
CASL-MDL, modelling dynamic systems with a
formal foundation and a UML-like notation

(full report)

Christine Choppy1 and Gianna Reggio2

1 LIPN, UMR CNRS 7030 - Université Paris 13, France
Christine.Choppy@lipn.univ-paris13.fr

2 DISI, Università di Genova, Italy
gianna.reggio@disi.unige.it

1 Introduction

The starting point of this work is to provide a visual help for writing and reading
specifications in Casl-Ltl [9], a Casl [7] extension for dynamic systems, that is
suitable for specifying different kinds of dynamic systems, and at different levels
of abstraction [3, 5]).

The authors already addressed the problems related to use in practice Casl-
Ltl for specifying/modelling, e.g., by the attempt to provide an alternative
graphical syntax, a general purpose development method based on it [5], and
some specializations for specific class of problems defined by problem frames [4].

We note the worldwide diffusion of the UML [10] as a modelling notation
in many different fields, although it is informal, without a precise semantics,
and some of its constructs result from the fact that the UML has been defined
by putting together and turning into object-oriented various existing notations
(e.g., entity relationships diagrams, state charts, and message sequence charts).
However, the UML is visual, there exists a large number of tools for producing
its diagrams, and it is quite flexible so as to accommodate most users.

We think that it may be possible to develop a notation that has the nice
properties of both the Casl-Ltl and the UML without their defective sides,
and that moreover has some chances to be used in practice, and thus is the
reason for proposing Casl-Mdl. We would like to pursue this objective under
the general idea of the well-founded methods [2].

We already worked along this direction trying to propose a visual notation
as UML-like as possible but with a clear semantics, and pragmatics given by an
underlying corresponding Casl-Ltl specification. From the UML state machine
we have derived the interaction machines (see, e.g., [1] and [6]) which offer a
visual presentation to Casl-Ltl conditional specifications with initial semantics
of simple dynamic systems; but the interaction machines are more general and
powerful than UML state machines, and are not restricted to reactive behaviour.
It is a rather nice and intuitive visual notation, and its editing/drawing may be
achieved with UML tools.

Casl-Ltl uses temporal logic formulae to express properties on the dynamic
behaviour of simple systems, but this is not an easy to read notation. Casl-Mdl
has some diagrams similar to the UML sequence diagrams that may used to
express some of these properties, and they are more expressive than the UML
ones, and much more similar to the live charts of [8].

Casl-Mdl has then a type diagram that play the same role of the UML
class diagram, but instead of classes allows to introduce the datatypes and the
dynamic types need to type the elements of the model.

Summarizing we can say that Casl-Mdl is a visual notation strictly cor-
responding to Casl-Ltl specifications whose visual constructs have been bor-
rowed by the UML, and this choice allows also to borrow the professional editors
available for the UML, making thus possible just now to easily write Casl-Mdl
specifications, without having to wait for the development of dedicated tools.

In Sect. 2 we introduce the Casl-Mdl models, in Sect. 3 and in Sect. 5 the
type diagrams and the sequence diagrams respectively, and finally in the Sect. 9
the conclusions and the future works.

In the paper we will use as a running example the modelling of ASSOC, a case
study that requires to describe the functioning of a consortium of associations
where associations have boards with a chair and several members, and board
meetings take place, to communicate informations or to take decisions via voting.
ASSOC has been used as a paradigmatic case study to present a method for the
business modelling based on the UML, and thus we think that it may be a good
workbench to test the modelling power of Casl-Mdl. Fragments of the model
of ASSOC will be used to illustrate the various .

2 CASL-MDL Models

A Casl-Mdl model represents the modelled item in terms of values and of
dynamic systems, and we use the term “entity” to denote something that may
be a value or a dynamic system; similarly an entity type defines a type of entities.
In Fig. 1 we present the structure of a Casl-Mdl model, by means of its
metamodel expressed using the UML1.

A Casl-Mdl model consists of entity type declarations (EntityType), at least
one, and any number, also none, of relationships between entity types such as
extension and subtyping, of properties about some of those entities and of def-
initions describing completely some of those entities. In this paper for lack of
room we will consider only the highlighted parts.

A Casl-Mdl model corresponds to a Casl-Ltl specification with at least
a sort for each declared entity type, whereas the properties will result in a set
of axions and the definitions in subspecifications built by the Casl-Ltl “free”
construct.

Translation

1 In the UML the black diamond denotes composition and the big arrow specialization.

Fig. 1. Structure of the Casl-Mdl models (metamodel)

TModel : Model→ Casl-Ltl-Specification

TModel(mod) =

spec mod.name = (T(mod.entityType)then axiomsTProps(mod.property))2

then free{ T(mod.definition) }
The translation of the entity types (at least one must be present in a Casl-

Mdl model) will result in a Casl-Ltl specification declaring all the sorts corre-
sponding to the types, plus some auxiliary sorts, and obviously all the declared
operations and predicates.

A property in Casl-Mdl corresponds to some Casl-Ltl formulas on some
of the entities introduced in the model, which will be used to extend the spec-
ification resulting from the type declarations. A Casl-Mdl model having only
properties will in the end correspond to a loose Casl-Ltl specification.

A property may be a constraint consisting of a Casl-Ltl formula written
textually, similarly to the UML constraints expressed using the OCL, but in
Casl-Mdl constraints are suitable to express also properties on the behaviour
of the dynamic systems, whereas OCL roughly corresponds to first-order logic.
In Casl-Mdl it is also possible to visually present some properties having a
specific form, for examples some formulas on the interactions among the parts
of a structured system may be expressed visually by diagrams denoted as UML
sequence diagrams, and other formulas may be represented by diagrams similar
to the UML activity diagrams. In this paper we consider only the properties of
kind constraint and interaction properties.

2 In the UML the name of the target class with low case initial letter is used to navigate
along an association, thus mod.entityType denotes the set of the elements of class
EntityType associated with mod

Fig. 2. Structure of the Entity types (metamodel)

A definition in Casl-Mdl will define completely a datatype, by fixing its
generators and defining its predicates and operations, or a dynamic system again
by fixing the structure of its states and labels and defining its transitions.

The translation of the definitions part of a Casl-Mdl model will result in a
Casl-Ltl specification with initial semantics, thus defined using the free Casl
construct.

Visually a Casl-Mdl model is a set of diagrams including at least a TypeDi-
agram presenting the entity types together with the associated constraints, and
part of the definitions, whereas the other diagrams correspond to the remaining
kind of definitions and to the properties having a visual counterpart. In this
paper a Casl-Mdl model will consists of a type diagram made by entity type
declarations and constraints and of a set of sequence diagrams corresponding to
theinteraction properties.

The TypeDiagram may become quite large and thus hard to read and to
produce, so in Casl-Mdl it is possible to split a TypeDiagram in several ones
to describe parts of the types and of the constraints. Furthermore some features,
as operations and predicates, of a type may be present in one diagram and others
in another one. This possibility is like the one offered by the UML with several
class diagrams in a model (a class may appear in several of them, and some of its
features - operations and attributes - are in one diagram and some in another).

3 Entity Types and Type Diagrams

An entity type (declaration), shown in Fig. 2, defines a datatype or a dynamic
type. In Sect. 3.1 we describe the datatypes, and in Sect. 3.2 the dynamic types.

The predefined datatypes of Casl-Mdl are those introduced by the Casl
libraries and includes the standard parameterized and not datatypes, e.g., Nat,
Int, List and Set.

Translation
TETypes : EntityType∗ → Casl-Ltl-Specification

TETypes(et1 . . . etn) =
Library then
Basic(et1 .name) and . . . and Basic(etn .name) then
Detail(et1); . . . Detail(etn);

Fig. 3. Datatype Structure (metamodel)

where Library is a Casl specification corresponding to all the predefined
datatypes (parameterized or not) defined by the Casl libraries [7].

The translation of a set of entity types consists of a Casl-Ltl specification
corresponding to the predefined types, enriched with the basic specifications of all
the types of the model (defined by the function Basic) and after with the details
of each type defined by the Detail function. The Basic function introduces the
sort corresponding to the identifier passed as argument. Splitting the translation
of a Casl-Mdl type allows to have that a type in the type diagram may use all
the other types present in the same diagram to define its features, as it is made
by the UML for the classes.

3.1 Datatypes

Casl-Mdl allows to declare new datatypes using the construct Datatype, and
their metamodel is presented in Fig. 33.

The datatypes may have predicates and operations, which must have at least
an argument typed as the datatype itself, and the operations have a return type.

The structure of a datatype of Casl-Mdl may be defined in two different
ways, using either generators or attributes.

In the first case the datatype values are denoted using generators (as in
Casl).4 The arguments of the generators may be typed using the predefined
types (corresponding to those of the Casl library) and the user defined datatypes
and dynamic types present in the same TypeDiagram.

3 Note that for the UML diagrams we follow the convention that a multiplicity equal
to 1 is omitted, thus an attribute has exactly one type.

4 We prefer to use the term generator instead of constructor used in the OO world to
make clear that in our notation we have datatypes with values and not classes with
objects.

The other possibility is to define the datatype values in terms of attributes,
similarly to UML. An attribute attr: T of a datatype D will correspond to a
Casl operation .attr: D → T. In this case there will a standard generator
named as the type itself having as many arguments as the attributes, but it will
be introduced when defining the datype by an appropriate definition.

Fig. 4 presents the visual notation for the two forms of datatypes by means
of two schematic examples, one with attributes and one with generators
(<< pred >> marks the predicates and << gen >> the generators).

(a) Schematic datatype with attributes (b) Schematic datatype with generators

Fig. 4. Visual notation for datatypes

The attributes may have a multiplicity, (similar to the UML, thus it may
be 1, *, 1..*, and n..m, with n and m two natural numbers) and its meaning is
that the type of the attribute is a set of the associated type and that its values
will satisfy an implicit constraint (see Sect. 4) about the size of their set values
(e.g., multiplicity 0..1 means that the attribute may be typed by the empty set
or by a singleton, * that may be typed by any set also empty, and 1..* by any
nonempty set). Multiplicity 1 is omitted and corresponds to type the attribute
with the relative type. This construct of the Casl-Mdl motivates the implicit
definition of the finite sets for each type in the translation of the entity types
given in the following.

Obviously anonymous casting operations converting values into singleton sets
and vice versa are available.

An attribute attr [m]: T of a dataype D may be also visually presented by
means of an oriented association in the following way

.

The modellers are free to use plain attributes or their visual counterpart,
but notice that using the arrows will make visible the structuring relationships
among the various types.

Notice that it is possible that only the name of the datatype is provided
(no generator or attribute, no predicate or operation), and visually it will be
represented by a simple box with <<datatype>> and the name of the datatype.

In Sect. 6 we describe how to give a constructive semantics to a datatype by
“defining” its operations with a set of conditional rules, and in Sect. 4 how the
property oriented semantics of a datatype is given in term of constraints.

Translation
Basic : Datatype→ Casl-Ltl-Specification

Basic(dat) = FiniteSet[sort dat.name]
The basic part of the translation of a datatype is the Casl specification of

the finite sets of elements of sort dat.name (sort dat.name is declared in the
specification). The need for an implicit declaration of a finite set type for each
datatype (as well as for the dynamic types) is motivated by the possibility to
associate a multiplicity to the attributes, which corresponds to implicitly declare
their type as a set.

Detail : DatatypeAttributes→ Casl-Ltl-Specification
Detail(datA) = TAttributes(datA.attribute, datA.name) ;

TPredicates(datA.predicate) ; TOperations(datA.operation) ;
Below we give part Detail of the translation of the schematic example of

datatype with attributes of Fig. 4(a).

op .attr1 : DataA→ T1 ; %% an operation corresponding to an attribute
. . .

pred pr : T1 ′ × . . .× Tk ′; %% a predicate . . .
op opr : T1 ′′ × . . .× Tm ′′ → T ′′; %% an operation . . .

Notice that at this point the standard generator for the sort DataA has not
been introduced, the type has only some selector like operations corresponding
to the attributes (this will allow to refine the datatype with more attributes).

Detail : DatatypeGenerators→ Casl-Ltl-Specification
Detail(datG) = TGenerators(datG.generator, datG .name) ;

TPredicates(datG.predicate) ; TOperations(datG.operation) ;

Below we give part Detail of the translation of the schematic example of
datatype with generators of Fig. 4(b).

type DataG ::= gen(T1 ; . . .Th) | . . . ;
pred pr : T1 ′ × . . .× Tk ′; %% a predicate . . .
op opr : T1 ′′ × . . .× Tm ′′ → T ′′; %% an operation . . .

ASSOC Model: Datatypes
Fig. 5 presents a Type Diagram of the Casl-Mdl model of ASSOC contain-

ing only datatypes. It includes some enumerated types, precisely MeetingStatus
and Vote (they are a special case of datatype having only generators without
arguments considered as literal see Sect. 6).

Time is a datatype where no detail is given (it will just correspond to intro-
duce the type name). Similarly, no generator is available for BallotRule however
a predicate, check, given the votes and the number of voters says if the voting
result was positive or not (Int and List are the predefined Casl datatypes for
integers and lists). There are some generators for the Item datatype, together

Fig. 5. ASSOC: Type Diagram containing some dataypes

with some predicates. Then there are two examples of datatypes with attributes.
A Document has a title and some items (possibly zero), and this is expressed
by the textual attribute title typed by the predefined String and by items rep-
resented by an arrow. A Meeting always has a status, a date and the maximum
number of participants (textual attributes in the picture), and optionally it may
have an agenda and/or minutes (visual attributes with multiplicity 0..1).

Here there is the Casl-Ltl specification fragment corresponding to part
Detail of those types translation.

free type Vote ::= yes | no | null ; %% enumerated type
free type MeetingStatus ::= scheduled | open | failed | closed ;

%% at this stage no generator available for the sort BallotRule
pred check : BallotRule × List [Vote]× Int ;
type Item ::= mkCommunication(String ; String)

| mkDiscussion(String ; String ; BallotRule);
%% An item is a communication or a discussion with a ballot rule

pred isACommunication : Item;
pred approved : Item;
op .status : Meeting → MeetingStatus; %% corresponds to an attribute
op .when : Meeting → Time;
op .agenda : Meeting → Set(Document);
op .minutes : Meeting → Set(Document);
axiom ∀ m : Meeting • size(m.agenda) ≤ 1 ∧ size(m.minutes) ≤ 1

Notice that in this part of the translation there is nothing concerning the
datatype Time, since the corresponding sort has been already introduced in the
basic part of the translation of the types (FiniteSet[sort Time]).

3.2 Dynamic Types

In Casl-Ltl and thus in Casl-Mdl the dynamic systems represent any kind of
dynamic entities, i.e., entities with a dynamic behaviour without making further
distinctions (such as reactive, proactive, autonomous, passive behaviour, inner
decomposition in subsystems), and are formally considered as labelled transition
systems, that we briefly summarize below.

A labelled transition system (lts for short) is a triple (State,Label,→), where
State denotes the set of states and Label the set of transition labels, and →⊆
State × Label × State is the transition relation. A triple (s, l , s ′) ∈→ is said to

be a transition and is usually written s
l−−→ s ′.

Given an lts we can associate with each s0 ∈ State a tree (transition tree)

with root s0 , such that, when it has a node n decorated with s and s
l−−→ s ′,

then it has a node n ′ decorated with s ′ and an arc decorated with l from n to
n ′. A dynamic system is thus modelled by a transition tree determined by an lts
(State,Label,→) and an initial state s0 ∈ State.

Casl-Ltl has a special construct dsort state label label to declare the two
sorts state and label , and the associated predicate

-- --> : state × label × state
for the transition relation.

Thus a value of a dynamic sort corresponds to a dynamic system, precisely
to the labelled transition tree having such value as root, and thus a Casl-Ltl
specification with a dynamic sort may be truly considered as a dynamic type.

The labels of the transitions of a dynamic system are named in this paper
interactions and are descriptions of the information flowing in or out the system
during the transitions, thus they truly correspond to interactions of the system
with the external world5.
5 Obviously, a transition may also correspond to some internal activity not requiring

any exchange with the external world, in that case the transition is labelled by a
special TAU value.

Fig. 6. Dynamic Type Structure (metamodel)

Fig. 7. A schematic Simple Dynamic Type

In Fig. 6 we present the structure of the Casl-Mdl declaration of dynamic
types (i.e., types of dynamic systems) by means of its metamodel, and later we
will detail the two cases of simple and structured dynamic types.

Simple Dynamic Types The simple dynamic systems do not have dynamic
subsystems, and in the context of this work, the interactions of the simple sys-
tems are either of kind sending or receiving (with a naming convention ! xx and
? yy , for sending and receiving interactions resp.) and are characterized by a
name and a possibly empty list of typed parameters. These simple interactions
correspond to basic acts of either sending out or of receiving something, where
the something is defined by the arguments. Obviously, a send act will be matched
by a receive act of another simple system and vice versa, and again quite obvi-
ously the matching pairs of interactions ! xx (v1 , . . . , vn) and ? xx (v1 , . . . , vn).

The states of simple systems are characterized by a set of typed attributes
(precisely the states of the associated labelled transition system), similarly to
the case of datatypes with attributes (and, as for each attribute, there is the
corresponding operation). A dynamic type DT has also an extra implicit at-
tribute .id: ident DT containing the identity of the specific considered instance;
the identity values are not further detailed. Obviously the identity is preserved
by the transitions and no structured dynamic system will have two subsystems
with the same identity. Notice how the treatment of the identity in Casl-Mdl
is completely different from the one of the UML, where the elements of the
type associated with a class are just their identities, because Casl-Mdl is not
object-oriented.

Fig. 6 shows that a simple dynamic type (i.e., a type of simple systems) is
determined by a set of elementary interactions (EInteraction) and by a set of
attributes; notice that it has also a name since SimpleDynamicType specializes
EntityType, see Fig. 2.

In Fig. 7 we present the visual notation for the simple dynamic types by the
help of a schematic example.

Translation
Basic : SimpleDynamicType→ Casl-Ltl-Specification

Basic(simpDT) =

FiniteSet[sort simpDT .name] and Identwith ident 7→ ident simpDT.name

The basic translation of a simple dynamic type includes also the declaration of
a datatype for the identity of the dynamic systems having such type.

Detail : SimpleDynamicType→ Casl-Ltl-Specification
Detail(simpDT) =

dsort simpDT .name label label simpDT .name
op .id : simpDT.name→ ident simpDT.name
TAttributes(simpDT.attribute, simpDT .name);
TEInteractions(simpDT.eInteraction, label simpDT .name);

ASSOC Model: Simple Dynamic Types

Fig. 8. ASSOC Example: a type diagram including simple dynamic types

Fig. 8 presents a type diagram including two declarations of simple dynamic
types. Notice that the type Member has other elementary interactions, e.g.,
! vote(Item,Vote,Ident Member) concerning taking part in a meeting not reported
here, they are visible in the complete type diagram, see Appendix A

The simple dynamic type Association models the various associations, char-
acterized by a name and by their members (given by the attributes name and
members, the latter represented visually as an arrow). We have used a dynamic
system and not a datatype since we are interested in the dynamic behaviour
of an association. The elementary interaction ? scheduleMeeting corresponds to
receive a request to schedule a new meeting of the association board, and the
last two parameters correspond to the meeting date and agenda, whereas the
first, typed by Ident Association is the identity of the association itself. ! Ok and
! Ko correspond respectively to answer positively and negatively to that request.

Part Detail of the translation of the simple dynamic type Association is as
follows.

dsort Association label label Association

op .id : Association → ident Association

op .name : Association → String

op ? scheduleMeeting : ident Association×Time×Document → label Association

op ! Ok , ! Ko,TAU :→ label Association

TAU is a special implicit element used to label the transitions of the associated
transition systems that do not require any exchange of information with the
external world, thus without any interaction. Notice that the sorts Association
and ident Association have been already introduced by the basic part of the
type translation.

Fig. 9. A schematic Structured Dynamic Type

Structured Dynamic Types We recall that a structured system (cf. Fig. 6)
is characterized by its parts, or subsystems (that are in turn other simple or
structured dynamic systems), and has its own elementary interactions and name.

In Fig. 9 we present the visual syntax by the above schematic structured
dynamic type; its parts are depicted by the dashed boxes (in this case all of
them have multiplicity one); DType1, DType2, . . . , DTypeN are dynamic types
(i.e., types corresponding to dynamic systems, simple or structured, defined in
the same model) and P1, P2, . . . , PN are the optional names of the parts. At this
level we only say that there will be at least those parts, but nothing is said about
the way they interact with each other and on the behaviour of the whole system.
We use two different boxes for the elementary interactions and the structure in
terms of parts to keep the internal structuring encapsulated.

A structured dynamic type has a predefined predicate isPart checking if it
has a part having a given identity.

Translation

Basic : StructuredDynamicType→ Casl-Ltl-Specification

Basic(structDT) =

FiniteSet[sort structDT.name] and

Ident with ident 7→ ident structDT.name and LocalInteractions

LocalInteractions specifies the local interactions sets of the structured dy-
namic systems defined by structDT, where a local interaction is a pair consisting
of the identity and of an elementary interaction of one of the parts of structDT ;
the local interactions are added to the labels of the associated labelled transition
system to record the activities of the parts.

Detail : StructuredDynamicType→ Casl-Ltl-Specification
Detail(structDT) =

dsort structDT.name label label structDT.name
op .id : structDT.name→ ident structDT.name
pred isPart : structDT.name× ident all
TParts(structDT .part, structDT .name);
TEInteractionsStruct(structDT .eInteraction, label structDT .name,

localInteractions structDT .name);
ident all is an extra auxiliary sort having as subsorts the identity sorts of all the
dynamic systems in the model.

ASSOC Model: Structured Dynamic System

Fig. 10. ASSOC Example: a type diagram including a structured dynamic type

The whole world of ASSOC is modelled as a structured dynamic system
ASSOC having as parts the associations, the members and the chairs, any number
of them (see the multiplicity * on the three parts). ASSOC is a closed system,
that is it does not interact with its external world and so it has no elementary
interactions, and all the transitions of the associated labelled system will be
labelled by the special null interaction TAU .

The Casl-Ltl specification fragment corresponding to the detail part of the
translations of the structured dynamic type ASSOC is given below.

dsort ASSOC label label ASSOC
op .id : ASSOC → ident ASSOC
op associations : ASSOC → Set [Association]
op members : ASSOC → Set [Member]
op chairs : ASSOC → Set [Chair]
pred isPart : ASSOC × ident all
op TAU : localInteractions ASSOC → label ASSOC

where LocalInteractions= FiniteSet[LocalInteraction] and

LocalInteraction =
free type = LocalInteraction ::=
< > (ident Association; label Association) |
< > (ident Member ; label Member) |
< > (ident Chair ; label Chair)

Notice that the sorts structDT.name and ident ASSOC have been been in-
troduced by the basic part of the type translation.

4 Casl-Mdl Constraints

Fig. 11. Casl-Mdl Constraint Structure (metamodel)

A Casl-Mdl constraint expresses a property about generic entities (i.e.,
datatypes and dynamic systems) introduced by the model by means of a Casl-
Ltl formula presented with a slightly simplified syntax; the entities concerned by
a constraint are defined by its context, and are distinguished in those universally
quantified (any) and in those existentially quantified (one). Such formulas are
defined below.
Formula ::=
Data Atom |
not Formula | Formula => Formula | Formula and Formula | Formula or Formula |
forall Ident • Formula | exists Ident • Formula |
in any case Dyn Exp • Path Form | in one case Dyn Exp • Path Form

Data Atom are the atomic formulas on the values of the datatypes (equations
and predicate applications).

The Casl-Ltl logic offers also some branching time CTL* style temporal
logic combinators. Dyn Exp are expression typed by a dynamic type(i.e., a type
corresponding to a specific kind of dynamic system). The formula “in any case
dexp • path form” requires that any path starting from the root of the labelled
transition system associated with dexp satisfies path form, whereas “in one case
dexp • path form” requires that at least one path from the root in the labelled
transition system associated with dexp satisfies path form.
Path Form ::=

Interact Atom | Static Atom | Local Interact Atom |
not Path Form | Path Form and Path Form | Path Form or Path Form |
Path Form => Path Form |

forall Ident • Path Form | exists Ident • Path Form |
eventually Path Form | always Path Form | next Path Form

Interact Atom ::= InterName(Exp,. . . , Exp)
Static Atom ::= AttrName = Exp| PredName(Exp,. . . , Exp)
InterName and AttrName are names of interactions and attributes respectively
of a dynamic type, and Exp are expressions denoting values.

The atomic path formulas express a property on the first state of the path
or on the label of the first transition of the path. If attr = e is a static atom,
then attr : T is an attribute of the dynamic type. When a static atom of this
form holds, it means that in the first state the value of attr is equal to e. If
prid(e1 , . . . , en) is a static atom, then prid(dsort ,T1 , . . . , xn : Tn) is a predicate
of the dynamic type. When a static atom of this form holds, it means that in
the first state s prid(s, e1 , . . . , en) holds.

If id(e1 , . . . , en) is an interaction atom, then id(T1 , . . . , xn : Tn) is an in-
teraction of the dynamic type. When an interaction atom of this form holds,
it means that the elementary interaction id(e1 , . . . , en), is the label of the first
transition of the path.
Local Interact Atom ::= Ident :: InterName(Exp,. . . , Exp)

Local interactions atoms are special formulas for the structured systems,
which correspond to state that a part performs a given elementary interaction.
If pid :: eid(e1 , . . . , en) is a local interaction interaction atom, then pid is the
identity of a part of the structured system and eid(T1 , . . . ,Tn) is an interaction
of that part. When a local interaction atom of this form holds, it means that the
part whose identity is pid performs the elementary interaction id(e1 , . . . , en) in
the first transition of the path.

next path form holds on a path π if path form holds on the subpath starting
from the second state of π. eventually path form holds on a path π if path form
holds on the subpath starting from a state of π. always path form holds on a
path π if path form holds on all the subpaths starting from any state of π.

Visually the constraints are written in notes attached to all the involved
types by dashed lines, such types are those present in the context. The visual
presentation of the constraints is part of the TypeDiagram.

Examples of constraints both for datatypes and simple dynamic types can
be found in Fig. 12.

Translation
TConstr : Constraint→ Casl-Ltl-Formula

TConstr(constr) = TContext(constr.context) • TFormula(constr.formula)
The translation in Casl-Ltl of the constraints presented in Fig. 12 is given

below.
∀ M : Member •

in any case(M , always <! participateMeet(M .id) > ⇒ eventually
(<? failedMeet() > ∨ ∃ MIN : Document • <? closeMeet(MIN) >))

∀ A : Association,M1 ,M2 ,Meeting •
M1 ∈ A.boardMeetings ∧ M2 ∈ A.boardMeetings ∧ ¬ M1 = M2 ⇒
¬ M1 .time = M2 .time

Fig. 12. ASSOC Example: constraints

∀ CH : Chair exists M : Meeting •
in any case(CH , always <! scheduleMeet(IDA,T ,D) > ⇒
(T /∈ CH .chair .boardMeetings.when ∧ eventually <! openMeet(M) >))

∀ M : Meeting •M .maxParticipants ≤ 100 ∧ M .maxParticipants ≥ 1

5 Interaction properties

The metamodel of Casl-Mdl interaction properties is given in Fig. 13.
An interaction property describes the way parts of a structured dynamic sys-

tem (that are in turn dynamic systems) interact. Thus, first of all it should be
anchored to a specific structured dynamic system represented by an expression
typed by a structured dynamic type, which may have free variables, correspond-
ing to express a property on more than one dynamic system. 6 Furthermore an
interaction property includes a context defining the other free variables (univer-
sally and existentially quantified) that may appear in it.

In Casl-Mdl, contrary to UML sequence diagrams, an interaction property
explicitly states if it expresses a property of all possible lives of the anchor, or if
there exists at least one life of the anchor satisfying that property. It also states
whether the property about the interactions must hold in all possible instants of

6 We use the word “expression” commonly used in the world of the modelling nota-
tions, instead of “term”, preferred in the world of the algebraic specifications

The anchor should be an expression whose type is the anchor type, and it a dynamic
type corresponding to a structured system

Fig. 13. Interaction Properties structure (metamodel)

that lives, or if eventually there will be an instant in which it will hold. Thus an
interaction property has a modality, that may assume four values, see Fig. 13.

The Interaction part expresses the required pattern on the interactions among
the parts of the anchor and it may be a basic interaction, or a structured in-
teraction built by some combinators (in this paper we consider only alternative,
sequential composition and implication).

As shown in Fig. 14, an interaction property is visually presented by a se-
quence diagram similar (in form) to the UML sequence diagrams (any v1:T1,. . . ,vn:Tn,
one v’ 1:T’ 1,. . . ,v’ m:T’ m is the context).

The BasicInteraction, defined in Fig. 15, is the simplest form of Interaction
and just corresponds to assert that a series of elementary interaction occurrences
happen orderly among some generic roles for dynamic systems parts of the anchor
(lifelines), where an interaction occurrence is the simultaneously performing of
a pair of matching input and output elementary interactions by two lifelines.

A lifeline is characterized by a name (just an identifier) and a (dynamic) type
and defines a role for a participant to the interaction. An elementary interaction

Fig. 14. A generic Casl-Mdl sequence diagram

Fig. 15. Structure of Basic Interactions (metamodel)

occurrence connects two lifelines in specific points (represented by the lifeline
fragmentsof kind InteractionPoint); the ordering of the interaction points of the
various lifelines must determine a partial order on the interaction occurrences. An
interaction occurrence is characterized by the name of an elementary interaction
s.t. the source type owns it with kind “send” and the target type owns the
matching one with the kind “receive”, and a set of arguments represented by
expressions whose types are in accord with the parameters of the two elementary
interactions.

Visually a lifeline is depicted as a box containing its name and type, and by
a dashed line summarizing all its fragments, whereas an interaction occurrence
is depicted as a horizontal arrow with filled head from the source lifeline to
the target one. 7 An elementary interaction occurrence arrow is labelled by
inter(exp1. . . ,expn) where ! inter is the send interaction of T1, ? inter the receive
interaction of T2, and exp1 . . . , expn are expressions whose types are in order
those of the arguments of ! inter, that are the same of those of ? inter. Fig. 16
shows a generic case of two lifelines and of an elementary interaction occurrence.

As in the UML the relative distance between two elementary interaction
occurrences has no meaning, similarly the only guaranteed ordering is among the
the occurrences attached to a single lifeline (due to the ordering of its fragments),
whereas in the other cases the visual ordering between two occurrences has no
meaning. In Fig. 17 we show two different basic interactions that are, however,

7 The icon for the elementary interaction occurrence is derived by the synchronous
messages of the UML.

Fig. 16. Generic example of elementary interaction occurrence

perfectly equivalent determining both the partial order listed at the bottom;
notice that there are many other ones visually different but still equivalent.

Fig. 17. Two perfectly equivalent basic interactions

A sequence diagram, ie., an interaction property, corresponds to a Casl-Ltl
formula.

Translation
TIntProp : InteractionProperty→ Casl-Ltl-Formula

TIntProp(iPr) =
∀ freeVarsTContext(iPr.context) • (∧x∈iPr.lifeline isPart(x .id , iPr.anchor)) ⇒

TModal(iPr.modality, iPr.anchor,TInteract(iPr.interaction, true))
where freeVars are all the free variables appearing in the anchor expression and
those corresponding to the lifelines.

TModal : Modality× Exp×Casl-Ltl-PathFormula→ Casl-Ltl-Formula
TModal(in any case always, dexp,PF) = in any case(dexp, always PF)

similarly for the other three cases

Fig. 18. ASSOC: scheduling a new meeting (successful case)

Fig. 19. ASSOC: scheduling a new meeting (sequence and alternative combinator)

TInteract : Interaction×Casl-Ltl-PathFormula→ Casl-Ltl-PathFormula

The translation of an interaction is defined by cases, depending on its par-
ticular type, and takes as argument a path-formula that will play the role of a
continuation; this technical trick allows to correctly translate sequential compo-
sitions of interactions.

TInteract(basicInt, cont) =

∨eIOci1
...eIOcin admissible ordering of eIOc1 ,...,eIOcn

TIntOcc(eIOci1) ∧ eventually (TIntOcc(eIOci2) ∧ (eventually . . .

(TIntOcc(eIOcin) ∧ eventually cont) . . .))

where basicInt.eInteractionOccurence = eIOc1 , . . . , eIOcn
TIntOcc : InteractionOccurrence→ Casl-Ltl-PathFormula

TIntOcc(eIOc) =

(x .id:! inter(exp1 , . . . , expn) ∧ y .id:? inter(exp1 , . . . , expn))8

where eIOc has the form in Fig. 16.

Fig. 18 shows a sequence diagram with a basic interaction modelling a suc-
cessful scheduling a new meeting. This diagram presents a sample of a possible
way to execute the successful scheduling of a meeting, precisely the chair asks
the association to schedule a new meeting passing the date and the agenda, the
association answers ok, and then informs the board members of the new meeting.

In the following we show the Casl-Ltl formula corresponding to the se-
quence diagram of Fig. 18:

∀ AX: Assoc,when: Time, ag: Document ,CH: Chair ,A: Association,M: Member

∃ meet: Meeting •

(isPart(CH .id ,AX) ∧ isPart(A.id ,AX) ∧ isPart(M .id ,AX)) ⇒
in one case(AX , eventually

8 Recall that .id is the standard attribute returning the identity of a dynamic system,
and that id: interact is a local interaction atomdefined in Sect. 4.

(CH .id:! scheduleMeet(A.id ,when, ag) ∧ A.id:? scheduleMeet(A.id ,when, ag)) ∧
eventually

(A.id:! ok() ∧ CH .id:? ok()) ∧ (eventually

A.id:! newMeet(A.name,meet) ∧ M .id:? newMeet(A.name,meet))))

Fig. 13 presents also the structured interactions. We can see that it is possible
to express:

– the sequential composition of two interactions, with the intuitive meaning to
require that the interaction pattern described by the before argument is followed
by the interaction pattern described by the after argument;

– the choice among several guarded alternatives, subsuming conditional and
nondeterministic choices; one of the interaction patterns corresponding to the
alternatives with the true guard must be performed, if no guards is true it
corresponds to require nothing on the interactions;

– the fact that the happening of some elementary interactions matching a
given pattern (represented by a basic interaction) must be followed mandatory
by some elementary interactions matching another pattern.

The visual representation of these structured interactions is illustrated in Fig. 19
and Fig. 20.

To model that the answer of the association may be also negative (elemen-
tary interaction ko) we need the structured interactions built with the sequential
and alternative combinators, and this corresponds to give just some samples of
successful and of failed executions, whereas to represent that after a request
of scheduling a new meeting there will be surely an answer by the association
we need the implication combinator. Fig. 19 and Fig. 20 presents the various
sequence diagrams, with a structured interaction part, corresponding to those
cases. In Fig. 19 we have the sequential combination of a basic interaction con-
sisting just of the elementary interaction occurrence scheduleMeet(A.id,when,ag)
followed by the alternative among two basic interactions, where the guards are
both true corresponding to the pure nondeterministic choice. Again this diagram
presents sample of the execution of the scheduling procedure, making explicit
that there are two possibilities, a successful one and a failing one; but this dia-
gram does not require that any request to an association will be followed by an
answer. Fig. 20 instead shows that an occurrence of the elementary interaction
scheduleMeet(A.id,when,ag) will be eventually either followed by an occurrence
of ko() or of ok(). Notice that the modality of this sequence diagram is different,
it says that whenever the scheduling request occurs it will be followed by an
answer.

Translation

TInteract: Interaction×Casl-Ltl-PathFormula→ Casl-Ltl-Formula

TInteract(altInt, cont) =

∧J⊆{1 ,...,n} ((∧j∈J opj .guard ∧ ∧i∈{1 ,...,n}−J ¬ opi .guard) ⇒
∨j∈J TInteract(opj .interaction, cont))

where altInt.operand = op1 , . . . , opn

TInteract(seqInt, cont) = TInteract(seqInt.before,TInteract(seqInt.after, cont))

TInteract(implInt, cont) =

Fig. 20. ASSOC: scheduling a new meeting (implies combinator)

∧eIOci1
...eIOcin admissible ordering of eIOc1 ,...,eIOcn

(TIntOcc(eIOci1) ⇒ next always (TIntOcc(eIOci2) ⇒ next always (. . .
(TIntOcc(eIOcin) ⇒ next eventually TInteract(implInt.consequence, cont)) . . .)))

where implInt.premise.eInteractionOccurence = eIOc1 , . . . , eIOcn
Here there is the Casl-Ltl formula corresponding to the sequence diagram

of Fig. 19 after some simplifications due to the fact that the guards are both
equal to true (e.g., ¬ true ⇒ F equivalent to true , F ∧ true equivalent to F
and so on):
∀ AX: Assoc,when: Time, ag: Document ,CH: Chair ,A: Association,M: Member
∃ meet: Meeting •
(isPart(CH .id ,AX) ∧ isPart(A.id ,AX) ∧ isPart(M .id ,AX)) ⇒

in one case(AX , eventually
(CH .id:! scheduleMeet(A.id ,when, ag) ∧ A.id:? scheduleMeet(A.id ,when, ag)) ∧

eventually
((A.id:! ok() ∧ CH .id:? ok()) ∧ (eventually

A.id:! newMeet(A.name,meet) ∧ M .id:? newMeet(A.name,meet))))
∨
((A.id:! ko() ∧ CH .id:? ko())

The Casl-Ltl formula corresponding to the sequence diagram of Fig. 20
after some simplifications is instead:
∀ AX: Assoc,when: Time, ag: Document ,CH: Chair ,A: Association,M: Member
∃ meet: Meeting •
(isPart(CH .id ,AX) ∧ isPart(A.id ,AX) ∧ isPart(M .id ,AX)) ⇒

in any case(AX , always
(CH .id:! scheduleMeet(A.id ,when, ag) ∧ A.id:? scheduleMeet(A.id ,when, ag)) ⇒

next eventually

((A.id:! ok() ∧ CH .id:? ok()) ∧ (eventually
A.id:! newMeet(A.name,meet) ∧ M .id:? newMeet(A.name,meet))))

∨
((A.id:! ko() ∧ CH .id:? ko())

6 Datatype Definitions

Fig. 21. Datatype Definion Structure

A datatype definition is given by a set of definitions of its operations and
predicates (there should be a definition for each of them) and of the its generators
(optional), see the corresponding metamodel in Fig. 21.

The context of a datatype definition must have all the variable in the all
mode and introduces all the variable that may occur freely in the definition.

The generators are defined by a set of generator clauses that are conditional
rules (i.e., conditional axioms) that express in which cases two generators (or
the same generator with different arguments) represent the same data value.
Generator Clause ::= Data Atoms ⇒ Exp = Exp
Data Atoms ::= Λ | Data Atom ∧ Data Atoms
where the two expressions in the right side of the clause should be built by some
generators of the defined dataype.

A predicate is defined by an ordered list of clauses that are conditional rules
(i.e., conditional axioms) that express in which cases the predicate holds; the
consequence of each clause should be built using the predicate associated with
the definition.
Predicate Clause ::= Data Atoms ⇒ Pr(Exps)

Exps ::= Λ | Exp,Exps
A predicate definition for pr consisting of cl1 , . . . , clm determines its truth-

ness in the following way.
pr(v1 , . . . , vn) =
for i = 1 , ...,m
{ if consequence of cli matches pr(e1 , . . . , en) then

if premises of cli where the free variables appearing in pr(e1 , . . . , en)
have been replaced by the values determined by the matching
procedure holds, then

returns true;
} ;

returns false;
Notice that above definition asserts that if no clause can be applied to

pr(e1 , . . . , en), then the predicate pr does not hold on the values represented
by e1 , . . . , en , and that it is not needed to explicit write when it is false in the
clauses.

An operation is defined by an ordered list of operation clauses that are condi-
tional rules (i.e., conditional axioms) that express which are the values returned
by the operation.
Operation Clause ::= Data Atoms ⇒ Op(Exps) = Exp

An operation definition for op consisting of cl1 , . . . , clm determines its value
in the following way.
op(v1 , . . . , vn) =
for i = 1 , ...,m
{ if right hand-side of the consequence of cli matches op(e1 , . . . , en) then

if premises of cli where the free variables appearing in op(e1 , . . . , en)
have been replaced by the values determined by the matching
procedure holds, then

returns left hand-side of the consequence of cli where the free
variables appearing in op(e1 , . . . , en) have been replaced by the
values determined by the matching procedure;

} ;
error;

If no clause can be applied to op(e1 , . . . , en) or the premises of all the ap-
plicable clauses do not hold, then it is considered an error; the modeller should
take a good care to ensure that a clause is always applicable.

A datatype definition is visually presented by means of a note attached to
the datatype icon, containing the context, the generators definitions if present,
and then the predicate and operation definitions. The premises of the last clause
of an operation (predicate) definition may be simply “else”, and it stands for
the negation of the premises of all the preceding clauses.

There is a special notation for the definition of enumeration datatypes, similar
to the UML one, and Fig. 22 presents a generic example of it. For readability
this constructive view is usually represented in the TypeDiagram.

Translation

Fig. 22. A generic enumeration datatype

TDatDef : DatatypeDefinition→ Casl-Ltl-Specification
TDatDef(datDef) =

free type datDef.datatype.name ::= Generators(datDef.datatype);
axioms

TGensDef(datDef.generatorsDefinition);
TOpDef(datDef.operationDefinition);
TPredDef(datDef.predicateDefinition);

where Generators returns either the user declared generators, in the case of the
definition of datatype with generators or the standard generator named as the
type itself and having as many arguments as the attributes of the datatype itself,
otherwise.

TGensDef : GeneratorsDefinition→ Casl-Ltl-Formula∗

TGensDef(genCl1 . . . genCln) =
genCl1 .premise ⇒ genCl1 .consequence
genCl2 .premise ⇒ genCl2 .consequence
. . .
genCln .premise ⇒ genCln .consequence

The above particular form of the axioms corresponding to an operations/
predicate definition guarantees that the various clauses are applied in order.

TOpDef : OperationDefinition→ Casl-Ltl-Formula∗

TOpDef(opCl1 . . . opCln) =
opCl1 .premise ⇒ opCl1 .consequence
(¬ opCl1 .premise) ∧ opCl2 .premise ⇒ opCl2 .consequence
. . .
(¬ opCl1 .premise) ∧ (¬ opCl2 .premise) . . . ∧ opCln .premise ⇒ opCln .consequence
The definition of TPredDef is similar.
Below we present the specification associated with the enumeration datatype

of Fig. 22, where we use the free construct to assert that all the values are
different.

free type Enum ::= lit1 | . . . | litk ;

7 Interaction machines

The dynamics of the simple systems represented by a simple dynamic type may
be presented in a constructive way by means of an interaction machine [1].

Fig. 23. The structure of an Interaction machine

An interaction machine associated with a simple dynamic type is an oriented
graph, whose nodes represent its intermediate states and whose arcs represent
its possible transitions. Fig. 23 shows the structures of the interaction machines.

The states should be considered as interaction states and correspond to the
possible stages of the activity modelled by the machine (they include the special
initial and final states). The transitions are decorated by an interaction occur-
rence, a guard, and an effect, and have the following forms:

The interaction occurrence inter-occ (interaction occurrence specification to be
more precise) may have the following forms: “! inter(e1 ,. . . ,en)”, where ! inter
is an elementary interaction and e1 , . . . , en are ground expressions built over
the attributes, or “? inter(X1 ,. . . ,Xn)”, where ? inter is an elementary interac-
tion and X1 , . . . , Xn are variables. A transition without interaction occurence
corresponds to some internal activity. guard is a boolean expression built over
the simple dynamic type attributes, effect is an action over those attributes, the
free variables, if any, of the interaction occurrence may appear in effect9. Here,
we restrict the form of the effect to a sequence of assignments to the attributes.

An interaction machine must have a unique initial state, while it may have
any number (also none) of final states. Obviously, no transition may enter in the
initial state and no transition may leave a final state. At least a transition must
leave a non final state.

9 Notice that differently from the UML, in Casl-Mdl the free variables cannot appear
in the guard

The behaviour of an interaction machine may be defined in terms of run-to-
completion-steps, similarly to UML state machines. At the beginning the initial
state is active; at each time exactly one state is active, and the behaviour ends
when a final state becomes active.

A run-to-completion-step is defined as follows. All transitions leaving the ac-
tive state are collected (this collection cannot be empty). The guards of those
transitions are evaluated, if no guard is true the step is terminated. Then the en-
abled transitions, i.e., those with a true guard are collected and the arguments of
the output interactions are evaluated. If an enabled transition has no interaction
occurrence, or its interaction occurrence is matched by a complementary one of
the context, it is executed (if there are several ones in this situation, one of them
is nondeterministically picked). If none is in this situation, the machine will wait
in the active state making available to the context the interaction occurrences
of all the enabled transitions, till one of them is matched.
To execute a transition corresponds to do the following: if the corresponding
interaction occurrence is of kind receive, then the values of the matching send
interaction occurrence are assigned to the corresponding variable arguments;
then in bothe cases the effect is executed, after the target state becomes active,
the source state (if different from the target) is no more active, and the step is
terminated.

The guard of the form true may be omitted, similarly the effect corresponding
to zero assignments.

Translation
T : InteractionMachine→ Casl-Ltl
FiniteSet[sortsimpDT .name] and withident 7→ ident simpDT.name
The states of a simple dynamic system when defined by an interaction ma-

chine are completely determined by the attributes by a generator named as the
type itself having an argument for each attribute (also for the standard implicit
attribute id).
T(interM) =

free {
generated type control simType ::= state1 | . . . | stateh
generated type simType ::= SimType(.id : ident simType, control simType, a1 :

T1 , . . . , an : Tn) | Final | Initial
generated type label simType ::= inter1 | . . . | interk
axioms
T(trans1) . . .T(transm)
}

where simType = interM.SimpleDynamicType.name, a1 : T1 , . . . , an : Tn are its
attributes, inter1 , . . . , interk are its elementary interactions, trans1 , . . . , transm
are the transitions of the interaction machine and state1 , . . . , stateh are the con-
trol states of the state machine.

T : Transition→ Casl-Ltl
Not connected with initial o final state
T(trns) = T(trns.guard) ⇒

SimType(id , trns.source, va1 , . . . , van)
T(trns.EInteractionOccurence)−−−−−−−−−−−−−−−−−−−−−−→ SimType(id , trns.target ,T(trns.effect , va1 , . . . , van))

Transition from the initial state
T(trns) =

Inital
T(trns.EInteractionOccurence)−−−−−−−−−−−−−−−−−−−−−−→ SimType(id , trns.target ,T(trns.effect , x , . . . , x))

Transition into final state T(trns) = T(trns.guard) ⇒

SimType(id , trns.source, va1 , . . . , van)
T(trns.EInteractionOccurence)−−−−−−−−−−−−−−−−−−−−−−→ Final

dsort simpDT.name label label simpDT.name
op .id : simpDT.name → ident simpDT.name
T(simpDT.attribute, simpDT.name);
T(simpDT.eInteraction, label simpDT.name);

8 Structured Dynamic Type Definitions

Fig. 24. The structure of the Structured Dynamic Type Definition

A structured dynamic type defines exactly which are the parts of the system
and how they interact each other making clear also what will be the result of
such interactions in term of interaction of the whole system with the external
(to it) world. Thus a structured typedefinition define both the inner architecture
of the system and its behaviour.

Fig. 24 shows the two possible forms of a structured dynamic type definition,
Let us to consider first the case of the Regulated systems. We assume that

the parts/subsystems of a structured systems interact by performing pairwise
matching elementary interactions, and the connector construct allows to express
which matching pairs of interactions may be performed. A connector of kind
Any depicts the case where any pairs of transitions of the two connected parts
whose elementary interactions match may be performed simultaneously; whereas

a connector of kind Some allows to be performed simultaneously only the associ-
ated elementary interactions. Obviously if there is a connector with elementary
interaction e between part A of type Sys1 and part B of type Sys2, thus either
! e is an elementary interaction of Sys1 and ? e is an elementary interaction of
Sys2 or vice versa.

The port connector allows instead to propagate outside the system unmatched
transitions, precisely if a part connected to a port performs a transition whose
elementary interactions is among those on the line connecting to the port, then
such transition may be performed without the need of a matching transition of
another part, and will result in a transition of the whole structured system with
the elementary transition attached to the port symbol.

Fig. 25. A generic example of Structured Dynamic Type Definition

In Fig. 25 we present visually a generic structured dynamic type definition
of the kind “regulated”.

A very frequent case of structured system consists of a collection of any
number of dynamic systems of some given (dynamic) types freely interacting
each other (obviously only by performing matching elementary interactions); if
we represent it using our notation it will result in a complete graph where the
nodes are the parts and the arcs are the “any” connectors; thus we offer a special
simplified notation for this case.

In Fig. 26 we show on the left the compact form for this case and on the
right the completely equivalent expanded form.

Fig. 26. A generic example of Free Structured Dynamic type

9 Conclusions and future work

In this paper we have presented a part of Casl-Mdl, a visual modelling no-
tation based on Casl-Ltl (the extension for dynamic system of the algebraic
specification language Casl developed by the Cofi initiative). The visual con-
structs of Casl-Mdl have been borrowed by the UML, so as to use professional
visual editors; in this paper for example we used Visual Paradigm for UML10.

A Casl-Mdl model is a set of diagrams but it corresponds to a Casl-Ltl
specification, thus Casl-Mdl is a suitable means to easily read and write large
and complex Casl-Ltl specifications; furthermore the quite mature technologies
for UML model transformation may be used to automatize the transformation of
the Casl-Mdl models into the corresponding Casl-Ltl specifications. Notice
that what we have done is different from designing a new notation and then give
it a semantics using Casl-Ltl.

Casl-Mdl may be used by people familiar with Casl-Ltl to produce in
an easier way specifications written with it with the help of an editor. However,
the corresponding specifications are readable and can be modified directly, for
example if there is the need of to do fine tuning for automatic verification.

We plan to investigate whether Casl-Mdl may be presented directly as a
visual modelling notation to be used for the various modelling tasks that occur
in the software development processes, producing a user manual that following
the ”well-founded” approach fully hides from the users the formal foundation.

We are currently working out the relationships among the types, and consider
the introduction of workflow-like diagrams similar to the UML activity diagrams
to visualize the behaviour formula of groups of dynamic systems.

Casl-Mdl shares many similar features with the UML, the visual notation
being the most relevant one, but it is quite different, first of all because it is not
object-oriented and has a simple immediate formal semantics; some constructs

10 http://www.visual-paradigm.com/product/vpuml/

of Casl-Mdl have been inspired by those of the UML, but are not exactly the
same. Consider for example the sequence diagrams, in this case the Casl-Mdl
sequence diagrams allow also to express implications among the interactions
(message exchanges in the UML), thus they are more powerful, and closer to
the live charts of Harel and Damm [8]. We think that a careful investigation
of the differences and relationships between Casl-Mdl and UML may have as
a result a better understanding of some of the UML constructs and perhaps
some suggestions for possible evolutions. In some cases the two notations offer
different but equally expressive ways to achieve the same modelling capacity, for
example UML offers the objects and Casl-Mdl the dynamic systems, in these
case the best way to assess the relative merits of the two proposals is to organize
some empirical experiment, trying to assess which one is easier to learn, use or
allows to build models of better quality.

As regards the relationships between the UML and Casl-Mdl let us note
that Casl-Mdl is not a semantics of the UML expressed in Casl-Ltl, and
Casl-Mdl is not even a UML profile. However we plan to try to add the profiling
mechanism in the Casl-Mdl, since we found it quite valuable in using the UML.

Acknowledgement We warmly thank Maura Cerioli for a careful reading of a
draft of this paper, and for her valuable comments.

A The Assoc case study: the complete model

A.1 The TypeDiagram

Here we show the “pure” TypeDiagram of the Assoc case study, where only the
constructs introducing the various datatypes and dynamic systems are shown.

References

1. E. Astesiano and G. Reggio. From Conditional Specifications to Interaction Charts.
In Formal Methods in Software and Systems Modeling, Essays, LNCS 3393, pages
167–189. Springer, 2005.

2. E. Astesiano, G. Reggio, and M. Cerioli. From Formal Techniques to Well-Founded
Software Development Methods. In Formal Methods at the Crossroads: From
Panacea to Foundational Support, LNCS 2757, pages 132 – 150. 2003.

3. C. Choppy and G. Reggio. Improving use case based requirements using for-
mally grounded specifications. In Fundamental Approaches to Software Engineer-
ing, LNCS 2984, pages 244–260, 2004.

4. C. Choppy and G. Reggio. A UML-Based Approach for Problem Frame Oriented
Software Development. Journal of Information and Software Technology, 47:929–
954, 2005.

5. C. Choppy and G. Reggio. A formally grounded software specification method.
Journal of Logic and Algebraic Programming, 67(1-2):52–86, 2006.

6. C. Choppy and G. Reggio. Service Modelling with Casl4Soa: A Well-Founded
Approach - Part 1 (Service in isolation). In Symposium on Applied Computing,
pages 2444–2451. ACM, 2010.

7. CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS Vol.
2960 (IFIP Series). Springer, 2004.

8. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design, 19(1):45–80, 2001.

9. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl : A Casl Extension for Dy-
namic Reactive Systems Version 1.0–Summary. Technical Report DISI-TR-03-36,
2003.

10. UML Revision Task Force. OMG UML Specification. http://www.uml.org.

