
I
A

S
S
E

0
4
T

a
lk

.t
e
x

–
–

–
2
/
7
/
2
0
0
4

–
–

p
.0

-0

.
–

p
.0

-0

Using UML for Problem Frame
Oriented Software Development

Christine Choppy Gianna Reggio

LIPN, CNRS UMR 7030 DISI
Université Paris 13 Universita di Genova

Villetaneuse Genova
FRANCE ITALY

1

Motivation

Problems are difficult to understand and specify

Problem Frames help to understand problems

We propose an associated specification development
method

General formally grounded specification methodology
(Choppy & Reggio 03-04)

Here approach for UML description: a well founded
methodology for UML descriptions

Help to choose between various constructs, provide a
precise, structured and well-founded way
(e.g. Astesiano & Reggio, SEFM 2003)

Here for the Commanded Information Frame

2

Motivation

Problems are difficult to understand and specify

Problem Frames help to understand problems

We propose an associated specification development
method

(other specification methodology issues, e.g. related to a
specific language use)

General formally grounded specification methodology
(Choppy & Reggio 03-04)

Here approach for UML description: a well founded
methodology for UML descriptions

Help to choose between various constructs, provide a
precise, structured and well-founded way
(e.g. Astesiano & Reggio, SEFM 2003)

Here for the Commanded Information Frame

2

Motivation

Problems are difficult to understand and specify

Problem Frames help to understand problems

We propose an associated specification development
method

General formally grounded specification methodology
(Choppy & Reggio 03-04)

Here approach for UML description: a well founded
methodology for UML descriptions

Help to choose between various constructs, provide a
precise, structured and well-founded way
(e.g. Astesiano & Reggio, SEFM 2003)

Here for the Commanded Information Frame

2

Motivation

Problems are difficult to understand and specify

Problem Frames help to understand problems

We propose an associated specification development
method

General formally grounded specification methodology
(Choppy & Reggio 03-04)

Here approach for UML description: a well founded
methodology for UML descriptions

Help to choose between various constructs, provide a
precise, structured and well-founded way
(e.g. Astesiano & Reggio, SEFM 2003)

Here for the Commanded Information Frame

2

Motivation

Problems are difficult to understand and specify

Problem Frames help to understand problems

We propose an associated specification development
method

General formally grounded specification methodology
(Choppy & Reggio 03-04)

Here approach for UML description: a well founded
methodology for UML descriptions

Help to choose between various constructs, provide a
precise, structured and well-founded way
(e.g. Astesiano & Reggio, SEFM 2003)

Here for the Commanded Information Frame

2

Commanded Information Frame

rules
Answer

machine
Answering

C

B

world

operator
Enquiry

Real

Design Domain Requirements

�

stands for “biddable”(people),
�

for “causal”(dynamic)

“There is some part of the physical world whose states and
behavior are needed upon requests from an operator.
The problem is to build a machine that will obtain this
information from the world and present it in the required form.”

Information directly presented to the Enquiry Operator (not by
means of a Display)

3

Commanded Information Frame

rules
Answer

machine
Answering

C

B

world

operator
Enquiry

Real

Design Domain Requirements

�

stands for “biddable”(people),
�

for “causal”(dynamic)

“There is some part of the physical world whose states and
behavior are needed upon requests from an operator.
The problem is to build a machine that will obtain this
information from the world and present it in the required form.”

Information directly presented to the Enquiry Operator (not by
means of a Display)

3

Commanded Information Frame

rules
Answer

machine
Answering

C

B

world

operator
Enquiry

Real

Design Domain Requirements

�

stands for “biddable”(people),
�

for “causal”(dynamic)

“There is some part of the physical world whose states and
behavior are needed upon requests from an operator.
The problem is to build a machine that will obtain this
information from the world and present it in the required form.”

Information directly presented to the Enquiry Operator (not by
means of a Display)

3

Method and Outline

Match a Problem Frame: Domain, Requirements, Design

Follow the UML description guidelines
UML Domain Model
UML Requirements Model
UML Design Model

Running Example: a Company Information System

4

Method and Outline

Match a Problem Frame: Domain, Requirements, Design

Follow the UML description guidelines
UML Domain Model
UML Requirements Model
UML Design Model

Running Example: a Company Information System

4

Method and Outline

Match a Problem Frame: Domain, Requirements, Design

Follow the UML description guidelines
UML Domain Model
UML Requirements Model
UML Design Model

Running Example: a Company Information System

4

Domain Model: Real world

class diagram with an active class

��� � � �� �	
a detailed description of the behaviour of

��� � � �� �	

, or
just a small conceptual model containing

��� � � �� �	

and
few other classes.

5

Requirement Specification (1)

Choppy & Reggio 99: formal specification skeleton for the
various parts of the Commanded Information Frame

events (yield changes in the system state)

the history of the events that occurred

Here

rules
Answer

machine
Answering

C

B

world

operator
Enquiry

Real

interface between Real world and Answering machine
labelled by events generated by the Real world that
convey information about it.

6

Requirement Specification (1)

Choppy & Reggio 99: formal specification skeleton for the
various parts of the Commanded Information Frame

events (yield changes in the system state)

the history of the events that occurred

Here

rules
Answer

machine
Answering

C

B

world

operator
Enquiry

Real

interface between Real world and Answering machine
labelled by events generated by the Real world that
convey information about it.6

Requirement Specification (2)

use case diagram

Enquire n

Enquire 1

RecordEvent

AnsweringMachine

E
O

:E
n

q
u

ir
yO

p
er

at
o

r

R
W

:R
ealW

o
rld

_E

. . .

class diagram

use case description (statechart)

possibly other diagrams and model elements

7

Requirement Specification (2)

use case diagram

Enquire n

Enquire 1

RecordEvent

AnsweringMachine

E
O

:E
n

q
u

ir
yO

p
er

at
o

r

R
W

:R
ealW

o
rld

_E

. . .

class diagram

use case description (statechart)

possibly other diagrams and model elements

7

Requirement Spec: class diag

-

��� � � �� �	

�

specializes��� � � �� �	

(signal events to
Answering machine -

�
 �� � ���

interface)
-

��� � � �

-

� � � �� �
 � � � �� �
 � � interacts
with��� � � �� �	

�

(event signals
received)� � ��
 �� ��� � � � � �� (

� � ��
 �
 � � ,
 � � � �� �� �� ,

� � � �� � � � � � �� �)
-

� � � �� �
 � � � �� �
 � � state:
Real world past history
-

!
 � � ��� :
� ��

RealWorld

Event
<<datatype>>

RealWorld_E

Signals
<<interface>>

signalEvent(Event)

AnsweringMachine

his: History

DisplayActs
<<interface>>

dAct (...)
...
dAct (...)

1

m

ErrorMessages
<<interface>>

error (...)
...
error (...)

1

k

Enquiries
<<interface>>

enquire (...)
...
enquire (...)

1

n

EnquireOperator

History

-cont: Sequence(Event)

add(e:Event)
{post: cont = cont@pre->append(e)}
hop (...):...
...
hop (...):...

1

h

DataView

8

Req Spec: use case description

use case

��� � �� 	 �� � � � signalEvent(e) / his = his.add(e)

use case

enquire(X) [ok_cond(X,his)] /
EO.dAct(his.hop(X))

[err_cond (X,his)] /
EO.error (...)n

n[err_cond (X,his)] /
EO.error (...)1

1

other diagrams and model elements ,
, and

9

Req Spec: use case description

use case

��� � �� 	 �� � � � signalEvent(e) / his = his.add(e)

use case

� � � �
 � �

enquire(X) [ok_cond(X,his)] /
EO.dAct(his.hop(X))

[err_cond (X,his)] /
EO.error (...)n

n[err_cond (X,his)] /
EO.error (...)1

1

other diagrams and model elements ,
, and

9

Req Spec: use case description

use case

��� � �� 	 �� � � � signalEvent(e) / his = his.add(e)

use case

� � � �
 � �

enquire(X) [ok_cond(X,his)] /
EO.dAct(his.hop(X))

[err_cond (X,his)] /
EO.error (...)n

n[err_cond (X,his)] /
EO.error (...)1

1

other diagrams and model elements

� � ��
 �� �� � � � � �� ,� � � � �� �	

�
, and

�� � � �

9

Design Spec

A class diagram

� � � �
 �� ��� � � � � �� &

��� � � �� �	

�

external entities interacting with
Answering machine

three kinds of (stereotype)
classes:
� " �� � 	 � �� � (sys interaction
with external entities)
�� #� � � � �� � (system activities)
�� � �� � � (persistent data)

other diagrams and constraints:
behaviour of each class
- bound., exec. : statecharts
- methods, pre/post : store op

EnquireOperator

RealWorld_E

<<boundary>>

enquire (...)1

Enq 1

<<boundary>>

enquire (...)n

Enq n

hhop (...)

<<executor>>
Hop h

hhop 1(...)

<<executor>>
Hop 1

<<store>>
St j

<<store>>
St 1

<<boundary>>

signalEvent(Event)

EventRec

. . .

. . .

. . .

10

Company Information System

rules
Answer

Company

Company

manager

CompanyIS

Matching the commanded information problem frame

rules
Answer

machine
Answering

C

B

world

operator
Enquiry

Real

11

Company Domain Model

OrderCode
<<datatype>>

ClientCode
<<datatype>>

ProdCode
<<datatype>>

Company

Order
<<datatype>>

ofWhat: ProdCode
howMuch: Int
byWho: ClientCode
code: OrderCode

The Company is a commercial one selling products of various kinds,
produced by someone else.
The orders are received from outside, and from time to time they are
examined. If the ordered products are available in the required
quantity the order is processed, an invoice is sent to the client and
the goods are shipped, otherwise the order will be examined again in
the future. If the ordered products are not available for a long time,
the order is refused. A client may cancel an order before it is
processed.
From time to time the products are supplied by the producers and
stocked by the Company.
The Company product catalog may change, that is products may be
removed and new ones added. 12

Company Requirement Spec 1

Show product
availability

RecordEvent

CompanyIS

C
M

:C
o

m
p

an
yM

an
ag

er

C
:C

o
m

p
an

y_E

. . .

Show product
quantity sold in a

period

13

Company Req Spec 2 (class 1)

History

-cont: Sequence(Event)

add(e:Event)
aQuantity(ProdCode): Int
sQuantity(ProdCode,Date,Date): Int
inCatalog(ProdCode): Bool
....

Event
<<datatype>> AddProd

which: ProdCode

RemoveProd

which: ProdCode

ReceiveOrder

which: Order
when: Date

CancelOrder

which: OrderCode
when: Date

Refill

which: ProdCode
howMuch: Int

RefuseOrder

which: OrderCode
when: Date

ProcessOrder

which: OrderCode
when: Date

inCatalog(pc:ProdCode): Bool post:
result = exists i >= 1 s.t.
 self.cont[i] is the addition of pc and
 for all j > i self.cont[j] is not the removing of pc

aQuantity(pc:ProdCode): Int post:
result = cont -> iterate(e: Event; aQuant = 0 |)
 if e.hasType(Refill) and pc = e.which then
 aQuant + e.howMuch
 else if e.hasType(ProcessOrder) and pc = e. which.ofWhat then
 aQuant-e.which.howMuch
(else aQuant)

sQuantity(pc:ProdCode, d1,d2: Date): Int post:
result = the sum of o.howMuch
for all orders o of product pc processed in date d, with d2>=d>=d1

14

Company Req Spec 3 (class 2)

CompanyIS

his: History

D
is

p
la

yA
ct

s
<

<
in

te
rf

ac
e>

>

av
ai

la
bl

eQ
ua

nt
Is

(P
ro

dC
od

e,
In

t)
so

ld
Q

ua
nt

Is
(P

ro
dC

od
e,

D
at

e,
D

at
e,

In
t)

...

ErrorMessages
<<interface>>

notInCatalog(ProdCode)
notTimePeriod(Date,Date)
...

E
n

q
u

ir
ie

s
<

<
in

te
rf

ac
e>

>

av
ai

la
be

lQ
ua

nt
(P

ro
dC

od
e)

so
ld

Q
ua

nt
(P

ro
dC

od
e,

D
at

e,
D

at
e)

...

Company

Company_E

Signals
<<interface>>

signalEvent(Event)

CompanyManager15

Company Requirement Spec 4

availableQuant(pc,d1,d2) [his.inCatalog(pc)] /
CM.availabelQuantIs(pc,his.aQuant(pc))

[not his.inCatalog(pc)] /
CM.notInCatalog(pc)

soldQuant(pc,d1,d2)
[his.inCatalog(pc)] /
CM.soldQuantIs(pc,d1,d2,)
(his.sQuant(pc,d1,d2))

[d2 > d1] /
EO.notTimePeriod(d1,d2)

[not his.inCatalog(pc)] /
CM.notInCatalog(pc)

16

Company Requirement Spec 4

availableQuant(pc,d1,d2) [his.inCatalog(pc)] /
CM.availabelQuantIs(pc,his.aQuant(pc))

[not his.inCatalog(pc)] /
CM.notInCatalog(pc)

soldQuant(pc,d1,d2)
[his.inCatalog(pc)] /
CM.soldQuantIs(pc,d1,d2,)
(his.sQuant(pc,d1,d2))

[d2 > d1] /
EO.notTimePeriod(d1,d2)

[not his.inCatalog(pc)] /
CM.notInCatalog(pc)

16

Conclusion, . . .

A well founded methodology for UML descriptions in
relationship with the basic Problem Frames (following
Jackson’s idea was that, once a convenient problem
frame is identified for a given problem, then the
appropriate development method could be available).

Precise guided use of UML constructs (time gain &
concentration on relevant development aspects), for
domain, requirements and design

founded on formal specification experience

17

Conclusion, . . .

A well founded methodology for UML descriptions in
relationship with the basic Problem Frames (following
Jackson’s idea was that, once a convenient problem
frame is identified for a given problem, then the
appropriate development method could be available).

Precise guided use of UML constructs (time gain &
concentration on relevant development aspects), for
domain, requirements and design

founded on formal specification experience

17

Conclusion, . . .

A well founded methodology for UML descriptions in
relationship with the basic Problem Frames (following
Jackson’s idea was that, once a convenient problem
frame is identified for a given problem, then the
appropriate development method could be available).

Precise guided use of UML constructs (time gain &
concentration on relevant development aspects), for
domain, requirements and design

founded on formal specification experience

17

Conclusion, . . .

A well founded methodology for UML descriptions in
relationship with the basic Problem Frames (following
Jackson’s idea was that, once a convenient problem
frame is identified for a given problem, then the
appropriate development method could be available).

Precise guided use of UML constructs (time gain &
concentration on relevant development aspects), for
domain, requirements and design

founded on formal specification experience

the developer has to explicitly consider and describe the
existing parts of the real world interacting with the system
to be developed.

17

Related work, and . . .

Previous work in the same spirit to guide formal
specifications of complex systems in relationships with
Problem Frames and for different formal specification
languages.

Formal specifications skeletons (CASL Common
Algebraic Specification Language ,
CASL-LTL extended with Labelled Transition Logics,
temporal)
for Translation/JSP, and Information System (IS)
(Choppy & Reggio WADT’99 LNCS 1827)

(LOTOS), together with connections to architectural styles
(Choppy & Heisel WADT’02 LNCS 2755)

18

http://cofi.info

Related work, and . . .

Previous work in the same spirit to guide formal
specifications of complex systems in relationships with
Problem Frames and for different formal specification
languages.

Formal specifications skeletons (CASL Common
Algebraic Specification Language

$% % &' ((*) + ,- . - / , +

,
CASL-LTL extended with Labelled Transition Logics,
temporal)
for Translation/JSP, and Information System (IS)
(Choppy & Reggio WADT’99 LNCS 1827)

(LOTOS), together with connections to architectural styles
(Choppy & Heisel WADT’02 LNCS 2755)

18

http://cofi.info

Perspectives

Report with similar approach for other problem frames:
Transformation, Required Behaviour, Commanded
Behaviour.

May be completed with Required Information,
Workpieces

to get a complete development approach with the benefit
of the basic problem frames structuring concepts.

may be used with or without (any) formal specifications
(try to keep both worlds happy . . . and efficient !)

THE END ! THANKS FOR YOUR ATTENTION !

19

Perspectives

Report with similar approach for other problem frames:
Transformation, Required Behaviour, Commanded
Behaviour.

May be completed with Required Information,
Workpieces

to get a complete development approach with the benefit
of the basic problem frames structuring concepts.

may be used with or without (any) formal specifications
(try to keep both worlds happy . . . and efficient !)

THE END ! THANKS FOR YOUR ATTENTION !

19

Perspectives

Report with similar approach for other problem frames:
Transformation, Required Behaviour, Commanded
Behaviour.

May be completed with Required Information,
Workpieces

to get a complete development approach with the benefit
of the basic problem frames structuring concepts.

may be used with or without (any) formal specifications
(try to keep both worlds happy . . . and efficient !)

THE END ! THANKS FOR YOUR ATTENTION !

19

Perspectives

Report with similar approach for other problem frames:
Transformation, Required Behaviour, Commanded
Behaviour.

May be completed with Required Information,
Workpieces

to get a complete development approach with the benefit
of the basic problem frames structuring concepts.

may be used with or without (any) formal specifications
(try to keep both worlds happy . . . and efficient !)

THE END ! THANKS FOR YOUR ATTENTION !

19

Perspectives

Report with similar approach for other problem frames:
Transformation, Required Behaviour, Commanded
Behaviour.

May be completed with Required Information,
Workpieces

to get a complete development approach with the benefit
of the basic problem frames structuring concepts.

may be used with or without (any) formal specifications
(try to keep both worlds happy . . . and efficient !)

THE END ! THANKS FOR YOUR ATTENTION !

19

Other issues

6 basic problem frames ?

explore new problem frames ?

failing to match a problem frame is interesting !

Composition ?
associate on problem frame with each use case
(goal level?)
compose developed solutions through component based
architectures
Choppy & Heisel, AFADL’04 (June)

20

Other issues

6 basic problem frames ?

explore new problem frames ?

failing to match a problem frame is interesting !

Composition ?
associate on problem frame with each use case
(goal level?)
compose developed solutions through component based
architectures
Choppy & Heisel, AFADL’04 (June)

20

Other issues

6 basic problem frames ?

explore new problem frames ?

failing to match a problem frame is interesting !

Composition ?
associate on problem frame with each use case
(goal level?)
compose developed solutions through component based
architectures
Choppy & Heisel, AFADL’04 (June)

20

	Motivation
	Commanded Information Frame
	Method and Outline
	Domain Model: RealWorldP
	Requirement Specification (1)
	Requirement Specification (2)
	Requirement Spec: class diag
	Req Spec: use case description
	Design Spec
	Company Information System
	Company Domain Model
	Company Requirement Spec 1
	Company Req Spec 2 (class 1)
	Company Req Spec 3 (class 2)
	Company Requirement Spec 4
	Conclusion, ldots
	Related work, and ldots
	Perspectives
	Other issues

