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Abstract

Problem frames provide a characterisation and classification of software development prob-
lems. Fitting a problem to an appropriate problem frame should not only help to understand
it, but also to solve the problem (the idea being that, once the adequate problem frame is
identified, then the associated development method should be available). We propose soft-
ware architectural patterns corresponding to the different problem frames that may serve as
a starting point for the construction of the software solving the given problem. We show
that these architectural patterns exactly reflect the properties of the problems fitting to a
given frame, and that they can be combined in a modular way to solve multi-frame problems.
We also provide alternative architectures to cope with specific system characteristics (e.g.
distribution).

1 Introduction

Pattern-orientation is a promising approach to software development. Patterns are a means to
reuse software development knowledge on different levels of abstraction. They classify sets of
software development problems or solutions that share the same structure.

Patterns have been introduced on the level of detailed object oriented design [10]. Today,
patterns are defined for different activities. Problem Frames [15] are patterns that classify software
development problems. Architectural styles are patterns that characterise software architectures [1,
19]. They are sometimes called “architectural patterns”. Design Patterns are used for finer-grained
software design, while frameworks [8] are considered as less abstract, more specialised. Finally,
idioms are low-level patterns related to specific programming languages [3], and are sometimes
called “code patterns”.

Using patterns, we can hope to construct software in a systematic way, making use of a body
of accumulated knowledge, instead of starting from scratch each time.

It is acknowledged that the first steps of software development are essential to reach the best
possible match between the expressed requirements and the proposed software product, and to
eliminate any source of error as early as possible. Therefore, we propose to use patterns already in
the requirements elicitation phase of the software development life-cycle, as advocated by Fowler
[9] or Sutcliffe et al. [21, 22].

M. Jackson [14, 15] proposes the concept of problem frames for presenting, classifying and
understanding software development problems. A problem frame is a characterisation of a class
of problems in terms of their main components and the connections between these components.
Once a problem is successfully fitted to a problem frame, its most important characteristics are
known.
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Gaining a thorough understanding of the problem to be solved is a necessary prerequisite
for solving it. However, when using problem frames, one can even hope for more than just a
full comprehension of the problem at hand. Since problem frames are patterns, they represent
problem structures that occur repeatedly in practice. Hence, it is worthwhile to look for solution
structures that match the problem structures represented by problem frames.

The construction of the solution of a software development problem should begin with the
decision on the main structure of the solution, i.e., a decision on the software architecture. Our
aim is to exploit the knowledge gained in representing a problem as an instance of a problem frame
in taking that decision. For each problem frame, we propose a corresponding architectural pattern
that takes into account the characteristics of the problems fitting to the given problem frame.

Our architectural patterns structure the software into layers. Of course, this is not the only
possible way of structuring, but a very convenient one. We have chosen it because a layered archi-
tecture makes it possible to divide platform-dependent from platform-independent parts, because
different layered systems can be combined in a systematic way, and because other architectural
styles can be incorporated in such an architecture. That choice has been validated in several
industrial projects, dealing for example with smart cards, protocol converters, web/mail-servers,
and real-time operating systems.

Like problem frames, our architectural patterns must be instantiated to develop a solution for
a concrete problem. The structure provided by an architectural pattern constitutes a concrete
starting point for the process of constructing a solution to a problem that is represented as an
instance of a problem frame.

The rest of the paper is organised as follows: after introducing the basic concepts of our work
in Section 2, we discuss related work in Section 3. In Section 4, we present the architectural
patterns associated with each problem frame. In Section 5, we present an example and show how
the different solutions of multi-frame problems can be combined. In Section 6, we conclude with
a discussion of our approach and directions for future research.

2 Basic Concepts

In this paper, we relate architectural patterns to problem frames. As a notation for our architec-
tural patterns, we use composite structure diagrams of UML 2.0 [24]. In the following, we give
brief descriptions of these three ingredients of our work.

2.1 Problem Frames

Jackson [15] describes problem frames as follows:

‘A problem frame is a kind of pattern. It defines an intuitively identifiable problem
class in terms of its context and the characteristics of its domains, interfaces and
requirement.’

Solving a problem is accomplished by constructing a “machine” and integrating it into the
environment whose behaviour is to be enhanced.

For each problem frame a diagram is set up (cf. left-hand sides of Figures 2, 3, 5, 6, 7, and
9). Plain rectangles denote application domains (that already exist), rectangles with a double
vertical stripe denote the machine domains to be developed, and requirements are denoted with
a dashed oval. They are linked together by lines that represent interfaces, also called shared
phenomena. Jackson distinguishes causal domains that comply with some laws, lexical domains
that are data representations, and biddable domains that are people. Jackson defines five basic
problem frames (Required Behaviour, Commanded Behaviour, Information Display, Workpieces
and Transformation), and we consider them together with one variant (Commanded Information).
In order to use a problem frame, one must instantiate it, i.e., provide instances for its domains,
interfaces and requirements. A description of these problem frames is given in Section 4 where an
associated architecture is proposed.
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2.2 Architectural Styles

According to Bass, Clements, and Kazman [1],

the software architecture of a program or computing system is the structure or struc-
tures of the system, which comprise software components, the externally visible prop-
erties of those components, and the relationships among them.

Architectural styles are patterns for software architectures. A style is characterised by [1]:

• a set of component types (e.g., data repository, process, procedure) that perform some
function at runtime,

• a topological layout of these components indicating their runtime interrelationships,

• a set of semantic constraints (for example, a data repository is not allowed to change the
values stored in it),

• a set of connectors (e.g., subroutine call, remote procedure call, data streams, sockets) that
mediate communication, coordination, or cooperation among components.

When choosing an architecture for a system, usually several architectural styles are possible,
which means that all of them could be used to implement the functional requirements. In the
following, we propose concrete architectural patterns for each basic problem frame in order to
provide a concrete starting point for the further development of the machine. These architectural
patterns are based on a Layered architecture.1 The components in this layered architecture are
either Communicating Processes (active components) or used with a Call-and-Return mechanism
(passive components). That design decision is taken in a later step of the development. We also
show how the Repository and the Pipe-and-Filter architectural styles can be mapped to the layered
architecture (see Figures 8 and 10). We use UML 2.0 composite structure diagrams (see Section
2.3) to represent architectural patterns in addition to concrete architectures.

2.3 Composite Structure Diagrams

Composite structure diagrams [24] are a means to describe architectures. They contain named
rectangles, called parts. Theses parts are components of the software. In an object-oriented
implementation components are instantiated classes. Each component may contain other (sub-)
components. Atomic components can be described by state machines and operations for accessing
internal data. In our architectures, components for data storage are only included if the data is
stored persistently. Otherwise they are assumed to be part of some other component. Parts may
have ports, denoted by small rectangles. Ports may have interfaces associated to them. Provided
interfaces are denoted using the “lollipop” notation, and required interfaces using the “socket”
notation. Figure 1 shows how interfaces in problem diagrams are transformed into interfaces
in composite structure diagrams. The partial problem diagram shown on the left-hand side of

P1:  {phen1, phen2}

Machine

Domain
M!P1

Machine

Part

Domain (P1)

<<interface>>
P1_if

phen1()
phen2()

Machine

Part

P1_if

=̂

Domain (P1)
P1_if

Figure 1: Notation for Architectures

1The mentioned architectural patterns are described in [19].
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Figure 1 states that the phenomena phen1 and phen2 shared between the machine and a domain
are controlled by the machine. In the composite structure diagram (with associated interface
class) shown in the middle of Figure 1, this is expressed by a required interface P1 if of the
part component of the machine, which is the same as for the whole machine. Shared phenomena
controlled by a domain correspond to provided (instead of required) interfaces of the part and the
machine, respectively. Because of this direct correspondence, we do not use the socket and lollipop
notation in the following, but use connectors between ports as shown on the right-hand side of
Figure 1. These connectors can be implemented e.g. as data streams, function calls, asynchronous
messages or hardware access.

The architecture of software is multi-faceted: there exists a structural view, a process-oriented
view, a function-oriented view, an object-oriented view with classes and relations, and a data flow
view on a given software architecture. We use the structural view from UML 2.0 that describes
the structure of the software at runtime. After that structure is fixed the interfaces need to be
refined using sockets, lollipops and interface classes to describe the possible data flow. Then
the corresponding active or passive class with its data and operations can be added for each
component. Thereby the process-oriented and object-oriented views can be integrated seamlessly
into the structural view. That approach and the corresponding process are described in [13].

3 Related Work

Since patterns were introduced, the question of how to make the best use of them in the software
development process inspired a number of research activities. Here, we mainly consider those
related with the use of problem frames, also in relationship with architectural styles.

Along the idea to integrate problem frames in a formal development process, Choppy and
Reggio [7] show how a formal specification skeleton may be associated with some problem frames
(Translation and IS as named in [14]). Choppy and Heisel show in [5, 6] that this idea is indepen-
dent of concrete specification languages. In that work, they also gave heuristics for the transition
from problem frames to architectural styles, so as to provide finer structures when moving from
the requirements specification to the detailed specification or the design phases. In [5], they give
criteria for (i) helping to select an appropriate basic problem frame, and (ii) choosing between
architectural styles that could be associated with a given problem frame. In [6], a proposal for the
development of information systems is given. The system decomposition is done along different
identified use cases.2 Then, to each use case related to database updates or queries is associated an
update or query problem frame (specifically tailored for information systems). A component-based
architecture reflecting the repository architectural style is used for the design and integration of
the different system parts.

The approach developed by Hall, Rapanotti et al. [11, 18] is quite complementary since
the idea developed there is to introduce architectural concepts into problem frames (introduc-
ing “AFrames”) so as to benefit from existing architectures. In [11], the applicability of problem
frames is extended to include domains with existing architectural support, and to allow both
for an annotated machine domain, and for annotations to discharge the frame concern. In [18],
“AFrames” are presented corresponding to the architectural styles Pipe-and-Filter and Model-
View-Controller (MVC), and applied to transformation and control problems.

Finally, let us mention Lavazza and Del Bianco [16] who do not look for architectures, but
provide a description of commanded and required behaviour problem frames in UML-RT focusing
on active objects or “capsules” communicating through ports (defined by protocols), and they
provide a real time version of OCL, called OTL.

2Hall et al. [11] base problem decomposition on different requirements statements, which is a similar idea unless
some requirements statements refer to a same use case.
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4 Architectural Patterns

We now present the six most important problem frames and give their proposed corresponding
architectural patterns. These architectural patterns are not pure instances of some architectural
style, but they combine elements of different architectural styles to adequately reflect the problem
characteristics as given by the respective problem frame. As noted in Section 1, providing an
architecture decides on the main structure of the solution. Therefore, while moving from a problem
frame (which describes the problem structure) to an associated architecture, we add some proposed
design elements. These design elements are not part of the problem frame, but they are proposed
as part of the software solution.

Of course, our architectural patterns are not the only possible way to structure the machine
domain solving the problem that fits to a given problem frame. However, the kind of (layered)
architecture we propose has proven useful in practice (see for example [4, 13, 23]), and allows for
combining solutions to different subproblems of complex problems in a systematic way. It is also
flexible enough to be combined with other architectural styles.

Our pattern-based software development process using problem frames and architectural pat-
terns proceeds as follows: first, a context diagram showing the problem context is set up (for an
example, see Figure 11). Then, the overall problem is decomposed into subproblems that fit to
problem frames. This decomposition results in a set of problem diagrams that are instantiated
frame diagrams (see examples in Sections 5.1–5.4). For each subproblem, a specification for the
machine domain must be derived, thus addressing the frame concern. Each machine domain corre-
sponding to a subproblem is then structured by instantiating the architectural patterns we propose
in the following. The instantiated patterns must afterwards be merged to obtain the architecture
of the machine solving the overall problem. In Section 5.5, we sketch how this is achieved. Finally,
the components of the combined architecture must be specified in more detail, and it must be
shown that the combined architecture fulfils the specifications of all subproblems. This last phase
is not addressed in the present paper.

The quotations at the beginnings of the subsections are taken from Jackson [15].

4.1 Required Behaviour

The following problems fit to the Required Behaviour problem frame:

‘There is some part of the physical world whose behaviour is to be controlled so that
it satisfies certain conditions. The problem is to build a machine that will impose that
control.’

The corresponding frame diagram is shown on the left-hand side of Figure 2. The “C” in the frame
diagram indicates that the Controlled domain must be causal. The machine is always a causal
domain (so an explicit “C” is not needed). The notation “CM!C1” means that the causal phenomena
C1 are controlled by the Control machine CM. The dashed line represents a requirements reference,
and the arrow shows that it is a constraining reference.

This problem frame is appropriate for embedded systems, where the machine to be developed
is embedded in a physical environment that must be controlled. The communication between
the machine and the physical environment takes place via sensors and actuators. Thus, only
by virtue of sensors and actuators can there be shared phenomena between the machine and
its environment. Sensors realize the phenomena C2 of the frame diagram, i.e., the phenomena
controlled by the environment but observable by the machine. Actuators realize the phenomena
C1 of the frame diagram, i.e., the phenomena controlled by the machine and observable by the
environment.

For example, we might want to build a machine that keeps the temperature of some liquid
between given bounds. Then, the temperature of the liquid would be a shared phenomenon
controlled by the environment. The corresponding sensor would be a thermometer. Another
shared phenomenon would be the state of a burner. That state would be controlled by the
machine, i.e., the machine is able to switch the burner on or off.
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Practical work in developing embedded systems [13] has shown that a layered architecture as
given on the right-hand side of Figure 2 is appropriate for these systems.

Note that the phenomena C3 do not occur in the architecture3, because they do not belong to
the interface of the machine domain.

Control
CD!C2

CM!C1

domain
Controlled

C

C3

machine behaviour
Required

Controlled Controlled
Domain (C2) Domain (C1)

Application

Sensor IAL

Sensor HAL

Actuator IAL

Actuator HAL

Control Machine

Figure 2: Required Behaviour Frame Diagram and Architecture

The lowest layer is the hardware abstraction layer (HAL). This layer covers all interfaces to
the external components in the system architecture and provides access to these components
independently of the used controller or processor. For porting the software to another hardware
platform, only this part of the software needs to be replaced.

The hardware abstraction layer is used by the interface abstraction layer (IAL). This layer
provides an abstraction of the (low-level) values yielded by the sensors and actuators. For example,
a frequency of wheel pulses could be transformed into a speed value. Thus, in the interface
abstraction layer, values for the monitored and controlled variables (see [17]) of the system are
computed. It is possible that these variables have to be computed from the values of several
hardware interfaces. For safety-critical software components, the interface abstraction layer will
usually make use of redundant arrangements of sensors and actuators.

The highest layer of the architecture is the Application layer. This layer only has to deal with
variables from the problem diagram. Therefore, the system requirements can be directly mapped
to the software requirements of the application layer, as described by Bharadwaj and Heitmeyer[2].

Thus, the architecture shown on the right-hand side of Figure 2 represents an adequate struc-
ture for the Control machine of the left-hand side of Figure 2. For special kinds of embedded
systems, that architecture could be refined. However, a refinement of the architecture would also
correspond to a refinement of the corresponding problem frame. The architecture shown here has
the same degree of generality as the problem frame.

4.2 Commanded Behaviour

The following problems fit to the Commanded Behaviour problem frame:

‘There is some part of the physical world whose behaviour is to be controlled in accor-
dance with commands issued by an operator. The problem is to build a machine that
will accept the operator’s commands and impose the control accordingly.’

The corresponding frame diagram is shown on the left-hand side of Figure 3. The “B” indicates that
the domain Operator is a biddable domain, and the phenomena E4 are the operator commands.

3In the following, we use the word “architecture” instead of “architectural pattern” for reasons of readability.
It is clear, however, that the components shown in the architectural diagrams have to be instantiated in order to
obtain a concrete software architecture.
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B
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Control
C
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CD!C2

O!E4

Application

Actuator IALSensor IAL

Sensor HAL

User
Interface

Controlled ControlledOperator (E4)

Control Machine

Domain (C2) Domain (C1)

Actuator HAL

Figure 3: Commanded Behaviour Frame Diagram and Architecture

As can be seen from the frame diagram, the distinguishing feature of the Commanded Be-
haviour frame as compared to the Required Behaviour frame is the presence of an operator. That
distinction is reflected in the corresponding architecture shown on the right–hand side of Figure 3.
The operator commands and the corresponding feedback are handled by a dedicated component
User Interface. The user interface follows the MVC design pattern [10]. In contrast to the solu-
tion discussed in [18] the interface to the Application of this component should be the interface to
the model, i.e, the User Interface comprises the View and Controller parts of the MVC pattern.
With this variation, it can be used in architectures associated with different problem frames. Since

Device

Operator

Application

User Interface

InputUser
Display
HAL HAL

View and Control 
according to MVC−pattern

Figure 4: Detailed Architecture for User Interface

each architecture corresponding to a problem frame containing an operator domain will contain
a user interface component, we give the structure of such a component in more detail (Figure 4).
For reasons of practicality, the user interface component contains not only a sub-component that
serves to read user input via some device. In most cases, a sub-component will also be needed
that provides some kind of feedback to the user via a display. The physical input arriving at the
port at the bottom of the component is transformed into the more abstract phenomena E4 by the
sub-component View and Control.

4.3 Information Display

The following problems fit to Information Display the problem frame:

‘There is some part of the physical world about whose states and behaviour informa-
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tion is continually needed. The problem is to build a machine that will obtain this
information from the world and present it at the required place in the required form.’

The Information Display problem frame offers a structure for applications devoted to the display
of real world physical data. The corresponding frame diagram is shown on the left-hand side of
Figure 5. The “C” indicates that the Real World and Display domains are causal. The interface
between the Information machine and the Real world contains only phenomena C1 that are
controlled by the real world. This means that the machine cannot influence the real world. Its
purpose is only to display things that happen in the real world.

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information Sensor IAL

Sensor HAL

Application

Display
Interface

Display (E2) Real world (C1)

Information Machine

Figure 5: Information Display Frame Diagram and Architecture

Accordingly, the architecture given on the right-hand side of Figure 5 does not contain any com-
ponents for handling actuators, but only components for handling sensors. There is no operator,
but a display is needed. Hence, the architecture contains a display interface.

The Application layer of the architecture shown in Figure 5 processes the information yielded
by the sensors. If no processing is necessary the application layer can be dropped.

4.4 Commanded Information

The Commanded Information problem frame (Figure 6) is derived from the Simple IS frame [14].
In [15], the Commanded Information frame is presented as a variant of the Information Display
frame, where an operator is added. The Commanded Information frame is very similar to a
Database Query frame [6], the only difference being that the domain to be displayed need not be
causal, but can also be a lexical or a model domain (see [15]).

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering User

Interface

Sensor IAL

Sensor HAL

Display Application

Data
Storage

Input Application

Real world (C1)Display (E3) / Enquiry operator (E5)

Answering machine

Figure 6: Commanded Information Frame Diagram and Architecture
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The architecture we propose for “Answering machines”4 that solve a Commanded Information
problem is shown on the right-hand side of Figure 6. To take the presence of an operator into
account, the Display Interface component of the architecture for the Information Display frame
is replaced by a User Interface component.

Moreover, to cover database applications in addition to the operator-controlled display of
physical data, the architecture we propose contains a Data Storage component. Of course, this
component can be left out if it is not needed to solve the problem. In that case, there would only
be one (or even no) application component. Alternatively, for pure database applications, the
sensor-handling components of the architecture will not be needed.

4.5 Workpieces

The following problems fit to the Workpieces problem frame:

‘A tool is needed to allow a user to create and edit a certain class of computer process-
able text or graphic objects, or similar structures, so that they can be subsequently
copied, printed, analysed or used in other ways. The problem is to build a machine
that can act as this tool.’

The “X” indicates that the Workpieces domain of the frame diagram shown in Figure 7 is a lexical
(inert) domain. The Workpieces problem frame is very similar to a Database Update frame [6].

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Application

Interface
User 

Storage
Data

User (E3)

Editor 

Workpieces (E1, Y2)

Figure 7: Workpieces Frame Diagram and Architecture

The architecture shown on the right-hand side of Figure 7 contains a user interface component,
because the problem frame diagram contains a user. The data storage component of the architec-
ture corresponds to the Workpieces domain of the frame diagram. The Application component is
responsible for manipulating the data storage according to the user commands. Note that there
is only one interface with the environment – namely the interface with the user – because the
lexical Workpieces domain is part of the machine. This holds true also for the input and out-
put domains of the architecture for transformation problems (see Section 4.6). Because our user
interface component (see Figure 4) contains not only input but also output facilities, no change
in the architecture is necessary if the problem frame is extended with a feedback for changes on
workpieces. Such an extention is necessary for realistic problems and user-friendly applications.

Non-functional requirements might state that distributed access to the workpieces must be
provided. Such requirements cannot be expressed in problem diagrams. Nevertheless, they may
have an influence on the architecture. For this case, we propose a repository architecture (see
left-hand side of Figure 8). The repository architecture can be mapped to the layered architecture
as shown on the right-hand side of Figure 8 (for one client). Here, remote access to the data
storage is possible via a network.

4The name “Answering machine” is used by Jackson [15].
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Storage
Data
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Client
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Figure 8: Architecture for Remote Access to Data Storage

4.6 Transformation

The following problems fit to the Transformation problem frame:

‘There are some computer-readable input files whose data must be transformed to give
certain required output files. The output data must be in a particular format, and
it must be derived from the input data according to certain rules. The problem is to
build a machine that will produce the required outputs from the inputs.’

IO
relation

Y4

Inputs

Outputs

machine
Transform

TM!Y2

X

X

Y3I!Y1

Application

Transform Machine

Storage
DataData 

Storage

Inputs (Y1) Outputs (Y2)

Figure 9: Transformation Frame Diagram and Architecture

Again, the architecture shown in Figure 9 exactly reflects the domains of the frame diagram.
Inputs and outputs are stored in data storage components, and the application component is
responsible for transforming inputs into outputs. In this architecture there are two data storages.
They represent persistent data of perhaps different structure. One is for the inputs (e.g., source
code) the other for outputs (e.g., an executable file).

Often, pipe-and-filter architectures are useful for solving transformation problems (another
possibility is suggested in [18] where the pipe and filter architectural style is combined with the
transformation frame). The pipe-and-filter architecture can be combined with the layered archi-
tecture. It can be used to connect parts in the application layer using the Pipe that is provided
by the layer below. Figure 10 shows how the pipe-and-filter architecture can be integrated into
the layered architecture.

In summary, our architectural patterns reflect the problem frames in the following way:

• The interfaces of the architectural patterns correspond exactly to the interfaces of the ma-
chine domains as defined in the different frame diagrams. Hence, the architecture refines
exactly the machine to build; it neither adds nor leaves out any shared phenomena as com-
pared to the problem description.
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Storage
Data

Inputs (Y1)

Figure 10: Transformation Architecture with Pipes and Filters

• If the machine has interfaces with causal domains, the corresponding architectural pattern
contains components for handling sensors and actuators. This reflects the way in which
software can communicate with and influence the physical world.

• If the frame diagram contains a biddable domain (i.e., an operator or user), then the corre-
sponding architectural pattern contains a user interface component.

• If the machine has interfaces with lexical domains, these domains are reflected as parts of
the corresponding architectural pattern. This must be the case, because lexical domains can
only exist inside the machine.

5 Multi-frame-Problem: Automatic Teller Machine (ATM)

To illustrate how our architectural patterns help solving problems that fit to a given problem
frame, we consider an automatic teller machine (ATM). The mission of an ATM is to provide
customers with money, provided that they are entitled to withdraw the desired amount. Figure
11 shows the structure of the ATM problem context, where several domains are introduced.

Card 
reader

Admin

Account
data Case 

Money supply /

ATM

insert_money

request_log
display_log

card_inside
no_card_inside

account_balance
withdraw_money

Customer

take_banknotes

enter_pin
enter_request

insert_card, remove_card
retract_card, eject_card

case
banknotes

refuse_withdrawal

Figure 11: Context Diagram for ATM Problem

The ATM is an example of a multi-frame problem, i.e., it consists of several subproblems
that can be fitted to different problem frames. In the following, we will identify the subproblems
(namely money-case control, card reader control, log file and update account), fit them to an
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appropriate problem frame, and derive the corresponding software architectures according to the
patterns given in Section 4. Finally, we will compose the architectures yielded by the different
subproblems to obtain an architecture for the whole ATM.

5.1 Money-Case Control Subproblem

The first subproblem of the ATM controller problem concerns the control of the money case.
To deliver money to the customer, the ATM has a case where it puts the requested banknotes.
This case has a shutter visible to the customer. To prevent another person from taking forgotten
money, the ATM will only open the case for a limited amount of time. When that time is over,
the ATM retracts the money from the case. To open the case, the ATM starts opening the case
and stops when the case is open. The instantiated frame diagram for Commanded Behaviour is
shown in Figure 12. The customer asks for the desired amount (shared phenomena E4), and the
money case controller orders the various actions to be done accordingly (shared phenomena C1)
while receiving information from the money supply case through sensors (shared phenomena C2).
The corresponding architecture is shown in Figure 13, where the connections between the main
application and the user interface as well as the money supply case are given. The phenomena
C1 and C2 are refined from the more general phenomena case and banknotes from the context
diagram of Figure 11.

banknotes

Money

C3

case
controller

Provide req.

MSC!C2
MCC!C1

Customer

Case 

C!E4 E4

Money Supply /

C1: {put banknote to case, start/stop open case, take banknotes from supply,
start/stop close case, retract banknotes from case}

C2: {case is open, case is closed, banknotes removed}

C3: {banknotes in case}

E4: {enter request, enter pin}

Figure 12: Problem Diagram for Money-Case Control

User
Interface

Main Application

Customer (E4)

Money Se.HAL

Money Se.IAL Money Ac.IAL

Money Ac.HAL

Money Supply Money Supply/
Case (C1)

ActuatorSensor
Case (C2)

Figure 13: Architecture for the Money-Case Control Subproblem
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5.2 Card Reader Control Subproblem

The second subproblem concerns controlling the card reader. Once a user has inserted his/her
card, it is under control of the ATM. When the user has successfully withdrawn the money, the
ATM ejects the card. In case of an invalid card or three unsuccessful attempts of authentication,
the card will be kept by the ATM. After the ATM has ejected the card, the user must remove it
within some time. Otherwise it will be retracted again to prevent somebody else from taking it.

With a slight variation, this subproblem also fits to the Commanded Behaviour frame as shown
in Figure 14. The variation concerns the connection between the Customer and the Card reader

that are connected with the shared phenomena E5. The reason for the variation is that on the one
hand, the card reader is the domain to be controlled. On the other hand, the card reader acts as
a connection domain (see [15]) between the customer and the machine: the customer inserts or
removes the card (phenomena E5), and the card reader informs the machine of these phenomena by
transforming them into phenomena C6. However, this subproblem is still a Commanded Behaviour
problem, because the additional connection between customer and card reader does not concern
the interfaces of the machine.

Customer

Card
Reader

 
Card 

card reader

reader

controller
Control

CR!C6
CRC!C7

E4,E5

C7

C!E5

C!E4

C6: {card inside, no card inside}

C7: {eject card, retract card}

E5: {insert card, remove card}

Figure 14: Problem diagram for Card Reader Control

The instantiated architectural pattern in Figure 15 covers all interfaces relevant for this sub-
problem. The phenomena E4 are the same as in the previous subproblem (Section 5.1).

Card In IAL

Card In HALCard Out HAL

Card Out IAL

User
Interface

Main Application

Card Reader (C6)Card Reader (C7) Customer (E4)
 from Customer (E5)

Figure 15: Architecture for the Card Reader Control Subproblem

5.3 Log File Subproblem

The third subproblem of the ATM controller problem concerns the log file of the ATM. The bank
needs to know for example when the customer does not remove his/her money and when the
ATM retracts a card or the money. These actions should be logged by the ATM, and some bank
employee (called Admin) should be able to read selected parts of the log. The log file subproblem
covers actions and domains that fit to the Commanded Information frame. The instantiated
problem frame is shown in Figure 16, and the instantiated architecture is shown in Figure 17. The
phenomena C2 and C6 are the same as in the subproblems of Sections 5.1 and 5.2.
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Admin

Case, Money 
supply

Bank
information
machine

C9
Card reader, 

C2,C6

Admin Display
logdisplay

BIM!E8 Y8

E7A!E7

CRCMS! 

E7: {request log}

E8: {display log}

Y8: {log}

C9: {ATM actions}

Figure 16: Problem Diagram for Log File

DataUser

Admin Application

Storage
(Logs)

Interface
(Admin)

Card In IAL

Card In HAL

Card reader (C6)

Main Application

Admin (E7)
Admin Display (E8)/

Money Se.HAL

Money Se.IAL

Money Supply/
Case (C2)

Sensor

Figure 17: Architecture for the Log File Subproblem

5.4 Update Account Subproblem

The last subproblem is an instance of a variant of the Workpieces frame and concerns the account
of the customer. To withdraw money, it must be checked whether the requested amount of money
exceeds the limit associated with the account. Moreover, the account data have to be updated in
case of a successful withdrawal. Figure 18 shows the problem diagram. The phenomena C4 are
the same as in the subproblem of Section 5.1.

The variation of the Workpieces frame concerns the phenomenon refuse withdrawal (E12),
which is used by the Account manager machine to provide feedback to the customer. In the
Workpieces frame, no customer feedback is provided (see Figure 7). For real applications, how-
ever, feedback is needed. The Update Information System frame of [6] contains an extra domain
for feedback output. Since users are reflected in our architectural patterns by User Interface
components that contain a display interface, our architectural pattern covers the frame variation.

Account 

AM!E10
Y11

Customer

Account

Update
account

manager

AM!E12

dataAD!Y11

C!E4 E4

E10: {withdraw money}

Y11: {account balance}

E12: {refuse withdrawal}

Figure 18: Problem Diagram for Update Account
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Figure 19 shows a simple architecture for the update-account subproblem. In real ATMs, the
account data would be stored in a distributed data storage. Hence, the database may be replaced
by a network interface and a repository as shown in Figure 8.

Data
Storage
(Account 
Data)

User
Interface

Main Application

Customer (E4, E12)

Figure 19: Architecture for the Update Account Subproblem

5.5 Composed Architecture

We now must compose the architectures developed for the subproblems to obtain an architecture
for the whole ATM. For doing this, we must find the parts occurring in different subproblem
architectures, that must be identified in the composed architecture. In particular, this concerns
the sensor and actuator handling parts. Parts that occur in different subproblem architectures,
but handle the same phenomena (for example, C1 or E4 in the ATM problem) should occur only
once in the composed architecture.

In contrast to [20], where a bus system is the central part and several hardware components
access this bus system to exchange information, we need to find a composition for a single micro-
processor system. Therefore the application layer must be able to handle the full functionality as
given by the application components of the subproblems. Ideally, the functionalities of the sub-
problems should be implemented in different components (parts) of the overall application layer.
However, giving methods for designing the overall application layer is subject to future work.

The correctness of the composed solution must be shown in a separate step. For all components,
their exact specifications must be set up, and it must be shown that the components work together
in such a way that they fulfil the specifications of all machines corresponding to the different
subproblems. These issues cannot be expressed at the level of architectural patterns.

The composed architecture for the ATM is shown in Figure 20. This example shows that our
patterns yield appropriate architectures for subproblems fitting to problem frames, and that these
architectures can be combined in a modular way to obtain an architecture of the overall system.

DataUser

Admin Application

Storage
(Logs)

Interface
(Admin)

Card In IAL

Card In HALCard Out HAL

Card Out IAL
Data
Storage
(Account 
Data)

User
Interface

Main Application

Admin (E7)
Admin Display (E8)/ , Card Reader (C6)

 from Customer (E4)
Card Reader (C7) Customer (E5, E12)

Money Se.HAL

Money Se.IAL Money Ac.IAL

Money Ac.HAL

Money Supply/
Case (C2)

Sensor

Case (C1)
Money Supply/

Actuator

Figure 20: Composed Architecture
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6 Conclusions

In the present paper, for each basic problem frame (together with the commanded information
variant), an associated architecture is defined that is expressed using composite structure diagrams
of UML 2.0. The contributions of our approach are the following:

• We provide a way to start describing, through a given architectural pattern, solution struc-
tures associated with basic problem frames.

• To this end, we designed new architectural patterns specifically elaborated to reflect the
characteristics of the various problem frame domains and their intended refinement when
designing the solution.

• The components of problem frames are reflected in the architectures, and a clear correspon-
dence between domains of frame diagrams and components of architectures is established.

• The provided architectural patterns as well as the problem frames are quite generic and
cover a wide range of problems; both can be refined to accommodate more specific kinds of
problems.

• The architectural patterns support the recomposition of solutions developed for different
subproblems of multi-frame problems in a systematic way.

While in [11, 18] a related approach is taken to extend problem frames with architectural
concepts, so as to introduce more knowledge and information into problem frames, our approach
is to propose architectural patterns dedicated to the basic problem frames. It can be used when
moving to the design phase (or even in the detailed specification phase) of the software development
as advocated in [5, 6]. We see the two approaches as complementary: while [11, 18] provide a way
to incorporate/reuse domain knowledge in the problem description, we focus on proposing a way
to move from the problem description to the solution description.

Although the work presented here is independent of any formal specification language, if de-
sired, it would be possible to accompany the architectural descriptions with a formal specification
development along the ideas of [5, 6, 7] (see Section 3).

In the future, we intend to extend this work in several directions. We would like to describe the
behavioural aspects associated with the architectural patterns, and to specify in more detail the
communication between the different architecture components, for instance using communication
patterns. As we rely on a problem decomposition, we need to investigate in more detail how
the composition of architectures can be achieved and how the subproblem applications can be
incorporated in the overall application.

We also plan to consider frame concerns, since they are an important part of problem frames as
an analytical tool. In particular, frame concerns (and their derived correctness arguments) relate
to a rich traceability of requirements through to a solution (see for example the Praxis REVEAL
approach [12]). Hence, it is important to know how the proposed solution architectures contribute
to their discharge.

Moreover, since our approach aims at a guided and integrated use of several techniques and
several patterns, we would like to explore how to integrate the use of design patterns in this
development.
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