Preliminaries

On-the-fly Strategy Synthesis for Event-Clock Linear Temporal Logic on Timed Games

Peter Bulychev, Barbara Di Giampaolo, Laurent Doyen, Gilles Geeraerts, Jean-François Raskin, Julien Reichert, Pierre-Yves Schobbens, Tali Sznajder

- 1 Universitá di Salerno
- 2 ENS Cachan
- 3 Université Libre de Bruxelles
- 4 Laboratoire d'Informatique de Paris 6
- 5 FUNDP Univ. of Namur
- 6 Aalborg Univ.

On-the-fly Strategy Synthesis for Event-Clock Linear Temporal Logic on Timed Games

Peter Bulychev, Barbara Di Giampaolo, Laurent Doyen, Gilles Geeraerts, Jean-François Raskin, Julien Reichert, Pierre-Yves Schobbens, Tali Sznajder

- 1 Universitá di Salerno
- 2 ENS Cachan
- 3 Université Libre de Bruxelles
- 4 Laboratoire d'Informatique de Paris 6
- 5 FUNDP Univ. of Namur
- 6 Aalborg Univ.

Environment

Environment

? System?

Environment

? System?

Given a spec Φ , does there exist a way for the System to choose its signals along time so that, **no matter how** the environment chooses its signals, the resulting execution satisfies the formula Φ ?

Timed words

Timed word on $\Sigma = \{a,b\}$:

= infinite sequence of elements in $\Sigma \times \mathbb{R}^{\geq 0}$

$$(\sigma_0,t_0) (\sigma_1,t_1) (\sigma_2,t_2) ... (\sigma_n,t_n) ...$$

such that $\sigma_i \in \Sigma$ and $t_i \leq t_{i+1}$, for all $i \in \mathbb{N}$.

Timed Games

± Timed Automaton

2 players: Sys and Env

Own transitions

Both players can agree to wait (as long as the location invariant stays true)

Player I chooses an action and a delay t_I

$$(\sigma^{I},T^{I}),...,(\sigma^{n},T^{n}),$$

Player I chooses an action and a delay t_I

Player 2 may let Player I play

$$(\sigma^{I},T^{I}),...,(\sigma^{n},T^{n}),$$

Player I chooses an action and a delay t_I

Player 2 may let Player I play

$$(\sigma^{I},T^{I}),...,(\sigma^{n},T^{n}),(\sigma_{I},T^{n}+t_{I})$$

Player I chooses an action and a delay t_I

or chooses an action and a delay t_2 , $t_2 \le t_1$

$$(\sigma^{I},T^{I}),...,(\sigma^{n},T^{n}),$$

Player I chooses an action and a delay t_I

or chooses an action and a delay t_2 , $t_2 \le t_1$

$$(\sigma^{I}, T^{I}),...,(\sigma^{n}, T^{n}),(\sigma_{2}, T^{n}+t_{2})$$

Timed strategies

• Player I's strategies: $\lambda_1: (\Sigma \times \mathbb{R}^{\geq 0})^* \to (\Sigma_1 \times \mathbb{R}^{\geq 0})$

ex:
$$\lambda_1((a,0.6),(b,0.9))=(a,0.5)$$

then either Player 2 let Player I play, and we obtain:

or it <u>overtakes</u> Player I, for example by playing (b,0.3), and we get (a,0.6),(b,0.9)(b,1.2)

 $>> \lambda_1$ is winning in $\langle \Sigma_1, \Sigma_2, \mathbf{Win} \rangle$ if $\mathsf{Outcome}(\lambda_1) \subseteq \mathbf{Win}$

 $\varphi \in \mathsf{ECL} := a \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$

with I an interval of $\mathbb{R}^{\geq 0}$ with integer bounds

 $\triangleright_{[a,b]} \phi$

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

with I an interval of $\mathbb{R}^{\geq 0}$ with integer bounds

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

with I an interval of $\mathbb{R}^{\geq 0}$ with integer bounds

Remark: it is different from:

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

with I an interval of $\mathbb{R}^{\geq 0}$ with integer bounds

Remark: it is different from:

♦[a,b] **φ**

$$\varphi \in \mathsf{ECL} := a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

with I an interval of $\mathbb{R}^{\geq 0}$ with integer bounds

Remark: it is different from:

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

with I an interval of $\mathbb{R}^{\geq 0}$ with integer bounds

Remark: it is different from:

 $\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$

We consider timed games of the form $\langle \Sigma_{1}, \Sigma_{2}, \llbracket \phi \rrbracket \rangle$ where $\phi \text{ is an ECL formula}$

 $\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$

We consider timed games of the form $\langle \Sigma_{1},\! \Sigma_{2},\! \llbracket \phi \rrbracket \rangle$ where $\phi \text{ is an ECL formula}$

This problem is called

ECL «realizability»

Why ECL?

- Satisfiability of MTL undecidable on infinite words.
 - → Realizability is thus undecidable too !
- ECL is an interesting subcase of MITL (equivalent to $MITL_{0,\infty}$).

Undecidability of ECL realizability

Theorem: ECL realizability is undecidable

- Idea of the proof: encode computations of lossy three counters machines into timed words
- Build a game s.t. Player I has a winning strategy iff the machine admits an infinite bounded run
 - One has to use the interaction of the Players to check that the encoding is correct.

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

$$\psi \in \mathsf{LTL}_{\lhd} ::= a \mid \neg \psi \mid \psi \lor \psi \mid \psi \mathcal{S} \psi \mid \psi \mathcal{U} \psi \mid \lhd_{\mathsf{I}} a$$

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

$$\psi \in \mathsf{LTL}_{\lhd} ::= a \mid \neg \psi \mid \psi \lor \psi \mid \psi \mathcal{S} \psi \mid \psi \mathcal{U} \psi \mid \lhd_{\mathsf{I}} a$$

The real-time modality can «speak» about past events only

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

$$\psi \in \mathsf{LTL}_{\lhd} ::= a \mid \neg \psi \mid \psi \lor \psi \mid \psi \mathcal{S} \psi \mid \psi \mathcal{U} \psi \mid \lhd_{\mathsf{I}} a$$

The real-time modality can «speak» about past events only

 Theorem: The realizability problem for LTL_□ is 2EXPTIME-complete

LTL4 realizability is decidable

$$\varphi \in \mathsf{ECL} ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{U} \varphi \mid \lhd_{\mathsf{I}} \varphi \mid \rhd_{\mathsf{I}} \varphi$$

$$\psi \in \mathsf{LTL}_{\lhd} ::= a \mid \neg \psi \mid \psi \lor \psi \mid \psi \mathcal{S} \psi \mid \psi \mathcal{U} \psi \mid \lhd_{\mathsf{I}} a$$

The real-time modality can «speak» about past events only

- Theorem: The realizability problem for LTL₄ is 2EXPTIME-complete
- Idea: from Ψ, build a deterministic timed automaton with parity condition

LTL4 realizability is decidable

Determinization of Büchi automata is already hard in practice!

$$arphi arphi \mid \lhd_{\mathrm{I}} arphi \mid \rhd_{\mathrm{I}} arphi$$
 $arphi \mid \lhd_{\mathrm{I}} a$

peak»

 Theorem: The realizability problem for LTL_□ is 2EXPTIME-complete

 Idea: from Ψ, build a deterministic timed automaton with parity condition

LTL4 realizability is decidable

Determinization of Büchi automata is already hard in practice!

$$\langle \varphi \mid \lhd_{\mathrm{I}} \varphi \mid \rhd_{\mathrm{I}} \varphi$$
 $\langle \psi \mid \lhd_{\mathrm{I}} a$

TheoremLTL_{is 2E)}

Can we find «Safraless» procedures that avoid Safra's determinization?

 Idea: from Ψ, build a deterministic timed automaton with parity condition

Safraless procedures

- Safraless realizability/synthesis (untimed setting):
 - ★ Rank construction [KupfermanVardi05]:
 LTL → UcoBW → ABT → NBT → Büchi game
 - ★ K-co-Büchi condition:
 [ScheweFinkbeiner07] application to distributed synthesis,
 [FiliotJinRaskin09] application to LTL synthesis.
 LTL → UcoBW → UKcoBW → Safety game

Idea of procedure

- Reduce the realizability problem to a safety (timed) game
 - Game played on a graph
 - Goal: avoid bad states
- Not a Büchi condition: avoid Safra!
- Allows incremental procedure
- Tools and algorithms exist to solve safety (timed) games
 - e.g.: UppAal TiGa

Idea of procedure

- Reduce the realizability problem to a safety (timed) game
 - Game played on a graph
 - Goal: avoid bad states
- Not a Büchi condition: avoid Safra!
- Allows incremental procedure
- Tools and algorithms exist to solve safety (timed) games
 - e.g.: UppAal TiGa

Idea of procedure

- Reduce the realizability problem to a safety (timed) game
 - Game played on a graph
 - Goal: avoid bad states
- Not a Büchi condition: avoid Safra!
- Allows incremental procedure
- Tools and algorithms exist to solve safety (timed) games
 - e.g.: UppAal TiGa

Universal coBüchi Word Automata

 $w \in L_{Ucob}(A)$ all runs of A on w visit finitely many times α .

15

Universal KcoBüchi Word Automata

 $w \in Lukcob(A)$ iff
all runs of A on w visit
at most K times α .

 Σ^{ω}

a

b

a

b

C

• • •

Event-recording automata

Clock are not reset and are associated to events: $\{x_{\sigma} \mid \sigma \in \Sigma\}$ Each clock monitors the last occurence of the associated letter Values of event-clocks are input determined:

Universal ERA with coBüchi a. c.

Universal ERA with coBüchi a. c.

Theorem: From ϕ in LTL $_{\triangleleft}$, one can build a Universal co-Büchi ERA A_{ϕ} such that $L_{UcoB}(A_{\phi}) = [\![\phi]\!]$

Theorem: From ϕ in LTL $_{\triangleleft}$, one can build a Universal co-Büchi ERA A_{ϕ} such that $L_{UcoB}(A_{\phi}) = \llbracket \phi \rrbracket$

 $\langle \Sigma_{1}, \Sigma_{2}, \llbracket \varphi \rrbracket \rangle$ becomes $\langle \Sigma_{1}, \Sigma_{2}, L_{UcoB}(A_{\varphi}) \rangle$

Theorem: From ϕ in LTL $_{\triangleleft}$, one can build a Universal co-Büchi ERA A_{ϕ} such that $L_{UcoB}(A_{\phi}) = \llbracket \phi \rrbracket$

 $\langle \Sigma_{I}, \Sigma_{2}, \llbracket \phi \rrbracket \rangle$ becomes $\langle \Sigma_{I}, \Sigma_{2}, L_{UcoB}(A_{\phi}) \rangle$

We are now playing the game on A_{ϕ}

Goal of Player I: ensure that every run on the outcome visits accepting states finitely often

Theorem: Winning strategies of Player I on the UCoB automaton can be represented by a finite machine (with m states)

Theorem: Winning strategies of Player I on the UCoB automaton can be represented by a finite machine (with m states)

Theorem: Winning strategies of Player I on the UCoB automaton can be represented by a finite machine (with m states)

 $(\sigma_1,t_1) (\sigma_2,t_2) (\sigma_3,t_3)...$

Theorem: Winning strategies of Player I on the UCoB automaton can be represented by a finite machine (with m states)

 $(\sigma_1,t_1) (\sigma_2,t_2) (\sigma_3,t_3)...$

Strategy

UCoB

m states

Strategy

UCoB

Assume the strategy lets us visit an accepting state more than n×m times

Strategy

<u>UCoB</u>

Assume the strategy lets us visit an accepting state more than n×m times

cycle in the product of the strategy and the UCoB

Strategy

<u>UCoB</u>

Assume the strategy lets us visit an accepting state more than n×m times

cycle in the product of the strategy and the UCoB accepting states are visited infinitely often

Strategy

<u>UCoB</u>

Assume the strategy lets us visit an accepting state more than n×m times

cycle in the product of the strategy and the UCoB

accepting states are visited infinitely often

the strategy is not winning

Theorem: Player I has a winning strategy in $\langle \Sigma_{I}, \Sigma_{2}, L_{UcoB}(A_{\phi}) \rangle$

iff

she has a winning strategy in $\langle \Sigma_{1}, \Sigma_{2}, L_{UKcoB}(A_{\phi}) \rangle$ for $K=n \times m$

We can thus solve the game by playing with the (weaker) K-Co-Büchi acceptance condition

K-Co-Büchi = avoid visiting accepting states too often = safety condition!

Incremental procedure

Theorem: If Player I has a winning strategy in $\langle \Sigma_{I,} \Sigma_{2}, L_{UKcoB}(A_{\phi}) \rangle$

then

she has a winning strategy in $\langle \Sigma_{I}, \Sigma_{2}, L_{UK'coB}(A_{\phi}) \rangle$ for $K' \geq K$

Incremental procedure

Theorem: If Player I has a winning strategy in $\langle \Sigma_{I}, \Sigma_{2}, L_{UKcoB}(A_{\phi}) \rangle$

then

she has a winning strategy in $\langle \Sigma_{1}, \Sigma_{2}, L_{UK'coB}(A_{\phi}) \rangle$ for $K' \geq K$

```
i := 0
While(true)
  If P1 wins on LUicoB(Aφ) return «win»
  Else if P2 wins on LUicoB(A¬φ) return «lose»
  Else i:=i+1
```

Incremental procedure

has winning strategy in

Each step can be computed by **solving** a safety game

sne has a winning strategy in $\langle \Sigma_{I,} \Sigma_{2}, L_{UK'coB}(A_{\phi}) \rangle$ for $K' \geq K$

```
i := 0
While(true)
  If P1 wins on LUicoB(Aφ) return «win»
  Else if P2 wins on LUicoB(A¬φ) return «lose»
  Else i:=i+1
```

Incremental procedure

hacker If Player I has a winning strategy in

Each step can be computed by **solving** a safety game

sne nas a winning strategy in

 $\langle \Sigma_1$

In practice this algorithm **might terminate** with **small** values of

```
i:= 0
While(true)

If P1 wins on LUicoB(Aφ) return «win»

Else if P2 wins on LUicoB(A¬φ) return «lose»

Else i:=i+1
```

Initial example

 $\square \diamond (x=3) \wedge ((x<1) \wedge t02 \wedge \diamond ((x=1) \wedge t23 \wedge \diamond ((x=1) \wedge t31)) \vee (t01 \wedge (x=1)) \wedge \diamond ((x=1) \mathcal{U}(t1g \wedge (x=2))))$ x <= 1

Example

$$\Sigma_1 = \{grant\}$$

$$\Sigma_2 = \{up, down\}$$

$$\mathsf{Hyp} \equiv \Box \left(up \to \left(\neg down \, \mathcal{U}(down \land \lhd_{\geq 1} \, up) \right) \right) \land \\ \Box \left(down \to \left(\neg up \, \mathcal{U}(up \land \lhd_{\geq 1} \, down) \right) \right) \\ \mathsf{Req}_1 \equiv \Box \left((down \land \lhd_{\geq 2} \, up) \to (\neg up \, \mathcal{U} \, grant) \right) \\ \mathsf{Req}_2 \equiv \Box (grant \to \neg \lhd_{\leq 3} \, grant)$$

Example

For K=I

For K=I

For K=I

For K=I

Questions?

q I 3 0

q I 3 0

q I 3 0

q I 3 0

q I 3 0

q I 3 0

q I 3 0

q I 3 0

q I 3 0

Encoding runs

- Given a 3CM M
 - Can we devise an ECL formula φ_M s.t.

φM is satisfiable iff

M admits an infinite bounded run?

- NO!
 - Otherwise ECL satisfiability would be undecidable

t+3

t+6

We can't use ECL to specify that «every a or b should be preceded by an a or b 3 T.U. before» requirement

t

- Given a 3CM M
 - Can we devise a timed game $\langle \Sigma_1, \Sigma_2, \llbracket \phi_M \rrbracket \rangle$, where ϕ_M is an ECL formula s.t.

Player I has a winning strategy iff

M admits an infinite bounded run?

- YES!
- Player I controls the encoding symbols
- We use Player 2 as an arbiter to check that Player I respects:

- Given a 3CM M
 - Can we devise a timed game $\langle \Sigma_1, \Sigma_2, \llbracket \phi_M \rrbracket \rangle$, where ϕ_M is an ECL formula s.t.

Player I has a winning strategy iff

M admits an infinite bounded run?

- YES!
- Player I controls the encoding symbols
- We use Player 2 as an arbiter to check that Player I respects:

- Given a 3CM M
 - Can we devise a timed game $\langle \Sigma_1, \Sigma_2, \llbracket \phi_M \rrbracket \rangle$, where ϕ_M is an ECL formula s.t.

Player I has a winning strategy

M admits an infinite bounded run?

- YES!
- Player I controls the encoding symbols
- We use Player 2 as an arbiter to check that Player I respects:

game

Deterministic?

$$\Sigma = \Sigma_1 \cup \Sigma_2$$

$$!(\Sigma_1) \mid\mid \operatorname{Env}(\Sigma_2) \models \Phi$$

$$\exists \lambda_1 \bullet \forall \lambda_2 \bullet \exists run \ r \ of A_{\Phi} \bullet r \ accepts \ Outcome(\lambda_1, \lambda_2)$$

Remove second alternation by **determinization** of A_Φ.

 $\exists \lambda_1 \cdot \forall \lambda_2 \cdot \text{unique r of } A^d \text{ on } Outcome(\lambda_1, \lambda_2) \text{ is accepting}$

- Instead of considering classical Büchi condition, we will consider Universal co-Büchi condition
 - Büchi = ∃ a run on w that visits accepting states infinitely often
 - co-Büchi = all runs on w visit accepting states finitely often
- These conditions are dual!

- Instead of considering classical Büchi condition, we will consider Universal co-Büchi condition
 - Büchi = ∃ a run on w that visits accepting states infinitely often
 - co-Büchi = all runs on w visit accepting states finitely often
- These conditions are dual!

φ

- Instead of considering classical Büchi condition, we will consider Universal co-Büchi condition
 - Büchi = ∃ a run on w that visits accepting states infinitely often
 - co-Büchi = all runs on w visit accepting states finitely often
- These conditions are dual!

 $\phi \longrightarrow$

- Instead of considering classical Büchi condition, we will consider Universal co-Büchi condition
 - Büchi = ∃ a run on w that visits accepting states infinitely often
 - co-Büchi = all runs on w visit accepting states finitely often
- These conditions are dual!

$$\phi \longrightarrow \neg \phi$$

- Instead of considering classical Büchi condition, we will consider Universal co-Büchi condition
 - Büchi = ∃ a run on w that visits accepting states infinitely often
 - co-Büchi = all runs on w visit accepting states finitely often
- These conditions are dual!

 $\phi \longrightarrow \neg \phi \longrightarrow$

- Instead of considering classical Büchi condition, we will consider Universal co-Büchi condition
 - Büchi = ∃ a run on w that visits accepting states infinitely often
 - co-Büchi = all runs on w visit accepting states finitely often
- These conditions are dual!

$$\phi \longrightarrow \neg \phi \longrightarrow A_{\neg \phi}$$

- Instead of considering classical Büchi condition, we will consider Universal co-Büchi condition
 - Büchi = ∃ a run on w that visits accepting states infinitely often
 - co-Büchi = all runs on w visit accepting states finitely often
- These conditions are dual!

- Instead of considering classical Büchi condition, we will consider Universal co-Büchi condition
 - Büchi = ∃ a run on w that visits accepting states infinitely often
 - co-Büchi = all runs on w visit accepting states finitely often
- These conditions are dual!

$$\phi \longrightarrow \neg \phi$$

Büchi construction

Then: $L_{Ucob}(A_{\neg \varphi}) = \llbracket \varphi \rrbracket$