
APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Component composition through architectural
patterns for problem frames

Christine Choppy
Christine Choppy(AT)lipn.univ-paris13.fr

Université Paris 13, LIPN

joint work with Maritta Heisel and Denis Hatebur

University Duisburg-Essen – Faculty of Engineering
Department of Computer Science
Workgroup Software Engineering

1 / 43

file:Christine.Choppy(AT)lipn.univ-paris13.fr
file:Christine.Choppy(AT)lipn.univ-paris13.fr

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Overall Goal / Context

Define pattern-based software development process

Use different kinds of patterns in the different phases

Provide well-defined transition between phases

2 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Patterns

a promising approach to software development, a means to
reuse software development knowledge on different levels
of abstraction, classify sets of software development
problems or solutions that share the same structure

introduced on the level of detailed object oriented design,
now defined for different activities.
Problem Frames (Jackson) classify software development
problems,
Architectural styles/ “architectural patterns” characterise
software architectures
Design Patterns for finer-grained software design,
frameworks less abstract, more specialised. idioms/“code
patterns”: low-level patterns related to specific
programming languages
construct software in a systematic way, body of
accumulated knowledge, not starting from scratch

3 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Patterns

a promising approach to software development, a means to
reuse software development knowledge on different levels
of abstraction, classify sets of software development
problems or solutions that share the same structure
introduced on the level of detailed object oriented design,
now defined for different activities.

Problem Frames (Jackson) classify software development
problems,
Architectural styles/ “architectural patterns” characterise
software architectures
Design Patterns for finer-grained software design,
frameworks less abstract, more specialised. idioms/“code
patterns”: low-level patterns related to specific
programming languages
construct software in a systematic way, body of
accumulated knowledge, not starting from scratch

3 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Patterns

a promising approach to software development, a means to
reuse software development knowledge on different levels
of abstraction, classify sets of software development
problems or solutions that share the same structure
introduced on the level of detailed object oriented design,
now defined for different activities.
Problem Frames (Jackson) classify software development
problems,

Architectural styles/ “architectural patterns” characterise
software architectures
Design Patterns for finer-grained software design,
frameworks less abstract, more specialised. idioms/“code
patterns”: low-level patterns related to specific
programming languages
construct software in a systematic way, body of
accumulated knowledge, not starting from scratch

3 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Patterns

a promising approach to software development, a means to
reuse software development knowledge on different levels
of abstraction, classify sets of software development
problems or solutions that share the same structure
introduced on the level of detailed object oriented design,
now defined for different activities.
Problem Frames (Jackson) classify software development
problems,
Architectural styles/ “architectural patterns” characterise
software architectures

Design Patterns for finer-grained software design,
frameworks less abstract, more specialised. idioms/“code
patterns”: low-level patterns related to specific
programming languages
construct software in a systematic way, body of
accumulated knowledge, not starting from scratch

3 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Patterns

a promising approach to software development, a means to
reuse software development knowledge on different levels
of abstraction, classify sets of software development
problems or solutions that share the same structure
introduced on the level of detailed object oriented design,
now defined for different activities.
Problem Frames (Jackson) classify software development
problems,
Architectural styles/ “architectural patterns” characterise
software architectures
Design Patterns for finer-grained software design,
frameworks less abstract, more specialised. idioms/“code
patterns”: low-level patterns related to specific
programming languages

construct software in a systematic way, body of
accumulated knowledge, not starting from scratch

3 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Patterns

a promising approach to software development, a means to
reuse software development knowledge on different levels
of abstraction, classify sets of software development
problems or solutions that share the same structure
introduced on the level of detailed object oriented design,
now defined for different activities.
Problem Frames (Jackson) classify software development
problems,
Architectural styles/ “architectural patterns” characterise
software architectures
Design Patterns for finer-grained software design,
frameworks less abstract, more specialised. idioms/“code
patterns”: low-level patterns related to specific
programming languages
construct software in a systematic way, body of
accumulated knowledge, not starting from scratch 3 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Frames (M. Jackson)

problem frames concept: present, classify, understand
software development problems

characterisation of a class of problems in terms of their
main components and the connections between these
components

Once a problem is successfully fitted to a problem frame,
its most important characteristics are known

diagram: involved domains, requirements, design,
interfaces

five basic problem frames, variants

4 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Frames (M. Jackson)

problem frames concept: present, classify, understand
software development problems

characterisation of a class of problems in terms of their
main components and the connections between these
components

Once a problem is successfully fitted to a problem frame,
its most important characteristics are known

diagram: involved domains, requirements, design,
interfaces

five basic problem frames, variants

4 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Frames (M. Jackson)

problem frames concept: present, classify, understand
software development problems

characterisation of a class of problems in terms of their
main components and the connections between these
components

Once a problem is successfully fitted to a problem frame,
its most important characteristics are known

diagram: involved domains, requirements, design,
interfaces

five basic problem frames, variants

4 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Frames (M. Jackson)

problem frames concept: present, classify, understand
software development problems

characterisation of a class of problems in terms of their
main components and the connections between these
components

Once a problem is successfully fitted to a problem frame,
its most important characteristics are known

diagram: involved domains, requirements, design,
interfaces

five basic problem frames, variants

4 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Frames (M. Jackson)

problem frames concept: present, classify, understand
software development problems

characterisation of a class of problems in terms of their
main components and the connections between these
components

Once a problem is successfully fitted to a problem frame,
its most important characteristics are known

diagram: involved domains, requirements, design,
interfaces

five basic problem frames, variants

4 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

The Commanded Behaviour frame

behaviour
Commanded

Operator

machine

E4

C3

B

domain
Controlled

Control
C

CM!C1
CD!C2

O!E4

There is some part of the physical world whose
behaviour is to be controlled in accordance with
commands issued by an operator. The problem is to
build a machine that will accept the operator’s
commands and impose the control accordingly.

5 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

The Commanded Behaviour frame

behaviour
Commanded

Operator

machine

E4

C3

B

domain
Controlled

Control
C

CM!C1
CD!C2

O!E4

There is some part of the physical world whose
behaviour is to be controlled in accordance with
commands issued by an operator. The problem is to
build a machine that will accept the operator’s
commands and impose the control accordingly.

5 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Basic Approach

Decompose problems into simple subproblems, fitting to
problem frames.

Problem frames are only useful if we know how to solve
the problems fitting to them.

Hence, we defined architectural patterns for each problem
frame.

These are used to set up a solution structure for each
subproblem.

Important: compose solutions to subproblems on the
architectural level, not on the code level.

Use relations between subproblems to construct the
composed solution structure.

6 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Layered Software Architectures

HAL Hardware Abstraction Layer: consists of drivers
for external components; needed for portability

IAL Interface Abstraction Layer: provides input data
or accepts output data, respectively

Application Layer: computes output data from input data

We represent the architectural patterns as UML composite
structure diagrams.

7 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Commanded Behaviour
Frame Diagram and Architectural Pattern

behaviour
Commanded

Operator

machine

E4

C3

B

domain
Controlled

Control
C

CM!C1
CD!C2

O!E4

Application

Actuator IALSensor IAL

Sensor HAL

User
Interface

Controlled ControlledOperator (E4)

Control Machine

Domain (C2) Domain (C1)

Actuator HAL

8 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Commanded Information
Frame Diagram and Architectural Pattern

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering User

Interface

Sensor IAL

Sensor HAL

Display Application

Data
Storage

Input Application

Real world (C1)Display (E3) / Enquiry operator (E5)

Answering machine

9 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Workpieces
Frame Diagram and Architectural Pattern

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Application

Interface
User

Storage
Data

User (E3)

Editor

Workpieces (E1, Y2)

Note that there is only one interface with the environment.

10 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Procedure

Instantiate Problem Frames

Express dependencies / relationships between problem
diagrams

Instantiate corresponding architectural pattern for each
Problem Frame

Merge architectures

11 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Express subproblem dependencies / relationships

Relationships between subproblems:

parallel

sequential

alternative

. . .

Possible notation: grammars

12 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Instantiate Architectural Patterns

If a subproblem fits to a known problem frame, then a
simple instantiation of the pattern will suffice.

If a subproblem is not an exact instance of a problem
frame but a variant, then modifications of our
architectural patterns will be necessary.

If a subproblem is unrelated to any problem frame, then an
appropriate architecture has to be developed from scratch.

For each interface contained in a subproblem architecture,
the corresponding operations or signals, respectively, have
to be defined, and provided and required interfaces must
be distinguished

13 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Merge Architectures I

Decide if two components contained in different subproblem
architectures should occur only once in the global architecture,
i.e., they should be merged. Distinguish the following cases:

1. The components are hardware (HAL) or interface
abstraction layers (IAL), establishing the connection to
some hardware device.
Such components should be merged if and only if they are
associated to the same hardware device.

2. Two application components belong to subproblems being
related sequentially or by alternative.
Such components should be merged into one application
component.

14 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Merge Architectures II

3. Two application components belong to parallel
subproblems and share some output phenomena.
Such components should be merged, because the output
must be generated in a way satisfying both subproblems.

4. Two application components belong to parallel
subproblems and share some input phenomena.
If the components do not share any output phenomena,
both alternatives (merging the components, or keeping
them separate) are possible. If the components are not
merged, then the common input must be duplicated.

5. Two application components belong to parallel
subproblems and do not share any interface phenomena.
Such components should be kept separately.

15 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Requirements for ATM

R1 To use the ATM a valid pin and a bank card is required.
(Authenticate)

R2 The withdrawal should be refused when the request is
bigger than the balance. (Request)

R3 The card should be retracted if the customer does not
take the ejected card. (TakeCard)

R4 The account is updated when the customer takes the
money. (UpdateAccount)

R5 After the withdrawal was granted and the card ejected,
the money should be taken from the supply, put to the
money case, and the case should be opened. After the
customer took the money, the money case should close,
otherwise the money should be retracted. (TakeMoney)

R6 All input phenomena should be logged. (Log)
R7 The logged input phenomena can be queried by the

administrator. (DisplayLog)
16 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Context Diagram for ATM

Card
reader

Account
data

Admin

take_banknotes_from supply
put_banknote_to_case

retract_banknotes_from_case
open_case, close_case

banknotes_removed

*

Money supply /

ATMaccount_balance
withdraw_money

Customer

insert_card, remove_card

ask_pin, granted_OK
refuse_withdrawal
enter_request
enter_pin

take_banknotes

insert_money

*request_log
display_log

card_inside

retract_card, eject_card
no_card_inside

case

17 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Subproblem dependencies / relationships

<start> ::= (<idle> || Log || DisplayLog)

<idle> ::= (Authenticate <authenticated> | Authenticate <idle>)

<authenticated> ::= (Request <granted> | Request <refused>)

<granted> ::= (TakeCard <granted no card> | TakeCard <idle>)

<refused> ::= TakeCard <idle>

<granted no card> ::= (UpdateAccount || TakeMoney)1 <idle>

1Both react to the signal “takeBanknotes”
18 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Diagram for Authenticate
(commanded behavior variant)

Customer

Card
reader

C!E5

Authen−
tication
machine

AM!C2
CR!C1

C3

C!E4
AM!E6

E4,E5,E6

 R1

C1: {card inside}
C2: {retract card}
C3: {card control}

E4: {enter pin}
E5: {insert card}
E6: {ask pin}

19 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Architecture for Authenticate

Card In IAL

Card In HALCard Out HAL

Card Out IAL

User
Interface

 from Customer (E5)
Card Reader (C2) Card Reader (C1)Customer (E4, E6)

E4’’ E6’’

C2’

C2’’

C1’

C1’’

Authentication Application

20 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Diagram for Request
(commanded information)

Request
machine Display

Account
data

AD!C7 C8

RM!E9 Y10

Customer E11C!E11

R2

C7: {account balance}
C8: {account data}
E9: {granted OK,

refuse withdrawal}

Y10: {withdrawal possible}
E11: {enter request}

21 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Architecture for Request

Data
Storage
(Account
Data)

User
Interface

Request Application

E9’’, E11’’ C7

Customer (E9, E11)

22 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Diagram for Take Card
(required behavior variant)

Customer

Card
reader

Take
card
machine

CR!C12
TCM!C13 C14

C!E15

E15

R3

C12: {card inside}
C13: {eject card,

retract card}

C14: {eject, retract}
E15: {take card}

23 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Architecture for Take Card

Card In IAL

Card In HALCard Out HAL

Card Out IAL

Card Reader (C13) Card Reader (C12)
 from Customer (E15)

Take Card Application

C13’

C13’’ C12’’

C12’

24 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Diagram for Update Account
(workpieces variant)

account
Update

machine

Customer

C!E18

Money Case

data
Account

MC!C19

Y17

E18

UAM!Y16

R4

Y16: {update account}
Y17: {account data}

E18: {take banknotes}
C19: {banknotes removed}

25 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Architecture for Update Account

Data
Storage
(Account
Data)

Update Account Application

Money Se.HAL

Money Se.IAL

Case (C19)
Sensor from

Customer (E18)

Money Supply/

C19’

C19’’Y16

��
��
��

��
��
��

��
��
��

��
��
��

granted_
no_card

update_account(− amount)
banknotes_removed’’() /

Update Account Application

26 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Diagram for Take Money (required
behavior variant)

Customer

Take
money
machine

Money Supply /
Case

MCC!C19
TMM!C20 C21

E18

C!E18 R5

E18: {take banknotes}
C19: {banknotes removed}
C20: {take banknotes from supply, put banknote to case,

open case, close case, retract banknotes from case}
C21: {control money supply, control money case}

27 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Architecture for Take Money

Money Se.HAL

Money Se.IAL Money Ac.IAL

Money Ac.HAL

Money Supply/

Actuator
Case (C19) Case (C20)
Sensor from

Customer (E18)

Money Supply/

Take Money Application

C19’ C20’

C19’’ C20’’
��
��
��

��
��
��

��
��
��

��
��
��

granted_
no_card

Take Money Application

 open_case’’(), start_timer(LIMIT)
 put_banknotes_to_case’’()
/take_banknotes_from_supply’’(),

retract_banknotes_from_case’’()
timeout’’() /

banknotes_removed’’() /
close_case’’()

28 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Diagram for Log (Workpieces variant)

(Logs)

machine
Log

Data storage Y23
LM!Y23

Customer

Money case
Card reader,

C!E5,E15,E18
C!E4,E11

CRMC!C1,C12, C19

C22

E4,E11

R6

Y22: {card reader money case input phenomena}
E23: {log data}

C1, C12 . . . as given in the other figures

29 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Architecture for Log

Data
Storage
(Logs)

Card In IAL

Card In HAL

User
Interface

Money Se.HAL

Money Se.IAL

Card Reader
Case (C19)

Money Supply/
(C1, C12)

Log Application

Customer (E4, E6, E11)

E4’’, E6’’, E11’’Y23

C1’, C12’ C19’

C19’’C1’’, C12’’

30 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Problem Diagram for Display Log
(commanded information)

Admin

Admin
display

Display

machine
log

Data
storage
(Log) Y25

E27

DS!Y24

A!E27

DLM!C26 C26 R7

Y24: {log data}
Y25: {logged input phenomena}
C26: {log}
E27: {request log}

31 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Architecture for Display Log

Y24

Storage
(Logs)

Interface
(Admin)

Admin (E27)
Admin Display (C26)/

Display Log Application

C26’’ E27’’

DataUser

32 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Refined Context Diagram

Card
reader

Account
data

put_banknote_to_case

retract_banknotes_from_case
open_case, close_case

banknotes_removed

*

Admin
Admin
display

card_inside

retract_card, eject_card
no_card_inside

account_balance
update_account

display_log

log
request_log

insert_card, remove_card

ATM

Customer

take_banknotes

Money supply /
case

insert_money

*

Display

enter_request

refuse_withdrawal

enter_pin

display_text

ask_pin, granted_OK

33 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Develop Global Architecture

Take Money, Update Account: parallel and share input
phenomena =⇒ merge application components (decided)

Log, all other subproblems: parallel and share input
phenomena =⇒ merge application components (decided)

Authenticate, Request, Take Card, merged problem
(consisting of Take Money/Update Account/Log):
sequentially or by alternative =⇒ merge to Main
Application.

Display Log, all other subproblems: parallel, do not share
any interface =⇒ no merge

All components that are IALs or HALs are merged with the
components of the same name in the other subproblem
architectures.

34 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Global Architecture

Data
Storage
(Account
Data) Money Se.HAL

Money Se.IAL

Case (C19)
Sensor from

Customer (E18)

Money Supply/

Money Ac.IAL

Money Ac.HAL

Money Supply/

Actuator
Case (C20)

Card In IAL

Card In HAL

Card Reader

(E5, E15)

(C1, C12)
 from Customer

User
Interface
(Admin)

Admin (E27)
Admin Display (C26)/

Display Log Application

Data
Storage
(Logs)

Main Application

User
Interface

Customer (E4, E6, E9, E11)

Y24 Y23

Card Out HAL

Card Reader
(C2, C13)

C2’’ C13’’E4’’,E6’’ E9’’,E11’’C26’’ E27’’ C19’’C1’’ C12’’ C20’’

C20’C19’C2’ C13’ C1’ C12’

Card Out IA

C7 Y16

Next, all of these components have to be specified and
implemented.

35 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Merging State Machines

��
��
��

��
��
��

��
��
��

��
��
��

Take Money / Update Account

granted_
no_card

/take_banknotes_from_supply’’(),
 put_banknotes_to_case’’()
 open_case’’(), start_timer(LIMIT)

retract_banknotes_from_case’’()
timeout’’() /

close_case’’(),
banknotes_removed’’() /

update_account(− amount)

��
��
��

��
��
��

Authentication /
Log Application

Request / Log
Application

Take Card / Log
Application

Take Card / Log
Application

Update Account /
Log Application

Take Money /

c_retracted

refused c_retracted

failed

Main Application

36 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Conclusions

We have developed one (heuristic) way of tackling the
composition problem.

Our process can be refined and enhanced.

It will not always yield optimal solutions.

This situation is analogous to tailor-made clothes vs.
ready-to-wear clothes.

However, this is what we want, because we are dealing
with normal design.

37 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Literature

Christine Choppy, Denis Hatebur and Maritta Heisel:
Architectural Patterns for Problem Frames. In IEE
Proceedings – Software, Special Issue on Relating
Software Requirements and Architectures, Vol. 152, No.
4, pp. 198–208, 2005.

38 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Required Behaviour
Frame Diagram and Architectural Pattern

Control
CD!C2

CM!C1

domain
Controlled

C

C3

machine behaviour
Required

Controlled Controlled
Domain (C2) Domain (C1)

C2’

C2’’

C1’

C1’’

Application

Sensor IAL

Sensor HAL

Actuator IAL

Actuator HAL

Control Machine

39 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Detailed Architectural Pattern for User Interface

Device

Operator

Application

User Interface

InputUser
Display
HAL HAL

View and Control
according to MVC−pattern

The interface of this compo-
nent to the Application com-
ponent should be the inter-
face to the model, i.e., the
User Interface comprises the
View and Controller parts
of the MVC (Model-View-
Control) pattern.

40 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Information Display
Frame Diagram and Architectural Pattern

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information Sensor IAL

Sensor HAL

Application

Display
Interface

Display (E2) Real world (C1)

Information Machine

E2’’ C1’’

C1’

41 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Architectural Pattern for
Remote Access to Data Storage

(Repository)
Storage
Data

Client

Client

User (E3)User (E3)

Client

(E3)
User

Interface
User Data

Storage
Network
Interface

Network
Interface

Client Repository

User (E3) Workpieces (E1, Y2)

ClientApplication RepositoryApplication

Non-functional requirements might state that distributed
access to the workpieces must be provided. The mapping from
the Repository architectural style to the Layered architectural
style is shown here.

42 / 43

APSEC

Christine
Choppy

Introduction

Architectural
Patterns

Procedure

Example:
ATM

Conclusions

Transformation
Frame Diagram and Architectural Pattern

IO
relation

Y4

Inputs

Outputs

machine
Transform

TM!Y2

X

X

Y3I!Y1

Application

Transform Machine

Storage
DataData

Storage

Inputs (Y1) Outputs (Y2)

43 / 43

	Introduction
	Architectural Patterns
	Procedure
	Example: ATM
	Conclusions

