Tuesday 21 September 2010

On-the-fly Strategy Synthesis for
Event-Clock Linear Temporal Logic on
Timed Games

Peter Bulychev, Barbara Di Giampaolo, Laurent Doyen,
Gilles Geeraerts, Jean-Frangois Raskin, Julien Reichert,
Pierre-Yves Schobbens, Tali Sznajder

| Universita di Salerno

2 ENS Cachan

3 Universite Libre de Bruxelles

4 Laboratoire d’Informatique de Paris 6
s FUNDP Univ. of Namur

6 Aalborg Univ.

On-the-fly Strategy Synthesis for
Event-Clock Linear Temporal Logic on
Timed Games

Peter Bulychev, Barbara Di Giampaolo, Laurent Doyen,
Gilles Geeraerts, Jean-Frangois Raskin, Julien Reichert,
Pierre-Yves Schobbens, Tali Sznajder

| Universita di Salerno

2 ENS Cachan

3 Universite Libre de Bruxelles

4 Laboratoire d’Informatique de Paris 6
s FUNDP Univ. of Namur

6 Aalborg Univ.

Realizability problem in a real-
time setting

Tuesday 21 September 2010

Realizability problem in a real-
time setting

Environment

Tuesday 21 September 2010

Realizability problem in a real-
time setting

Environment

Tuesday 21 September 2010

Realizability problem in a real-
time setting

Environment

Tuesday 21 September 2010

Realizability problem in a real-
time setting

\ output = timed word
/

>

Tuesday 21 September 2010

Realizability problem in a real-
time setting

\ output = timed word

req

|
/ 0.5

Tuesday 21 September 2010

Realizability problem in a real-
time setting

\ output = timed word

req ack

|
/ 05 1.7
? System !

Tuesday 21 September 2010

Realizability problem in a real-
time setting

\ output = timed word

req ack req

|
0.5 1.7 3.9
/

Tuesday 21 September 2010

Realizability problem in a real-
time setting

\ output = timed word

req ack req ack

T

|
0.5 1.7 3.9 4.
- s

Tuesday 21 September 2010

Realizability problem

in a real-

time setting

\ output = timed word

req ack

req ack
|
/ 0.5 1.7
? System !
Problem

T
39 45

Given a spec P, does there exist a way for t

e System to choose its

signals along time so that, no matter how the environment chooses
its signals, the resulting execution satisfies the formula @ ?

Tuesday 21 September 2010

Timed words
Timed word on 2={a,b}:

(a,1) (b,1.7) (224) (23.1) (b3.8)
@ @

@ ® @

= infinite sequence of elements in ZxR>°
(Oo,t0) (O1,t1) (O2,t2) ... (On,tn) ...

such that 0;€2 and t; < tj+|, for all ieN.

Tuesday 21 September 2010

Timed Games

+ Timed Automaton

2 players: Sys and Env

—————— >

Own transitions

Both players can agree
to wait (as long as the
location invariant stays
true)

™ M O [Users/pys/etud/theses/ortiz/formats/Itl/pytigaltl/t...

Bla@| [a]a]a] B @ - »

[Editor | Simulator = Verifier |

- N\ ¢
. Dragout) » Name: Main Parameters:
] Project
" Declaratio

» [

" System de

Player | chooses an action and a
delay t;

One round of the game

Player | chooses an action and a
delay t;

Player 2 may let Player | play

(o', ™),..,(o"T"),

Tuesday 21 September 2010

One round of the game

Player | chooses an action and a
delay t;

Player 2 may let Player | play

(o', ™),...,(o"T"), (0, T"+t)

Tuesday 21 September 2010

One round of the game

g

Player | chooses an action and a
delay t;

or chooses an action and a delay t,
2=t

(o', ™),..,(o"T"),

Tuesday 21 September 2010

One round of the game

g

Player | chooses an action and a
delay t;

or chooses an action and a delay t,
2=t

(o', ™),...,(o",T"), (02, T"+t2)

Tuesday 21 September 2010

Timed strategies

® Player I’s strategies: Aj: (ZXR=09)"— (Z;xR=9)

ex: Ai((a,0.6),(b,0.9))=(a,0.5)
then either Player 2 let Player | play, and we obtain:
(2,0.6),(b,0.9)(a,1.4)

or it overtakes Player |, for example by playing (b,0.3), and we get

(2,0.6),(b,0.9)(b, .2)

>> N is winning in (2,22, Win) if Outcome(A|)CWin

Tuesday 21 September 2010

Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|oUp| e |>1e

with | an interval of R=% with integer bounds

> [a,b] P

Tuesday 21 September 2010

Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
21 it

I s

Tuesday 21 September 2010

Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
DL e+ +b

| =t

™ [a,b] P P

Remarl: it is different from:

Tuesday 21 September 2010

Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
DL e+ +b

| =t

™ [a,b] P P

Remarl: it is different from:

Qb @

Tuesday 21 September 2010

Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
6] P e+ +b

f] .

™ [a,b] P P

Remarl: it is different from:

Tuesday 21 September 2010

Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
6] P e+ +b

| —

™ [a,b] P P

Remarl: it is different from:

Tuesday 21 September 2010

Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|oUp| e |>1e

Ve consider timed games of the form

Z1,22,[@]>

where
@ is an ECL formula

Tuesday 21 September 2010

Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|oUp| e |>1e

Ve consider timed games of the form

Z1,22,[@]>

where
@ is an ECL formula

This problem is called

ECL «realizability»

Tuesday 21 September 2010

Why ECL!?

e Satisfiability of MTL undecidable on infinite
words.
— Realizability is thus undecidable too !

® ECL is an interesting subcase of MITL (equivalent
to MITLo,).

Tuesday 21 September 2010

Tuesday 21 September 2010

10

Theorem: ECL realizability is undecidable

® |dea of the proof: encode computations of lossy
three counters machines into timed words

® Build a game s.t. Player | has a winning strategy
iff the machine admits an infinite bounded run

® One has to use the interaction of the Players
to check that the encoding is correct.

Undecidability of ECL realizability

Tuesday 21 September 2010

11

LT L« realizability is decidable

pcECLu=a|~p|oVe|pSeo|polUe| <1y |D>1y

LT L« realizability is decidable

pcECLu=a|-p|pVe|eSep|oUp| e | D1y
Y EeELTLgi=a | W | Y VY | YSY | YUY | <1a

LT L« realizability is decidable

pcECLu=a|-p|pVe|eSep|oUp| e | D1y
Y EeELTLgi=a | W | Y VY | YSY | YUY | <1a

The real-time modality can «speak»

about past events only

Tuesday 21 September 2010

12

LT L« realizability is decidable

pcECLu=a|-p|pVe|eSep|oUp| e | D1y
Y EeELTLgi=a | W | Y VY | YSY | YUY | <1a

The real-time modality can «speak»

about past events only

® Theorem:The realizability problem for |

Tuesday 21 September 2010

12

LT L« realizability is decidable

pcECLu=a|-p|pVe|eSep|oUp| e | D1y
Y eLTLgui=a| W | Y VY |YvSY | YUY | <a

The real-time modality can «speak»

about past events only

® Theorem:The realizability problem for |

® |dea:from U, build a deterministic timed
automaton with parity condition

Tuesday 21 September 2010

12

LT L« realizability is decidable

| <1 | >ry

Determinization of Blichi automata EERSE

is already hard in practice !
peak»

® Theorem:The realizability problem for |

® ldea:from), build .\ imed
automaton with parity coRaition

Tuesday 21 September 2010

12

LT L« realizability is decidable

| <1 | >ry

Determinization of Biichi automata KERSE
is already hard in practice !

am Can we find «Safraless» procedures
P Y that avoid Safra’s determinization !

® ldea:from), build .\ imed
automaton with parity coRaition

Tuesday 21 September 2010

12

Safraless procedures

Safraless realizability/synthesis (untimed setting):

% Rank construction [KupfermanVardiO5]:
LTL = UcoBW — ABT — NBT — Buchi game

% K-co-Buchi condition:
ScheweFinkbeiner07] application to distributed synthesis,
FiliotJinRaskin09] application to LTL synthesis.

.TL = UcoBW — UKcoBW — Safety game

Tuesday 21 September 2010

13

ldea of procedure

Reduce the realizability problem
to a safety (timed) game

® Game played on a graph
® Goal: avoid bad states

Not a Buchi condition: avoid
Safra !

Allows incremental procedure

Tools and algorithms exist to solve
safety (timed) games

® e.g.:UppAalTiGa

Tuesday 21 September 2010

14

ldea of procedure

Reduce the realizability problem
to a safety (timed) game

® Game played on a graph
® Goal: avoid bad states

Not a Buchi condition: avoid
Safra !

Allows incremental procedure

Tools and algorithms exist to solve
safety (timed) games

® e.g.:UppAalTiGa

BAD

Tuesday 21 September 2010

14

ldea of procedure

® Reduce the realizability problem
to a safety (timed) game

® Game played on a graph
® Goal: avoid bad states BAD

® Not a Buchi condition: avoid
Safra !

® Allows incremental procedure

lllllllllllllllllllllll

Parameters:

® Tools and algorithms exist to solve
safety (timed) games

® e.g.:UppAalTiGa

Tuesday 21 September 2010

Universal coBuchi Word Automata

OS5 O
o |
b

a \

I 2
BORREEEN G
a 3) v
2 4
b \ \
w € Lucor(A) | 3
iff c v X

all runs of A on w visit %

finitely many times «.

Tuesday 21 September 2010

Universal KcoBuchi Word Automata

SONEONE
o |
b

a v
I 2
BORREEEN G
a 3 | v
2 4
b v v
W € LUKcoB(A) | 3
iff c v X
all runs of A on w visit 2
at most K times . \

Tuesday 21 September 2010

Event-recording automata

b b,xe <5

a c,Tp > 2

b

Clock are not reset and are associated to events: { xg | €2 }

Each clock monitors the last occurence of the associated letter
Values of event-clocks are input determined:

(a,1) b6,17) (24 (@@3.]) (b3.8)
A ’ o * °
val(xy)= 1 val(x)= 1 4
val(xa)=0.7 val(xa)=0.7

Tuesday 21 September 2010

17

Universal ERA with coBuchi a. c.

T2W Run Val(x,)
(a,0) 1

|
—»@3 a,b / \
v - (a,1) | 2 |
, 7N\
. (b,1.5) | 2 2 0.5
8
| ...

(3,2) |

Universal ERA with coBuchi a. c.

Tuesday 21 September 2010

Back to LTL« realizability

Back to LTL< reallzablllty

| Theorem From cp in LTL<1, onhe can bmld a
Universal co-Blichi ERA A
____such that Lucs(Ao) =[] |

Back to LTL< reallzablllty

: Theorem° From (p in LTL<1, one can bmld a
Universal co-Blichi ERA A
o such that LUCoB(A(p) = [[(p]]

(Z| Zz,[[(p]]> becomes (X2, LUcoB(A(p)>

Tuesday 21 September 2010

Back to LTL< reallzablllty

Theorem' From (p in LTL<1,one can bmld a
Universal co-Blichi ERA A
__such that Lucs(A) =191 |

<Z| Zz,[[cp]]> becomes (I Zz, LUcoB(A(p)>

We are now playing the game on Ao

Goal of Player |: ensure that every run on the
outcome visits accepting states finitely often

From UCoB to UKCoB

machine (with m states)

i Theorem:Winning strategies of Player | on the -
. UCoB automaton can be represented by a finite |

Tuesday 21 September 2010

20

From UCoB to UKCoB

machine (with m states)

| Theorem:Winning strategies of Player | on the -
i UCoB automaton can be represented by a finite |

Tuesday 21 September 2010

20

From UCoB to UKCoB

i Theorem:Winning strategies of Player | on the -
. UCoB automaton can be represented by a finite |
' machine (with m states)

(O1,t1) (O2,t2) (O3, t3)...

Tuesday 21 September 2010 20

From UCoB to UKCoB

i Theorem:Winning strategies of Player | on the -
. UCoB automaton can be represented by a finite |
' machine (with m states)

(O1,t1) (O2,t2) (O3, t3)...

Each state
tells Pl what to play

Tuesday 21 September 2010 20

From UCoB to UKCoB

Strategy UCoB
a ¢C "
a OO
b
$O
d

n states
m states

From UCoB to UKCoB

Strategy UCoB

a“c\
~(k., 12)
» h states
m states

090

From UCoB to UKCoB

Strategy UCoB

a“c\
~(e), 12)
» h states
m states

090

From UCoB to UKCoB

Strategy UCoB

a“c\
~(k., 12)
» h states
m states

090

From UCoB to UKCoB

Strategy UCoB

a“c\
(., X
» h states
m states

090

From UCoB to UKCoB

Strategy UCoB

a“c\
~(k., 12)
» h states
m states

090

From UCoB to UKCoB

Strategy UCoB

a“c\
~(k., 12)
» h states
m states

0SS0

From UCoB to UKCoB

Strategy UCoB

a“c\
~(k., 12)
» h states
m states

090

From UCoB to UKCoB

Strategy UCoB

; (O,
M states T N states
O (X

Assume the strategy lets us visit an accepting state
more than nXm times

Tuesday 21 September 2010 21

From UCoB to UKCoB

Strategy UCoB

A ~(O, 1)
M states T N states
) ()

Assume the strategy lets us visit an accepting state
more than nXm times
= cycle in the product of the strategy and the UCoB

Tuesday 21 September 2010

21

From UCoB to UKCoB

Strategy UCoB

A ~(O, 1)
M states T N states
) ()

Assume the strategy lets us visit an accepting state
more than nXm times
= cycle in the product of the strategy and the UCoB

= accepting states are visited infinitely often

Tuesday 21 September 2010 21

From UCoB to UKCoB

Strategy UCoB

A ~(O, 1)
M states T N states
) ()

Assume the strategy lets us visit an accepting state
more than nXm times
= cycle in the product of the strategy and the UCoB

= accepting states are visited infinitely often
== the strategy is not winning

Tuesday 21 September 2010 21

From UCoB to UKCoB

Theorem: Player | has a winning strategy in
' (21,22, LucoB(Ag)) :
iff

she has a winning strategy in
(212, LUKCQB(A(p)> for K=nxm ‘

We can thus solve the game by playing with
the (weaker) K=-Co=Buchi acceptance condition

K-Co-Buchi = avoid visiting accepting states too often
= safety condition !

Tuesday 21 September 2010

Incremental procedure

Theorem If Player | has a winning strategy |n ‘
(21,22, Lukcon(Aop))]

then

she has a winning strategy in
(21,22, Lurco(Ag)) for K=K

Tuesday 21 September 2010

Incremental procedure

Theorem: If Player | has a winning strategy in :

(21,22, LukcoB(Agp))

then
she has a winning strategy in

<ZI,ZZ, Lu coB(Acp)> for K'=K ‘

i :=0
While (true)
If Pl wins on LUicoB (Ag) return «win»

Flse 1f P2 wins on LUicoB (A-g)return «lose»
FElse 1:=1+1

Tuesday 21 September 2010

23

Incremental procedure

Each step can be computed by solving a
safety game

- \\/ (-ov

<z. Zz, LUKCOB(A¢)> for K=K |

g strategy in

i := 0
While (true)
If Pl wins on LUicoB (Ag)return «win»

Flse 1f P2 wins on LUicoB (A-g)return «lose»
Flse 1:=1+1

Tuesday 21 September 2010

23

Incremental procedure

g strategy in

Each step can be computed by solving a
safety game

2 SLIALERY 1IN

In practice this algorithm might
terminate with small values of

i := 0
While (true)
If Pl wins on LUicoB (Ag)return «win»

Flse 1f P2 wins on LUicoB (A-g)return «lose»
Flse 1:=1+1

Tuesday 21 September 2010

23

Initial example

o(x=3)No((x =1) At3l))

Example

Y1 = {grant} Yo = {up, down}
Hyp = (up — (=downU(down A <1>1 fu,p))) A
(dawn — (mupU(up A <1 dOwn)))
Req; = O ((down A <sg up) — (—upU grant))
Req, = O(grant — — <3 grant)
A
" up down up down up
input]
lo
grant
S no grant allowed]
1 | | 1 | >

Tuesday 21 September 2010

24

Hyp = [<up — (ﬁdown U(down N <>1 up))) A grant grant, up, down

] (down — (ﬁupU(up N <I>1 down)))

Req; = O ((down A <> up) — (mupU grant))
Req, = O(grant — — <3 grant)

down ,u > 27@ up,d > 1

\ 4
using
extension
of classical
constructions

grant,g < 3

grant grant

Tuesday 21 September 2010 25

lllustration

grant! g:=0

For K=1

Tuesday 21 September 2010

26

grant? g>=3
g:=

lllustration

g>=3 grant?
g:=0

g<8 grant? g:=0 g<8 grant? g:=0

/ \
/s d>=1 \
up?
u:=.y

u>=1 P

NS e ——— —

d:=0 down?

\ g<3 grant? g:=0
N\

down?

g<3 grant?

g:=0

~ e e e e e e e e = —— -

Tuesday 21 September 2010

27

lllustration

grant? g>=3 g>=3 grant?
g:= g:=0
___) ___/

UppAal TiGa tells us that Player | has a

(] [O
winning strategy for the safety
objective
Q7
— = d>=1
N =1 pad =0 S g
9:=0 ' \d\.g_:_ _d‘/ o ‘ ’ \\:\ u>=1 ._down?/,/
= own’s : o up? d._O//
g>=3) ~_u=0 I g>=3
— / S~ U7 grant?
g<3 grant? g:=0 ggzt? / < g:=0
! .7 N
/ 27| 9<3
J 7 grant? Y
/ - .

~ e e e e e e e e = —— -

up?
u:=

g<3

grant?

Bad4

Tuesday 21 September 2010

27

lllustration

grant? g>=3 g>=3 grant?
g:=0 g:=0

UppAal TiGa tells us that Player | has a
winning strategy for the safety
objective

Hence, the formula is realizable

For K=1

Tuesday 21 September 2010

27

Questions !

Tuesday 21 September 2010

Counter machine - run

Counter machine - run

cytT+; goto g3

Counter machine - run

cytT+; goto g3

Counter machine - run

c++; goto g3 loss

- " n

Tuesday 21 September 2010

Counter machine - run

cy++; goto g3 loss

- " n

Tuesday 21 September 2010

29

Counter machine - run

cytT+; goto g3

q3

loss

v
q3
0 6 3
if /=0 goto qi;

else c|--; goto qs

Tuesday 21 September 2010

Counter machine - run

cytT+; goto g3

loss

v
q3
0 6 3
if /=0 goto qi;

else c|--; goto qs

Tuesday 21 September 2010

Counter machine - run

cy++; goto g3 loss
. v
ql q3 q3
I 5 4 I 6 4 0 6 3

q! ,
if ;=0 goto q;
O 6] 3 else c|--; goto qs

A)

Tuesday 21 September 2010 29

Counter machine - run

cytT+; goto g3

loss

- " n

qi qs

| 5 4 I 6

qi qi

0 2 3 0 6
L

if /=0 goto qi;
else c|--; goto qs

Tuesday 21 September 2010

29

Encoding runs

g
I 0

Encoding runs

g
I 0

tick

tick

Encoding runs

g

tick

t+|

Tuesday 21 September 2010

30

tick

Encoding runs

g

tick

tick

t+|

t+2

Tuesday 21 September 2010

30

Encoding runs

qg

I 3
tick tick tick tick
| | | e
t t+ | t+2 t+3

Tuesday 21 September 2010

30

Encoding runs

g
I
tick g tick tick tick
— | | e
Lt t+l t+2 t+3

Tuesday 21 September 2010

30

Encoding runs

g
I 0
tick q b tick tick tick
| | | | | |
| | | | g
Lt t+l t+2 t+3

Tuesday 21 September 2010

30

Encoding runs

g

tick q a b tick tick tick

| | | | | |
| 1 | | >

|
|
Lt t+l t+2 t+3

Tuesday 21 September 2010

Encoding runs

g

tick q a by a tick tick tick

| I | | |
| 1| | | >

|
|
Lt t+l t+2 t+3

Tuesday 21 September 2010

Encoding runs

g

tick q a by aa tick tick tick

| | | | | | | |
| 1 T | | >

|
|
Lt t+l t+2 t+3

Tuesday 21 September 2010

Encoding runs

g

tick q a by aa a tick tick tick

| 1 1 11 1 1 | |
| — 1 11 1 | | >

|
|
Lt t+l t+2 t+3

Tuesday 21 September 2010

Encoding runs

g
I 0
tick q a by aa a tick tick tick
| | | I | | |
1 111 | g
Lt t+l t+2 t+3

Tuesday 21 September 2010

Encoding runs

g
I 0

I @

~
tick q a by aa a tick tick tick
| | | I | | |
1 111 | g
Lt t+l t+2 t+3

Tuesday 21 September 2010

Encoding runs

g
I 0
—~— ~
tick q a by aa a tick tick tick
| | | I | | 1 | | |
N I N N I N NN I NN N N B g
Lt t+l t+2 t+3

Tuesday 21 September 2010

30

Encoding runs

g
I 0
—— r-*-ﬂ
tick q a by aa a tick tick a a tick
| |1 | I | | || | | |,
I 1 NN [T I I I I [
t t t+| t+2 t+3

Tuesday 21 September 2010

30

Encoding runs

¢
I 0
—— r-*-ﬂ
tick q a by aa a tick tick a a tick
| I I I | | I I | | | 5
I [1 | N [1 I 11 | I I I
t t t+| t+2 t+3
ql ql qi

Tuesday 21 September 2010

30

Encoding runs

d
I 0
—— r-*-ﬂ
tick q a by aa a tick tick a a tick
I L | | Ll 1 | L1 L1 1 l | I I | 5
I [| | N [| I 1T 1T 1 I I I
t t t+ | t+2 t+3
ql ql qi
| | | »
t t+3 t+6

Tuesday 21 September 2010 30

Encoding runs

d
I 0
—— r-*-ﬂ
tick q a by aa a tick tick a a tick
I L | | Ll 1 | L1 L1 1 l | I I | 5
I [| | N [| I 1T 1T 1 I I I
t t t+ | t+2 t+3
ql ql qi
a a
————+— »
t t+3 t+6

Tuesday 21 September 2010 30

Encoding runs

d
I 0
—— r-*-w
tick q a by aa a tick tick a a tick
| 1 | I I | | I T | |,
I I N (1 I I [
t t t+| t+2 t+3
ql ql qi
a a
——+——+ »
t . t+3 . tt6
. .
3TU

Tuesday 21 September 2010

Reduction

® Givena 3CMM

® (Can we devise an ECL formula pms.t.

M is satisfiable

iff
M admits an infinite bounded run ?

e NO!

® Otherwise ECL satisfiability would be undecidable

® We can’t use ECL to specify that «every a or b

should be preceded by an a orb 3 TU beforey

requirement
l l | | |

I | I | |
t t+3 t+6
3TU

Tuesday 21 September 2010 31

Reduction

Given a 3CM M

® (Can we devise a timed game (Z,,Z,,[(PMI), where (Pmis an ECL
formula s.t.

Player | has a winning strategy

iff
M admits an infinite bounded run ?

e YES!

® Player | controls the encoding symbols

® We use Player 2 as an arbiter to check that Player |
respects:

Tuesday 21 September 2010

32

Reduction

Given a 3CM M

Can we devise a timed game (Z,,Z,,[PMI), where (Pmis an ECL
formula s.t.

Player | has a winning strategy

iff
M admits an infinite bounded run ?

e YES!

® Player | controls the encoding symbols

® We use Player 2 as an arbiter to check that Player |

respects:

Tuesday 21 September 2010

32

Reduction

Given a 3CM M

Can we devise a timed game (Z,,Z,,[PMI), where (Pmis an ECL
formula s.t.

Player | has a winning strategy

iff
M admits an infinite bounded run ?

° YES!
® Player | controls the encoding symbols game
® We use Player 2 as an arbiter to check that Player | over

respects:

Tuesday 21 September 2010

32

Deterministic ?

Spec.
2=2 U2 o 2(21) || Env(22) = P
LTL <«

JA1* VA2 3run r of Ao * r accepts Outcome(A,A2)

Remove second alternation by determinization of Ao.

3A1 ¢ VA2 ¢ unique r of AY on Outcome(A|,A2) is accepting

Tuesday 21 September 2010 33

Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

Tuesday 21 September 2010

34

Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

P

Tuesday 21 September 2010

34

Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

(p >

Tuesday 21 September 2010

34

Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

P > P

Tuesday 21 September 2010

34

Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

(p >—|(p >

Tuesday 21 September 2010

34

Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

P > P > A-o

Tuesday 21 September 2010 34

Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

P > @ > A"(P

«Buchi constructiony

Tuesday 21 September 2010 34

Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

P > @ > A"(P

«Buchi constructiony

Then: Lucor(A-¢) = [P]

Tuesday 21 September 2010 34

