
Use of Patterns in Formal Development:
Systematic Transition From Problems to Architectural

Designs

Christine Choppy
�

and Maritta Heisel
�

�

LIPN, Institut Galilée - Université Paris XIII, France, email:
Christine.Choppy@lipn.univ-paris13.fr

�

Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, Institut für Verteilte
Systeme,D-39016 Magdeburg, Germany, email: heisel@cs.uni-magdeburg.de

Abstract. We present a pattern-based software lifecycle and a method that sup-
ports the systematic execution of that lifecycle. First, problem frames are used to
develop a formal specification of the problem to be solved. In a second phase,
architectural styles are used to construct an architectural specification of the soft-
ware system to be developed. That specification forms the basis for fine-grained
design and implementation.

1 Elaborating the software development process

Experience has shown that problems and bugs in software systems take their source
mainly in the early phases of the software development process1. Hence, a software
development lifecycle that derives the design of the software directly from the require-
ments and then passes on to the implementation cannot be regarded as satisfactory. The
step between requirements and design is too large.

An additional phase should be introduced between the requirements and the design.
One idea that has been accepted for some time now is that some kind of specifica-
tion should be set up on the basis of the requirements, so that the requirements are
transformed into documents useful for developers. Specifications lead to a deeper un-
derstanding of the problems to be solved, and they can be used to support other devel-
opment activities (e.g. coding, testing, maintenance). However, producing appropriate
specifications often turns out to be difficult for practitioners. For instance, finding an
appropriate starting point for the formal specification process is a very common prob-
lem.

M. Jackson [Jac95,Jac01] proposes the use of problem frames for presenting and un-
derstanding software development problems. A problem frame is a characterization of a
class of problems in terms of their main components and the connections between these
components. A set of typical solution methods is associated to each problem frame. The
basic idea is that once an appropriate problem frame for a given problem is found, we
also have good proposals for constructing a solution to that problem. We think this idea

1 See for example http://www.standishgroup.com/sample research

Specification

choice of architecture

Requirements Design Code

choice of problem frame

Fig. 1. Lifecycle using problem frames and architectures

Requirements Design Spec Code
Implementation Spec.

Implementation Choices

Architectural Choices

Design Choices

SpecificationDescription
Structured

Requirements Spec.
Architecture

Choice of Problem Frame Choice of Arch. Style

Fig. 2. Complete lifecycle using problem frames and architectural styles

is useful, but it provides only a coarse structure of the problem. Hence, problem frames
should be supplemented by means that allow for a finer structuring.

Architectural styles [SG96,BCK98] are a means to structure a software system, i.e.
to choose its architecture. Since architectural styles are used to construct designs, they
should not be used right at the beginning of the development process, but only after the
problem has been fully understood and specified. Figure 1 shows how to bridge the gap
between the requirements and the design of a software system. It is possible to elaborate
the software development lifecyle further, as suggested in Figure 2. Here, several phases
are introduced between the requirements and the design of a software system.

Problem frames and architectural styles are both forms of patterns. While problem
frames are concerned with problems, architectural styles are concerned with solutions.
Hence, with Figures 1 and 2, we propose a pattern-based software lifecycle. Patterns
should be used systematically and on different levels of abstraction.

In the following, we show how the steps from an informal requirements description
to an architectural specification shown in Figure 2 can be carried out in a systematic
way. This work further elaborates the approach by Choppy and Reggio [CR00], where
problem frames are used to structure formal specifications.

We first discuss how patterns can be used on different abstraction levels and in dif-
ferent phases of the software development process in Section 2. Section 3 presents a
method to carry out pattern based formal development in a systematic way. The appli-
cation of that method is illustrated by the case study of a robot simulation in Section
4. In Section 5, we summarize our work and also discuss related work that aims at
methodological support for developing formal specifications.

2 Patterns for different software development activities

Patterns are a means to reuse software development knowledge on different levels of
abstraction. Patterns classify sets of software development problems or solutions that
share the same structure.

Patterns have been introduced on the level of detailed object oriented design [GHJV95].
Today, patterns are defined for different activities. Problem Frames [Jac01] are patterns

Control
CD!C2

CM!C1

domain
Controlled

C

C3

machine behaviour
Required

Required Behaviour

IO
relation

IN!Y1

Y4

Inputs

Outputs

machine
Transform

TM!Y2

X

X

Y3

Transformation

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information

Information Display

behaviour
Commanded

Operator

machine

E4

C3

B

domain
Controlled

Control

OP!E4

GD!C2
CM!C1

C

Commanded Behaviour

US!E3 User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

Workpieces

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering

Commanded Information(Simple IS)

Fig. 3. Frame diagrams

that classify software development problems. Architectural styles are patterns that char-
acterize software architectures [SG96,BCK98]. They are sometimes called “architec-
tural patterns”. Design Patterns are referred to as “micro-architectures”, while frame-
works are considered as less abstract, more specialized. Finally, idioms are low-level
patterns related to specific programming languages [BMR

�

96], and are sometimes
called “code patterns”.

Using patterns, we can hope to construct software in a systematic way, making use
of a body of accumulated knowledge, instead of starting from scratch each time. In the
following, we briefly introduce problem frames and architectural styles, which will be
used in our method.

2.1 Problem Frames

Jackson [Jac01] describes problem frames as follows:

A problem frame is a kind of pattern. It defines an intuitively identifiable prob-
lem class in terms of its context and the characteristics of its domains, interfaces
and requirement.

For each problem frame, a frame diagram is set up (cf. Figure 3), which contains the
different parts involved. Plain rectangles denote application domains. The characteris-
tics of these domains play an important role in the application of a problem frame to a

problem. A problem frame features also a machine domain denoted by a rectangle with
a double vertical stripe, and a requirement denoted by a dashed oval. The connecting
lines represent interfaces that consist of so-called “shared phenomena”.

Jackson distinguishes causal domains that may control some shared phenomena
(e.g. events) at the interface with another domain, biddable domains (people), and lex-
ical domains that are physical representation of data. Causal phenomena (e.g. events)
are caused or controlled by some domain, and can cause in turn other phenomena. Sym-
bolic phenomena (e.g. values) can be changed, but cannot change themselves or cause
changes elsewhere.

Jackson [Jac01] defines five basic frames (that are variants of those given in [Jac95]).
These (and a sixth derived problem frame) are briefly presented below. For each prob-
lem frame, we quote the description given by Jackson [Jac01] (see also Fig. 3).

Required Behaviour “There is some part of the physical world whose behaviour is to
be controlled so that it satisfies certain conditions. The problem is to build a machine
that will impose that control.” The “C” in the frame diagram indicates that the domain
Controlled domain must be causal. The machine is always a causal domain (so an ex-
plicit “C” is not needed). The notation “CM!C1” means that the causal phenomena C1
are controlled by the Control machine CM. The dashed line represents a requirements
reference, and the arrow shows that it is a constraining reference.

Commanded Behaviour “There is some part of the physical world whose behaviour is
to be controlled in accordance with commands issued by an operator. The problem is
to build a machine that will accept the operator’s commands and impose the control
accordingly.” The “B” indicates that the domain

���������
	����
is a biddable domain, and

the phenomena E4 are the operator commands.

Transformation “There are some computer-readable input files whose data must be
transformed to give certain required output files. The output data must be in a particular
format, and it must be derived from the input data according to certain rules. The prob-
lem is to build a machine that will produce the required outputs from the inputs.” The
“X” indicates that
�� ����	�� and

����	�����	��
are lexical (inert) domains.

Workpieces “A tool is needed to allow a user to create and edit a certain class of com-
puter processable text or graphic objects, or similar structures, so that they can be sub-
sequently copied, printed, analysed or used in other ways. The problem is to build a
machine that can act as this tool.”

Information Display “There is some part of the physical world whose states and be-
haviour is continually needed. The problem is to build a machine that will obtain this
information from the world and present it at the required place in the required form.”
Here, the purpose of the machine is to display things that happen in the real world. Both
domains are causal. Y4 are symbolic requirement phenomena.

Commanded Information is derived from the Simple IS frame [Jac95]. There is some
part of the physical world whose states and behavior are needed upon requests from an
operator. The problem is to build a machine that will obtain this information from the
world and present it at the required place in the required form.

Let us note that these problem frames do not cover every conceivable problem class.
Some more problem frames have been identified by Souquières and Heisel [SH00].

2.2 Architectural Styles

According to Bass, Clements, and Kazman [BCK98],

the software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them.

Architectural styles are patterns for software architectures. A style is characterized by
[BCK98]:

– a set of component types (e.g., data repository, process, procedure) that perform
some function at runtime,

– a topological layout of these components indicating their runtime interrelation-
ships,

– a set of semantic constraints (for example, a data repository is not allowed to change
the values stored in it),

– a set of connectors (e.g., subroutine call, remote procedure call, data streams, sock-
ets) that mediate communication, coordination, or cooperation among components.

Important architectural styles are the following:

– Data-Centered with substyles Repository and Blackbord
– Data Flow with substyles Batch Sequential and Pipe-and-Filter
– Virtual Machine with substyles Interpreter and Rule-Based Systems
– Call-and-Return with substyles Main Program and Subroutine, Layered, Object-

Oriented or Abstract Data Types
– Independent Components with substyles Communicating Processes and Event

Systems (implicit/explicit invocation)

When choosing an architecture for a system, usually several architectural styles
are possible, which means that all of them could be used to implement the functional
requirements. Which architectural style is the most appropriate must then be decided
using non-functional criteria such as efficiency, scalability, or modifiability. How such
a choice is made is illustrated in Section 4.

2.3 Design Patterns

Design patterns [GHJV95] are used on a lower level of abstraction than problem frames
or architectural styles. They provide concrete means to combine objects, or classes,
respectively. In our overall software lifecyle, they would be used after an architectural
style has been chosen. This step is beyond the scope of this paper.

3 An agenda for pattern-based specification and design

We now present our method for carrying out a pattern-based software lifecycle as shown
in Figures 1 and 2. As a means of presentation, we use the agenda concept [Hei98]. An
agenda is a list of steps or phases to be performed when carrying out some task in the

Table 1. Agenda for pattern-based specification

No. Description Result Validation

1. Fit the problem into an ap-
propriate problem frame.

Instantiated
frame dia-
gram

All important issues of the problem must be
treated adequately, see also [Jac01].

2. Set up a formal specifica-
tion for each domain of
the instantiated frame di-
agram (including the ma-
chine domain) and the re-
quirements.

Set of formal
specifica-
tions

– The specification must be coherent with
the instantiated problem frame diagram.

– The shared phenomena must belong to the
interfaces of all domains where they are
visible.

– Control of phenomena must be taken into
account.

– The specification � of the machine do-
main (in combination with the domain
knowledge �) must suffice to satisfy the
requirements � , i.e., ��������� must
hold.

3. Choose an appropriate ar-
chitectural style for struc-
turing the machine do-
main and instantiate it.

Architectural
diagram and
informal text

The chosen architecture must be able to satisfy
the machine specification.

4. Set up a formal specifica-
tion of all components ob-
tained in Step 3 and of the
overall system (i.e., spec-
ify how the components
cooperate).

Set of formal
specifica-
tions

– The formal specification must correspond
to the architectural diagram.

– The overall specification must be a refine-
ment of the machine specification devel-
oped in Step 2.

– The constraints imposed by the chosen
architectural style must be satisfied.

context of software engineering. The result of the task will be a document expressed in
some language. Agendas contain informal descriptions of the steps, which may depend
on each other. Agendas are not only a means to guide software development activities.
They also support quality assurance, because the steps may have validation conditions
associated with them. These validation conditions state necessary semantic conditions
that the developed artifact must fulfill in order to serve its purpose properly.

Table 1 shows an agenda that precisely describes how to carry out and validate the
first steps of the lifecycle proposed in Figure 2. A precondition for the applicability of
the agenda is that the problem is sufficiently small that it may be fitted into one problem
frame. Complex problems have to be decomposed first, for example by projection, as
described by [Jac01].

Step 1 of the agenda is performed in principle as described by Jackson [Jac01].
To find the right problem frame, the structure of the frame diagram and the domain
characteristics as described in Section 2.1 must be taken into account. However, this
is not as straightforward as it might seem, because we first need to choose between
possibly different viewpoints on the problem. For instance, the choice of taking into

Table 2. Problem frames and related architectural styles

Problem Frame Architectural Style

Required Behaviour Communicating Processes,
Commanded Behaviour Event/Action, Process Control
Transformation Repository, Batch Sequential, Pipe and Filter,
Workpieces Virtual Machine, Layered, ADT/OO, Event Systems
Information Display Repository,
Commanded Information Blackboard

account a user/operator influences the choice of problem frame, and it also changes the
characteristics of the domains and phenomena. We think it is worthwhile to examine
for each problem frame whether we find a meaningful instantiation of it or else a clear
reason why not.

Once the choice of a problem frame is made, we rely on the structure provided
by the problem frame to proceed and establish a corresponding formal specification
[CR00].

Step 2 uses the instantiated frame diagram from Step 1 that determines the structure
of the formal specification to be set up. For each box in the instantiated frame diagram,
a specification must be given. The validation condition “coherence of the instantiated
frame diagram and specification” means that the phenomena at the interfaces of the
requirements box must be used in expressing the requirements. Moreover, the shared
phenomena that are given in the instantiated problem frame must belong to the inter-
faces of the respective domain specifications. A domain which is in control of a shared
phenomenon must be able to produce that phenomenon as an output, and a domain
which is able to observe a phenomenon of which it is not in control must be able to take
the phenomenon as an input. The domain knowledge � mentioned in the last valida-
tion condition of Step 2 refers to the specification of the application domains, i.e. the
domains of the instantiated problem frame other than the machine domain.

Step 3 uses the specification of the machine domain developed in Step 2. This spec-
ification describes the machine to be developed, whose structure will be determined by
the architectural style. Several possible architectural styles should be explored and as-
sessed according to those non-functional criteria that are regarded to be important for
the given problem.

Table 2 gives heuristics for performing Step 3. It has been developed from the gen-
eral characteristics of the involved problem frames and architectural styles as well as by
conducting several case studies. It shows rules of thumb giving hints which architectural
styles to consider first.

As can be seen, there are several architectural styles associated to each problem
frame. Which one is finally chosen depends on non-functional requirements. It remains
to make these explicit in order to really guide the transition from a problem frame to an
architectural style.

advance advance chg_smile stand chg_smile init chg_smile

Fig. 4. The movements of the robot

For the problem frames Transformation and Workpieces, we have quite a number of
architectural styles to consider. This is due to the fact that these problem frames cover
most of the “classical” software development problems and that they are less constrain-
ing than the other frames. For Required Behaviour and Commanded Behaviour, we
should consider architectural styles that are well suited for reactive systems, and for
Information Display and Commanded Information, it seems natural to choose data-
centered architectures.

Step 4 uses the architectural style instantiated in Step 3 to develop a specification
that formally describes the chosen architecture. That instantiation determines a set of
components that structure the system to be developed. It also shows the cooperations
between these components. For each component a formal specification must be given.
Furthermore, it must be specified how the components cooperate. Such an architectural
specification is the basis for detailed design and implementation. The most important
validation condition associated with Step 4 of the agenda is to show that the chosen
architecture indeed correctly implements the machine specified in Step 2, i.e., that the
architectural specification refines the machine specification. Because we use formal
specifications, this validation condition can be demonstrated in a rigorous or formal
way.

In the following section, we demonstrate the application of the agenda by means of
a concrete example.

4 Case study: robot simulation

This case study is taken from [HL97], where it was used to illustrate different archi-
tectural styles. Here, we demonstrate how the most suitable architectural style can be
found in a systematic manner, performing the steps of the agenda presented in Table 1.

The task is to build a system simulating a simple robot. This robot can make the
movements shown in Figure 4: it can advance by moving its right or its left leg; it can
stand still; and it can smile or not. The robot can be modeled as an automaton with
three states: standing, left up and right up as shown in Figure 5. To each state
a boolean value is associated indicating whether the robot is smiling or not. The initial
state is standing and smiling.

The robot is defined by the abstract data type ROBOTwhere the states are defined as
constants and the movements as transitions from one state to another, except for smiling,

variable
 s: bool

right_up(s)

chg_smilechg_smile

standing(s)

left_up(s)

chg_smile
stand

stand stand

advance

advance

advance

Fig. 5. The robot automaton

which is defined by a boolean value: true for smiling. For each state a predicate is
defined deciding if the robot is in this state.

The input for the system to be built is a list of commands to be executed by the
robot, i.e., a list consisting of the elements stand, advance and chg smile. The
output is a list of pairs, where the first component of each pair is the current state of the
robot, and the second component of each pair is the list of commands not yet executed.
Each command must be executed, and the intermediate states entered during execution
of the command list must be given as an output.

Step 1: Choice and Instantiation of a Problem Frame We consider the problem
frames (cf. Figure 3) one by one and give reasons for each problem frame why it is
rejected or accepted.

Required Behaviour The “C” says that the � � � 	 � ����� ��� �
��� �	� � must be causal.

Since the robot is defined by an abstract data type, the domain corresponding to the
robot is not causal but lexical. Moreover, the problem frame Required Behaviour
does not let us distinguish between the input domain (being a list of commands)
and the output domain (being a list of pairs). Hence, we reject this problem frame.

Commanded Behaviour This problem frame must be rejected for the same reasons as
before. Moreover, we cannot find a domain corresponding to the

��� ��� �
	����
domain.

Information Display Here, the purpose of the machine is to display things that happen
in the real world. Both domains are causal, which does not fit well with the robot
problem.

Commanded Information This frame must be rejected, because we cannot find an
Enquiry operator and because the domains involved in the robot problem are not
causal.

Workpieces This problem frame is more promising than the ones considered before,
because we have a lexical domain here. The workpieces are the robot’s state, to-
gether with the current command list. However, we cannot find an instantiation for
the User domain, because command lists are not biddable. Hence, we finally reject
the Workpieces frame.

Transformation It is this frame that we finally choose for our problem. A lexical input
list is transformed into a lexical output list. The relation between the two lists is
given by the robot automaton. Figure 6 shows the instantiated frame diagram.

b: RS!{standing(s), left_up(s), right_up(s), m_stand, m_advance, m_chg_smile, list operations}

a: ML!{m_stand, m_advance, m_chg_smile} [Y1,Y3]

[Y2, Y4]

Simulation

Robot

Outputs

a a

b

movement

listTransform machine

Inputs

list of

correct
processing
of movement

list

IO relation

b

movement list)
(robot state,

Fig. 6. The robot problem fitted into the Transformation problem frame

Step 2: Structured Requirements Specification Having chosen a problem frame for
the robot problem, we must give a specification of all the domains involved and of the
requirements. As a specification language, we use LOTOS [BB87], because LOTOS
is one of the specification languages allowing us to define software architectures, and
especially the interaction of different components, in a suitable way.

Specification of the
 � � � 	�� Domain. As shown in Figure 6, the input domain is a list
of movement commands.

The movements are defined by the type MVTwith three constants m stand, m ad-
vance and m chg smile.

The robot will be asked to execute several movements collected in a list. This list is
defined by an abstract data type M LIST whose definition is straightforward.

Specification of the
��� 	�� � 	��

Domain. The output consists of a list of pairs, whose
first element is the current state of the robot and whose second element is the list of
movements yet to be performed.

The definition of the abstract data type ROBOT reflects exactly the automaton given
in Figure 5.

To define the
����	�����	��

domain O LIST, a data type VALUE must be defined as the
Cartesian product (with constructor make) of the two types ROBOT and M LIST. The
type O LIST of lists of elements of type VALUE is then defined in much the same way
as the type M LIST.

Specification of the IO relation. The IO relation says that, given a list of commands, the
robot simulation must execute that list of commands one by one and output the current
state of the robot after execution of each command, together with the commands yet to
be executed.

For example, if the input command list has the form � � ��� � ��� ��� ������� �
	��
then

the output list has the form

��� � � � � � � 	 ��
 ����� ��	�� � � � � � � � ������� � 	 ��� � � � � � � � � � � � 	 ��
 � ��� ��	���� � � � � ������� � 	 ��� �
������� � ��	 � ����� � ��� � � � � � � � � � � 	 ��
 ����� ��	�������� ����� � � ��� ��	������
where

� � ��� denotes the robot state that is reached from state
�

by executing movement

�
. This requirement is defined by a predicate is correct which takes a movement

list and and output list as its arguments. This predicate is defined in a type IO REL.

Specification of the Machine Domain Robot Simulation. For each input list, the robot
simulation must produce an output list in such a way that the two lists are in the relation
is correct.

type ROBOT_SIMULATION
is IO_REL

opns robsim : m_list -> o_list
eqns

forall ml : m_list
ofsort bool
is_correct(ml, robsim(ml)) = true

endtype

Steps 3 and 4: Architectural design of the robot We will explore several possibilities
to structure the machine domain specified in Step 2. The non-functional criteria for
assessing the different architectures will be efficiency and simplicity. Moreover, we give
a specification of the top-level behavior for each considered architecture. For reasons
of space, we cannot give the specifications of the different components.

All architectures we will consider in the following have the same interface. This
interface consists of an input channel START and an output channel OUTPUT, where
START corresponds to interface

�
and OUTPUT corresponds to interface

�
of Figure 6.

The list of movements to be processed is given in one step. The simulation must
show the intermediate states of the robot when processing the input list. Hence, instead
of producing the output list at once, the machine will produce the elements of the output
list one by one. Then, the correctness condition required to be proven in Step 4 of the
agenda is that the sequence of events occurring on gate OUTPUT is an output list that is
in relation IO rel with the input list.

The gate START is used to start the simulation, yielding in the following top-level
behavior:

START !make(init of robot,input_list); exit
|[START]| (behav expr)

The different architectures will result in different definitions of behav expr.

The Repository Architecture. The basic idea is to use a repository that contains the
current state of the robot and the list of commands still to be executed. There are three
components, one for each command. These components change the state according to
the automaton and discard the first element of the command list.

Figure 7 illustrates the repository architecture, where channel names R, W and RW
denote the read, write and read/write access to the repository, respectively. The compo-
nent
 � � 	 � � serves to write the initial state of the robot and the initial command list
into the repository.

The components try to access the shared memory in parallel in order to execute the
movement they are responsible for. Each of them first reads the list of movements. If
the first movement is the one it is responsible for, the movement is executed, the robot

START

 WR

 Init_sm

OUTPUT

 R W RWR

Chg_Smile Stand

 R W RWR

Advance

 R W RWR

 WR RR R W RWR

Shared_Memory

Fig. 7. The repository architecture for the robot

START

 Init_pf
P0

P3

Chg_Smile

OUTPUT

 Stand Advance
P1 P2

Fig. 8. The pipe/filter architecture of the robot

state changed, and the new state and the rest of the movement list is written back in the
shared memory. If the movement cannot be executed by the component that has been
granted access, it writes back the unchanged state in order to unlock the shared memory.
The top-level behavior of this architecture is as follows:

START !make(init of robot,init_list); exit
|[START]|
(
hide RR, R, WR, W, RWR in

SM [RR, R, WR, W, RWR](init of shared_memory,false,for nobody)
|[RR, R, WR, W, RWR]|
(Init_sm [START, W, WR]

||| Stand [OUTPUT, R, W, RWR]
||| Chg_Smile [OUTPUT, R, W, RWR]
||| Advance [OUTPUT, R, W, RWR]))

This architecture has the disadvantage that the system implementation must guarantee
fairness, i.e. each component must be given the chance to access the shared memory.
Otherwise, an infinite number of unsuccessful accesses is possible, and the system does
not terminate (live-lock).

The Pipe-and-Filter Architecture. In the pipe/filter modeling, we can make sure that
each component is given the possibility to execute its movement if required. The idea
is to have a line of filters. Each filter inspects the movement list. If it can execute the
movement, it does so and hands the new robot state and the new movement list to the
next filter. Otherwise, it passes on the unchanged data. Again, we need an initializing
component, called here Init pf. The architecture is shown in Figure 8. The top-level
behavior of this architecture is as follows:

START

 Event
Manager

Advance

Chg_Smile

 Stand

Advance

In_stand

In_chg_smile

Out_advance

Out_stand

Out_chg_smile

In_advance

OUTPUT

RobotMachine

START OUTPUT

Fig. 9. The event system and the virtual machine architectures for the robot

hide P0, P1, P2, P3 in
(Init_pf [START, P0]

|[P0]|
Stand [P0, P1, P3, OUTPUT]

|[P1, P3]|
Advance [P1, P2, OUTPUT]

|[P2]|
Chg_Smile [P2, P3, OUTPUT])

This solution is better than the repository architecture because it always terminates.
It is not ideal, however, because each component must inspect the data, even if it cannot
process them.

The Event System Architecture. The event system style can be used to overcome
the disadvantages of the previous two architectures. An event manager inspects the
movement list and passes the data only to the component that can process them. The
initial state of the robot and the movement list are given to the event manager. No
initialization component is required. This architecture is shown on the left-hand side of
Figure 9. We have the following overall behavior:

hide In_stand, Out_stand, In_chg_smile, Out_chg_smile,
In_advance, Out_advance in
Event_Manager [START, In_stand, Out_stand, In_chg_smile,

Out_chg_smile, In_advance, Out_advance]
|[In_stand, Out_stand, In_chg_smile, Out_chg_smile,
In_advance, Out_advance]|

(Stand [OUTPUT, In_stand, Out_stand]
|||

Advance [OUTPUT, In_advance, Out_advance]
|||

Chg_Smile [OUTPUT, In_chg_smile, Out_chg_smile])

The components executing the movements are much simpler now than in the other
architectures.

The Virtual Machine Architecture. The architecture can be improved once more. We
should not have three components that can only execute a single command, but a virtual

machine that can execute all three commands. This architectural style seems to be the
most natural one, because virtual machines are well suited for simulation tasks. This
architecture is shown on the right-hand side of Figure 9. It is quite simple:

process Robot [START, OUTPUT] : exit :=
START ? v: value; RobotMachine[OUTPUT](v)

endproc

where the process RobotMachine just recursively processes the given movement list
contained in v.

This example shows that Table 2 can only give hints which architectural styles
should be considered when developing an architecture for a given problem that was
previously fitted into some problem frame. We have demonstrated that several archi-
tectures yield correct implementations. However, some of them are better suited than
others. The reasons for preferring one architecture over another were efficiency as well
as simplicity and elegance. For such a choice, no general rules can be given. However,
the architectural styles provide us with an overall structure of the system to be devel-
oped. As we have shown, several such structures should be explored in search of the
optimal one. The structure finally chosen is the starting point of the subsequent devel-
opment steps.

For further validation of our approach, we have also carried out other case studies
using CASL [CH03].

5 Conclusions

Methodological issues in writing specifications are many, and we would like to point to
related work that addresses issues complementary to ours. Roggenbach and Mossakowski
[RM02] address the writing of readable specifications in CASL, avoiding semantic pit-
falls (these concerns are also addressed in the CASL reference manual [BM02]). Bidoit,
Hennicker and Kurz [BHK02] explore the use of observability concepts which are found
to be useful and relevant for writing specifications. Blanc [Bla02] proposes guidelines
for the iterative and incremental development of specifications.

In this paper, we have introduced a methodology for formal specification that is
systematic and that stresses reuse of previously acquired knowledge. Both patterns and
agendas are a means to represent knowledge. Patterns are abstractions of the products
developed during the software lifecycle, and reuse is achieved by instantiating a pat-
tern. Agendas, on the other hand, are explicit representations of process knowledge.
Both concepts are orthogonal, and in order to base the software development process as
much as possible on previously acquired knowledge, the two concepts should be used
in combination. In particular, the contributions of this paper are:

– We have elaborated a software lifecycle where patterns play an important and well-
defined role.

– We have developed an agenda that gives guidance how to perform this pattern-based
software lifecycle in a systematic way.

– We have shown how to combine problem frames, architectural styles and formal
specifications. So far, these three were considered in isolation; no explicit connec-
tion between them has previously been established.

In the future we will provide methodological support also for the subsequent de-
velopment steps of the software lifecycle proposed in Figure 2. In particular, this will
involve the application of design patterns. Furthermore, we will investigate problem
decomposition and multiframe problems in more detail.

Acknowledgments. We thank Thomas Santen, Carsten von Schwichow and an anony-
mous referee for their helpful comments on this paper.

References

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LO-
TOS. Computer Networks and ISDN Systems, North-Holland, 14:25–59, 1987.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, 1998.

[BHK02] M. Bidoit, R. Hennicker, and A. Kurz. On the Integration of Observability and Reach-
ability Concepts. In Proc. 5th Int. Conf. Foundations of Software Science and Com-
putation Structures (FOSSACS’2002), LNCS 2303, pages 21–36. Springer Verlag,
2002.

[Bla02] B. Blanc. Prise en compte de principes architecturaux lors de la formalisation des
besoins - Proposition d’une extension en CASL et d’un guide méthodologique associé.
Thèse de Doctorat, ENS Cachan, 2002.

[BM02] M. Bidoit and P. Mosses. CASL User Manual, 2002.
http://www.brics.dk/Projects/CoFI/.

[BMR � 96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

[CH03] C. Choppy and M. Heisel. Systematic transition from problems to architectural de-
signs. Technical report, Université Paris Nord, 2003. To appear.

[CR00] C. Choppy and G. Reggio. Using CASL to Specify the Requirements and the De-
sign: A Problem Specific Approach. In Recent Trends in Algebraic Development
Techniques, LNCS 1827, pages 104–123. Springer Verlag, 2000.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, 1995.

[Hei98] M. Heisel. Agendas – a concept to guide software development activites. In R. N.
Horspool, editor, Proc. Systems Implementation 2000, pages 19–32. Chapman & Hall
London, 1998.

[HL97] M. Heisel and N. Lévy. Using LOTOS patterns to characterize architectural styles.
In M. Bidoit and M. Dauchet, editors, Proceedings TAPSOFT’97, LNCS 1214, pages
818–832. Springer-Verlag, 1997.

[Jac95] M. Jackson. Software Requirements & Specifications: a Lexicon of Practice, Princi-
ples and Prejudices. Addison-Wesley, 1995.

[Jac01] M. Jackson. Problem Frames. Analyzing and structuring software development prob-
lems. Addison-Wesley, 2001.

[RM02] M. Roggenbach and T. Mossakowski. What is a good CASL specification, 2002.
WADT.

[SG96] M. Shaw and D. Garlan. Software Architecture. Perspectives on an Emerging Disci-
pline. Prentice-Hall, 1996.

[SH00] J. Souquières and M. Heisel. Structuring the first steps of requirements elicitation.
Technical Report A00-R-123, LORIA, Nancy, France, 2000.

