
Requirements Capture and Specification for Enterprise Applications:
a UML based attempt - Report

Christine Choppy Gianna Reggio
LIPN, Université Paris XIII, France DISI, Università di Genova, Italy

Abstract

We propose a software development method for enter-
prise applications that combines the use of the structural
concepts provided by problem frames, and the use of the
UML notation. Problem frames are patterns that provide
a precise conceptual model of what is the problem to be
solved.

The first step of our method is to match the current task
with one of the problem frames that we propose for en-
treprise applications, and this helps to understand the na-
ture of the problem under study. The problem frames to
be considered for enterprise applications are clearly more
complex than the basic ones. We then provide guidelines
to develop all the artifacts required by the method through
a dedicated choice of appropriate UML diagrams together
with predefined schemas or skeletons for their contents.
Thus, using our method provides a more direct path to the
UML models, which saves time (no long questions about
which diagrams to use and how) and improves the models
quality (relevant issues are addressed, a uniform style is of-
fered). In this paper, we consider the phases of modelling
the domain, the requirements capture and specification, and
their relationships.

Enterprise Applications cover a wide range of applica-
tions. Our method, using problem frames, leads to choose
precise concepts to handle appropriate variants.
Keywords: Domain Modelling, Requirements Specifi-
cation, Enterprise Applications, Problem Frames, UML
based development method

1 Introduction

Enterprise Applications are complex systems so their
development requires appropriate concepts. M. Fowler [5]
describes them as follows :

“Enterprise Applications are about the display,
manipulation and storage of large amounts of of-
ten complex data and the support or automation
of business processes with that data.”

Since patterns are “ready-to-use” structures drawn from ex-
perience, it is now quite widespread to use them to help
systems development. Various kinds of patterns are avail-
able, problem frames propose an overall problem structure
[8], architectural styles re useful to provide an overall struc-
ture for the system, while design patterns are more appro-
priate when structuring the design before coding, thus pat-
terns may differ in granularity.

One of the difficult issues is to start the analysis of a
complex problem. M. Jackson proposes “Problem Frames”
[8] that can be used by themselves or in combination to
tackle with a first structuring of problems. Problem frames
differ by their requirements, domain characteristics, in-
volvements, and frame concern. For each problem frame,
a diagram is settled, showing the involved domains, the
requirements, the design, and their interfaces. Five basic
problem frames are provided [8] together with some vari-
ants. Problem frames are also presented with the idea that,
once the appropriate problem frame is identified, then the
associated development method should be given “for free”.

While the structuring concepts brought by problem
frames seem highly valuable to help start the development
effort, by showing clearly the items to consider and the
general tasks to do, we propose development methods as-
sociated with them.

Now, since the UML notation [10, 11] is widespread and
also carries valuable concepts experienced in practice, we
proposed in [4] for the various basic frames a development
method using UML as a notation.

There are some drawbacks with the use of UML. While
it provides a nice variety of constructs, it may be difficult to
choose which are appropriate. There are no means to fully
insure the consistency between the different views used to
build a model, and, moreover, the UML semantics is both
informal and problematic. However, in [1, 2], it has been
shown that UML may be used in a development method in
a quite precise, structured and well-founded way, so as to
avoid most typical problems (e.g., only a subset of UML is
used and its semantics may be formally expressed).

In the work presented here, we propose a new problem
frame, the Enterprise frame, composed of two parts (the
Business Frame and the EA Frame), that we devised for

Enterprise Applications, together with its associated devel-
opment method based on the UML.

Enterprise applications are quite complex and large and
came in several variants, thus it is not possible to propose
for them a simple frame made by few elements as the ba-
sic ones in [8]. First of all we had to extend the notation
used by Jackson to present the frames, by adding, e.g., pro-
vision for composite phenomena and domains, see Sect. 2.
We also decided, for the above reasons, in this case not to
follow the approach that suggests to decompose the prob-
lem at hand in smaller subproblems, till the subproblems
match the basic frames; we propose instead a frame where
to match directly the problem of the development of the
application at hand.

In problem frames presented by M. Jackson [7, 8] there
is a distinction between existing domains and the system to
be built as a new part in that world. This implies that the
various entities considered are not modified (or removed)
when the new system is introduced.

In our understanding, an enterprise applications (shortly
EA) may introduce some change in the preexisting context,
the business, for instance by replacing some entities (think
of the case when a clerk is replaced by the software sys-
tem). Thus, in order to propose a problem frame for en-
terprise applications, we need first to describe the business
that is managed by the EA. We then propose an Enterprise
frame composed of two parts:
– A Business Frame describing the business (in large)
which the EA will manage. This business framework helps
to precisely understand the business considered together
with its business rules (that are often quite subtle). Having
a separate business frame also promotes its reuse in many
different systems.
– A “classical” problem frame, the EA Frame, with the EA
machine, its domains and requirements.
Then, we present how from the Business Frame we can de-
rive the corresponding UML model, the Business Model,
and from the EA Frame, the Requirement Specification,
again a UML model. In this paper, we do not consider
the task of designing the EA, we just give a hint, to shown
of the structuring power of the (business and EA) frames
will guide also the design step, and will help to trace the
requirements.

In Sect. 3 we present the Business Frame and the asso-
ciated Business Model, and in Sect. 4 the EA Frame, how
to derive it starting from the Business Frame, and the as-
sociated UML specification of the requirements. In the
paper, we use as a running example a small e-commerce
site, µEC, where clients buy products chosen in a brows-
able catalogue and pay using an external payment system;
the products are produced by a factory, stocked, and then
delivered by a dedicated department.

2 Notation for Frame Presentation

Following Jackson’s notation [8], different types of do-
mains are used in the diagrams. As shown in Fig. 1, a ma-
chine domain (the software to be built) is denoted by a box
with a double stripe, a designed domain (data structures
that may be freely designed and specified) as a box with a
single stripe, and a domain (a problem domain whose prop-
erties are given) as a box with no stripe.

Machine domain Given domainDesigned domain

Figure 1: Problem diagram symbols

A solid line connecting two domains is an interface of
shared phenomena. In Fig. 2, phenomena ph1 is controlled
by domain D1 and is shared between domains D1 and D2.

D2D1
D2!ph2(args)

D1!ph1(args)

Figure 2: Shared phenomena notation

As shown in Figure 3, requirements are denoted by a
dashed oval, and a dashed line connecting a domain and
a requirement is a requirement reference, while a dashed
arrow is a constraining requirement reference.

DnD1

ph−n(args)ph−1(args)

...

Requirements

Figure 3: Requirements notation

Problem frames differ in the number of components and
the layout, and also in the domain and phenomena types.
Using letters in the lower right corner, domains are marked
as lexical (data), biddable (people), or causal (see Fig. 4),
and the choice for the first letter phenomena name indicates
whether it is symbolic, event or causal.

When considering complex systems, we found it useful
to provide some extensions to this notation, as shown in
Figure 5. When there are several instances of a domain, the
usual multiplicity notation (* or n..m) is a useful graphic
abbreviation. When a number of shared phenomena have
to be taken into account, they are grouped into a notion of
service S (a set of phenomena). We also found it useful to
have a notion of internal (non sharable) phenomena i-ph,
and of (external) sharable phenomena e-ph.

X

Lexical domain Causal domain

CB

Biddable domain

Figure 4: Domains and interface markings

D1

S = {D1!ph−i, ..., D2!ph−k, ...}

S
D2

* n..m
e−ph

D
i−ph

Figure 5: Extensions to the notation

It is possible to connect several domains with an hyper-
arc to denote a complex interaction built out of various ba-
sic phenomena, that we name composite phenomena (see
Fig. 6).

D2

D4D3

D1

D4!ph4

CPH(...)

D3!ph3

D2!ph2D1!ph1

Figure 6: Composite phenomena

3 Enterprise Applications: the Business
Frame

In this section we introduce the Business Frame and the
associated Business Model, illustrating both with an appli-
cation to the µEC case study.

3.1 Business Frame

Usually, the business subject of an enterprise application
is quite complex and needs to be accurately understood and
modelled before to start the application development.

We assume that the business consists of various enti-
ties interacting among them, to realize the various activities
specific of that business. Technically, the business will be
schematically structured by means of a Jackson frame, see
Sect. 2, having a domain for each entity of the business,
and where their mutual interactions are given in terms of
composite phenomena.

The domains appearing in a Business Frame must be of
kind C or B, those of kind B must have at least one internal
phenomena, and those of kind C must have at least one
external phenomena and cannot have internal phenomena.

The domains appearing in a Business Frame have to be
marked not only with C or B, but also with respect to their

role in the business. We distinguish only three categories:
– business objects (marked by O), the entities which are the
subject of the business;
– business workers (marked by B), the entities which are
doing something inside the business; we do not distinguish
further among them (other approaches, e.g., [9], distin-
guish between those working for the business and the busi-
ness actors);
– and external systems (marked by E), entities external
to the business used for outsourcing some activities (e.g.,
messaging, mail) or for taking advantage of data provided
by already available systems (e.g., a system giving infor-
mation about the credit history of people).
Business objects must be of kind C, business workers of
kind B, whereas there are no constraints on the kind of the
external systems.

The composite phenomena appearing in a Business
Frame correspond to the relevant activities made in the
business, and will be named business case. Notice that
we do not use the term “business use case” as in other ap-
proaches, e.g., in [9], because, we do not model the busi-
ness from the point of view of something interacting with
it. Instead, for us a business case is seen as a coopera-
tion among business workers, business objects and exter-
nal systems. We prefer this approach, since it avoids to fix
at this points the boundaries of the business under investi-
gation, allowing to get a more abstract description. More-
over, a description of the business produced in this way,
can be reused for the development of various different ap-
plications, becoming thus a more valuable asset.

3.2 µEC case: Business Frame

Fig. 7 shows the Business Frame for our e-commerce
example µEC. This framework exhibits business workers
(e.g., Manager), business objects (e.g., Orders), and ex-
ternal systems (e.g., Factory), and complex business cases
among them, e.g., Put order is a business case in which
Client, Orders, Catalogue and the Stock take part. To
avoid to clutter the Business Frame diagram by listing all
the internal and external phenomena of the various do-
mains, we modularly decompose it by giving for each busi-
ness case a separate diagram showing all the related phe-
nomena. For example, in Fig. 8, the Put order business
case is described in detail (the others can be found in Ap-
pendix A.1).

3.3 (UML) Business Model

After we gave the proper frame for the business of inter-
est, we should describe its component domains and busi-
ness cases. We chose to do that using UML following the
precise method of Astesiano-Reggio [1, 2].

E

O

O

O E

W

E

W
Client

C

B

System
Payment

Put money

Catalogue

Orders

Stock

Browse

Refill

Deliver

Factory

Delivery

Manager

C

C

C

B

BDept

B

Update

Put orderGet money

Figure 7: µEC Business Frame

O

Orders
C

O

Catalogue
C

O

Stock
C

Put order

W

E

getProd

getMess

takeProd

addOrder
pay

B

Client

C

Payment
System

putOrder

Figure 8: µEC Business Frame: Put order Business Case

This method proposes a precise way to model in general
the domain of a software system, which can be specialized
to the particular case of enterprise applications as shown in
what follows.

Given a Business Frame, say BF, the associated Busi-
ness Model is a UML model consisting of:
– a class diagram with a class for each domain appearing
in BF, such class will be active for the B domains and
passive for the C ones. We use three stereotypes to in-
dicate for each class which is role w.r.t. the business, pre-
cisely �bo� (for “Business Object”), �bw� (for “Busi-
ness Worker) and �es� (for “External System”), accord-
ing to the domain markings O, W and E. For each internal
phenomenum there will be a private operation in the cor-
responding class; the happening of the internal phenomena
correspond to self-calls of the associated operations. To
stress that they correspond to autonomous acts, we use the
operation stereotype �A�. The external phenomena, to
whom a domain must react, will be modelled by opera-
tions of the corresponding class. Obviously, the classes in
this diagram may have attributes, other operations and may
be defined using other classes (e.g., datatypes).
– some behaviour views modelling the behaviour of the
classes introduced in the class diagram. The behaviour of

an active class is given by a statechart, where for the pas-
sive classes, we just model the behaviour of their opera-
tions.
– a description of each business case, by means of a UML
collaboration summarizing the participants in the case, and
possible parameters, and by an activity diagram, whose
action-states may only contain calls of the participant op-
erations, and whose conditions must be built by using only
the participant operations and attributes.

3.4 µEC Business Model

Fig. 10 presents the class diagram belonging to the µEC
Business Model; it contains a class for each domain in the
µEC Business Frame of Fig. 7 appropriately stereotyped.
On the top of the diagram there are some nonstereotyped
classes introducing the data used by the others (e.g., Prod-
uct and Order).

Catalogue
method newProd(PI,E,S)

{P = create(Product); P.id = PI; P.price = E;
context deleteProd(PI) post:

not ps.id ->includes(PI)
context changePrice(PI,E) post:

ps->select(id = PI).price = E

Figure 9: µEC Business Model: Catalogue Behaviour
View

Fig. 9 presents the Behaviour View associated with the
business object class Catalogue; being a passive class we
have just modelled its operations, one by a method and the
others by post conditions. The other behaviour views are
in Appendix A.1. We do not report the behaviour views
associated with the other (active) classes, since we do not
have information on the way they behave.

In Fig. 11 we present one Business Case, precisely “Put
Order” (the others are in Appendix A.1). The activity dia-
gram shows how after the autonomous act of the client of
putting an order, if the payment system grants the needed
money and if the chosen product is in the stock, the order
will be accepted. Notice, how this diagram fully describe
the business logic; for example, it is clear that an order can-
not be cancelled, and that no reason for refusing it is given.

4 The EA Problem Frame

In this section, we first present the problem frame re-
lated to the development of an Enterprise Application,
shortly EA in what follows, and how it can be derived from
the underlying Business Frame. Then, we show how to

<<A>>addProduct(ProdID,Euro,String)
<<A>>removeProd(ProdID)
<<A>>modifyPrice(ProdID,Euro)

Manager
<<bw>>

getMess(String)
show(Set(Product))
passWdIs(String)

<<bw>>
Client

ps: Set(Product
newProd(ProdID,Euro,String)
deleteProd(ProdID)
changePrice(ProdID,Euro)
getProd(ProdID): Product

Catalogue
<<bo>>

os: Set(Order)

delivered(OrderId)
addOrder(ClientID,ProdID,Int,Date)

first(): Order

Orders
<<bo>>

Factory
<<es>>

receiveProd(ProdID,Int)
availableProd(ProdID): Int
takeProd(ProdID,Int): Bool

Stock
<<bo>>

DeliveryDept

<<A>>deliver(Order)

<<es>>

<<A>>deliver(Order)

PaymentSystem
<<es>>

pay(Euro,ClientID)

correct(ClientID,String): Bool
newPsw(): String

ClientRecords

id: ProdID
price: Euro
descr: String

Product

Euro

OrdID

Date

ProdID

ClientID
client: ClientId
prod: ProdId
quant: Int
date: Date
id: OrderId
status: {wait,deliv}

Order

Figure 10: µEC Business Model: Class Diagram

build the corresponding Requirement Specification using
the UML.

4.1 Problem Frame

We report the problem frame for the Enterprise Appli-
cation in Fig. 12. In this frame together with the original
Jackson’s marking of the domains (C and B - to which we
add ? when both are possible), we use also O (used for
business object BO), W (used for business worker BW) and
E (used for external systems ES), as already introduced in
Sect. 3.

Notice, that all the domains appearing in Fig. 12 do
not have internal phenomena, but only external phenomena
shared between them.

Enterprise applications are quite complex, and so the
machine part of the related problem frame is not trivial
and will be a composite domain, whose structure is shown
in Fig. 13. It needs to be composite to take into account
the usual three tier/layer architecture of Enterprise Appli-
cations. A BO-D is a designed domain giving a full model
of the business object BO to allow the EA to work with it.
An ES-I domain (similarly a BW-I) instead corresponds to
some limited information about ES (BW) needed by EA to
interact with it (e.g., its name and the way to access it). A

CI: ClientID
PI: ProductID
Q: Int

PaymentSystem

Client

Orders

Stock

Catalogue

Put Order

CT

ST

ORS

PS

C

C.putOrder(PI,Q,CI,now)

PS.pay(Q*CT.getProd(PI).price))

ST.takeProd(PI,Q)

C.getMess("Refused")

ORS.addOrder(PI,Q,CI,now) C.getMess("Accepted")

True

False True

C.getMess("Refused")

False

Figure 11: µEC Business Model: Put Order Composite
Phenomena/Business Case

O

E

E

O

EA!phW’n

BWn!phWn

...

Application

Enterprise

B
BW1

B
BWn

...

...

C
BO1

W

W

?

?
ES1

ESk

Requirements

C
BOm

EA!phE’1

ES1!phE1

EA!phE’k

ESk!phEk

EA!phO’m

BOm!phOm

EA!phO’1

BO1!phO1

EA!phW’1

BW1!phW1

Figure 12: EA Problem Frame

D-I domain may be empty/null; this is usually the case of
a domain D with multiplicity 1.

BO1−D

BWn−I

BW1−I

ES1−I
E
N
G

N
E

I

P
R
E
S
E
N
T
A
T

O
N

I

ESk−I

...

...

...

...

Enterprise Application (EA)

BWn

BW1

ESk

ES1

W B

W B BOm−D

Figure 13: EA Problem Frame: Machine

Fig. 13 shows a preliminary version of the EA frame;
further aspects have to be considered. For example, we
have to take into account the fact that some of the . . . -D
and . . . -I domains must be persistent. Assume that D1, . . . ,
Dn are the persistent domains, thus

...
Dn

D1

...

...

should be replaced by

D
A
T
A
B
A
S
E

...
D1

...
Dn

D1!read
D1!upd

Dn!read
Dn!upd

...

.
Also the way EA interacts with a business worker or an

external system may be further detailed, clarifying whether
it will be direct or indirect. For example, such interac-
tion may be realized by exchanging paper documents (e.g.,

paper mail), thus B
BW

W

BW!phW
EA

EA!phA becomes

B
BW

W
EA

PAPER
DOC

BW!phW

PD!phP X EA!phA

PD!phP’

.
Furthermore, also the domains Presentation, Engine

and Database may be further structured. In this paper we
do not consider the design phase, and so we do not discuss
any more the frame for the Enterprise Application machine.

4.2 Placing the Enterprise Application (EA)

The developer should decide which part of the business
will be taken care by EA. Visually, that can be done by en-
closing in a box the part of the Business Frame that will be
automatized by the EA (both domains and business cases).

The outside domains participant in an enclosed business
case will be then interacting with the EA, and will be linked

to EA by some shared interfaces. It is also possible to in-
troduce new domains linked with the EA, for example new
external systems to cooperate with he EA to run the var-
ious business cases, for example, the email to handle the
communications with some business workers.

Thus, now it is possible to draw the problem frame in-
stantiation for the particular case at the hand.

There are some checks to be done on the performed
choice to detect possible problems, which may prevent to
build the EA in a sound way; for example:
• Any business object participant in an enclosed business
case must be enclosed in EA.
• Each enclosed domain must be connected by a chain of
business cases having a common participant with an out-
side domain (otherwise, it is useless and can be dropped).
• There should be at least one domain outside; otherwise
EA will be a completely black box, and thus a useless sys-
tem, with which no one may interact. In general, this fact
may be caused either by an incomplete business frame, or
because some business worker was misplaced as a busi-
ness object (if the EA handles clients, but the clients also
interact with EA, then there should be two domains in the
Business Frame one for the client as a person and another
one for its associated information managed by the EA, e.g.,
ClientRecord or ClientInfo.
• if there are no domains inside, this is a limit case of an
EA that just acts as an interface or a wrapper for a bunch of
external systems or to support simply interactions among
business workers (e.g., a kind of messaging system); in this
case one should wander if this is really a case of enterprise
application.
• If all the outside domains linked with EA are of kind C,
then we have another limit case, that is an EA that always
report the same information (not related to any request).
• A domain of kind B cannot be inside; indeed being B
means that it is not possible to fully automatize his/her/its
behaviour. In this case, the developer must first check if it
is possible to transform it into a domain of kind C using
also time related external phenomena (for example, in this
way it is possible to reduce to non causal behaviour to a
causal one, which periodically performs some activity), or
by introducing more external phenomena in other domains
to allow it to react to them. Sometimes, the domain can be
factorized in smaller domains where some of them will be
C and other will be B, thus the C ones may be enclosed,
whereas the B ones will stay outside.
• . . . more checks may be defined to help developers detect
problems quite early.

4.3 µEC: Placing the Enterprise Application

Notice that Fig. 14 shows that some business cases are
left out; those between the Client and the Payment System

E E

O

O

O E

W

W

Catalogue

Orders

Stock

Browse

Refill

Deliver

Client

Factory

Delivery

Manager

C

B

C

C

C

B

B
System
Payment

Dept

B

Get money
Put money

Update

Put order

Figure 14: µEC placing

(they do not concern µEC). Note also, that the Manager
cannot be put inside µEC (i.e., automatized) since her/his
activity cannot be reduced to a purely reactive one, she/
he has to decide when and which products to add and to
remove from the catalogue, whereas the price change, per-
haps may be automatized, for example by linking it to the
change of some rate, which can be given by some external
system. Then we can get the instantiation of the EA prob-
lem frame for the case of µEC, reported in Fig. 15. The
asterisk attached to the Client domain denotes that there
can be any number of clients.

W BManager

W B
*

Client

E C
Payment
System

E BFactory

E B
Delivery
Dept

O CCatalogue

O COrders

O CStockmicro

e−commerce

Figure 15: µEC problem frame

4.4 Requirement Specification

The Requirement Specification, corresponding to the
Requirement part of the EA problem frame, see Fig. 12,
will be given using UML and following the precise method
of Astesiano-Reggio [1, 2].

Thus the Requirement Specification will be a UML
model containing:

• a class diagram with at least a class for each domain in
the frame; those marked by B will be active, whereas
those marked by C will be passive classes. For tak-
ing into account the O, B and E markings we use
again the three corresponding stereotypes introduced
in Sect. 3 (�bo�, �bw� and �es�). The shared
phenomena will be modelled by means of operations.
Then, this class diagram will include a class for the
EA, EA, whose operations correspond to its shared ex-
ternal phenomena. The EA class may have some pri-
vate attributes, which will be used to store information
about the business workers and the external systems,
but not about the business objects, they are already
fully described by the corresponding domains.

• a complete definition of the behaviour of all the
classes stereotyped by �bo�; these are really impor-
tant since their behaviour is a relevant part of the busi-
ness logic. Obviously, also the behaviour of the other
classes may be modelled, whenever it is not trivial.

• a use case diagram and a description of each use case
in it, where the actors are all and only the domains
connected with EA. The description of the behaviour
of a use case consists of a statechart associated with
the class EA, such that
– the events are either timed events or call events,
– the conditions concern only its attributes,
– and the actions are either updates of its attributes or
call of operations of the use case actors.

Note that here the use cases do not fully specify the re-
quirements, also the description of the behaviour of the
various business object is a fundamental part. Using the
standard terminology, we can say that the business logic
is partly included in the definition of the business objects,
and partly in the use cases. Thus, we have factorized it in
two parts: the rules/what to do (in the use cases), and the
subjects/who is acted on (the business objects); we think
that this should help master the complexity of the business
logics, and, since it will be reflected in the architecture of
the machine to develop (see Sect. 4.1), to help the design
procedure.

To give the requirement specification we start from the
(UML) Business Model and from the placement diagram.

The class diagram part of the Business Model is the
starting point of for the class diagram part of the Require-
ment Specification. The classes corresponding to domain
neither included nor connected with the EA will be thrown
away, and a class corresponding to the EA has to be intro-
duced. The interfaces of the class connected with EA may
need to be modified to allow them to interact with the EA;
this mainly concerns the class of stereotype �bw�, where

mEC

Put Order

Update

C: Client

M: Manager CT: Catalogue

ST: Stock

ORS: Orders

DP: Delivery Dept.

F: Factory

PS: Payment system

Refill

Deliver

Browse

Register

Use Case Diagram

putOrder(PI,Q,CI,now)
[not ST. getProd(PI,Q)]
/C.getMess("Refused")

putOrder(PI,Q,CI,now)
[ST. takeProd(PI,Q) and
 not PS.pay(Q*CT.getProd(PI).price))]
/C.getMess("Refused")

putOrder(PI,Q,CI,now)
[ST. getProd(PI,Q) and
 PS.pay(Q*CT.getProd(PI).price))]
/ ORS.addOrder(PI,Q,CI,now);
 C.getMess("Accepted")

login(CI,x)
[cls.correct(CI,x)]

/C.getMess("you can order")

login(CI,x)
[not cls.correct(CI,x)]

/C.getMess("wrong psw")

Use Case Put Order Description

Figure 17: µEC Requirement Specification

addProduct(ProdID,Euro,String)
removeProd(ProdID)
modifyPrice(ProdID,Euro)

<<bw>>
Manager

getMess(String)
show(Set(Product))
passWdIs(String)

<<bw>>
Client

receiveProd(ProdID,Int)
availableProd(ProdID): Int
takeProd(ProdID,Int): Bool

Stock
<<bo>>

PaymentSystem
<<es>>

pay(Euro,ClientID)

DeliveryDept

deliver(Order)

<<es>>

Factory
<<es>>

cls: ClientsRecords
putOrder(ProdID,Int,ClientID,Date)
login(ClientID,String)
getOrderToDeliver()
delivered(OrdID)
register(ClientID)

mEC
<<system>>

ProdID

ClientID
client: ClientId
prod: ProdId
quant: Int
date: Date
id: OrderId
status: {wait,deliv}

Order

ps: Set(Product
newProd(ProdID,Euro,String)
deleteProd(ProdID)
changePrice(ProdID,Euro)
getProd(ProdID): Product

Catalogue
<<bo>>

os: Set(Order)
addOrder(ClientID,ProdID,Int,Date)
first(): Order

Orders
<<bo>>

correct(ClientID,String): Bool
newPsw(): String

ClientRecords

id: ProdID
price: Euro
descr: String

Product

Euro

OrdID

Date

Figure 16: µEC Requirement Specification: Class Dia-
gram

changes in those of stereotype �bo� or �es� should be
carefully motivated, and their feasibility investigated.

The behaviour of the business objects (classes of stereo-
type �bo�) should be entirely recovered from the Busi-
ness Model; obviously, also those of the other classes, if it
is not trivial.

For each business case enclosed in the EA, there should
be a use case (usually a summary one following the classi-
fication of [12], recall enterprise applications are usually
quite large and complex). The description of these use
cases will be derived from those of the corresponding Busi-
ness Cases. No other use case at the summary level should
be introduced, the core functionalities of the enterprise ap-
plication should be derived from the business; however, to
accommodate the extra activities due to the interacting with
the EA new use cases, at the user or subfunction level may
be added.

4.5 µEC case: Requirement Specification

Fig. 16 presents the class diagram part of the Require-
ment Specification of µEC. It has been defined starting
from that of the Business Model in Fig. 10. A new class
corresponding to the enterprise application, i.e., µEC, has
been added, and its operations model abstractly the com-
munications it can receive by the entities in its context
(classes of stereotype�bo�, �bw� and �es�). The as-
sociations appearing in the diagram show the possible flow
of the communications. A new data class ClientRecord has
been added, these are the information about the clients that
µEC needs to interact with them (just the passwords to
control their access).

Fig. 17 instead presents the use case diagram; notice
that a use case, Register, not corresponding to a business
case has been added; this is quite typically, since the intro-
duction of the application in the business may require ad-

ditional activities, in this case the client must register with
the system before to be able to buy.

Finally, Fig. 17 shows a description of a use case,
PutOrder (the others are in Appendix A.3); here we can see
putting an order from the µEC point of view: it reacts to
the requests from the clients accessing and modifying the
business objects (stock, orders and catalogue) and by in-
teracting with an external system (Payment System). Dif-
ferently from the corresponding business case, the client
before to buy must login with the system.

5 Conclusion and future work

In this paper we have presented a software develop-
ment approach for Enterprise Applications. The first step
is to match the Business Frame and the EA Frame that
we propose, then the descriptions of the various parts of
the frames are achieved following the proposed UML di-
agrams. We thus combine the use of the UML notation,
the use of the structuring concepts provided by the prob-
lem frames, together with our methodological approach for
well-founded methods.

While the Business Frame and the EA frame provide
a first overall structure for the application, our method
shows, for each development phase, how to use appropriate
UML constructs.

As mentioned in the introduction, we think problem
frames are very good at providing a first requirement struc-
ture that is invaluable to start the analysis of a problem and
understand its nature. Problem frames provide a means to
reuse experience that is helpful to start a complex problem
analysis with some structuring concepts in mind.

In this work, we chose to use the notation provided by
Jackson for problem frames, and then to pursue the devel-
opment using the UML notation. We consider that these are
useful graphic notations that may be used easily (problem
frame notation is quite simple, and UML is widespread).
However, we think that the essence of our approach is in
the use and combination of the relevant underlying con-
cepts, and that they could be expressed using different nota-
tions as preferred by the user of our approach. For instance,
our Business and EA Frames could also be expressed us-
ing UML diagrams (we did not chose this option for several
reasons, one is to use both the problem frame concepts and
notation, the other is to use a different graphical language
for a different level of abstraction). Another option is to
move to formal specification languages, as we did in [3]
to provide CASL and CASL-LTL specifications for some of
the basic problem frames, which can be done both for the
problem frame level and for the specification of the various
parts of a frame.

Concerning the business modelling, RUP, the Rational
Unified Process, considers it as an important task to be
done before the requirement specification, and offers a spe-
cific UML profile, see [9], for doing it using UML. This
profile and the associated method are quite different from
what we have proposed in this paper. First of all, there is a
difference in the aims, the profile of [9] is intended to mod-
ell businesses for business analysts and designers, and thus,
e.g., they consider, e.g., business goals and stake holders.
We have more limited aims, that are to retrieve enough in-
formation on the business to capture and specify the re-
quirements for a supporting application. Furthermore, our
proposal is more minimalist, introducing just a few stereo-
types and a few guidelines on how to use the UML con-
structs. From a more technical point of view, in our busi-
ness frame and associated UML business model we do not
precisely fix the boundary of the business, and as conse-
quence we do not have business use cases (modelling the
interaction between business actors and the business) nor
the distinction between business workers (inside the busi-
ness) and business actors (outside of the business). Only
when we will have put the application to be developed in
the business context, we will make this distinction. In this
way, one of our business frame/model may be reused for
many different application supporting many different as-
pects of that business.

References

[1] E. Astesiano and G. Reggio. Towards a Well-Founded
UML-based Development Method. In A. Cerone and
P. Lindsay, editors, Proc. of SEFM ’03, pages 102–
117. IEEE Computer Society, Los Alamitos, CA,
2003.

[2] E. Astesiano and G. Reggio. Tight Structuring for
Precise UML-based Requirement Specifications. In
M. Wirsing, A. Knapp, and S. Balsamo, editors, Rad-
ical Innovations of Software and Systems Engineering
in the Future, Proc. 9th Monterey Software Engineer-
ing Workshop, Venice, Italy, Sep. 2002., number 2941
in Lecture Notes in Computer Science. Springer Ver-
lag, Berlin, 2004.

[3] C. Choppy and G. Reggio. Using CASL to Spec-
ify the Requirements and the Design: A Problem
Specific Approach. In D. Bert and C. Choppy, edi-
tors, Recent Trends in Algebraic Development Tech-
niques, Selected Papers of the 14th International
Workshop WADT’99, number 1827 in Lecture Notes
in Computer Science, pages 106–125. Springer Ver-
lag, Berlin, 2000.

[4] Christine Choppy and Gianna Reggio. A UML-Based
Approach for Problem Frame Oriented Software De-
velopment. Information and Software Technology,
2005. accepted for publication.

[5] Martin Fowler. Patterns of Enterprise Application Ar-
chitecture. Addison Wesley, 2003.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison Wes-
ley, Reading, 1995.

[7] M. Jackson. Software Requirements & Specifica-
tions: a Lexicon of Practice, Principles and Preju-
dices. Addison-Wesley, 1995.

[8] M. Jackson. Problem Frames: Analyzing and Struc-
turing Software Development Problems. Addison-
Wesley, 2001.

[9] S. Johnston. Rational UML Profile
for business modeling. Available at
www-128.ibm.com/developerworks/
rational/library/5167.html, 2004.

[10] OMG. UML Specification 1.3, 2000. Available
at http://www.omg.org/docs/formal/
00-03-01.pdf.

[11] OMG. UML 2.0 Superstructure, 2003.
http://www.omg.org/cgi-bin/
doc?ptc/2003-08-02.

[12] S. Sendall and A.Strohmeier. Re-
quirements Analysis with Use Cases.
http://lglwww.epfl.ch/research/
use cases/RE-A2-theory.pdf, 2001.

[13] Mary Shaw and David Garlan. Software Architecture.
Perspectives on an Emerging Discipline. Prentice-
Hall, 1996.

A Appendix

A.1 Business Frame

A.2 µEC Business Model

The composite phenomena Refill is shared between
Stock and Factory, and it involves a product identity PI,
and a quantity Q as in Figure 21. The associated business
case exhibits the activities involved.

The composite phenomena Deliver is shared between
Client, Orders, and DeliverDepartment as in Figure 22.

O

Catalogue
C

Browse

contentsshown
W B

Client
lookAtCatalogue

Figure 18: µEC Business Frame: Browse Business Case

W
Client

B

O C
Orders

E Bdelivered
deliverOrder

Delivery Dept

Deliver

getMess

first

Figure 19: µEC Business Frame: Deliver Business Case

O E BdeliverProd
Factory

Refill

C

Stock
receiveProd

Figure 20: µEC Business Frame: Refill Business Case

RefillStock
ST

Factory
F

PI: ProdID
Q: Int

F.deliverProd(PI,Q)

ST.receiveProd(PI,Q)

Figure 21: µEC Business Model: Refill Business Case

DeliverClient
C

OrdersORSO: Order

DeliverDepartment
DP

DP.deliverOrder()

O.ORS.first()

DP.delivered(O.id)

C.getMess("delivered") ORS.delivered(O.id)

Figure 22: µEC Business Model: Deliver Business Case

BrowseClient
C

Catalogue
CT

C.lookAtCatalogue()

C.shown(CT.ps)

Figure 23: µEC Business Model: Browse Business Case

Stock
context receiveProd(PI,Q)

pre: Q > 0
post: available(PI) = available@pre(PI) + Q

context takeProd(PI,Q)
pre: Q >= 0
post: if Q <= available(PI) then

result = True and available(PI) = available@pre(PI)-Q
result = False

Orders
method addOrder(CI,PI,Q,D)

{O = create(Order); O.client = CI; O.prod = PI;
O.quant = Q; O.date = D;
O.id = X s.t. os.id->excludes(X); os = os U {O}}

context delivered(OI) post:
os->select(id = OI).status = delivered

context first() post:
os->select(status = waiting)->forall(O.date <= result.date)

Figure 24: µEC Business Model: Behaviour Views

A.3 µEC Requirement Specification: Use Case
Descriptions

 refilledStock(PI,Q)
 / ST.receiveProd(PI,Q)

Refill

register(CI)
/C.passWdoIs(cls.newPsw())

Register

C.lookAtCatalogue()
/ C.shown(CT.ps)

Browse

delivered(OI)
/ORS.delivered(OI);
C. C.getMessage("delivered")

getOrderToDeliver()
/DP.deliver(ORS.first())

Deliver

Figure 25: µEC Requirement Specification: Use Case De-
scriptions

