Using CASL to Specify the Requirements and
the Design: A Problem Specific Approach

Christine Choppy! and Gianna Reggio?

! LIPN, Institut Galilée - Université Paris XIII, France
2 DISI, Universita di Genova, Italy

Abstract. In [11] M. Jackson introduces the concept of problem frame
to describe specific classes of problems, to help in the specification and
design of systems, and also to provide a framework for reusability. He
thus identifies some particular frames, such as the translation frame (e.g.,
a compiler), the information system frame, the control frame (or reactive
system frame), Each frame is described along three viewpoints that
are application domains, requirements, and design.

Our aim is to use CASL (or possibly a sublanguage or an extension of
CasL if and when appropriate) to formally specify the requirements and
the design of particular classes of problems (“problem frames”). This
goal is related to methodology issues for CAsL, that are here addressed
in a more specific way, having in mind some particular problem frame,
i.e., a class of systems.

It is hoped that this will provide both a help in using, in a really effective
way, CAsSL for system specifications, a link with approaches that are
currently used in the industry, and a framework for the reusability.
This approach is illustrated with some case studies, e.g., the information
system frame is illustrated with the invoice system.

1 Introduction

It is now well established that formal specifications are required for the develop-
ment of high quality computer systems. However, it is still difficult for a number
of practitioners to write these specifications. In this paper we address the general
issue of how to bridge the gap between a problem requirements and its speci-
fication. We think this issue has various facets. For instance, given a problem,
how to guide the specification process? Often people do not know where to start,
and then are stopped at various points. Another facet is, given a specification
language, how to use it in an appropriate way? We address these facets here
through the use of M. Jackson’s problem frames (successfully used in industry),
which we formalize by providing the corresponding specification skeletons in the
CASL language ([12,13]).

A Jackson problem frame [11] is a generalization of a class of problems, thus
helping to sort out in which frame/category is the problem under study. The
idea here is to provide a help to analyse software development problems and to
choose an appropriate method for solving them (with the assumption that there

is no “general” method). Then, for each problem frame, M. Jackson provides its
expected components together with their characteristics and the way they are
connected. The problem frame components always include a domain description,
the requirements description, and possibly the design description. The domain
description expresses “what already exists”, it is an abstraction of a part of
the world. The requirements description expresses “what there should be”, that
is what are the computer system expected concepts and facilities. The design
description deals with “how” to achieve the system functions and behaviours.
The problem frames identified are the translation (JSP), the information system,
the reactive system (or control frame), the workpiece, and the connection frames.
While these cover quite a number of applications, it may also be the case that
some problems are “multiframe”.

While Jackson problem frames may be used to start understanding and
analysing the system to be developed, they have no formal underpinning. Our
idea here is to still rely on them while providing the corresponding “specification
frames”. We thus provide a methodological approach to write problem specifi-
cations using the problem frames that importantly gives guidelines to start and
to do the problem analysis and specification; combining these two “tools” yields
a powerful approach to guide the problem understanding and the specification
writing.

The issue of the choice of a formal specification language is non trivial [2].
We think that algebraic specification languages offer an adequate degree of ab-
straction for our needs, so we chose the latest and more general one, CASL, the
Common Algebraic Specification Language ([12, 13]) developed within the Com-
mon Framework Initiative (CoFI), to express our proposed formal underpinning
for problem frames. While CASL was developed to be “a central, reasonably ex-
pressive language for specifying conventional software” | “the common framework
will provide a family of languages” [12]. Thus, restrictions of CASL to simpler
languages (for example, in connection with verification tools) will be provided
as well as extensions oriented towards particular programming paradigms, e.g.,
reactive systems. While dealing with the translation frame (Sect. 2 and 3), CasL
complies with our needs, but when moving to dynamic systems that may occur
within the information system frame (Sect. 4 and 5), we propose an extension of
CasL with temporal logic, named CasL-LTL [15], based on the ideas of [3] and
[7], that may be more appropriate (and will be shortly presented when used).
Since the design of CASL was based on a critical selection of constructs found
in existing algebraic frameworks, the reader familiar with these may feel quite
“at home”, while CASL offers for these convenient syntactic combinations. In
this paper, we use some CASL constructs, that we introduce when they appear.
While the CasL syntax and semantics are completed, some tools (e.g., parsers,
libraries, ...) are being developed. In what follows we shall rely on the available
library for basic data types [16].

This paper is organised as follows. In Sect. 2 and 3, we describe the translation
problem frame, provide a a method to formalize it using CASL, and illustrate
it on a short example that is the Unix grep utility. In Sect. 4 and 5, we work

similarly on the information system problem frame and illustrate it with the
invoice case study. The information system frame raises various issues, since we
are dealing with bigger reactive systems. The size issue leads us to clearly identify
sets of properties that need to be expressed and also to search for a legible way
to present large specifications of this kind. For lack of room, we cannot report
here the complete specifications of the considered case studies, they can be found

in [6].

2 Translation Frame

Source Programs
Y —
Compiler \-
Language and
Outputs Computer Semantics

Executable Programs

Design Domain Requirements

The translation frame we consider here is a simple frame that is quite useful
for a number of case studies [5] (it is close to the JSP frame where inputs and
outputs are streams). The translation frame domain is given by the Inputs and the
Outputs, the requirements are described by the input/output relationship, 1/0
Relationship, and the design is the Machine. An example of a translation frame
problem is a compiler, where the Inputs are the source programs, the Outputs
are the executable programs, the |/O Relationship is given by the language and
computer semantics, and the Machine is the compiler. In the following, we shall
provide the skeletons for the CasL formal specifications of Inputs, Outputs, the
I/O Relationship, and the Machine, as well as conditions for correctness of the
Machine as regards the 1/O Relationship. This will be shortly illustrated on a case
study (the Grep utility) in Sect. 3.

2.1 Domain and Requirements

To capture the requirements in this case means:
- to express the relevant properties of the application domain components, i.e.,
Inputs and Outputs;
- to express the |/O Relationship.
Let us note that this often yields to specify also some basic data that are required
by the Inputs, the Qutputs and/or by the 1/O Relationship.

To use the CASL language to specify the above requirements means to give
three CASL specifications of the following form:

spec INPUTS = spec [O_RELATIONSHIP =
...... InpPUuTs and OuTpuTSs then
pred 10 _rel : Inputx Output
spec OUTPUTS = axioms

where the IO_RELATIONSHIP specification extends (CAsL keyword then) the
union (and) of the INPUTs and OUTPUTS specifications by the IO_rel predicate.
The axioms in CASL are first-order formulas built from equations and defined-
ness assertions. We can here add some suggestions on the way the axioms of
IO_RELATIONSHIP should be written. The IO_rel properties could be described
along the different cases to be considered and expressed by some conditions on
the Input and Qutput arguments. This approach has the advantage that the spec-
ifier is induced to consider all relevant cases (and not to forget some important
ones). Therefore the axioms of IO_RELATIONSHIP have the form
either TO_rel(i,0) = cond(i, o)
or cond(i,0) A def i A def o = TO0_rel(i, o).
where ¢ and o are terms of appropriate sorts and cond is a CASL formula.

2.2 Design

To design a solution of the problem in this case means to define a partial function
(or a sequential program or an algorithm) transl that associates an element of
Outputs with an element of Inputs. To use CASL to specify the above design
means to give a CASL specification of the following form:

spec MACHINE =
InpuTs and OuTPUTS then
free { %% this CAsL “free” construction requires that no additional feature occurs
op transl: Input —?7 Output %% the translation function
axioms
%% transl domain definition

The axioms for transl should exhibit both (i) when is transl defined (transl
domain definition), and (ii) what are transl results (transl definition).

Again here, we suggest a case analysis approach which yields for the transl
domain definition axioms of the form

cond(i) = def transl(i)
and for the transl definition axioms of the form

cond(i,0) A def (transl(i)) A def o = transl(i) = o
where ¢ and o are terms of the appropriate sorts, and cond is a positive con-
ditional formula. Let us note that, in order to provide a more concise/readable
presentation of the axioms, the def (transl(i)) A def o part may be left implicit.

2.3 Correctness

Here we add some notion of correctness which is not explicited in Jackson’s pre-
sentation, and which we can deal with thanks to the formalization we provide.
It may now be relevant to state under which conditions the MACHINE designed
implements the IO_RELATIONSHIP. We propose below three conditions and in-
troduce the following specification, requiring that the predicate IO_rel does not
belong to the MACHINE signature.

spec TRANSLATION = [O_RELATIONSHIP and MACHINE
MACHINE is correct w.r.t. IO_RELATIONSHIP iff

1. MACHINE is sufficiently complete and hierarchically consistent w.r.t. INPUTS
and OUTPUTS.

2. TRANSLATION =V i: Input,o: Output,transl(i) = o = I0_rel(i, o)

3. TRANSLATION =V i: Input,o: Output, IO _rel(i,0) =
3 o' : Output o transl(i) = o’

Condition 1 requires that MACHINE does not introduce some new elements or
properties in the specified descriptions of “what already exists” (the application
domain), i.e., INPUTs and OuTPUTs. Condition 2 requires that, whenever transl
is defined for a given ¢ and yields o, then IO_RELATIONSHIP relates ¢ and o, in
other words, it ensures that the produced translation is correct. Finally, condition
3 expresses that whenever IO_RELATIONSHIP relates ¢ with some o (recall 10 _rel
is just a relationship not a function), then transl applied to ¢ must yield some
o', in other words, it requires that the translation produces an output when
appropriate given the requirements.

3 Case Study: The Grep Operation

Pattern regular expressions
and text files
For each line printed

The Unix grep thereis an occurrence
utility of the pattern regular expression

1/0 Relationship

]

Outputs

Lists of lines where
the pattern occurs

Design Domain Requirements

In the previous section, the translation frame was presented with the typical
compiler example. Here, we illustrate it with the grep utility that is provided by
Unix and we sketch the corresponding specifications (see [6] for the full ones).
The grep utility searches files for a pattern and prints all lines that contain that
pattern. It uses limited regular expressions to match the patterns.

3.1 Domain and Requirements

In order to provide a specification of the domain, we need to specify the inputs,
which are regular expressions and files, the outputs, which are lists of lines, and
also the basic data that are required, which are characters, strings and lists.

Basic Data To specify the basic data we use some specifications provided in
[16], e.g., CHAR and STRING. For example the specification for strings of [16]
is an instantiation of the generic specification LiST[ELEM] together with some
symbol mapping (—) for sort names:

spec STRING = LIST[CHAR]
with sorts List[Char]— String

Inputs We sketch below the specifications of the Inputs which are regular ex-
pressions and files.

spec GREP_INPUTS = REGULAR_EXPRESSION and FILE

The CASL construct free type allows one to provide for the Reg_Ezpr type
constants (empty and A), operations (__+ __ and __), and also to state that any
character may yield a Reg_Ezpr.

spec REGULAR_EXPRESSION = CHAR then
free type Reg_Expr ::=
empty | A| _+ __: (Reg_Ezpr Reg_Expr) | __: (Reg_Ezpr) | sort Char ;

spec FILE = STRING then
free type File ::= empty | __: (Char ; File);
ops first_line : File =7 String;
drop_line : File —7 File;
%% with the corresponding axioms

Outputs is a list of lines, that is a list of strings.

spec GREP_OUTPUTS = LIST[STRING]
with sorts List[String]— Grep_Output

I/0 Relationship The |/O Relationship between the Inputs and the Outputs is
sketched in the following specification, where the grep_IO_rel predicate properties
are expressed by means of the predicates is_gen (stating when a string matches
a regular expression) and appears_in (stating when a string is a substring of
another one).

spec GREP_IO_REL = GrREP_INPUTS and GREP_OUTPUTS
then preds grep_IO_rel : Reg_Fxpr x File x Grep_Output;
__is_gen __: String x Reg_Faxpr;
__ appears_in __: String x String,;
vars reg : Reg_Expr; ol, ol' : Grep_Output; f : File;

axioms

grep_IO _rel(reg, empty, ol) & ol = nil;

- f = empty =

(grep-10_rel(reg, f, ol) &
((3 s o is_gen (reg,s) A s appears_in first_line(f) A
grep_10 _rel(reg, drop_line(f), ol') A ol = first_line(f) :: ol’)
V (=3 se is_gen (reg,s) A s appears_in first_line(f) A
grep_IO _rel(reg, drop_line(f), ol)));

%% axioms defining appears_in and is_gen

3.2 Design

The MACHINE yields an Grep_Qutput given a Reg_Ezpr and a File.

spec GREP_MACHINE = GREP_INPUTS and GREP_OUTPUTS
then op grep_transl : Reg_Fzpr x File — Grep_Output,;
pred match : Reg_Fxpr x String;
vars reg : Reg_Fxpr; f : File;
axioms
grep_transl(reg, empty) = empty;
= (f = empty) A match(reg, first_line(f)) =
grep_transl(reg, f) = first line(f) :: grep_transi(reg, drop_line(f));
= (f = empty) A - match(reg, first_line(f)) =
grep_transl(reg, f) = grep_transl(reg, drop _line(f));
%% axioms defining match

3.3 Correctness

To express correctness we need to introduce the following specification, requiring
that the predicate grep_IO_rel does not belong to the GREP_MACHINE signature.

spec GREP_TRANSLATION = GREP_IO_REL and GREP_MACHINE
GREP_MACHINE is correct w.r.t. GREP_IO_REL iff

1. GREP_MACHINE is sufficiently complete and hierarchically consistent w.r.t.
GREP_INPUTS and GREP_OQUTPUTS.

2. GREP_TRANSLATION =V f : File, reg : Reg_Ezpr, ol : Grep_Output,
grep_transl(reg, f) = ol = grep_10_rel(reg, f, ol)

3. GREP_TRANSLATION |=V f : File, reg : Reg_Ezpr, ol : Grep_Output,
grep_10_rel(reg, f,ol) = 3 ol' : Grep_Output o grep_transl(reg, f) = ol’

4 Information System Frame

The information system frame domain description is given by the Real World, the
Information Requests and the Information Qutputs, the requirements are described
by the Information Function, and the design is the System. To quote [11], “In its
simplest form, an information system provides information, in response to re-
quests, about some relevant real-world domain of interest.” The Real World may

be a static domain (e.g., if the system provides information on Shakespeare’s
plays), or a dynamic domain (e.g., “the activities of a currently operating busi-
ness” [11]). Here we consider information system frames with a dynamic domain,
so “The Real World is dynamic and also active.” [11].

Real World

Information
Rt

Information
Function

Information
Outputs

Design Domain Reguirements

4.1 Domain and Requirements

To capture the requirements in the case of the Simple Information System means:

— to find out the relevant properties of the Real World;
— to determine the Information Requests and the Information Outputs;
— to determine the Information Function.

To use CASL-LTL [15] to specify the above requirements means to give four
specifications corresponding to the four parts respectively, as follows.

We consider the case where the Real World is a dynamic system, thus is spec-
ified using CasL-LTL by logically specifying an lts (a labelled transition system)
that models it. A labelled transition system (shortly lts) is a triple (S, L, =),
where S and L are two sets, and —C Sx L x S'is the transition relation. A triple

(s,1,s") €= is said to be a transition and is usually written s LI Using the
dsort construction introduced in CASL-LTL is a way to declare the lts triple
(S, L,—) at once and to provide the use of temporal logic combinators in the
axioms (as defined in CASL-LTL).

Given an lts we can associate with each sg € S the tree (transition tree) whose
root is sg, where the order of the branches is not considered, two identically
decorated subtrees with the same root are considered as a unique subtree, and

if it has a node n decorated with s and s —— s’ then it has a node n’ decorated
with s’ and an arc decorated with [from n to n’.

We model a dynamic system D with a transition tree determined by an lts
(S,L,—) and an initial state sg € S; the nodes in the tree represent the in-
termediate (interesting) situations of the life of S, and the arcs of the tree the
possibilities of S of passing from one situation to another. It is important to

note here that an arc (a transition) s —L5 s has the following meaning: D in

the situation s has the capability of passing into the situation s’ by performing
a transition, where the label [represents the interaction with the environment
during such a move; thus [contains information on the conditions on the en-
vironment for the capability to become effective, and on the transformation of
such environment induced by the execution of the transition.

We assume that the labels of the lts modelling the Real World are finite sets
of events, where an event is a fact/condition/something happening during the
system life that is relevant to the considered problem. So we start by determining
which are the events and by classifying them with a finite number of kinds, then
we specify them with a simple CASL specification of a datatype, where any kind
of event is expressed by a generator.

spec EVENT =
... then
free type Fuvent ::=

At this stage it is not advisable to precisely specify the states of the Its modelling
the Real World; however, we need to know something about them, and we can
express that by some CASL operations, called state observers, taking the state as
an argument and returning the observed value. Finally we express the properties
on the behaviour of the Real World along the following schema:

e Incompatible events: Express when sets of events are incompatible, i.e.,
when they cannot happen simultaneously.
e Relationships between state observers and events For each state ob-
server obs express (i) its initial value, (ii) its value after F(...) happened,
for each kind of event E modifying it.
e Event specific properties For each kind of event E express the
- preconditions properties on the system state and on the past (behaviour
of the system) required for E(...) to take place

- postconditions properties on the state and on the future (behaviour of
the system) that should be fulfilled after E(...) took place

- liveness properties on the state under which E(...) will surely happen
and when 1t will happen.

Then the specification of the Real World has the following form (the specification
FINITESET has been taken from [16]).

spec REAL_WORLD =
FINITESET[EVENT fit Elem — Event] ... then
dsort State %% dsort is a CASL-LTL construction
free type Label_State ::= sort FinSet[Fvent];
pred initial : State %% determines the initial states of the system
%% State observers
op obs: Statex ... — ...
axioms
%% Incompatible events

%% Relationships between state observers and events

%% Event specific properties

The postconditions and the liveness properties cannot be expressed using only
the first-order logic available for axioms in CASL, thus CASL-LTL extends it with
combinators from the temporal logic ([7]) that will be introduced when they will
be used in the case study.

The Information Requests and the Information Outputs are two datatypes that
are specified using CASL by simply giving their generators.

spec INFORMATION_REQUESTS = spec INFORMATION_OUTPUTS =
... then ... then
free type Info_Request ::= ... free type Info_Output ::=

We assume that the Information Function takes as arguments, not only the in-
formation request, but also the history of the system (a sequence of states and
labels), because it contains all the pieces of information needed to give an answer.

The Information Function is specified using CASL-LTL by defining it within a
specification of the following form.

spec INFORMATION_FUNCTION =
INFORMATION_REQUESTS and INFORMATION_OUTPUTS and REAL_WORLD then

free {
%% histories are partial system lifecycles
type History ::= init(State) | __ __ __(History; Label_State; State)?;

op last: History — State;

vars st : State; h : History; | : Label _State;

o def (hlst) < last(h) st %% . __is partial
o last(init(st)) = st

o def (hlst) = last(hl st) = st

op nf_fun : Historyx Info_Request — Info_Output;

axioms

%% properties of inf_fun ...

where the properties of inf_fun are expressed by axioms having the form
def (h) A def (i-req) A def (i-out) A cond(h,i_req,i_out) =

inf _fun(h, i_req) = i_out

and cond is a conjunction of positive atoms.

In many cases the above four specifications share some common parts, by
using the CASL constructs for the declaration of named specifications, such parts
can be specified apart and reused when needed. These specifications are collected
together and presented before the others under the title of basic data.

4.2 Design

To design an “Information System” means to design the System, a dynamic
system interacting with the Real World (by detecting the happening events),
and with the users (by receiving the information requests and sending back the
information outputs).

We assume that the System:

— keeps a view of the actual situation of the Real World,
— updates it depending on the detected events,

decides which information requests from the users to accept in each instant,
— answers to such requests with the appropriate information outputs using its
view of the situation of the Real World.

We assume also that the System can immediately detect in a correct way any
event happening in the Real World and that the information requests are handled
immediately (more precisely the time needed to detect the events and to handle
the requests is not relevant).

The design of the System will be specified using CAsL-LTL by logically spec-
ifying an lts that models it. The labels of this lts are triples consisting of the
events detected in the Real World, the received requests and the sent out infor-
mation output.

spec SYSTEM =
SrtuaTION and FINITESET[EVENT fit Elem — Event] and
FINITESET[INFORMATION_REQUESTS fit Elem — Info_Request] and
FINITESET[INFORMATION_OUTPUTS fit Elem — Info_Output] then

free {
dtype
System ::= sort Situation;
Label _System ::= __ __ __(FinSet[Event];

FinSet[Info_Request]; FinSet[Info_Output]);
ops update : Situationx FinSet[Event] — Situation;
inf _fun : Situationx Info_Request — Info_QOutput;
pred acceptable : FinSet[Info_Request];
axioms
iregs = {i_req, } U ... U {i_req,,} A acceptable(i_reqs) A
i_outs = {inf _fun(sit,i_req;)} U...U {inf_fun(sit,i_req,)} =
it Sv3ioreas toouts update(sit, evs);
%% axioms defining update, acceptable and inf_fun

where SITUATION specifies a data structure describing in an appropriate way
(i.e., apt to permit to answer to all information requests) the System’s views of
the possible situations of the Real World.

Thus to specify the design of the System it is sufficient to give:

— the specification SITUATION;

— the axioms defining the operation update describing how the System updates
its view of the Real World when it detects some events;

— the axioms defining the predicate acceptable describing which sets of requests
may be accepted simultaneously by the System;

— the axioms defining the operation inf_fun describing what is the result of
each information request depending on the System’s view of the the Real
World situation.

4.3 Correctness
We introduce the following specification:

spec INFORMATION_SYSTEM =
INFORMATION_FUNCTION and SYSTEM then
pred Imp : Historyx Situation
axioms

SYSTEM 1is correct w.r.t. INFORMATION_FuNcTION 1ff

1. SysTEM is sufficiently complete and hierarchically consistent w.r.t. EVENT,
INFORMATION_REQUESTS and INFORMATION_OUTPUTS.

2. INFORMATION_SYSTEM =V st : Situation, i_req : Info_Request,
i_out : Info_Output, inf _fun(st,i_req) = i_out =
3 h: History « Imp(h, st) A inf _fun(h,i_req) = i_out

Notice that the proof has to be done in the realm of the first-order logic, and
not require to consider the temporal extenxion of CASL-LTL, in this frame the

temporal combinators are used only to express the properties of the Real World,
i.e., of the application domain.

5 Case Study: The Invoice System

5.1 The Invoice System

Performance Requests: Company:

guestions about the working / a trading company buying
of the company to support products from producers
the management decisions Real World .and selling themto clients

Information
Reavess
CompanylS

the company
information system

Information
Function

Performance Function:
the performance information
depends on the past
behaviour of the company

Information
Outputs

Performance Info:
the required information
on the company performance

Design Domain Requirements

This case study, the invoice system, is inspired from one proposed in [1]. The
problem under study is an information system for a company selling products
to clients to support the management decisions. The clients send orders to the
company, where an order contains one and only one reference to an ordered
product in a given quantity. The status of an order will be changed from “pend-
ing” to “invoiced” if the ordered quantity is less or equal to the quantity of the

corresponding referenced product in stock. New orders may arrive, and there
may be some arrivals of products in some quantity in the stock. We also con-
sider that this company may decide to discontinue some products that have not
been sold for some given time (e.g., six months). An order may be refused when
the product is no more traded, or when the quantity ordered is not available
in the stock and a decision was taken to discontinue the product; this refusal
should take place within one month after the order was received. We take the
hypotheses that the size of the company’s warehouse is unlimited and that the
traded products are not perishable.
The picture above shows how the invoice system matches the IS frame.

Due to lack of space, the complete specifications of the requirements and the
the design part will not be given here but they are available in [6].

5.2 Domain and Requirements

As explained in Sect. 4, to specify the requirements in this case means to provide
four specifications corresponding to the four parts of the frame, which are re-
ported in the following subsections. Some specification modules are quite large,
thus, for readability sake, we provide some “friendly” abbreviated presentation
of them. The domain and requirements specifications share some common data
structures, and by using the CASL construct for the declaration of named speci-
fications, we have specified them apart and collected together under the title of
basic data.

Basic Data Some obvious basic data are the codes for products, orders, and
clients, and the quantities. We need also a notion of time encoded into a date
(day/month/year). The components of an order are the date when it is received,
the product ordered (referenced by its code), the quantity ordered, the client
who issued the order (referenced by its code), and an order code. Moreover, to
specify the invoice system, we need also to use the elaboration status of an order
and the trading status of a product.

spec CODE =
sorts Product_Code, Order_Code, Client_Code
%% codes identifying the products, the orders and the clients

spec QUANTITY =
sort Quantity %% the quantities of the considered products
ops 0 :— Quantity;

— 4 ——: Quantityx Quantity — Quantity, comm, assoc, unit 0;
——— —_: Quantityx Quantity —7 Quantity, unit 0 ;
pred __ < __: Quantityx Quantity;
spec DATE =
NAT then

free {

type Date == __/__/_(Nat; Nat; Nat); %% dates as day/month/year
pred __< __: Datex Date;
op nitial_date :— Date;

spec ORDER =
CobpE and QUANTITY and DATE then
free type Order ::= mk_order(product : Product_Code; quantity : Quantity;
date : Date;code : Order_Code; client : Client_Code)

spec STATUS =

free types
Product_Status ::= traded | not_traded;
Order_Status ::= pending | invoiced | non_existing | refused,

%% elaboration statuses of products and trading statuses of orders

Real World To specify the Real World component of the application domain,
we have to express the relevant properties of its behaviour, following the schema
introduced in Sect. 4.1; thus, we first determine the “events” and the “state
observers”, and then we look for the “incompatible events”, the “relationships
between state observers and events”, and for the “event specific properties”. We
provide below the abbreviated presentation and a sketch of the corresponding
CasL-LTL specification (see [6] for the full specification).

Events We present the events by listing the generators (written using capital
letters) with their arguments and a short comment.

— RECEIVE_ORD(Order) to receive an order
— SEND_INVOICE(Order) to send the invoice for an order
— REFUSE(Order) to refuse an order

— RECEIVE_PROD(Product_Code; Quantity)

to receive some quantity of a product
— DISCONTINUE (Product_Code) to discontinue a product
CHANGE (Date) to change the date

State Observers We simply present the state observers by listing them with
the types of their arguments and result, dropping the standard argument of the
dynamic sort State. We use the notation convention that sort identifiers start
with capital letters, whereas operation and predicate identifiers are written using
only lower case letters.

— product_status(Product_Code) : Product_Status trading status of a product
— order_status(Order_Code) : Order_Status elaboration status of an order
— available _quantity(Product_Code) : Quantity

available quantity of a product in the stock
— date : Date actual date

With the corresponding formal specification (see [6] for the full specification):

spec STATE_OBSERVERS =
ORDER and STATUS then
sort State
ops product _status : Statex Product_Code — Product_Status
%% trading status of a product

Incompatible Events We simply present the incompatible events by listing
the incompatible pairs.

e All events referring to two orders with the same code are pairwise incompati-
ble.
— RECEIVE_ORD(0), SEND_INVOICE(o') s.t. code(o) = code(o’)
— RECEIVE_ORD(o0), REFUSE(0') s.t. code(o) = code(o’)
— SEND_INVOICE((o), REFUSE(0') s.t. code(o) = code(o’)
— RECEIVE_ORD(o), RECEIVE_ORD(0") s.t.
code(o) = code(o’) A = (0= 0')
— SEND_INVOICE(o), SEND_INVOICE(o') s.t.
code(o) = code(o’) A = (0= 0')
— REFUSE(0), REFUSE(0') s.t. code(o) = code(o') A = (o= 0")
e All events referring to the same product are pairwise incompatible.
— RECEIVE_PROD(p, q), SEND_INVOICE (o) s.t. product(o) =p
— RECEIVE_PROD(p, q), DISCONTINUE(p') s.t. p = p’
— SEND_INVOICE(o), DISCONTINUE(p) s.t. product(o) = p
— RECEIVE_PROD(p,q), RECEIVE_PROD(p,q') st. —~q=¢
e All change date events are pairwise incompatible.
— CHANGE(d), CHANGE(d') st. ~d=d'

In the corresponding CAsL specification (see [6]) each pair corresponds to an
axiom, e.g., the first two axioms below.

st — st' A RECEIVE_ORD(o) €1 A SEND_INVOICE(o') €1 =
= (code(0) = code(0'))

st — st' A RECEIVE_ORD(o) €l A REFUSE(o') €1 =
= (code(0) = code(0'))

Relationships between State Observers and Events We simply present
the relationships between state observers and events by listing for each state
observer its initial value, which events modify it and how. This last part is given
by stating which is the observer value after the happening of the various events.
Notice that such value could be expressed by using also the observations on the
state before the happening the event. Thus “after RECEIVE_PROD (p, q) is
available_quantity(p) + ¢” below means that the new value is the previous one
incremented by q.

— product _status(p)
initially is traded
after DISCONTINUE(p) is not_traded
not changed by other events
— avatlable_quantity(p)
initially is 0

after SEND_INVOICE(o) s.t. product(o) = p
is available_quantity(p) — quantity(o)
after RECEIVE_PROD(p, q) is available_quantity(p) + g
not changed by other events
— order_status(oc)
initially is non_existing
after RECEIVE_ORD(o0) s.t. code(o) = oc is pending
after SEND_INVOICE(o) s.t. code(o) = oc is invoiced
after REFUSE(o) s.t. code(o) = oc is refused
not changed by other events
— date
initially is initial_date
after CHANGE(d) is d
not changed by other events

Below, as an example, we report the complete axioms expressing the rela-
tionships between the state observer product_status and the events.

initial(st) = product_status(st, p) = traded

st -1 st! A DISCONTINUE(p) € Il = product_status(st', p) = not_traded

st — st' A DISCONTINUE(p) €1 =
product _status(st', p) = product _status(st, p)

FEvent Specific Properties We present the event specific properties by listing
for each event the properties on the system state necessary to its happening
(preconditions), the properties on the system state necessary after it took place
(postconditions), and under which condition this event will surely happen. The
system state before and after the happening of the event are denoted by st and
st’ respectively. It is recommended to provide as well for each event a comment
summarizing its properties in a natural way. We give below the presentation of

RECEIVE_ORD.

RECEIVE_ORD(o)

Comment: If the order o is received, then the product referred in o was traded,
no order with the same code of o existed, the date of o was the actual date, and
in any case eventually o will be either refused or invoiced.

before
product _status(st, product (o)) = traded,
order _status(st, code(0)) = non_ezisting and date(o) = date(st)
after
order _status(st’, code(0)) = pending and
in_any_case(st', eventually state_cond(z o
order_status(z, code(0)) = refused V order_status(z, code(o)) = invoiced))

“in_any_case(st', eventually state_cond(z » ...))” is a formula of CASL-LTL
built by using the temporal combinators. “in_any_case(s, 7)” can be read “for
every path o starting in the state denoted by s, m holds on ¢”, where a path is
a sequence of transitions having the form either (1) or (2) below:

(1) solosilysala ... (infinite path)

(2) 801031118212...Sn TLZO
where for all ¢ (i > 0), s; iy si+1 and there does not exist [, s’ such that
Sn LG

“eventually state_cond(xz « F')” holds on o if there exists 0 < 7 s.t. F' holds
when z is evaluated by s;.

Now we can give the formal specification of Real World for the invoice case,
i.e., the company.

spec INVOICE_REAL_WORLD =
... then

%% RECEIVE_ORD(o)

st -5 st' A RECEIVE_ORD(o0) €l =
product _status(st, product(o)) = traded A
order_status(st, code(0)) = non_ezisting A
date(o) = date(st) A order_status(st’, code(0)) = pending A
in_any_case(st', eventually state_cond(x »

order_status(z, code(0)) = refused V

order_status(z, code(0)) = invoiced))

Information Requests We present the information requests by listing their
generators with the types of their arguments; similarly for the information out-
puts.

— available _quantity_of ?(Product_Code)
what is the available quantity of a product in the stock?
— quantity_of Product_Code sold_in Date — Date?
what is the quantity of a product sold in the period between two dates?
— last_time_did Client_Code ordered?
what is the last time a client made some order?

Information Outputs

— the_available_quantity_of Product_Code is Quantity

— error : prod_not_traded the product appearing in the request is not traded
— error : wrong_dates the dates appearing in the request are wrong
— the_quantity_of Product_Code sold_in Date — Date is Quantity

— Client_Code ordered _last_time_at Date

Information Function Recall that the inf_fun, in this case named
invoice_inf _fun, takes as arguments an information request and a history (a
partial system lifecycle), defined as a sequence of transitions, i.e., precisely a
sequence of states and labels. We simply present invoice_inf_fun by showing its

results on all possible arguments case by case; each case is presented by starting
with the keyword on, followed by the list of the arguments.

on available_quantity_of?(p), h
if product _status(last(h), p) = traded returns
the_available _quantity_of p is available_quantity(last(h), p)
if product _status(last(h), p) = not_traded returns error : prod_not_traded
on quantity_of p sold_in dy — ds?, h
if - (d; < dy and dy < date(last(h)) returns error : wrong_dates
if di < dy and dy < date(last(h)) returns
the_quantity_of p sold_in dy — da is sold_auz(p, di, da, h)
on last_time_did cc ordered?, init(st) returns initial_date
on last_time_did cc ordered?, h | st
if RECEIVE_ORD (o) € l and client(o) = cc returns
cc ordered_last_time_at date(st)
if = (3 o: Order « SEND_INVOICE(0) € | and client(o) = cc) returns

invoice_inf _fun(last_time_did cc ordered? h)

The auxiliary operation sold _auz returns the quantity of a product sold in a
certain time interval, for its complete definition see [6].
As an example, we show below the complete CASL axioms corresponding to
the definition of invoice_inf_fun for the first case.
product _status(last(h), p) = traded =
invoice_inf_fun(available_quantity_of?(p), h) =
the_available_quantity_of p is available_quantity(last(h), p)
product _status(last(h), p) = not_traded =
invoice_inf_fun(available_quantity_of?(p), k) = error : prod_not_traded

6 Conclusions and Future Work

While it is clear that methods are needed to help developing formal specifications,
as extensively advocated in [4], this remains a difficult issue. This problem is
addressed in [9,10] that define the concept of agenda used to provide a list
of specification and validation tasks to be achieved, and apply it to develop
specifications with Statecharts and Z. [14] also uses agendas addressing “mixed”
systems (with both a static and a dynamic part), and provides some means to
generate parts of the specification. [5] is the first work we know of that provides
a formal characterisation of M. Jackson problem frames. Along this approach,
we provide here a formalization of the translation frame and of the information
system frame using the CASL language together with worked out case studies.
Being in a formal framework lead us to add to the issues addressed by problem
frames, the issue of correctness.

Following the approach proposed in this paper to use formal specifications in
the development process of real case studies becomes an “engineering” kind of
work. Indeed, for each frame we propose an operative method based on “normal”
software engineering (shortly SE) concepts (inputs, outputs, events, ...) and not

on mathematical /formal ones (existence of initial models, completeness, ...).
Moreover, working with large case studies lead us to provide some legible pre-
sentations of the various parts of the specifications removing/ “abstracting from”
some conventional mathematical notations/overhead (while the corresponding
complete specifications may be easily recovered from these) as for example, in
Sect. 5.2.

We have based our work on some well established SE techniques and con-
cepts (as the clear distinction supported by Jackson among the domain, the
requirements and the design) that, for what we know, are not usually very well
considered in the formal method community ([5] beeing an exception). Previous
algebraic specifications of the case studies considered in this paper made by the
authors themselves, without considering the SE aspects, were quite unprecise
and perhaps also wrong. In the grep case everything was considered as “require-
ments” and then realized in the design phase, and so we had implemented also
the regular expressions and the files. Instead, for the invoice case the old speci-
fications were confused as regards what should be the responsibilities of system
that we have to build (e.g., the information system was responsible to guaran-
tee that an order eventually will be either invoiced or refused instead of simply
taking note of when an order is invoiced).

Let us note that, while the selection of the correct frame and the specification
of the requirements and the design are essential, specifying the domain part is
necessary to produce sensible requirements, and may also be needed to discuss
with the clients, or to check about possible misunderstandings with the domain
experts (most of the worst errors in developing software systems are due to wrong
ideas about the domain).

Another relevant aspect of our work is clearly “reuse”: but here we reuse
what can be called, by using a current SE terminology, “some best practices”,
not just some specifications. The ways to handle particular problem frames that
we propose encompass the practice on the use of algebraic specifications of the
authors; and so our work may be considered in the same line of the use of
“patterns” ([8]) for the production of object oriented software. The most relevant
difference between [8] and the work presented here is the scale: we consider as
a reusable unit a way to solve a class of problem, the patterns of [8] consider,
instead, something of much smaller (pieces of the design).

Acknowledgements We would like to thank the anonymous referees for their
careful reading and helpful comments.

References

1. M. Allemand, C. Attiogbe, and H. Habrias, editors. Proc. of Int. Workshop “Com-
paring Specification Techniques: What Questions Are Prompted by Ones Particu-
lar Method of Specification”. March 1998, Nantes (France). IRIN - Universite de
Nantes, 1998.

2. E. Astesiano, B. Krieg-Bruckner, and H.-J. Kreowski, editors. TFIP WG 1.3 Book
on Algebraic Foundations of System Specification. Springer Verlag, 1999.

10.

11.

12.

13.

14.

15.

16.

E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Technical
Report DISI-TR-96-20, DISI — Universita di Genova, Italy, 1996.

E. Astesiano and G. Reggio. Formalism and Method. T.C.S., 236, 2000.

D. Bjgrner, S. Kousoube, R. Noussi, and G. Satchok. Michael Jackson’s Prob-
lem Frames: Towards Methodological Principles of Selecting and Applying Formal
Software Development Techniques and Tools. In M.G. Hinchey and Liu ShaoYing,
editors, Proc. Intl. Conf. on Formal Engineering Methods, Hiroshima, Japan, 12-14
Nowv.1997. IEEE CS Press, 1997.

C. Choppy and G. Reggio. Using CASL to Specify the Requirements
and the Design: A Problem Specific Approach — Complete Version. Tech-
nical Report DISI-TR-99-33, DISI - Universita di Genova, Italy, 1999.
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio99a.ps.

G. Costa and G. Reggio. Specification of Abstract Dynamic Data Types: A Tem-
poral Logic Approach. T.C.S., 173(2), 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

W. Grieskamp, M. Heisel, and H. Dorr. Specifying Safety-Critical Embedded Sys-
tems with Statecharts and Z: An Agenda for Cyclic Software Components. In
E. Astesiano, editor, Proc. FASE’98, number 1382 in LNCS. Springer Verlag,
Berlin, 1998.

M. Heisel. Agendas — A Concept to Guide Software Development Activities. In
R. N. Horspool, editor, Proceedings Systems Implementation 2000. Chapman &
Hall, 1998.

M. Jackson. Software Requirements & Specifications: a Lexicon of Practice, Prin-
ciples and Prejudices. Addison-Wesley, 1995.

P.D. Mosses. CoFl: The Common Framework Initiative for Algebraic Specification
and Development. In M. Bidoit and M. Dauchet, editors, Proc. TAPSOFT 97,
number 1214 in LNCS, Berlin, 1997. Springer Verlag.

The CoFI Task Group on Language Design. CASL The Common Algebraic Spec-
ification Language Summary. Version 1.0. Technical report, 1999. Available on
http://www.brics.dk/Projects/CoFI/Documents/CASL/Sumnary/.

P. Poizat, C.Choppy, and J.-C. Royer. From Informal Requirements to COOP:
a Concurrent Automata Approach. In J.M. Wing, J. Woodcock, and J. Davies,
editors, FM’99 - Formal Methods, World Congress on Formal Methods in the De-
velopment of Computing Systems, number 1709 in LNCS. Springer Verlag, Berlin,
1999.

G. Reggio, E. Astesiano, and C. Choppy. Cast-Lr: A Casn Ex-
tension for Dynamic Reactive Systems - Summary. Technical Re-
port DISI-TR-99-34, DISI - Universita di Genova, Italy, 1999.
ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtA1199a.ps.

M. Roggenbach and T. Mossakovski. Basic Data Types in CasL. CoFI Note L-12.
Technical report, 1999. http://www.brics.dk/Projects/CoFI/Notes/L-12/ .

