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time setting

\ output = timed word
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Realizability problem

in a real-

time setting

\ output = timed word

req ack

req ack
|
/ 0.5 1.7
? System !
Problem

T
39 45

Given a spec P, does there exist a way for t

e System to choose its

signals along time so that, no matter how the environment chooses
its signals, the resulting execution satisfies the formula @ ?
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Timed words
Timed word on 2={a,b}:

(a,1) (b,1.7) (224)  (23.1) (b3.8)
@ @

@ ® @

= infinite sequence of elements in ZxR>°
(Oo,t0) (O1,t1) (O2,t2) ... (On,tn) ...

such that 0;€2 and t; < tj+|, for all ieN.
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Timed Games

+ Timed Automaton

2 players: Sys and Env

—————— >

Own transitions

Both players can agree
to wait (as long as the
location invariant stays
true)

™ M O [Users/pys/etud/theses/ortiz/formats/Itl/pytigaltl/t...

Bla@| [a]a]a] B @ - »

[ Editor | Simulator = Verifier |

- N\ ¢
. Dragout ) » Name: Main Parameters:
] Project
" Declaratio

» [

" System de




Player | chooses an action and a
delay t;




One round of the game

Player | chooses an action and a
delay t;

Player 2 may let Player | play

(o', ™),..,(o"T"),
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One round of the game

Player | chooses an action and a
delay t;

Player 2 may let Player | play

(o', ™),...,(o"T"), (0, T"+t)
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One round of the game

g

Player | chooses an action and a
delay t;

or chooses an action and a delay t,
2=t

(o', ™),..,(o"T"),
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One round of the game

g

Player | chooses an action and a
delay t;

or chooses an action and a delay t,
2=t

(o', ™),...,(o",T"), (02, T"+t2)
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Timed strategies

® Player I’s strategies: Aj: (ZXR=09)"— (Z;xR=9)

ex: Ai((a,0.6),(b,0.9))=(a,0.5)
then either Player 2 let Player | play, and we obtain:
(2,0.6),(b,0.9)(a,1.4)

or it overtakes Player |, for example by playing (b,0.3), and we get

(2,0.6),(b,0.9)(b, .2)

>> N is winning in (2,22, Win) if Outcome(A|)CWin
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Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|oUp| e |>1e

with | an interval of R=% with integer bounds

> [a,b] P
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Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
21 it
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Tuesday 21 September 2010



Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
DL e+ +b

| =t

™ [a,b] P P

Remarl: it is different from:
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Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
6] P e+ +b

f ] .

™ [a,b] P P

Remarl: it is different from:
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Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|eUp| e | D1

with | an interval of R=% with integer bounds

>
6] P e+ +b

| —

™ [a,b] P P

Remarl: it is different from:
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Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|oUp| e |>1e

Ve consider timed games of the form

Z1,22,[@]>

where
@ is an ECL formula
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Event-Clock Logic (ECL)

pcECLu=a|-p|lpVe|eSep|oUp| e |>1e

Ve consider timed games of the form

Z1,22,[@]>

where
@ is an ECL formula

This problem is called

ECL «realizability»
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Why ECL!?

e Satisfiability of MTL undecidable on infinite
words.
— Realizability is thus undecidable too !

® ECL is an interesting subcase of MITL (equivalent
to MITLo,).
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Theorem: ECL realizability is undecidable

® |dea of the proof: encode computations of lossy
three counters machines into timed words

® Build a game s.t. Player | has a winning strategy
iff the machine admits an infinite bounded run

® One has to use the interaction of the Players
to check that the encoding is correct.

Undecidability of ECL realizability

Tuesday 21 September 2010
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LT L« realizability is decidable

pcECLu=a|~p|oVe|pSeo|polUe| <1y |D>1y
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The real-time modality can «speak»

about past events only

Tuesday 21 September 2010

12



LT L« realizability is decidable

pcECLu=a|-p|pVe|eSep|oUp| e | D1y
Y EeELTLgi=a | W | Y VY | YSY | YUY | <1a

The real-time modality can «speak»

about past events only

® Theorem:The realizability problem for |

Tuesday 21 September 2010

12



LT L« realizability is decidable

pcECLu=a|-p|pVe|eSep|oUp| e | D1y
Y eLTLgui=a| W | Y VY |YvSY | YUY | <a

The real-time modality can «speak»

about past events only

® Theorem:The realizability problem for |

® |dea:from U, build a deterministic timed
automaton with parity condition
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LT L« realizability is decidable

| <1 | >ry

Determinization of Blichi automata EERSE

is already hard in practice !
peak»

® Theorem:The realizability problem for |

® ldea:from ), build .\ imed
automaton with parity coRaition
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LT L« realizability is decidable

| <1 | >ry

Determinization of Biichi automata KERSE
is already hard in practice !

am Can we find «Safraless» procedures
P Y that avoid Safra’s determinization !

® ldea:from ), build .\ imed
automaton with parity coRaition

Tuesday 21 September 2010
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Safraless procedures

Safraless realizability/synthesis (untimed setting):

% Rank construction [KupfermanVardiO5]:
LTL = UcoBW — ABT — NBT — Buchi game

% K-co-Buchi condition:
ScheweFinkbeiner07] application to distributed synthesis,
FiliotJinRaskin09] application to LTL synthesis.

.TL = UcoBW — UKcoBW — Safety game

Tuesday 21 September 2010
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ldea of procedure

Reduce the realizability problem
to a safety (timed) game

® Game played on a graph
® Goal: avoid bad states

Not a Buchi condition: avoid
Safra !

Allows incremental procedure

Tools and algorithms exist to solve
safety (timed) games

® e.g.:UppAalTiGa

Tuesday 21 September 2010
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Allows incremental procedure

Tools and algorithms exist to solve
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ldea of procedure

® Reduce the realizability problem
to a safety (timed) game

® Game played on a graph
® Goal: avoid bad states BAD

® Not a Buchi condition: avoid
Safra !

® Allows incremental procedure

lllllllllllllllllllllll

Parameters:

® Tools and algorithms exist to solve
safety (timed) games

® e.g.:UppAalTiGa
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Universal coBuchi Word Automata

OS5 O
o |
b

a \

I 2
BORREEEN G
a 3 ) v
2 4
b \ \
w € Lucor(A) | 3
iff c v X

all runs of A on w visit %

finitely many times «.
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Universal KcoBuchi Word Automata

SONEONE
o |
b

a v
I 2
BORREEEN G
a 3 | v
2 4
b v v
W € LUKcoB(A) | 3
iff c v X
all runs of A on w visit 2
at most K times . \
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Event-recording automata

b b,xe <5

a c,Tp > 2

b

Clock are not reset and are associated to events: { xg | €2 }

Each clock monitors the last occurence of the associated letter
Values of event-clocks are input determined:

(a,1) b6,17) (24  (@@3.]) (b3.8)
A ’ o * °
val(xy)= 1 val(x)= 1 4
val(xa)=0.7 val(xa)=0.7

Tuesday 21 September 2010
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Universal ERA with coBuchi a. c.

T2W Run Val(x,)
(a,0) 1

|
—»@3 a,b / \
v - (a,1) | 2 |
, 7N\
. (b,1.5) | 2 2 0.5
8
| ...

(3,2) |




Universal ERA with coBuchi a. c.
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Back to LTL« realizability




Back to LTL< reallzablllty

| Theorem From cp in LTL<1, onhe can bmld a
Universal co-Blichi ERA A
____such that Lucs(Ao) =[] |




Back to LTL< reallzablllty

: Theorem° From (p in LTL<1, one can bmld a
Universal co-Blichi ERA A
o such that LUCoB(A(p) = [[(p]]

(Z| Zz,[[(p]]> becomes (X2, LUcoB(A(p)>
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Back to LTL< reallzablllty

Theorem' From (p in LTL<1,one can bmld a
Universal co-Blichi ERA A
__such that Lucs(A) =191 |

<Z| Zz,[[cp]]> becomes (I Zz, LUcoB(A(p)>

We are now playing the game on Ao

Goal of Player |: ensure that every run on the
outcome visits accepting states finitely often




From UCoB to UKCoB

machine (with m states)

i Theorem:Winning strategies of Player | on the -
. UCoB automaton can be represented by a finite |
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From UCoB to UKCoB

i Theorem:Winning strategies of Player | on the -
. UCoB automaton can be represented by a finite |
' machine (with m states)

(O1,t1) (O2,t2) (O3, t3)...
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From UCoB to UKCoB

i Theorem:Winning strategies of Player | on the -
. UCoB automaton can be represented by a finite |
' machine (with m states)

(O1,t1) (O2,t2) (O3, t3)...

Each state
tells Pl what to play

Tuesday 21 September 2010 20



From UCoB to UKCoB

Strategy UCoB
a ¢C "
a OO
b
$O
d

n states
m states




From UCoB to UKCoB

Strategy UCoB
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090
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Strategy UCoB
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From UCoB to UKCoB

Strategy UCoB

a“c\
~( k., 12)
»  h states
m states

090




From UCoB to UKCoB

Strategy UCoB

; (O,
M states T N states
O (X

Assume the strategy lets us visit an accepting state
more than nXm times
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From UCoB to UKCoB

Strategy UCoB

A ~( O, 1)
M states T N states
) ()

Assume the strategy lets us visit an accepting state
more than nXm times
= cycle in the product of the strategy and the UCoB
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From UCoB to UKCoB

Strategy UCoB

A ~( O, 1)
M states T N states
) ()

Assume the strategy lets us visit an accepting state
more than nXm times
= cycle in the product of the strategy and the UCoB

= accepting states are visited infinitely often
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From UCoB to UKCoB

Strategy UCoB

A ~( O, 1)
M states T N states
) ()

Assume the strategy lets us visit an accepting state
more than nXm times
= cycle in the product of the strategy and the UCoB

= accepting states are visited infinitely often
== the strategy is not winning

Tuesday 21 September 2010 21



From UCoB to UKCoB

Theorem: Player | has a winning strategy in
' (21,22, LucoB(Ag)) :
iff

she has a winning strategy in
(212, LUKCQB(A(p)> for K=nxm ‘

We can thus solve the game by playing with
the (weaker) K=-Co=Buchi acceptance condition

K-Co-Buchi = avoid visiting accepting states too often
= safety condition !

Tuesday 21 September 2010



Incremental procedure

Theorem If Player | has a winning strategy |n ‘
(21,22, Lukcon(Aop)) ]

then

she has a winning strategy in
(21,22, Lurco(Ag))  for K=K

Tuesday 21 September 2010



Incremental procedure

Theorem: If Player | has a winning strategy in :

(21,22, LukcoB(Agp))

then
she has a winning strategy in

<ZI,ZZ, Lu coB(Acp)> for K'=K ‘

i :=0
While (true)
If Pl wins on LUicoB (Ag) return «win»

Flse 1f P2 wins on LUicoB (A-g)return «lose»
FElse 1:=1+1

Tuesday 21 September 2010
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Incremental procedure

Each step can be computed by solving a
safety game

- \\/ ( -ov

<z. Zz, LUKCOB(A¢)> for K=K |

g strategy in

i := 0
While (true)
If Pl wins on LUicoB (Ag)return «win»

Flse 1f P2 wins on LUicoB (A-g)return «lose»
Flse 1:=1+1

Tuesday 21 September 2010
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Incremental procedure

g strategy in

Each step can be computed by solving a
safety game

2 SLIALERY 1IN

In practice this algorithm might
terminate with small values of

i := 0
While (true)
If Pl wins on LUicoB (Ag)return «win»

Flse 1f P2 wins on LUicoB (A-g)return «lose»
Flse 1:=1+1

Tuesday 21 September 2010
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Initial example

o(x=3)No((x =1) At3l))




Example

Y1 = {grant} Yo = {up, down}
Hyp = (up — (=downU(down A <1>1 fu,p))) A
(dawn — (mupU(up A <1 dOwn)))
Req; = O ((down A <sg up) — (—upU grant))
Req, = O(grant — — <3 grant)
A
" up down up down up
input ]
lo
grant
S no grant allowed ]
1 | | 1 | >

Tuesday 21 September 2010
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Hyp = [ <up — (ﬁdown U(down N <>1 up))) A grant grant, up, down

] (down — (ﬁupU(up N <I>1 down)))

Req; = O ((down A <> up) — (mupU grant))
Req, = O(grant — — <3 grant)

down ,u > 27@ up,d > 1

\ 4
using
extension
of classical
constructions

grant,g < 3

grant grant

Tuesday 21 September 2010 25



lllustration

grant! g:=0

For K=1

Tuesday 21 September 2010
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grant? g>=3
g:=

lllustration

g>=3 grant?
g:=0

g<8 grant? g:=0 g<8 grant? g:=0

/ \
/s d>=1 \
up?
u:=.y

u>=1 P

NS e ——— —

d:=0 down?

\ g<3 grant? g:=0
N\

down?

g<3 grant?

g:=0

~ e e e e e e e e = —— -

Tuesday 21 September 2010

27



lllustration

grant? g>=3 g>=3 grant?
g:= g:=0
\___) \___/

UppAal TiGa tells us that Player | has a

(] [ O
winning strategy for the safety
objective
Q7
— = d>=1
N =1 pad =0 S g
9:=0 ' \d\.g_:_ _d‘/ o ‘ ’ \\:\ u>=1 ._down?/,/
= own’s : o up? d._O//
g>=3 ) ~_u=0 I g>=3
— / S~ U7 grant?
g<3 grant? g:=0 ggzt? / < g:=0
! .7 N
/ 27| 9<3
J 7 grant? Y
/ - .

~ e e e e e e e e = —— -

up?
u:=

g<3

grant?

Bad4
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lllustration

grant? g>=3 g>=3 grant?
g:=0 g:=0

UppAal TiGa tells us that Player | has a
winning strategy for the safety
objective

Hence, the formula is realizable

For K=1

Tuesday 21 September 2010
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Questions !
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Counter machine - run




Counter machine - run

cytT+; goto g3




Counter machine - run

cytT+; goto g3




Counter machine - run

c++; goto g3 loss

- " n
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Counter machine - run

cy++; goto g3 loss

- " n
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Counter machine - run

cytT+; goto g3

q3

loss

v
q3
0 6 3
if /=0 goto qi;

else c|--; goto qs
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Counter machine - run

cytT+; goto g3

loss

v
q3
0 6 3
if /=0 goto qi;

else c|--; goto qs
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Counter machine - run

cy++; goto g3 loss
. v
ql q3 q3
I 5 4 I 6 4 0 6 3

q! ,
if ;=0 goto q;
O 6] 3 else c|--; goto qs

A )
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Counter machine - run

cytT+; goto g3

loss

- " n

qi qs

| 5 4 I 6

qi qi

0 2 3 0 6
L

if /=0 goto qi;
else c|--; goto qs
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Encoding runs

g
I 0




Encoding runs

g
I 0

tick




tick

Encoding runs

g

tick

t+|
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tick

Encoding runs

g

tick

tick

t+|

t+2
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Encoding runs

qg

I 3
tick tick tick tick
| | | e
t t+ | t+2 t+3
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Encoding runs

g
I
tick g tick tick tick
— | | e
Lt t+l t+2 t+3
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Encoding runs

g
I 0
tick q b tick tick tick
| | | | | |
| | | | g
Lt t+l t+2 t+3
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Encoding runs

g

tick q a b tick tick tick

| | | | | |
| 1 | | >

|
|
Lt t+l t+2 t+3
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Encoding runs

g

tick q a by a tick tick tick

| I | | |
| 1| | | >

|
|
Lt t+l t+2 t+3
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Encoding runs

g

tick q a by aa tick tick tick

| | | | | | | |
| 1 T | | >

|
|
Lt t+l t+2 t+3
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Encoding runs

g

tick q a by aa a tick tick tick

| 1 1 11 1 1 | |
| — 1 11 1 | | >

|
|
Lt t+l t+2 t+3
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Encoding runs

g
I 0
tick q a by aa a tick tick tick
| | | I | | |
1 111 | g
Lt t+l t+2 t+3
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Encoding runs

g
I 0

I @

~
tick q a by aa a tick tick tick
| | | I | | |
1 111 | g
Lt t+l t+2 t+3
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Encoding runs

g
I 0
—~— ~
tick q a by aa a tick tick tick
| | | I | | 1 | | |
N I N N I N NN I NN N N B g
Lt t+l t+2 t+3
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Encoding runs

g
I 0
—— r-*-ﬂ
tick q a by aa a tick tick a a tick
| |1 | I | | || | | |,
I 1 NN [T I I I I [
t t t+| t+2 t+3
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Encoding runs

¢
I 0
—— r-*-ﬂ
tick q a by aa a tick tick a a tick
| I I I | | I I | | | 5
I [ 1 | N [ 1 I 11 | I I I
t t t+| t+2 t+3
ql ql qi
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Encoding runs

d
I 0
—— r-*-ﬂ
tick q a by aa a tick tick a a tick
I L | | Ll 1 | L1 L1 1 l | I I | 5
I [ | | N [ | I 1T 1T 1 I I I
t t t+ | t+2 t+3
ql ql qi
| | | »
t t+3 t+6
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Encoding runs

d
I 0
—— r-*-ﬂ
tick q a by aa a tick tick a a tick
I L | | Ll 1 | L1 L1 1 l | I I | 5
I [ | | N [ | I 1T 1T 1 I I I
t t t+ | t+2 t+3
ql ql qi
a a
————+— »
t t+3 t+6
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Encoding runs

d
I 0
—— r-*-w
tick q a by aa a tick tick a a tick
| 1 | I I | | I T | |,
I I N (1 I I [
t t t+| t+2 t+3
ql ql qi
a a
——+——+ »
t . t+3 . tt6
. .
3TU
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Reduction

® Givena 3CMM

® (Can we devise an ECL formula pms.t.

M is satisfiable

iff
M admits an infinite bounded run ?

e NO!

® Otherwise ECL satisfiability would be undecidable

® We can’t use ECL to specify that «every a or b

should be preceded by an a orb 3 TU beforey

requirement
l l | | |

I | I | |
t t+3 t+6
3TU
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Reduction

Given a 3CM M

® (Can we devise a timed game (Z,,Z,,[(PMI), where (Pmis an ECL
formula s.t.

Player | has a winning strategy

iff
M admits an infinite bounded run ?

e YES!

® Player | controls the encoding symbols

® We use Player 2 as an arbiter to check that Player |
respects:

Tuesday 21 September 2010
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Reduction

Given a 3CM M

Can we devise a timed game (Z,,Z,,[PMI), where (Pmis an ECL
formula s.t.

Player | has a winning strategy

iff
M admits an infinite bounded run ?

° YES!
® Player | controls the encoding symbols game
® We use Player 2 as an arbiter to check that Player | over

respects:

Tuesday 21 September 2010
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Deterministic ?

Spec.
2=2 U2 o 2(21) || Env(22) = P
LTL <«

JA1* VA2 3run r of Ao * r accepts Outcome(A,A2)

Remove second alternation by determinization of Ao.

3A1 ¢ VA2 ¢ unique r of AY on Outcome(A|,A2) is accepting

Tuesday 21 September 2010 33



Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !
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Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

P > P > A-o
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Universal co-Buchi ERA

® |nstead of considering classical Buchi condition,
we will consider Universal co-Buchi condition

® Buchi = 3 a run on w that visits accepting
states infinitely often

® co-Buchi = all runs on w visit accepting
states finitely often

® [hese conditions are dual !

P > @ > A"(P

«Buchi constructiony

Then: Lucor(A-¢) = [P]
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