
Comparison of a qualitative
and a quantitative model

Refinement-oriented
noninterference:

Annabelle McIver
Larissa Meinicke
Carroll Morgan

Macquarie University
Macquarie University

University of New South Wales

IFIP 1.3, Winchester ix11

Summary

Context — Theoretical aspects of specification and
development of (secure) computing systems... within a
theory of system specification.

Summary

Context — Theoretical aspects of specification and
development of (secure) computing systems... within a
theory of system specification.

• Aims: Source-level program-algebraic reasoning over
probability, demonic choice and hidden state.

• Semantic space(s), including a refinement order.
• Small programming language, and its denotations.
• Comparative security.
• Example.

• Prospects.

Aims and assumptions

We consider (sequential) programs whose variables have an
extra attribute, that they can be either visible or hidden.

Our original motivation for this (1995) was to hide already-
resolved probabilistic choices, inside program modules, from
about-to-be-made demonic choices outside those modules, in
order to allow data-refinement (a.k.a. simulation) between them.

This applies also to already-made choices in a concurrent
process that should be hidden from about-to-be-made choices
in another process, or e.g. to an adversarial concurrency
scheduler that should not be able to exploit probabilistic
processes’ local state.

Aims and assumptions

Demonic/probabilistic choice plus hiding is hard, though
progress has been made by many people.

In our own work we have treated the three pairs of features
separately, in order to see how they interact in a simpler
setting: we have done probabilistic choice with demonic
choice (1995), hiding with demonic choice (2006) and
hiding with probabilistic choice (2010).

We noticed that qualitative hiding with demonic choice
(2006) could equally well model noninterference security
with refinement/abstraction. That is why we later tried the
same approach with quantitative hiding (2010).

1

2

3

Aims and assumptions

Demonic/probabilistic choice plus hiding is hard, though
progress has been made by many people.

In our own work we have treated pairs of features
separately, in order to see how they interact in a simpler
setting: we have done probabilistic choice with demonic
choice (1995), hiding with demonic choice (2006) and
hiding with probabilistic choice (2010).

We noticed that qualitative hiding with demonic choice
(2006) could equally well model noninterference security
with refinement/abstraction. Later we tried the same
approach with quantitative hiding (2010).

In this talk I will present both of those noninterference
security models –qualitative and quantitative– side by
side in order to highlight their similarities.

Qualitative slides will be marked with a , and
quantitative slides will be marked with a .

u
�

Aims and assumptions

Demonic/probabilistic choice plus hiding is hard, though
progress has been made by many people.

In our own work we have treated pairs of features
separately, in order to see how they interact in a simpler
setting: we have done probabilistic choice with demonic
choice (1995), hiding with demonic choice (2006) and
hiding with probabilistic choice (2010).

We noticed that qualitative hiding with demonic choice
(2006) could equally well model noninterference security
with refinement/abstraction. Later we tried the same
approach with quantitative hiding (2010).

In this talk I will present both of those noninterference
security models –qualitative and quantitative– side by
side in order to highlight their similarities.

Qualitative slides will be marked with a , and
quantitative slides will be marked with a .

u
�

An attacker observes a program in action, seeing:

• values of visible variables, even if subsequently
overwritten; and
• program flow, i.e. resolution of conditionals, loop
guards and other “external” choices.

He knows the source code.

From all that, he attempts to deduce the value of
hidden variables’ final values. Either he succeeds, or
does not ; or he succeeds with some probability .

Aims and assumptions

perfect recall

implicit flow

u �

An attacker observes a program in action, seeing:

• values of visible variables, even if subsequently
overwritten; and
• program flow, i.e. resolution of conditionals, loop
guards and other “external” choices.

These assumptions are motivated by algebraic
“experiments” based on how program refinement
should behave: but they are not discussed in this talk.

Aims and assumptions

perfect recall

implicit flow

The Shadow Knows: Refinement of ignorance in sequential programs.
Carroll Morgan. Proc. Maths. Prog. Construction. 2006.

Philosophy and strategy

Abstraction from details.

A relation “at least as secure as” that allows
compositional reasoning.

A specification (ideal system) that specifies explicitly all
tolerable imperfections.

Philosophy and strategy

Abstraction from details.

A relation “at least as secure as” that allows
compositional reasoning: (reactive) simulatability.

A specification (ideal system) that specifies explicitly all
tolerable imperfections.

A model for asynchronous reactive systems... Pfitzmann and Waidner.
Proc. 20th IEEE Symp. on Security and Privacy, 2001.

40

A general composition theorem for secure reactive systems. Backes,
Pfitzmann and Waidner. Proc. TCC 2004.

Philosophy and strategy

Abstraction from details.

A relation “at least as secure as” that allows
compositional reasoning.

A specification (ideal system) that specifies explicitly all
tolerable imperfections.

Source-level reasoning based on denotations.
Program logic.
Connection between refinement relation and testing.
Information-theoretic (not complexity-theoretic).

40

Philosophy and strategy

Thus we don’t judge a program, on its own, to be
secure (or insecure) , or to be partly secure .
Rather we ask whether one program is at least as secure
as another. In both cases the definition of “secure” is
ultimately subjective. For example we could say that:

• If hidden variable’s value can never be
deduced in a specification S, then must not be
deducible in any implementation I of it.
• The chance of guessing a hidden variable’s
value in I must not exceed the chance of guessing it
in S.

u

u

�

�

40

Small programming language

v — the visible variables h — the hidden variables

OR
with hiding, not yet both

probabilistic and demonic

qualitative quantitative

v:=E assign to visible v:=E
h:=E assign to hidden h:=E

v:=E u E0
choose visible v:=E p� E0

v:2 {E,E0} (internal) v:2 later. . .

h:=E u E0
choose hidden h:=E p� E0

h:2 {E,E0} (internal) h:2 later. . .

compound statements: conditional,

(external) demonic choice,

(external) probabilistic choice,

loop, local variables. . .

Small programming language

OR

qualitative quantitative

v:=E assign to visible v:=E
h:=E assign to hidden h:=E

v:=E u E0
choose visible v:=E p� E0

v:2 {E,E0} (internal) v:2 later. . .

h:=E u E0
choose hidden h:=E p� E0

h:2 {E,E0} (internal) h:2 later. . .

compound statements: conditional,

(external) demonic choice,

(external) probabilistic choice,

loop, local variables. . .

In this talk we don’t
consider loops or

divergence.

SEMANTIC SPACE

Classical split-state V⇥H
Qualitative split-state V ⇥ PH
Quantitative split-state V ⇥ DH

Basic building-block is the split-state

Shadow

Inner

Distinguish visible (low-security) variables of type V
from hidden (high-security) variables of type H

The actual value of v
What the attacker knows
about the value of h

Qualitative split-state (v,H) tells us

• that v’s value is v, and

• that h’s value is in the “Shadow” set H.

The semantics constructs set H in PH accord-

ing to the attacker’s “most intrusive” observa-

tions, about which more later.

What does a Qualitative split-state tell us?

The program variables are v and h in all three cases.

u

V ⇥ PH

V ⇥ DHQuantitative split-state (v, �) tells us

• that v’s value is v, and

• that h’s value has “Inner” distribution �
over H.

The semantics constructs distribution �:DH
according to the attacker’s observations.

What does a Quantitative split-state tell us?

The program variables are v and h in all three cases.

�

OR

qualitative quantitative

v:=E assign to visible v:=E
h:=E assign to hidden h:=E

v:=E u E0
choose visible v:=E p� E0

v:2 {E,E0} (internal) v:2 later. . .

h:=E u E0
choose hidden h:=E p� E0

h:2 {E,E0} (internal) h:2 later. . .

compound statements: conditional,

(external) demonic choice,

(external) probabilistic choice,

loop, local variables. . .

Interpret these atomic programs using split-states

�u

program split-state

assign to visible v:= 0 (0, H)
assign to hidden h:= 1 (v, {1})
choose hidden h:2 {2, 3, 4} (v, {2, 3, 4})
choose visible? v:2 {5, 6, 7} ???

Qualitative examples

From initial split-state (v,H) we execute the

program shown, to give the final split-state at

right.

u

program split-state

assign to visible v:= 0 (0, �)
assign to hidden h:= 1 (v, {{1}})
choose hidden h:= 2�3�4 (v, {{2, 3, 4}})
choose visible? v:= 5�6�7 ???

Quantitative examples

point
distribution

uniform
distribution

uniform
choices

From initial split-state (v, �) we execute the

program shown, to give the final split-state at

right.

�

Programs are thus of type V⇥PH!P(V⇥PH).

From initial split-state (v,H) we execute the

two programs shown, to give the final split-

state at right.

Qualitative examples continued

singleton set

two possible
outcomes

u

Kleisli...

program split-state

choose hidden h:2 {2, 3, 4}; {(v, {2, 3, 4})}
followed by

assign to visible v:= hmod 2 {(0, {2, 4}), (1, {3})}

Programs are thus of type V⇥DH!D(V⇥DH).

From initial split-state (v, �) we execute the

two programs shown, to give the final split-

state at right.

Quantitative examples continued

point distribution

discrete distribution over two pairs:
the first pair has probability 2/3,

the second has probability 1/3

�

the inner distributions are uniform

program split-state

choose hidden h:= 2�3�4; {{(v, {{2, 3, 4}})}}
followed by

assign to visible v:= hmod 2 {{(0, {{2, 4}})@ 2
3 , (1, {{3}})@ 1

3 }}

program split-state

assign to visible v:= 0 {(0, H)}
assign to hidden h:= 1 {(v, {1})}
choose hidden h:2 {2, 3, 4} {(v, {2, 3, 4})}
choose visible v:2 {5, 6, 7} {(5, H), (6, H), (7, H)}

Qualitative examples completed

From initial split-state (v,H) we execute the

program shown, to give the final set of split-

states at right.

u

Programs are thus of type V⇥PH!P(V⇥PH).

program split-state

assign to visible v:= 0 {{(0, �)}}
assign to hidden h:= 1 {{(v, {{1}})}}
choose hidden h:= 2�3�4 {{(v, {{2, 3, 4}})}}
choose visible v:= 5�6�7 {{(5, �), (6, �), (7, �)}}

Quantitative examples completed

From initial split-state (v, �) we execute the

program shown, to give the final distribution

of split-states at right.

An (outer) distribution over (inner) distribu-

tion is called a hyperdistribution.

�

D(V⇥DH)

External vs internal demonic choice
u

h:2 {2, 3, 4}; v:= hmod 2

= v:= 0; h:= 2 u 4
u v:= 1; h:= 3

external demonic choice,
visible to attacker

internal demonic choice,
hidden from attacker

Both produce {(0, {2, 4}), (1, {3})}.

h:2 {{2, 3, 4}}; v:= hmod 2

= v:= 0; h:= 2 � 4

2/3� v:= 1; h:= 3

External vs internal probabilistic choice

external probabilistic choice,
visible to attacker

internal probabilistic choice,
hidden from attacker

�

Both produce {{(0, {2, 4})@ 2
3 , (1, {3})@ 1

3 }}.

PROGRAM DENOTATIONS
Don’t worry: just one of them, as an example.

Semantic definitions — qualitative sample

Assign to visible — qualitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}

where Ev
v denotes replacement of v by v throughout E

u

And associate with it a new, possibly smaller H includ-

ing only those h’s that would have given the same E.

For each possible value of h in the incoming shadow H,

Construct a pair containing the evaluation of E for that

value of h (and the incoming v),

Semantic definitions — qualitative sample

Assign to visible — qualitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}

where Ev
v denotes replacement of v by v throughout E

u

And associate with it a new, possibly smaller H includ-

ing only those h’s that would have given the same E.

For each possible value of h in the incoming shadow H,

Construct a pair containing the evaluation of E for that

value of h (and the incoming v),

Semantic definitions — qualitative sample

Assign to visible — qualitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}

where Ev
v denotes replacement of v by v throughout E

u

And associate with it a new, possibly smaller H includ-

ing only those h’s that would have given the same E.

For each possible value of h in the incoming shadow H,

Construct a pair containing the evaluation of E for that

value of h (and the incoming v),

Semantic definitions — qualitative sample

Assign to visible — qualitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}

where Ev
v denotes replacement of v by v throughout E

u

And associate with it a new, possibly smaller H includ-

ing only those h’s that would have given the same E.

For each possible value of h in the incoming shadow H,

Construct a pair containing the evaluation of E for that

value of h (and the incoming v),

Semantic definitions — qualitative sample

Assign to visible — qualitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}

where Ev
v denotes replacement of v by v throughout E

u

For each possible value of h in the incoming shadow H,

Construct a pair containing the evaluation of E for that

value of h (and the incoming v),

And associate with it a new, possibly smaller H includ-

ing only those h’s that would have given the same E:

it’s a sort of conditioning.

Semantic definitions — qualitative sample

Assign to visible — qualitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}

where Ev
v denotes replacement of v by v throughout E

u

[[v:= hmod 2]](v, {2, 3, 4})
= {((hmod 2)vv , {h: {2, 3, 4} | (hmod 2)vv=(hmod 2)v,hv,h }) |

h: {2, 3, 4}}
= {(hmod 2, {h: {2, 3, 4} | hmod 2 = hmod 2}) |

h: {2, 3, 4}}
= {(0, {2, 4}), (1, {3}), (0, {2, 4})}

= {(0, {2, 4}), (1, {3})}

Semantic definitions — quantitative sample

where Ev
v denotes replacement of v by v throughout E

�

Assign to visible — quantitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}
�

For each possible value of h in the support of the in-

coming inner �,

Construct a pair containing the evaluation of E for that

value of h (and the incoming v), and associate with it

the probability in � of the h that gave rise to it,

And associate with it a new � conditioned on the fact

that the same value of v is produced.

Semantic definitions — quantitative sample

where Ev
v denotes replacement of v by v throughout E

�

Assign to visible — quantitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}
�

First define function fv(h) = Ev,h
v,h of type H!V.

Then define �v,v0
for v, v0:V as the conditional distri-

bution given by Pr(h | fv(h) = v0) where Pr refers to

�.

Finally define pairing function gv(h) = (fv(h), �v,fv(h))
of type H! V⇥DH by combining the two.

The output hyperdistribution is the push-forward given

by (gv)⇤(�) of gv over �.

Semantic definitions — quantitative sample

where Ev
v denotes replacement of v by v throughout E

�

Assign to visible — quantitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}
�

First define function fv(h) = Ev,h
v,h of type H!V.

Then define �v,v0
for v, v0:V as the conditional distribu-

tion given by Pr(h | fv(h) = v0) where Pr refers to �.
Finally define pairing function gv(h) = (fv(h), �v,fv(h))
of type H! V⇥DH by combining the two.

Then the output hyperdistribution is the push-forward

given by (gv)⇤(�) of gv over �.

Given two sets X,Y and a function f :X!Y between

them, the push-forward f⇤ of f acts between the distri-

butions DX,DY over those sets, thus giving f⇤:DX!DY .

In the discrete case, for �:DX we can define

f⇤(�)(y) :=

X

x:X
f(x)=y

�(x) .

Semantic definitions — quantitative sample

where Ev
v denotes replacement of v by v throughout E

�

Assign to visible — quantitative
[[v:=E]](v,H) = {(Ev

v , {h:H | Ev
v=Ev,h

v,h }) | h:H}
�

First define function fv(h) = Ev,h
v,h of type H!V.

Then define �v,v0
for v, v0:V as the conditional distri-

bution given by Pr(h | fv(h) = v0) where Pr refers to

�.

Finally define pairing function gv(h) = (fv(h), �v,fv(h))
of type H! V⇥DH by combining the two.

The output hyperdistribution is the push-forward given

by (gv)⇤(�) of gv over �.

Define function fv(h) = Ev,h
v,h of type H!V. Con-

struct distribution �v,v0
for v, v0:V to be the conditional

distribution given by Pr(h | fv(h) = v0) where Pr refers

to �. Define pairing function gv(h) = (fv(h), �v,fv(h)) of
type H! V⇥DH by combining the two.

Then the output hyperdistribution is the push-forward

given by (gv)⇤(�) of gv over �.

Semantic definitions — quantitative sample

where Ev
v denotes replacement of v by v throughout E

�

Assign to visible — quantitative

An appropriate notation for Distribution Comprehensions
makes this a conditional-distribution operator

[[v:=E]](v, �) = {{(Ev
v , {{h: � | Ev

v=Ev,h
v,h }}) | h: �}}

... so that the qualitative- and
quantitative definitions are
very similar in appearance

...

...

...but we won’t describe that
notation in detail in this talk.

Define function fv(h) = Ev,h
v,h of type H!V. Con-

struct distribution �v,v0
for v, v0:V to be the conditional

distribution given by Pr(h | fv(h) = v0) where Pr refers

to �. Define pairing function gv(h) = (fv(h), �v,fv(h)) of
type H! V⇥DH by combining the two.

Then the output hyperdistribution is the push-forward

given by (gv)⇤(�) of gv over �.

Semantic definitions — quantitative sample

where Ev
v denotes replacement of v by v throughout E

�

Assign to visible — quantitative

An appropriate notation for Distribution Comprehensions
makes this a conditional-distribution operator

[[v:=E]](v, �) = {{(Ev
v , {{h: � | Ev

v=Ev,h
v,h }}) | h: �}}

... so that the qualitative- and
quantitative definitions are
very similar in appearance

...

...

...but we won’t describe that
notation in detail in this talk.

Define function fv(h) = Ev,h
v,h of type H!V. Con-

struct distribution �v,v0
for v, v0:V to be the conditional

distribution given by Pr(h | fv(h) = v0) where Pr refers

to �. Define pairing function gv(h) = (fv(h), �v,fv(h)) of
type H! V⇥DH by combining the two.

Then the output hyperdistribution is the push-forward

given by (gv)⇤(�) of gv over �.

Semantic definitions — quantitative sample

where Ev
v denotes replacement of v by v throughout E

�

Assign to visible — quantitative

An appropriate notation for Distribution Comprehensions
makes this a conditional-distribution operator

[[v:=E]](v, �) = {{(Ev
v , {{h: � | Ev

v=Ev,h
v,h }}) | h: �}}

... so that the qualitative- and
quantitative definitions are
very similar in appearance

...

...

{(Ev
v , {h:H | Ev

v=Ev,h
v,h }) | h:H}

...but we won’t describe that
notation in detail in this talk.

Semantic definitions — quantitative sample

where Ev
v denotes replacement of v by v throughout E

�

Assign to visible — quantitative

An appropriate notation for Distribution Comprehensions
makes this a conditional-distribution operator

and then this
calculation follows.

[[v:=E]](v, �) = {{(Ev
v , {{h: � | Ev

v=Ev,h
v,h }}) | h: �}}

...

...

so that the qualitative- and
quantitative definitions are
very similar in appearance

...

...

[[v:= hmod 2]](v, {{2, 3, 4}})

=
...

= {{(0, {{2, 4}})@ 2
3 , (1, {{3}})@ 1

3 }}

COMPARATIVE SECURITY

Security breach — qualitative
u

Compositional noninterference from first principles. Carroll Morgan.
Formal Aspects of Computing, 2011. DOI: 10.1007/s00165-010-0167-y

Definition 1. Elementary-Testing Order for Noninterference We

say that S�I, that S and I are in the elementary-testing order (�)

for qualitative noninterference, just when from some initial state

functional testing If implementation I can produce v=v and h=h
for some v, h, then so can its specification S.

security testing If implementation I can allow an attacker to de-

termine the value of h by observation of v, the control flow and

the source code, then so can its specification S.

Compositional noninterference from first principles. Carroll Morgan.
Formal Aspects of Computing, 2011. DOI: 10.1007/s00165-010-0167-y

Compositional closure — qualitative
u

The order given in Definition 1 is not compositional,
because it is not preserved by contexts. (More exactly,
the denotations of contexts are not monotonic
functions with respect to that order.)

So we define the qualitative refinement order to be the
(unique) weakest strengthening that is compositional
wrt to the programming language (and its meanings) we
have defined, the so-called compositional closure.

Compositional closure — qualitative
u

Recall that programs (denotations) are of type

(V⇥PH)!P(V⇥PH). Reasoning pointwise. . .

. . . for S, I:P(V⇥PH) say that SvI, that S
is refined by I just when every (v,H) in I
equals (v,H0[H1[· · ·) for some collection of

(v,Hi)’s in S.

In other words, a specification is refined by

“unioning together” split-states that have the

same v component. The canonical example is

h:= 0 u h:= 1 v h:= 0 u 1 .

Alternative, monadic formulation
u

The powerset
functor.

S = {{0}, {1}} X = { {{0}, {1}} } I = {{0, 1}}

Multiply for
the monad

For simplicity we concentrate on H only, so

that our output space is P(PH), that is P2H
i.e. (non-empty) sets of (non-empty) shadows.

For S, I:P2H say that SvI just when there

exists X:P3H such that

S ◆ [X and (P[)X = I ,

where [X is the union of all sets in X and

(P[)X is the set formed by applying ([) to

all elements of X.

Alternative, monadic formulation

For simplicity we concentrate on H only, so

that our output space is P(PH), that is P2H
i.e. (non-empty) sets of (non-empty) shadows.

For S, I:P2H say that S v I just when there

exists X:P3H such that

S ◆ [X and (P[)X = I ,

where [X is the union of all sets in X and

(P[)X is the set formed by applying ([) to

all elements of X.

u

S = {{0}, {1}} X = { {{0}, {1}} } I = {{0, 1}}x x
[

For simplicity we concentrate on H only, so

that our output space is P(PH), that is P2H
i.e. (non-empty) sets of (non-empty) shadows.

For S, I:P2H say that S v I just when there

exists X:P3H such that

S ◆ [X and (P[)X = I ,

where [X is the union of all sets in X and

(P[)X is the set formed by applying ([) to

all elements of X.

u

S = {{0}, {1}} X = { {{0}, {1}} } I = {{0, 1}}x xxx

P[

Alternative, monadic formulation

Security breach — quantitative

Compositional closure for Bayes Risk in probabilistic noninterference.
McIver, Meinicke, Morgan. Proc ICALP 2010.

�

Definition 1. Elementary-Testing Order for Noninterference We

say that S�I, that S and I are in the elementary-testing order (�)

for quantitative noninterference, just when from some initial state

functional testing For any v, h the specification and implemen-

tation produce that pair with equal probabilities.

security testing For any observed v (and possibly other obser-

vations based on perfect recall and implicit flow), the Bayes
Vulnerability of h in the specification is never increased in the

implementation.

Bayes Risk/Vulnerability

Adversaries and information leaks. G. Smith. TGC 2007.

�

The Bayes Vulnerability of h given that v=v
(and possibly other observations) is the weighted

average, across all those values v (and obser-

vations), of the conditional probability of the

most likely value h of h, the maximum a pos-

teriori probability (MAP) of h.

For simplicity we concentrate on H only, so

that our output space is D2H i.e. hyper distri-

butions, distributions of (inner) distributions.

For S, I:D2H say that S v I just when there

exists X:D3H such that

S = avg(X) and (D avg)(X) = I ,

where avg(X) is the average of all elements in

X and (D avg)X is the push-forward of avg.

I = {{{{0, 1}}}}S = {{{{0}}, {{1}}}}

Monadic definition of quantitative refinement
�

X = {{ {{{{0}}, {{1}}}} }}

For simplicity we concentrate on H only, so

that our output space is D2H i.e. hyper distri-

butions, distributions of (inner) distributions.

For S, I:D2H say that S v I just when there

exists X:D3H such that

S = avg(X) and (D avg)(X) = I ,

where avg(X) is the average of all elements in

X and (D avg)X is the push-forward of avg.

I = {{{{0, 1}}}}S = {{{{0}}, {{1}}}}

Monadic definition of quantitative refinement
�

X = {{ {{{{0}}, {{1}}}} }}

For simplicity we concentrate on H only, so

that our output space is D2H i.e. hyper distri-

butions, distributions of (inner) distributions.

For S, I:D2H say that S v I just when there

exists X:D3H such that

S = avg(X) and (D avg)(X) = I ,

where avg(X) is the average of all elements in

X and (D avg)X is the push-forward of avg.

I = {{{{0, 1}}}}S = {{{{0}}, {{1}}}}

Monadic definition of quantitative refinement
�

X = {{ {{{{0}}, {{1}}}} }}

◆ [P[

For simplicity we concentrate on H only, so

that our output space is D2H i.e. hyper distri-

butions, distributions of (inner) distributions.

For S, I:D2H say that S v I just when there

exists X:D3H such that

S = avg(X) and (D avg)(X) = I ,

where avg(X) is the average of all elements in

X and (D avg)X is the push-forward of avg.

I = {{{{0, 1}}}}S = {{{{0}}, {{1}}}}

The
Kantorovich

functor

�

X = {{ {{{{0}}, {{1}}}} }}

This formulation works well for distributions of infinite support, and (ultimately) proper measures.
For Kantorovich, see van Breugel, The Metric Monad for Probabilistic Nondeterminism. 2005.

Multiply for
the monad

Monadic definition of quantitative refinement

For simplicity we concentrate on H only, so

that our output space is D2H i.e. hyper distri-

butions, distributions of (inner) distributions.

For S, I:D2H say that S v I just when there

exists X:D3H such that

S = avg(X) and (D avg)(X) = I ,

where avg(X) is the average of all elements in

X and (D avg)X is the push-forward of avg.

I = {{{{0, 1}}}}S = {{{{0}}, {{1}}}}

�

X = {{ {{{{0}}, {{1}}}} }}

Monadic definition of quantitative refinement

But in the discrete case, it’s pretty straightforward: a “weighted sum” than (as earlier) a union.

0.3 0.5 0.2

1/3

1/3

1/3

2/3

1/3

1

Here’s an example.

�

0.3 0.5 0.2

1/3

1/3

1/3

2/3

1/3

1

Specification,
over a split-state
of 3 elements
R,G,B,
given as an output
hyperdistribution
having three
inners.

With probability 0.3 we know that h is distributed uni-

formly over R,G,B; with probability 0.5 we know it can-

not be G, and is twice as likely to be R as B; with prob-

ability 0.2 we are certain it is G.

0.3 0.5 0.2

1/3

1/3

1/3

2/3

1/3

1

Specification,
over a split-state
of 3 elements
R,G,B,
given as an output
hyperdistribution
having three
inners.

With probability 0.3 we know that h is distributed uni-

formly over R,G,B; with probability 0.5 we know it can-

not be G, and is twice as likely to be R as B; with prob-

ability 0.2 we are certain it is G.

0.3 0.5 0.2

1/3

1/3

1/3

2/3

1/3

1

Specification,
over a split-state
of 3 elements
R,G,B,
given as an output
hyperdistribution
having three
inners.

With probability 0.3 we know that h is distributed uni-

formly over R,G,B; with probability 0.5 we know it can-

not be G, and is twice as likely to be R as B; with prob-

ability 0.2 we are certain it is G.

0.3 0.5 0.2

1/3

1/3

1/3

2/3

1/3

1

Specification,
over a split-state
of 3 elements
R,G,B,
given as an output
hyperdistribution
having three
inners.

With probability 0.3 we know that h is distributed uni-

formly over R,G,B; with probability 0.5 we know it can-

not be G, and is twice as likely to be R as B; with prob-

ability 0.2 we are certain it is G.

0.3 0.5 0.2

1/3

1/3

1/3

2/3

1/3

1

Specification
BV = 0.3/3 + 2(0.5)/3 + 0.2 = 0.633...

We illustrate quantitative
refinement via a procedure
of cut and paste.
The BV should decrease,
and that decrease should
“flow through” to any
context whatsoever.

With probability 0.3 we know that h is distributed uni-

formly over R,G,B; with probability 0.5 we know it can-

not be G, and is twice as likely to be R as B; with prob-

ability 0.2 we are certain it is G.

0.3 0.2

1/3

1/3

1/3

1

2/3

1/3

0.30.2+

Cut...

One or more inners can be
cut into replicas of itself,
provided the overall weight
of each doesn’t change.

Here we have split the
middle inner (of weight 0.5)
into two replicas of weights
0.2 and 0.3.

�

0.3 0.20.30.2

1/3

1/3

1/3

1

2/3

1/3

Separate...

Now we have four inners
(whereas we started with
three); but two of them are
the same.

The cutting makes no
difference: in particular, it
does not change the BV.

�

0.3 0.20.30.2

1/3

1/3

1/3

1

2/3

1/3

Separate...

Now we have four inners
(whereas we started with
three); but two of them are
the same.

The cutting makes no
difference: in particular, it
does not change the BV.

But the next step does.

�

0.5 0.5

Merge...

After this cut-and-separate,
the so-called splitting step
(which can be the identity),
we can then merge inners
arbitrarily.
They are added together
proportionally, based on
their weights.
As a result, the BV probably
decreases.

�

0.5 0.5

Normalise...

The result is (usually) a
smaller number of inners.

In this case we started with
three, via splitting made
four, and then via merging
reduced that to two.

�

0.5 0.5

and Paste.

And we are done.
Notice that the total
accumulated weight of each
separate state R,G,B has not
changed: consider the area
occupied by each colour.
This is the functional
equality that refinement
demands (in the absence of
demonic choice).

�

7/15

1/5

1/3
1/5

2/5

2/5

0.5 0.5

This implementation
hyperdistribution is (strictly)
more secure than the
specification hyper we
started with, and that
relation will be preserved in
all programming contexts.

Implementation

BV = 7(0.5)/15 + 2(0.5)/5 = 0.433... < 0.633...

Half the time we know R,G,B are distributed in propor-
tions 7,3,5; the other half of the time we know they are
distributed in proportions 2,2,1.

A specification is refined by “averaging to-

gether” split-states that have the same v com-

ponent, according to their probabilities in the

hyperdistribution.

The canonical example of this is

h:= 0 � h:= 1 v h:= 0 � 1 .

Compositional closure — quantitative
�

I = {{{{0, 1}}}}S = {{{{0}}, {{1}}}} X = {{ {{{{0}}, {{1}}}} }}

A specification is refined by “averaging to-

gether” split-states that have the same v com-

ponent, according to their probabilities in the

hyperdistribution.

The canonical example of this is

h:= 0 � h:= 1 v h:= 0 � 1 .

Compositional closure — quantitative
�

I = {{{{0, 1}}}}S = {{{{0}}, {{1}}}} X = {{ {{{{0}}, {{1}}}} }}

1/2⇥{{0}}+ 1/2⇥{{1}} = {{0, 1}}

x x

Davg

APPLICATIONS

Hierarchically structured protocols

The Three Judges protocol

Boolean/{0,1} hidden variables represent individual
verdicts: guilty, or innocent. The aim is to reveal the
majority verdict without revealing the individual
verdicts.

This is not (simply) the generalised Cryptographers:
rather it is Secret Voting (Yao).

vis v;
hid a, b, c;

v:= (a+b+c) � 2

Hierarchically structured protocols

vis v;
hid a, b, c;

v:= (a+b+c) � 2

This specification is very non-local: a sum must be
constructed, preserving secrecy, of three variables held in
three different places.

Our aim is to increase the locality while preserving both the
functional and the security properties.

vis v;
hid a, b, c;

v:= (a+b+c) � 2

vis v;
hid a, b, c;

v:= (b_c if a else b^c)

Hierarchically structured protocols

vis v;
hid a, b, c;

v:= (a+b+c) � 2

This looks like an Oblivious Transfer; but its two arguments
are still non-local. Thus we must go further...

vis v;
hid a, b, c; hid b0, b1; hid c0, c1;

v:= (b_c if a else b^c)

Hierarchically structured protocols

vis v;
hid a, b, c; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
v:= (b1rc1 if a else b0rc0)

Hierarchically structured protocols

vis v;
hid a, b, c; hid b0, b1; hid c0, c1;

v:= (b_c if a else b^c)

Choose variables “at random” on left-
hand side to make their exclusive-or
equal to the right-hand side.

vis v;
hid a, b, c; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
v:= (b1rc1 if a else b0rc0)

Hierarchically structured protocols

The “at random” choice is resolved either demonically or uniformly,
depending on whether it is a qualitative or quantitative system.

Choose variables “at random” on left-
hand side to make their exclusive-or
equal to the right-hand side.

vis v;
hid a, b, c; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
v:= (b1rc1 if a else b0rc0)

Hierarchically structured protocols

Protocols for secure computations. A. C-C. Yao. FOCS 1982.
How to play any mental game. Goldreich, Micali, Wigderson. STOC 87.

Secure multi-party computations.

vis v;
hid a, b, c; hid ab, ac; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

Hierarchically structured protocols

vis v;
hid a, b, c; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
v:= (b1rc1 if a else b0rc0)

vis v;
hid a, b, c; hid ab, ac; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

Hierarchically structured protocols

Rabin; Even, Goldreich, Lempel; Rivest.

1-2 Oblivious Transfers

vis v;
hid a, b, c; hid ab, ac; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

Hierarchically structured protocols

(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

Hierarchically structured protocols

vis v;
hid a, b, c; hid ab, ac; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

b0:= true�false;
c0:= (brb0 if c else b0);

v

Compositionality

vis v;
hid a, b, c; hid ab, ac; hid b0, b1; hid c0, c1

b0:= true�false;
c0:= (brb0 if c else b0);

(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

Hierarchically structured protocols

vis v;
hid a, b, c; hid ab, ac; hid b0, b1; hid c0, c1

(b0rc0):= b^c;
(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

vis v;
hid a, b, c; hid ab, ac; hid b0, b1; hid c0, c1

b0:= true�false;
c0:= (brb0 if c else b0);

(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

Hierarchically structured protocols

Oblivious Transfer,
again

vis v;
hid a, b, c; hid ab, ac; hid b0, b1; hid c0, c1

b0:= true�false;
c0:= (brb0 if c else b0);

Hierarchically structured protocols

Oblivious Transfer

(b1rc1):= b_c;
ab:= (b1 if a else b0);
ac:= (c1 if a else c0);
v:= abrac

Secure multi-party computation

Oblivious Transfer

Oblivious Transfer

Prospects

For realistic protocols/programs, we need to combine
all three features: hiding, probability and demonic
choice. This extends the semantic space with (at least) a
further powerset layer.
Also we must treat loops and nontermination: this
makes the outer distributions (at least) countably
infinite, even over a countable state space.
Completion of the refinement order within this space
seems to require proper measures.
Automation? Event-B (Thai Son Hoang, Zurich)

In preparation.

Under review.

Done.

As we
speak.

