mapped to an element with an hidden name
only if the name is still present in the destination of F = (hr. XF)

(he(q).jy fdeeXe(q)o(j)=1i
he (q) otherwise

hury ({g.i}) = {



Garbage Collection :
° Garbage collecting unused names

In permutation algebras, it is easy to get an infinite system:

P(1) = (vx)1x.P(1)

State Support

(rx)1Ix.P(1) supp = {1}

|

(rx)2x.P(2) supp = {1}

|

(rx)3x.P(3) supp = {1}

4

Figure: Infinite states in FSAlg™

supp = {1}




Garbage Collection

State Support
(rx)1x.P(1) {1}
() [\,
htr ztr

Figure: HD-automaton having finite states



Garbage Collection

Another example using presheaves: R(1) = (vx)1x.R(x)

Support Stage in the coalgebra
{1} {1}
{=} {1} +1={1.%}
{+'} {1} 4+ 1= {1,%.+")

State

(rx)Ix.R(x)

A

/

(rx)*x.R(x)

Figure: Infinite states in Set'




The product: intuition

Product in named sets

» If names are local, things are more complicated: we have to establish a mapping
of names that identifies some names in the pair, and keeps other names
distinguished, e.g. in the form of a pair of injections into a common target

—a,y—b} {xr—a,y—

_ _ { = by _
(xy.0 || ¥x.0) = {a. b} < (xy.0 || ¥x.0)

£
=

{ x—a.y—b} {x—b,yr—c}

(xy.0 | ¥x.0) = {a.b.c} = (xy.0 || ¥x.0)




Name mappings as cospans

» To represent name mappings we use cospans, that is pairs of mappings with a
common target

» These cospans must keep in account symmetries, so they are not injections, but
rather arrows in Symset

» The target object must be minimal and uniquely determined: names that are not
in the image of at least one arrow are not interesting



Multi-coproduct

The multi-coproduct MCP(®;.®,) [Diers, 1979] is a categorical construction that
identifies all isomorphic cospan, and only find the minimal ones

X y z

X

X y z a b c Xy z

Xy z abcd Xy z
P



The categorical product

» The categorical product of N = (Qun.Spy) and M = Q.S is given by (Q.S),
where:

Q=1 {(n.m.(iny.inz)) | n € Qnu " m &€ Qu
A (iny.iny) € MCP({Sy(n).Sp(m))) 1}

S({n.m, (iny.in5))) = cod(in;) = cod(in)

» The projections m1 = {(h1.X1) and w2 = (h2, X2) are defined as

h1(t) =n 21(1.‘) = ini
ha(t) = m 3o(t) = in2



Consequences on bisimulation and model checking

» The definition of the product has consequences on the definition of the
bisimulation problem and the model checking problem

» Bisimulation becomes a ternary relation, employing two states and a name
mapping between them. History-preserving (causal) bisimulation is ordinary
coalgebraic bisimulation. Names that are not mapped are redundant.

» The satisfaction relation between states and (modal) formulas is a ternary
relation in turn. Names that are not mapped are not involved in the particular
instance of the satisfaction definition

» Consequence: the definition of satisfaction will be the standard one, but new
algorithms will have to be invented to efficiently handle these ternary relations.
Also for minimisation and bisimulation checking.



real world: lack of a naming authority

» The model that we have presented is typical in situation where the global
meaning of names is not established a priori

» Example: take two isolated networks, and connect their ports: a mapping of the
external ports between the two networks has to be established: a way to
“name” ports of each network “into” the other one.

» Example: code fragments in a programming language: x=3+2 and y=3+2 have
absolutely the same meaning, until | relate two pieces of code. int x has the same
meaning of int y.



The problem

Inputting names

The problem of non-deterministic choice quantified over the set of all names arises
when modelling name-passing operations

» For example, input in the early semantics of the w-calculus: x(y).P =— P [?/,]
for all z

» Method calls in object-oriented languages (because of generation of new objects)

» A common solution is to consider all free names plus an additional name which
represents all the fresh names that can be received.

» We have a finite number of free input transitions plus a new type of transition:
bound input transitions that are not present in the original semantics of the
m-calculus.



Two bisimilar systems

Consider the following bisimilar systems:

P(x.y) =x(z).zz.0 || (vw)wy.0 redundant name y
Q(x) = x(z).zz.0

P(x.y) ~ Q(x)

AN
VA

Figure: standard LTS



The approximation is incorrect

The approximation distinguishes P and Q even though they are bisimilar. There are
redundant transitions that should not be taken into account.

P(x.y) Q(x)
XX Xy X / \
XX vy Fok XX ok
) 1)

Figure: The incorrect approximation



T he solution of MIHDA

Redundant names are not decidable

» Not only in the m-calculus! Example in pseudo-code: Is a redundant?
if (nondecidable()) then a:=3 else skip;

» The solution given in Emilio Tuosto’s thesis (MIHDA [Ferrari,Montanari, Tuosto -
TCS 2005]): the notion of dominated transition identifies and prunes transitions
that are proved to be redundant in one step

» The minimisation (partition refinement) algorithm then removes all redundant
transitions at the w step
== Correct minimisation procedure and side effect: remove all redundant
names
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A general formulation

» The solution of MIHDA is specific for the m-calculus, and in particular it seems
tightly bound to the set of labels of the m-calculus

» We thus define a finitely representable subfunctor P4 (X ) of the countable power
set Pcyi(X) whose representation on objects can be given as

Pin(5(X))

» The functor on arrows removes elements that are proved redundant in one step.



Two theorems

» We show that our functors are all accessible, this implies that they have a final
coalgebra

» We show that the categories of coalgebras of equivalent functors are equivalent.

» We show that our functors are equivalent to the corresponding notions in
permutation algebras and presheaves

» Conclusion: for each semantics that is given using permutation algebras, nominal
sets or presheaves, using product, coproduct, name abstraction, finite powerset
and nondeterministic choice quantified over names, we obtain constructively a
semantics in named sets, and ...

» ... the abstract semantics can be computed in many cases, due to the garbage
collection property of named sets, thus we can actually make use of fully abstract
logics, model checking algorithms exploiting Stone duality, bisimulation checking
methods using iteration along the terminal sequence and so on.
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Extending the equivalence to richer index categories

» We have deeply studied and exploited the equivalence between a full subcategory
of Set!, a category of algebras over an infinite signature, and the category of
named sets.

» The idea of presheaves (and algebras) is that objects of the index category (finite
sets in this case) are interfaces that elements have, and arrows are operations
that can be applied to these interfaces.

» Future work: enrich the interface. E.g. fusions, graphs, etc.

» Open problem: how does binding work in the presence of fusions? What is
abstraction of a graph? We should investigate a generalised notion of binding.



Efficient algorithms for the product

» The structure of the product is fundamental in bisimulation checking and model
checking

» It is already implicitly used in MIHDA, but not efficiently: the symmetry is
represented using generators, but the permutation group is unrolled at each step
of the algorithm, thus throwing away a potentially exponential gain

» Eugene M. Luks developed efficient algorithms for permutation groups, and
preliminary results show applicability to efficient representations of the product of
named sets

» Future work: implement these algorithms in a generalised version of MIHDA, and
in a model checking algorithm.

» Optimal symmetry reduction in model checking!



Sessions and coordination languages

» One of the most important applications of name generation is that of sessions in
service-coriented computing

» Verification for calculi with sessions suffer from the same problems that we
mentioned, thus the solutions we propose are applicable in this area

» In particular, we expect to be able to implement formal verification techniques,
based on history-dependent automata, for the Service Calculus (SC) [Ferrari,
Guanciale, Strollo - FORTE 2006], [F., G., S. , Tuosto - FORTE 2007], [F., G.,
S., Ciancia - FORTE 2008] ... and for the coordination language NCP

» SC already has a visual editor and a Java implementation (JSCL). Particularly
appealing: introduce verification in the form of graphical tools that e.g.
visualize and allow to replay erroneous traces.



