
Fault Tolerance Logical Network Properties
of Irregular Graphs

Christophe Cérin
Université Paris 13 - PRES

Sorbonne Paris Cité
LIPN UMR CNRS 7030

99 avenue Jean-Baptiste
Clément

F-93430 Villetaneuse (France)
christophe.cerin@lipn.univ-

paris13.fr

Camille Coti
Université Paris 13 - PRES

Sorbonne Paris Cité
LIPN UMR CNRS 7030

99 avenue Jean-Baptiste
Clément

F-93430 Villetaneuse (France)
camille.coti@lipn.univ-

paris13.fr

Michel Koskas
Institut National de la

Recherche en Agronomie
Département de

mathématique, UMR 518
(MIA. INRA)

16, rue Claude Bernard
F-75231 Paris Cedex 05

(France)
michel.koskas@agroparistech.fr

ABSTRACT
Assume a desktop grid middleware or a deployed cloud in-
frastructure that are both based on a large number of vol-
unteers for computanation-intensive applications or business
applications. In this case, the Internet is the communication
layer; hence, the communication graph is not regular. Scal-
ability and fault tolerance issues are implicitly present on
any platform. For instance, the overlay network that must
be built to control the application as part of the run-time
support system needs to be scalable and fault tolerant. In
this paper, we focus on the fault tolerance properties of large,
irregular graphs that may be used as models for the Internet.
In a previous work, we presented algorithms and a frame-
work for computing fault tolerance properties of different
variants of randomly-generated binomial graphs (BMG). In
the present paper we compute various metrics, and among
them the node and link connectivities and the fault diam-
eter. We also compare our implementation of the diameter
computation with the work of Magnien et al.

Keywords
Large scale systems, models for overlay networks, fault tole-
rance, performance evaluation, performance measurement,
graph algorithms

1. INTRODUCTION
1.1 Context
Desktop Grids and Volunteer Computing are well-known
terms related to the notion of computing on loosely con-
nected resources, usually personal computers over the In-
ternet but also sometimes clusters, that are controlled by
their owners. These terms appeared in the Internet and re-
search community at the end of the 90s. Nowadays, this type

of computing platform forms one of the largest distributed
computing systems, and currently provides scientists with
Petaflops from hundreds of thousands of hosts1.

SlapOS [20] is an open-source grid operating system for dis-
tributed cloud computing. SlapOS combines grid computing
and Enterprise Resource Planning (ERP) to provide Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS) through a simple, unified
API that everyone can learn in a couple of minutes. SlapOS
opens new perspectives for research in the area of resilience
and security on the Cloud because it is based on similar
concepts than Desktop Grids. Indeed, the data centers are
located on the home PCs of volonteers.

The extremely large number of nodes implies that faults (for
instance hardware component failures) should be handled at
any layer of the software stack (middleware, programming
libraries, algorithmic level). Distributed problems on a large
number of volatile resources with asynchronous communica-
tions are difficult to handle; some of them have even been
proved impossible.

In traditional, tightly-coupled parallel applications, the sur-
vivability of the application is dependent upon the surviv-
ability of all the resources used by the application. When a
single node fails, the application fails; on the other hand, in
Dektop Grid computing the failure of a single client has no
impact on the survivability of the other clients. The main
reason is that Desktop Grid applications are follow the Bag-
of-Tasks pattern (independant tasks) that are duplicated in
order to tolerate failures. But, what happens if a major dis-
aster appears, for instance if floods devastate eastern Europe
and a large zone becomes disconnected from the Internet.
For example in 2011, whole of Armenia was disconnected
from the Internet by a simple copper wire theft2.

In this context, we propose in this article, algorithms and

1Check the list of available BOINC projects on the Web at
http://boinc.berkeley.edu/projects.php
2http://www.bloomberg.com/news/2011-04-06/
georgian-detained-for-cutting-georgia-armenia-internet-cable.
html

techniques to evaluate the ’quality’ of the virtual topology
we use in Desktop Grid applications or in some flavors of
Cloud applications. We compute metrics that define the
quality according to usual definitions [9, 3, 8, 12]. Among
the most useful properties, we compute the node and link
connectivity and the fault diameters. Experiments are per-
formed on large irregular graphs.

1.2 Motivations and paper’s organization
Failures are inherent to large scale systems [17]. Let s be
the number of successful executions and f be the number
of failures. Let n = s + f be the number of executions we
start on a large scale system. Then the probability of failure
is f

s+f
. As the number of hardware components increases

when using large scale systems, so does the probability of
failure, for a same n. Researchers made the observation that
to ensure an efficient and safe execution of applications on
large scale systems, a scalable and fault tolerance framework
ought to be used.

Consider now an example. Parallel applications are sup-
ported by a run-time environment, which is in charge of
deploying, supporting and monitoring the application on re-
mote computing resources. The basic services it provides to
the application include deploying the processes on the avail-
able resources, enabling communications between processes,
I/O forwarding and monitoring.

This run-time environment is a distributed overlay network
spanning over the available computing resources that can
route out-of-band messages (i.e.,signaling messages) for peer-
to-peer or collective communications. These communica-
tions are not directly used by the parallel application, but
they are used internally to support the application. Hence,
the core of a run-time environment is a communication in-
frastructure used to communicate these control and signal-
ing messages between nodes.

Scalable and fault tolerant framework [3] may concern the
run-time environment or the applications themselves. Im-
plementing a scalable and fault tolerant component in con-
nection with the application is not a good idea because this
leads to develop a component for each application. It is
preferable to develop it as a component of the run-time envi-
ronment, and if possible inside a run-time environment that
supports the communication library, such as MPI (Message
Passing Interface [6, 7], which is the de facto standard for
programming parallel applications).

Hence, the run-time environment can be extended to feature
fault tolerance capabilities. The overlay network itself must
be able to recover its state from failures and maintain an
acceptable quality of service during the recovery phase (self-
healing property). It also needs to provide the application
with some features that will allow it to recover from the fail-
ure and proceeds with an application-based fault tolerance
mechanism.

Scalable and fault tolerant framework even for Desktop Grid
applications may also concern the building of dedicated ”con-
trol signaling networks” for collecting monitoring informa-
tion (which node is alive? what is the energy consumption
of these nodes? what is the load of node X?), for gathering

simulation results, for saving checkpoint information.

Hence, the topology of the communication infrastructure of
the overlay network is highly critical. It determines the ef-
ficiency of peer-to-peer communications, the scalability of
the overlay network itself, and the resilience or self-healing
properties it can have.

The aim of this paper is to propose efficient parallel algo-
rithms and use cases for computing fault tolerant properties
of irregular topologies, that cannot be analyzed by exact
methods and modeling a communication and control infras-
tructure network, and not exclusively dedicated for mas-
sively parallel applications but also for Desktop Grid appli-
cations. For the engineer and regarding how much control
or how many signaling processes he wants, some fault toler-
ance properties can be more or less relaxed. For instance,
the diameter of the graph may be a more important criteria
when we have to collect information about the temperature
of a machine occasionally than when we want to implement
a collective communication primitive or an efficient deploy-
ment framework on top of the Internet.

Thus, the contributions of this paper are new mathematical
results concerning the fault tolerance properties of bench-
marks that map to large irregular graphs and parallel algo-
rithms for computing the relevant metrics.

The organization of this paper is as follows. Section 2 re-
calls the useful definitions. Section 3 gives details about the
fault tolerance properties we are studying in this paper. In
this section we also give refinements of algorithms initially
introduced in [5] and we compare the approach of Magnien
et al in [16] for computing the diameter with our approach.
Section 4 presents experiments with large irregular graphs.
Section 5 concludes the paper.

2. BINOMIAL GRAPHS FOR INTRODUC-
ING THE PROBLEMS

2.1 Introduction
In [5] we presented the computation of fault tolerant proper-
ties of one class of regular graphs, namely, binomial graphs.
Originally, the binomial graph logical structure was intro-
duced in [4, 2] with the purpose of satisfying fault tolerant
requirements for the communication layer of run-time en-
vironments. In general, scalable logical topologies ought to
meet the following requirements: (a) low degree – the degree
of a node is the number of links incident to the node; (b)
regular graph – every node has the same degree such that
a ’single’ algorithm should be designed to route message for
instance; (c) low diameter – the diameter of a graph is the
longest shortest path between any two nodes and it gives a
bound on the complexity of routing messages; (d) symmet-
ric graph – the average inter-nodal distance should be the
same from any source node; (e) no restriction in terms of
numbers of nodes to support large scale application.

A BMG (Binomial Graph) is an undirected graph G =
(V,E) where V is a set of VErtices ; |V | = n and E is
a set of links (edges) ; |E| = m. Each node i ∈ V , and
i = 1, 2, · · ·n has links to a set of nodes U , where U =
i± 1, i± 2, · · · , i± 2k|2k ≤ n in circular space i.e.,node i is

connected to its right and to its left to a node at distance
2k for all 0 ≤ k ≤ blognc.

In [5] we have introduced a variant of binomial graphs. For-
mally, a probabilistic BMG is a graph where we randomly
select n vertices, then from each vertex, we graft links ac-
cording to a logarithmic method. Intuitively, we try to keep
as much as possible the good properties of BMG regarding
its structure, whereas some of them are relaxed. In [5] we
consider two methods for generating the graphs:

1. Model 0 is the original BMG;

2. Model 1: we graft exactly as with the original BMG.
Node i, randomly selected, has links to a set of nodes
U , where U = i± 1, i± 2, · · · , i± 2k|2k ≤ n in circular
space. The fact is that since we do trials for the choice
of the node, this kind of BMG has no more links than
the original BMG; The pseudo code for generating this
kind of BMG is as follows:

Distance *= 2;
while (Distance < NbVertices)
{
for (int s = 0; s < NbVertices; s++)
{
int sp=(int)(((double) rand()/RAND_MAX)

* NbVertices);
AddArc(Adjacencies, sp, (sp + Distance)

% NbVertices);
AddArc(Adjacencies, sp, (sp - Distance

+ NbVertices) % NbVertices);
}
Distance *= 2;

}

3. Model 2: the process is as with Model 1, but we select
less links when we have to graft links. The number of
nodes is divided by two at each iteration. The pseudo
code for generating this kind of BMG is as follows:

Distance *= 2;
NbV = NbVertices;
while (Distance < NbVertices)
{
for (int s = 0; s < NbV; s++)
{
int sp=(int)(((double) rand()/RAND_MAX)

* NbVertices);
AddArc(Adjacencies, sp, (sp + Distance)

% NbVertices);
AddArc(Adjacencies, sp, (sp - Distance

+ NbVertices) % NbVertices);
}
Distance *= 2;
NbV /= 2;

}

With this process, we get less links than with Model
1;

Notice that to avoid to have more than one connected com-
ponent in the graphs, we also connect, for processes 1 and
2, each node to its neighbor, the one at its right and the one
at its left (node i is connected to i− 1 and i+ 1).

2.2 Terminology about the structures of graphs
The minimum degree δmin of a graph is the smallest node
degree, while the maximum degree δmax of a graph is the
largest node degree. If every node has the same degree
(δmin = δmax) the graph is regular. A regular graph also
means that all the nodes are equivalent and for each node, we
can use symmetrically the same routing and fault-handling
algorithms instead of managing special cases. However, no-
tice that the graph of the Internet is obviously not a regular
one. The original BMG graph is a regular graph but not the
graphs produced with models 1 and 2.

One important question is: how can we compute some prop-
erties of graphs with a large number of nodes and vertices?
One interesting property is the diameter, which gives a bound
on the number of steps required to route a message between
two nodes. Computing the diameter of a graph is time-
consuming, as we explain in the next section which is de-
voted to the setting of properties of our graphs.

3. FAULT TOLERANT PROPERTIES AND
NEW MATHEMATICAL RESULTS

3.1 Preliminary remark
A mathematical computation of properties describing the
graph, for instance the diameter, the shortest path length
computation may be difficult for the following reason: the
stochastic model we have used in model 1 and 2 implies that
many parameters of the graph (average degree and others
structural properties) have no closed form that could be esti-
mated easily, in average and in the worst case. This explains
why we have introduced in [5] heuristics for the various com-
putations. Some of them are bounded (with lower and upper
bounds).

3.2 Definition of the properties
The cost of a particular topology [15] can be defined as the
product of the diameter and the number of links.

The average distance d̄ of graph is given by Equation 1:

d̄ =

∑n
i=1

∑n
j=1 d(i, j)

n ∗ (n− 1)
(1)

To bypass the n2 calls to the distance computation, we per-
form N = bn ∗ 0.05c random trials of pairs of vertices, we
compute the distance over the two vertices, then we sum the
distances and we divide by N .

We now explain the computation of specific metrics related
to fault tolerance, such as connectivity and fault diameter
of large scale graphs.

The node connectivity κ of a graph is defined as the mini-
mum number of nodes of which removal can result in a graph
with at least two connected components.

The node connectivity metric can be computed according to
the following optimizations: when we remove a vertex we
have also to adjust the adjacency lists of the nodes that are
present in the adjacency list of the node we remove. If we

maintain an ordered list of vertices and another ordered list
for the adjacency lists, we can accomplish the work accord-
ing to a logarithmic factor in the size of the adjacency lists
and also in log(n). Moreover, instead of renumbering the
whole graph after removing a vertex, which would require
an O(n2) time complexity, it is sufficient that the nodes be
marked as not present. This marking is done in constant
time.

As you can notice, many programming optimizations are
possible and they are dependent of the initial choice of the
graph’s representation. We do not give more details here and
we invite the reader to examine the codes3 corresponding to
the metrics.

The link connectivity λ of a graph is defined as the minimal
number of links of which removal can result in disconnecting
the network. The algorithm presented in [5] is introduced
as algorithm 1 in this paper.

Algorithm 1 Link connectivity as published in [5]

1: for i = 1 to δmin do
2: for NumChoice = 1 to MaxChoiceLinks do
3: choose i links;
4: remove the links;
5: if graph is not connected then
6: return i
7: end if
8: end for
9: end for

Note that in Algorithm 1, we can stop the iteration at δmin

which is low in practice with BMG like graphs.

The fault diameter F is the largest diameter of the network
when there are κ − 1 node failures (a maximum number of
failure nodes before the network becomes bipartite, κ being
the node connectivity).

Algorithm 2 Fault diameter as published in [5]

1: for NumChoice = 1 to MaxChoiceDiameter do
2: choose κ− 1 vertices;
3: remove the vertices and compute the diameter;
4: keep the maximal value for diameters;
5: end for

Note that Algorithm 2 does not implies exhaustive searches,
so it is not an exact method for computing the associated
metric. In general, the exact time for executing the com-
putation depends on a parameter describing the graph (for
instance the minimal degree in the Link connectivity algo-
rithms). In practice for BMGs, since the degree is small
comparing to n, we may drastically decrease the execution
time of the computation comparing to a full enumeration of
combinations over all the vertices or links. Algorithms pro-
vide an estimate of the associated metric: it is an heuristic
method, bounded by δmin for instance.

3The current release of our implementation is available on
http://www.lipn.fr/~cerin/code.tar.bz2

Here again, it seems difficult to have a closed formula for
the different complexities. However, the exact computation
of the node connectivity metric for the initial algorithm can
be bounded by the sum of binomial coefficient computation
(because we have to compute n times the choice of i vertices
among n in all possible ways) times the time complexity of
detecting if we have at least 2 connected components. The
complexity is exponential and we cannot expect to solve the
problem by exhaustive searches, hence our heuristics that
do sampling over all the combinations are more realistic.

The last property we encounter in the papers related to the
domain is about resilience. There are two classes of graph G
distinguished by the relationship between the fault diameter
F and the diameter D of the graph [13], called strongly re-
silient and weakly resilient. A graph is considered strongly
resilient if there exists a constant φ such as F (G) ≤ D(G)+φ
for all graph sizes n, where n ∈ N. A graph is consid-
ered weakly resilient if there exists a constant φ such as
F (G) ≤ D(G) × φ for all graph sizes n, where n ∈ N. The
original BMG is considered as strongly resilient by Angskun,
Bosilca and Dongarra [2] with φ = 2. Note that the proof
is made with experiments and it is not a formal one. Under
the experimental conditions of the paper, the result indi-
cates that, even under faulty conditions, the performance of
BMG will not be severely degraded.

3.3 Computational issues and related work for
diameter computation

In this section, we explain one computational issue and so-
lutions. The distance d(i, j) between a node i and a node j
in a graph is defined as the length of the shortest path from
i to j in the graph. The diameter D of a graph is given
by max{d(i, j)} over all possible pairs (i, j) of nodes in the
graph. The diameter D is the longest shortest path between
any two nodes in the graph.

It is not difficult to see that in the case of BMG, which is
a regular graph, the diameter is in O(logn), and as pointed
out in [4, 2], the BMG has the lowest diameter among Hy-
percube [15], Chord [21], 4-ary Hypercube topologies [18,
8]. This property explains why we have studied, initially,
the BMG.

But computing all distances from one vertex to all the others
has Θ(m) time and space costs using a breadth-first search
(BFS). In order to compute the diameter, one has to com-
pute the distance between all pairs of vertices, which there-
fore involve a Θ(nm) time and a Θ(m) space cost using a
BFS. Using matrix products, one may achieve the compu-
tation in O(n2.376polylog n) time and O(n2) space [1, 19].
Therefore, BFS approach is too slow for graphs with a large
number of vertices, and matrix approach has also a supple-
mentary and prohibitive space cost.

Different solutions have been proposed in a recent past as
well as implementations to solve this problem. We can men-
tion [11, 10] but we do prefer to introduce the work and the
implementation [16] done by Magnien, Latapy and Habib.
The key points in the methods used by Magnien is to com-
pute lower and upper bounds and to iterate them from dif-
ferent initial vertices in order to obtain tighter bounds, with
a linear cost for each step. Authors also use heuristics to

choose in an intelligent way the vertices able to provide with
a tight bound.

Notice that to our knowledge, the metrics, in particular the
computation of the metrics related to fault tolerance has not
been investigated in the context of large scale non-regular
graphs.

3.4 New approaches and results for comput-
ing the fault tolerant metrics

In this section, we first improve the algorithms for Node
Connectivity and Link Connectivity according to a dichoto-
mous approach as follows then we focus on the diameter
computation.

At the beginning of the Node and Link Connectivity algo-
rithms, we remove n/2 vertices. If the graph is not con-
nected, then we check the connectivity property between 1
and n/2 vertices. If the graph is still connected, we check
the property on the interval n/2 and n vertices. As with any
dichotomous approach, we stop the process as soon as the
’lower bound’ crosses the ’upper bound’. The corresponding
algorithm is Algorithm 3. In doing this we limit the use of
arbitrary constants to bound the iterations number.

Notice that with Algorithm 3, we can replace the word ’ver-
tices’ by ’edges’ when we have to remove objects in order
to get the link connectivity. Technically speaking, we have
also to replace the call for replacing a vertice by the call for
replacing an edge.

Algorithm 3 New node connectivity algorithm

Require: Low = 1 ; Up = MAX.
Require: (MAX = NbVertices or MinDegree).
1: set K = logn
2: while Up− Low > 1 do
3: m = (Low + Up) / 2
4: repeat
5: Remove m vertices (or edges) randomly
6: if graph not connected then
7: Up = m
8: end if
9: until K times

10: if all graphs are connected then
11: Low = m
12: end if
13: end while
14: return Low + 1

Notice that for the computation of Link and Node Connec-
tivity we have to check if the graph is connected. We have
implemented this operation as follows. The key ideas of
the Algorithm 4 and the forthcoming algorithms are in the
intensive use of the BFS (Breadth First Search) algorithm
slightly modified.

The idea is to start from a vertex and to consider its neigh-
bors and their neighbors and so on. But the seen vertices
are pruned of the list of vertices that we have to visit. So
we stop the process when there is no new neighbor. The
new algorithm for computing the connected components of
a graph is the Algorithm 4.

Algorithm 4 New implementation for checking if a graph
is connected
1: Start with the first non visited vertex
2: Visit its connected component according to the previous

technique
3: Restart until there is no more vertice to visit
4: (that is to say that all vertices have been visited)
5: The number of times we do step 3 = number of con-

nected components

Starting with this idea, we have also implemented the IAm-
connected() procedure for checking if a graph is connected.
Here again, the idea is to start from a (random) vertex and
we visit its connected component according to the previous
technique. If all the vertices have been visited, we return
True, otherwise we return False.

We have also revisited the computation of the diameter done
by Magnien in [16] according to the following algorithm (see
Algorithm 5).

Algorithm 5 New algorithm for the diameter

1: set Diameter = 0
2: repeat
3: Select randomly a vertex, name it ’current vertex’
4: and mark it as visited. Set ’Current diameter’ to 0
5: while current vertices have non visited neighbors do
6: a) Compute the non visited neighbors of current

vertices
7: b) Replace the current vertices by their non visited

vertices
8: c) Add 1 to ’Current diameter’
9: end while

10: if ’Current diameter’ > ’Diameter’ then
11: ’Diameter’ = ’Current diameter’
12: end if
13: until ’some’ vertices have been visited
14: return ’Diameter’

Here again, the tricky part is to accelerate the computa-
tion in visiting the neighbors of the neighbors that have not
yet been visited. It is a strategy similar to the ’doubling
strategy’ for the PRAM (Parallel Random Access Memory)
paradigm.

The diameter computation is used in the fault diameter com-
putation that is not modified since our initial approach in
[5]. See Algorithm 2 for the fault diameter computation.

4. EXPERIMENTAL RESULTS
We used the data set available online4 and provided by Clé-
mence Magnien and Matthieu Latapy. The online data set is
composed of 4 files that lead to a wide variety of real-world
graphs coming from different contexts. It may be consid-
ered as representative of the variety of cases that we found
in complex network studies [14].

We use the following three benchmark files:

4See: http://data.complexnetworks.fr/Diameter/

• An Internet topology graph (inet) obtained from tracer-
outes ran daily in 2005 by Skitter5 from several scat-
tered sources to almost one million destinations, lead-
ing to 1,719,037 vertices and 11,095,298 edges; The
number of connected components is 23,378 and the
largest one has 1,694,616 vertices and 11,092,661 edges.
We compute the fault tolerant properties for that com-
ponent;

• A peer-to-peer graph (p2p) in which two peers are
linked if one of them provided a file to the other in
a measurement conducted on a large eDonkey server
for a period of 47 hours in 20046, leading to 5 792,297
vertices and 142,038,401 edges; The number of con-
nected components is 411,757 and the largest one has
5,380,491 vertices and 142,038,351 edges. We compute
the fault tolerant properties for that component;

• A traffic graph (ip) obtained from MetroSec7 that cap-
tured each ip packet header routed by a given router
during 24 hours, two ip addresses being linked if they
appear in a packet as sender and destination, leading to
2,250,498 vertices and 19,394,216 edges; The number
of connected components is 45 and the largest one has
2,250,046 vertices and 19,393,724 edges. We compute
the fault tolerance properties for that component;

Table 1 shows the results for the diameter estimation in com-
paring our estimate with the estimates of Magnien and Lat-
apy in [16]. Since Magnien and Latapy provide five bounds,
we give them explicitly in Table 1. Lowest values are for
lower bounds, highest values are for upper bounds on the
diameter. We found that in any case, our estimates fit be-
tween the lower and upper bounds of Magnien because we
try with only 20 vertices.

The originality of the Magnien’s approach lies in the fact
that there is a guarantee that the actual diameter is within
the bounds they find, but there is no guarantee on the tight-
ness of these bounds. The tricky part of Magnien’s imple-
mentation is to start the estimate with vertices with low
degrees because in that way, the underlying BFS tree has a
much greater height than if we start with vertices with high
degree. In another words, we have more chance to extend
the distance between vertices. We have not yet implemented
this heuristics. In our case, we take a random vertice (po-
tentially, it may have a high degree), and this could explain
the difference in the result for the diameter computation of
the inet benchmark.

Table 1: Comparison between estimated diameters
Magnien and Latapy results [16] Our results

tlb - dslb - hdtub - rtub - tub
inet 29-31-34-34-38 25
p2p 8-9-10-10-10 8
ip 9-9-9-9-10 8

Table 2 presents our estimates on the major fault tolerance
metrics, namely the link and node connectivity and the fault

5http://www.caida.org/tools/measurement/skitter/
6http://www-rp.lip6.fr/~latapy/P2P_data/
7http://www2.laas.fr/METROSEC/

Table 2: Metrics for Fault Tolerance
Link co. Node co. Fault diameter

inet 2 2 24
p2p 2 2 8
ip 2 2 8

diameter. As expected, the link and node connectivity are
low, showing that the graphs are not resilient. The esti-
mated fault diameters are also estimated to the values of
the diameters which is also expected. It is because we have
to check the connectivity of graphs when we remove no more
than two vertices among million of vertices, and this process
has a low probability to disconnect the graphs. However, it is
important to notice that our algorithms run in few hours for
computing all the parameters of a single graph on a ’normal
computing platform’ based on a Xeon processor with 96GB
of memory (16GB is enough in our cases). The current ver-
sion of our code is available upon request.

At least, note that it is the first time, to our knowledge,
that the metrics presented in this paper are computed for
Internet graphs. As a consequence we do not provide a broad
comparison in terms of execution times. We are only able to
show some results about the diameter in terms of returned
bounds provided by our method versus Magnien’s method.

5. CONCLUSION
This paper presents estimators for two very useful graph
metrics: diameter and connectivity. Then, we use these met-
rics in conjunction with previous research related to fault tol-
erance properties of different types of graphs. With these es-
timators, we compare the estimators against other published
results using a publicly available suite of sample graphs,
which represent various network topologies.

The algorithms described in this paper are for large, and
irregular graphs, and are parallel probabilistic algorithms.
Experimental results presented in Section 4 demonstrate
that the algorithms work and compare favorably to previous
approaches that required higher computational complexity.

It is the first time, to the best of our knowledge, that fault
tolerant properties are exhibited for the benchmarks that
map to large scale graphs. In particular we conducted the
experiments on real life graphs extracted from the Internet.

The initial objective of this work is to evaluate the suit-
ability of any regular topologies to be used as a basis for
a resilient, scalable communication infrastructure. Exam-
ples of such infrastructure are the run-time environment of
a parallel, distributed system on top of the Internet or any
controlling network (for monitoring loads, temperature of
CPUs). In this paper, we demonstrate that our implemen-
tation is also good for working on irregular structures and
large scale graphs.

Based on our experiments, we conclude that our methods
and algorithms are operational for estimating the metrics
of fault tolerant overlay networks. One issue would be to
compute them in a distributing way, we mean with local
interaction, only.

The core objective of this work is related to Internet com-
puting. In the future we will focus on a holistic approach to
explore and to understand the ’behaviors’ of complex sys-
tems such as clouds or large scale grids in case of disasters.
The work will focus on one aspect of safety (the condition
of being protected against physical, social, financial, politi-
cal, or consequences of failure, damage, error, accidents) in
Cloud industry. Safety is part of the security area. The
scenario we envision is the following one: floods devastate
eastern Europe. Internet is no longer available in Dresden
area. Data centers are destroyed.

Some rescue missions are sent with tablet PCs or Net PCs.
How can we restore access to the Cloud despite such dis-
aster? How to measure the quality of the network being
reconstructed? The issue is about resilience which is the
ability of a system or network architecture to continue to
operate in case of failure and the computational methods of
this article will serve to estimate and to drive the rebuilding
of a new topology.

6. REFERENCES
[1] Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor.

Witnesses for boolean matrix multiplication and for
shortest paths. In FOCS, pages 417–426. IEEE, 1992.

[2] Thara Angskun, George Bosilca, and Jack Dongarra.
Binomial graph: A scalable and fault-tolerant logical
network topology. In Ivan Stojmenovic, Ruppa K.
Thulasiram, Laurence Tianruo Yang, Weijia Jia,
Minyi Guo, and Rodrigo Fernandes de Mello, editors,
ISPA, volume 4742 of Lecture Notes in Computer
Science, pages 471–482. Springer, 2007.

[3] Thara Angskun, Graham E. Fagg, George Bosilca,
Jelena Pjesivac-Grbovic, and Jack Dongarra. Scalable
fault tolerant protocol for parallel runtime
environments. In Bernd Mohr, Jesper Larsson Träff,
Joachim Worringen, and Jack Dongarra, editors,
PVM/MPI, volume 4192 of Lecture Notes in
Computer Science, pages 141–149. Springer, 2006.

[4] Thara Angskun, Graham E. Fagg, George Bosilca,
Jelena Pjesivac-Grbovic, and Jack Dongarra.
Self-healing network for scalable fault-tolerant runtime
environments. Future Generation Comp. Syst.,
26(3):479–485, 2010.

[5] Christophe Cérin, Michel Koskas, and Yu Lei.
Computing properties of large scalable and
fault-tolerant logical networks. In Alberto F. De Souza
and Lucia Catabriga, editors, IEEE SBAC. IEEE,
2011.

[6] Message Passing Interface Forum. MPI: A
message-passing interface standard. Technical Report
UT-CS-94-230, Department of Computer Science,
University of Tennessee, April 1994. Tue, 22 May 101
17:44:55 GMT.

[7] Al Geist, William D. Gropp, Steven Huss-Lederman,
Andrew Lumsdaine, Ewing L. Lusk, William Saphir,
Anthony Skjellum, and Marc Snir. MPI-2: Extending
the message-passing interface. In Luc Bougé, Pierre
Fraigniaud, Anne Mignotte, and Yves Robert, editors,
1st European Conference on Parallel and Distributed
Computing (EuroPar’96), volume 1123 of Lecture
Notes in Computer Science, pages 128–135. Springer,

1996.

[8] A. Ghafoor and T.R. Bashkow. A study of odd graphs
as fault-tolerant interconnection networks. Computers,
IEEE Transactions on, 40(2):225 –232, feb 1991.

[9] Bernd Mohr Jesus Labarta, Barton P. Miller and
Martin Schulz. Program development for
extreme-scale computing. Technical report, Dagstuhl
Seminar 10181, http://www.dagstuhl.de/10181, 2010.

[10] U. Kang, Charalampos E. Tsourakakis, Ana Paula
Appel, Christos Faloutsos, and Jure Leskovec. Radius
plots for mining tera-byte scale graphs: Algorithms,
patterns, and observations. In SDM, pages 548–558.
SIAM, 2010.

[11] U. Kang, Charalampos E. Tsourakakis, and Christos
Faloutsos. Pegasus: mining peta-scale graphs. Knowl.
Inf. Syst., 27(2):303–325, 2011.

[12] Jong-Seok Kim and Hyeong-Ok Lee. Comments on ”a
study of odd graphs as fault-tolerant interconnection
networks”. Computers, IEEE Transactions on,
57(6):864, june 2008.

[13] M. S. Krishnamoorthy and B. Krishnamurthy. Fault
diameter of interconnection networks. Computers &
Mathematics with Applications, 13(5-6):577 – 582,
1987.

[14] Matthieu Latapy and Clémence Magnien. Complex
network measurements: Estimating the relevance of
observed properties. In INFOCOM, pages 1660–1668.
IEEE, 2008.

[15] Ahmed Louri, Brent Weech, and Costas Neocleous. A
spanning multichannel linked hypercube: A gradually
scalable optical interconnection network for massively
parallel computing. IEEE Trans. Parallel Distrib.
Syst., 9(5):497–512, 1998.

[16] Clémence Magnien, Matthieu Latapy, and Michel
Habib. Fast computation of empirically tight bounds
for the diameter of massive graphs. ACM Journal of
Experimental Algorithmics, 13, 2008.

[17] Daniel A. Reed, Charng da Lu, and Celso L. Mendes.
Reliability challenges in large systems. Future
Generation Computer Systems, 22(3):293 – 302, 2006.

[18] Y. Saad and M.H. Schultz. Topological properties of
hypercubes. IEEE Transactions on Computers,
37:867–872, 1988.

[19] Raimund Seidel. On the all-pairs-shortest-path
problem. In STOC, pages 745–749. ACM, 1992.

[20] Jean-Paul Smets-Solanes, Christophe Cérin, and
Romain Courteaud. Slapos: A multi-purpose
distributed cloud operating system based on an erp
billing model. In Hans-Arno Jacobsen, Yang Wang,
and Patrick Hung, editors, IEEE SCC, pages 765–766.
IEEE, 2011.

[21] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, SIGCOMM ’01, pages 149–160, New
York, NY, USA, 2001. ACM.

