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Abstract— In this paper, we are presenting QR fac-
torization algorithms that can tolerate process crashes
and soft errors (bit flips). Our algorithms take advantage
of structural properties of a QR factorization algorithm
referred to as “communication-avoiding”. We show that,
exploiting these properties, our resilient, robust algorithms
modify the communication pattern of the computation but
do not add any significant computation in the critical path.

I. INTRODUCTION

Large-scale parallel system are now more usual
and accessible to scientists. The latest release of the
Top 5001, in June 2016, show that, in the world, 95
systems achieve a performance of 1 Petaflops and
more. 53 systems ranked in the June 2016 list fea-
ture more than 100 000 cores and 466 feature more
than 10 000 cores. The computations made at this
scale need to be scalable in order to take advantage
of the computational power of such systems.

Besides, at large-scale, failures are statistically
frequent, and need to be taken into account by the
computation. When failures are rare, the computa-
tions can start hoping that they will complete with
no failure during the computation, and restarting
the computation when a failure happens. However,
at large-scale, failures are so common that it is
expected that some nodes will fail during the com-
putation [1]. As a consequence, the computation
needs to expect these failures and adapt in order
to proceed with the computation in spite of these
failures. We call algorithms designed to work in
such conditions fault-tolerant algorithms.

In this paper, we are considering two types of
failures. The first one is crash-type failures: a pro-
cess of the parallel computation works correctly

1https://www.top500.org

until a failure happens, which causes it to stop
working [2]. The second type is bit errors, which
we are also called soft errors: the system seems to
work correctly, but the result is wrong [3]. These
errors can be caused by cosmic rays, especially on
space systems This is different from what is usually
called numerical error, caused by round-off errors
and finite precision.

In this paper, we are focusing on the QR fac-
torization, which has a broad range of applications,
such as linear least-square problems, orthogonaliza-
tion (using the Q matrix), diagonalization (using the
R matrix), system solving, singular value decompo-
sition... Our goal is to design algorithms that can be
used in a library approach: we are providing a QR
factorization that enjoys some properties, and the
users that need such a QR factorization only needs
to use it without taking care of what is necessary to
obtain these properties.

In particular, we are presenting here algorithms
for a fault-tolerant and robust QR factorization.
The computation is fault-tolerant in a sense that
it can tolerate process failures. It is robust in a
sense that it can tolerate soft errors. These properties
are enforced by the algorithm itself: the initial
matrix is distributed like with any usual parallel QR
factorization, and the result is the same as with any
usual parallel QR factorization.

Our algorithms take advantage of a new model
for fault-tolerance in parallel programs, called User-
Level Failure Mitigation [4], that extends past MPI
standards, and is being studied for inclusion in
future MPI standards. Failures are handled by the
application itself, and the behavior followed by the
application is defined by the programmer. Failure
detection and resolution are local, and depend on



communications: only the processes that try to
communicate with a failed process are aware that
it has failed. The rest of the system continue its
execution unknowingly. This model is particularly
interesting at large scale, since it involves limited
synchronizations between processes.

The remainder of this paper is organized as
follows. A short review of the literature on previous
works on fault tolerance for distributed parallel
programs is given in section II. The algorithms
themselves are given in the next sections: section III
recalls the communication-avoiding QR algorithm;
section IV gives the fault-tolerant version of this
algorithm; section V presents how it can be made
numerically robust. Finally, section VI concludes
the paper and gives some open perspectives on this
topic.

II. RELATED WORKS

Fault-tolerance, in the fail-stop model [2] in dis-
tributed applications can be approached from the
system level and from the application level.

System-level fault tolerance is handled by the
middleware and is transparent to the application.
It uses a checkpointing mechanism to be able to
save and restart the state of a process [5], and a
distributed protocol to ensure the consistency of the
parallel application after a process rollback. There
protocols can be classified in two categories, coordi-
nated checkpoint and non-coordinated checkpoiting
[6]. Message-logging protocols save messages in
order to be able to replay them after a rollback;
the can use or not an event logger [7]. Coordinated
checkpoints are, in most part, based on the Chandy-
Lamport algorithm [8], and their implementation
can be blocking or non-blocking [9].

However, the impact of such protocols on the
performance of the application, especially when
the number of processes increases [10], has the
drawback of their benefit: they are too generic,
whereas a more specific approach would offer better
performance.

An application-level approach for MPI applica-
tions was initiated in FT-MPI [11]. The MPI stan-
dard was extended with functions to handle failures
and define a behavior that must be followed by the
application. It relies on a specific middleware, that
needs to be able to survive failures and offer the

corresponding features, such as tun-time spawning
of new processes to replace the failed ones, or the
absence of failure when a process tries to commu-
nicate with a failed one [12]. Such a middleware
needs to be itself fault-tolerant: some work has
been done to identify and characterize topologies
with desirable properties to support it, such as k-ary
sibling trees [13] or binomial graphs [14]. Following
this application-level approach, some strategies have
been developed to make parallel algorithms fault-
tolerant [15][16][17]. For instance, some algorithms
uses additional processes to store CRCs of parts
of the matrices that are computed, and be able to
recover the lost data upon failures [18].

More recently, the User-Level Failure Mitigation
was introduced [4]. It is not part of the MPI standard
(yet), but is under evaluation for further inclusion in
forthcoming versions of the standard.

In the mean time, a new generation of par-
allel numerical algorithms has been developed:
communication-avoiding algorithms [19]. In par-
ticular, we can cite communication-avoiding al-
gorithms for matrix factorizations: LU, QR and
Cholesky [20]. They turn out to be more efficient on
current architectures, on which the computational
power of the node is important compared to the
latency of inter-node communications, on a wide
range of architectures, such as multi-cores [21],
GPUs [22] and federations of clusters [23]. These
algorithms use a minimal number of inter-process
communications, and a non-minimal number of
computing operations. On current architectures, this
approach is faster than former algorithms that were
designed to maximize the parallelism between com-
putations and involving a larger number of commu-
nications.

Additionally to their scalability, these algorithms
feature some structural and algebraic properties that
can be exploited for fault-tolerance. We have seen
in [24] and [25] that partial redundancy and in-
termediate computations can be inserted with little
modification in the critical path, and bringing a
small overhead on the computation time (about 3%).

With soft errors, on the other hand, the program
seems to work correctly, but the result it computes
is wrong. The impact of bit flips on the numerical
result was evaluated in [3]. They can be dealt with
at several levels. Memory has error-correcting code



(ECC)
Compiling techniques can help, for instance by

minimizing the probability that a soft error in regis-
ters can be propagated to other system components
[26], or by minimizing the time spent by data in
non-ECC protected register and preferring ECC-
protected registers [27]. A specific kind of check-
pointing can also be used [28].

III. COMMUNICATION-AVOIDING QR
FACTORIZATION

The QR factorization of a matrix is an operation
that, for a matrix A, decomposes it in two matrices
Q and R such that A = QR with Q an orthogonal
matrix and R an upper triangular matrix. If A is
invertible and the diagonal terms of the R matrix
are positive, this decomposition is unique otherwise,
it is not.
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Q
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FIG. 1: Panel/update QR factorization.

It is usually computed following a panel/update
scheme: a set of vectors (a panel) are factorized,
then the trailing matrix (the submatrix on the right
of the panel) is updated; the algorithm proceeds
recursively on the trailing matrix until all the matrix
has been factorized (see figure 1). To compute it
in parallel, the processes are generally organized
on a 2D (block-cyclic) grid, where one column of
processes is computing the panel factorization and
the other ones compute the update of the trailing
matrix.

A =

(
A11 A12

A21 A22

)
= Q1

(
R11 R12

0 A1
22

)
In this section, we are describing the

Communication-Avoiding QR algorithm, given
in [20]. We are describing the panel factorization in
section III-A and the update of the trailing matrix
in section III-B.

A. Panel factorization

The panel factorization is working on a small set
of vectors. Therefore, the submatrix handled here
has a specific shape: it is tall-and-skinny. A specific
algorithm is used to factorize such matrices: TSQR.

The processes are organized as a column. Each
process works on a submatrix of the panel. On the
first step, each process performs a QR factorization
of its local submatrix. Then the processes assemble
these R̂ matrices and compute the QR factorization
of the resulting matrices, until the final R is ob-
tained. This step is forming a tree, which can have
any shape, since it is actually a reduction [29].
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FIG. 2: Panel factorization: TSQR

The computation cost of the QR factorization of a
M -by-N matrix on P processes is in O(MN2/P ).
Traditional parallel algorithms on P processes re-
quire O(Nlog(P )) communications. TSQR per-
forms extra computation along this reduction tree:
it takes O(MN2/P + N3log(P )) operations, and
O(log(P ) communications. The same volume of
data is exchanged: TSQR saves a factor N in the
number of computation, to the cost of an additional
factor N3log(P ) in the computations. According to
[19], the panel factorization is the bottleneck of
the parallel QR factorization; making it significantly
faster removes this bottleneck.

B. Trailing matrix update

Considering a matrix A in blocks, as follows:



A =

(
A11 A12

A21 A22

)
The panel factorization is computed on the left-

most blocks: (
A11

A21

)
= Q1

(
R11

0

)
From the Householder reflectors computed by the

panel factorization, we obtain the compact repre-
sentation of the Q1 matrix obtained by this panel
factorization:

Q1 = I − Y1T1Y
T
1

The Y1 and T1 matrices are used to update the
trailing matrix:

(
I − Y1T1Y T

1

)(A12

A22

)
=

(
A12

A22

)
− Y1(T

T
1 (Y T

1

(
A12

A22

)
)) =

(
R12

A1
22

)

The top part R12 of the matrix obtained is part of
the R of the matrix. The bottom part, A1

22, is the new
trailing matrix. The algorithm proceeds recursively
on it until the whole matrix is computed.

If we denote the current matrix after the factor-
ization of the first panel as follows:(

R0 C ′0
R1 C ′1

)
=

(
QR C ′0

C ′1

)
The update consists of computing the Ĉ ′i factors on
the right side of the panel:

A = Q

(
R Ĉ ′0

Ĉ ′1

)
The blocs of the left side of the matrix are

decomposed into two parts: the top part contains as
many lines as the number of columns of each block,
the bottom part contains the rest of the lines. If the
width of a block is denoted by N and C[: N − 1]
denotes the first N lines of matrix C:

Ci =

(
C ′i
C ′′i

)
=

(
Ci[: N − 1]
Ci[N :]

)
The compact representation of the matrix is com-

puted using the following pairwise computation
along a tree:(

Ĉ ′0
Ĉ1

)
=

(
I −

(
I
Y0

)
T T

(
I
Y1

)T )(
C ′0
C ′1

)

Since the update of the trailing matrix depends
on the computation of the Householder reflectors of
the panel, we can see that the update of the trailing
matrix is triggered by the panel factorization. In
parallel, it forms a tree (the same tree as used by the
panel factorization) depicted Figure 3. The parallel
algorithm itself is given by Algorithm 1.

Algorithm 1: CAQR factorization: panel/update
on a 2D grid.

Data: Initial matrix A, divided in panels p
1 for each panel p do
2 On the column of processes that own p: TSQR( p );
3 Each process of this column broadcasts the

Householder vectors and Householder multipliers τp
that it has just computed to the processes of the
same row;

4 Using this τp, each process forms its local T and Y ;
5 for step = 0 to log(Pcolumn) do
6 updateTrailingMatrix ( step );
7 if done ( step ) then
8 break;

P0

P1

P2

P3

FIG. 3: Tree formed by the parallel update of the
trailing matrix.

At each step of the tree, the update is computed
between pairs of processes. The operations (commu-
nication and computation) performed are depicted
Figure 4.

As proved in [19], the computational complexity
of both the CAQR and traditional parallel algorithms
of a n × n on a 2D-grid of P processes (i.e. a
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FIG. 4: Pairwise computation of the update of the
trailing matrix.

grid of
√
P ×

√
P processes) is in O(4n

3

3P
). The

communication volumes are also the same. The
number of communications involved by 3

8

√
Plog3P

communications, whereas traditional parallel algo-
rithms involve 5n

4
log2P .

IV. FAULT-TOLERANT
COMMUNICATION-AVOIDING QR

FACTORIZATION

This section describes a fault-tolerant QR fac-
torization algorithm. As presented in section III,
the QR factorization algorithms is composed by
two parts: a panel computation and the update of
the trailing matrix. Therefore, we are presenting
one algorithm for each of these parts: a fault-
tolerant panel factorization (section IV-A) and a
fault-tolerant trailing matrix update (section IV-B).

A. Panel factorization

We have seen in section III-A that, after the fac-
torization of the local submatrix, the recombination
of the intermediate R̂ factors and the computation
of the final R form a tree. If this tree is a binary
one, at each step of the tree, half of the processes
send their intermediate R̂ and stop working.

Instead of that, the fault-tolerant TSQR factor-
ization consists in exchanging the intermediate R̂
factors: therefore, both processes have the same data
and can proceed with the computation. This scheme
is depicted figure 5.

The number of computing operations in the
critical path of this algorithm is unchanged: the
additional operations are performed on processes
that would normally be idle. The only modification
affecting the critical path is that, instead of hav-
ing a send-receive communication between pairs of
processes, they exchange this data. Therefore, fault-
tolerance is achieved with no additional process,

P0

P1

P2

P3

QR QR QR

FIG. 5: Fault-tolerant panel factorization.

and no significant addition in the critical path of
the computation.

At each step, the number of processes that holds
the same data is doubled. Therefore, the resilience
of the computation increases as the computation
progresses and as the failure probability increases.
If a process fails, a new process is spawned to
replace it. Assuming that the initial A matrix is
stored somewhere else and can be retrieved, it can
obtain the lost data (the intermediate R̂) from a peer
process that holds the same data. No recomputation
is necessary, since the friend process has performed
the same computation.

B. Trailing matrix update

We have seen in section III-B that the update of
the trailing matrix is triggered by the factorization of
the panel, from which the Y and the T vectors can
be computed. We have detailed this computation,
made by pairs of processes, on figure 4. The upper
process sends its C ′0 submatrix to the lower process.
Then the lower process can compute W = T T (C ′0−
Y T
1 C ′1). This W is then sent to the upper process

and both processes use it to compute their Ĉ.
We have seen in section IV-A that, in the fault-

tolerant version of the panel factorization, both
processes compute the intermediate R̂. Therefore,



both of them can compute the T . If, in addition to
the upper process sending its C ′0 submatrix to the
lower process, the lower process also sends its C ′1
submatrix and Y1, both process can compute the W
and then their Ĉ (figure 6).
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W = T T (C ′0 − Y T
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Ĉ1 = C ′1 − Y1W

Ĉ0 = C ′0 −W

FIG. 6: Pairwise computation of the fault-tolerant
update of the trailing matrix.

Therefore, the subsequent communication scheme
of the fault-tolerant update of the trailing matrix
using the fault-tolerant panel factorization and this
pairwise computation is depicted figure 7.

P0
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P2

P3

FIG. 7: Tree formed by the fault-tolerant parallel
update of the trailing matrix.

This algorithm changes the communication
scheme of the pairwise computation. It starts with
an exchange (C ′0 / C ′1) and Y1 is sent from the
lower process to the upper process. However, it
does not involve any second communication phase,
whereas the original algorithm (figure 4) has a
second communication phase, in which the lower
process sends the W matrix to the upper process.
No computation is added in the critical path: if both
processes compute the T and the W , this is done in
parallel on both processes and does not extend the
critical path.

If a process fails, its data can be recovered
using local data from the initial matrix and the W
computed on the other process. Therefore, only a
few computations are required to recover the state
of the computation after a failure.

V. NUMERICAL ROBUSTNESS

Using the (partial) redundancy of intermediate
results, the correctness of the computation can be
verified. We are not dealing here with soft errors
such as round-off errors, but about failures such as
bit flips. For instance a bit can be flipped because of
a cosmic ray or an electronic error. In this section,
we are presenting an algorithm that verifies the
correctness of each step of the computation. Due to
the space limitations of this paper, we are giving this
algorithm for the panel factorization only, because it
is slightly more complex for performance reasons.
However, the same idea can be applied to the trailing
matrix update.

We have seen in section IV-A that redundancy
can be introduced in the parallel computation with a
minimal overhead. Several processes hold the same
data and compute the same R̂. As a consequence,
these results can be compared. In order to reduce
the cost of the communication and the comparison,
a checksum can used. This algorithm is represented
Figure 8.

The first step still needs to be handled a bit more
carefully. If the number of processes that hold the
same data doubles at each step of the reduction tree,
as stated in section IV-A, the initial submatrices
themselves are originally present on one process
only. Therefore, a redundancy needs to be intro-
duced. Before the beginning of the computation,
each process exchanges its submatrix with another
process. Then each process computes the QR fac-
torization of the two submatrices it has in memory:
its own one, and the other process’s submatrix.
Then they check the correctness of the two R̂ they
obtained. Since the processes already have two R̂i

and R̂j intermediate factors, the first step of the
tree does not require any additional communication
between processes i and j.

If two processes notice that their checksum is
not the same, they rollback, i.e. they compute the
same R̂ again. For this, a copy of the matrix used
to compute this R̂ (formed by two intermediate R̂
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FIG. 8: TSQR with correctness checks.

or by the initial submatrix) is kept, and restored to
perform the computation again.

Compared with running the whole computation
several times and comparing the final result, this
approach presents the advantage of verifying in-
termediate results, and, if necessary, running again
partial computations.

If an error happens during the tree phase of the
algorithm, the slow-down caused by the rollback
is relatively small: the additional computation is in
O(N3), which is supposed to be small compared to
the cost of the overall computation.

However, if an error happens during the compu-
tation of the first QR factorization, the factorization
that needs to be computed again is the one using
the initial submatrix: the additional computation
is in O(MN2), which is close to the cost of the
overall computation. Therefore, in order to reduce
this cost due to the rollback on soft errors, the
original submatrix can be split into several parts and
a (local) TSQR can be computed on it. A checksum
is computed for each part of the local TSQR and all
of them are compared with the peer process. Hence,
only the subpart of the matrix that contains the error
is computed again.

VI. CONCLUSION

In this paper, we have presented a set of algo-
rithms for resilience in parallel, distributed compu-
tation of the QR factorization of matrices. We are
considering two kinds of errors: fail-stop crashes
and soft errors.

We have presented a quick recall of a scalable,
communication-avoiding parallel algorithm for the
QR factorization of a matrix. We have seen that,
exploiting some structural and algebraic properties
of this algorithm, fault tolerance and robustness
properties can be obtained and exploited. In par-
ticular, the extra computations introduced by the
family of algorithms we are interested in here can
be exploited on idle processes in order to intro-
duce some redundancy at minimal cost, i.e. without
adding any significant operation in the critical path
of the computation.

Not only do these algorithms have little overhead
on the execution time, as presented for example in
[24], but also the recovery after a failure implies
little recomputation, and even no recomputation at
all for the tall-and-skinny algorithm.

Using these partial redundancy of intermediate
results, we have also seen that soft errors such as bit
flips can be detected, making the computation not
only resilient, but also robust. As a consequence,
these algorithms are suitable for critical systems
while achieving high performance.

The idea presented in this paper and applied to the
QR factorization can be applied to other algorithms
of the same family. For instance, we can cite the LU
and Cholesky communication-avoiding algorithms.

Besides, the performance of these algorithms
have been evaluated, for instance in [24], emphasiz-
ing on the overhead of the fault-tolerance algorithm
with respect to the regular, non-fault-tolerant algo-
rithm. It would be interesting to see how it behaves
with specific tuning.

a) Acknowledgement: We would like to thank
Bob Robey for the discussions on using partial
redundancy for robust computing in the presence
on bit flip errors.
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