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Abstract— In this paper we present MLTBiqCrunch, a hi-
erarchically parallelized version of the open-source solver
BiqCrunch [1]. More precisely, this version has two levels of
parallelization: a coarse grain, assigning a thread to a node
evaluation and a fine grain, parallelizing a node evaluation when
some threads are not busy. We present experiments on some clas-
sical binary quadratic optimization problems with comparison of
their scalability and raw performance. In particular, we obtain
a superlinear speedup for some of the most difficult instances.

I. INTRODUCTION

BiqCrunch [1] is a full open-source solver (publicly avail-
able online) for binary quadratic optimization problems. Such
problems can be stated as 0-1 quadratic programs with mI

inequality constraints and mE equality constraints:
max zTS0z + sT0 z
s.t. zTSiz + sTi z ≤ ai, i ∈ {1, . . . ,mI}

zTSiz + sTi z = ai, i ∈ {mI + 1, . . . ,mI +mE}
z ∈ {0, 1}n

(1)
where the Si’s are real symmetric n × n matrices, the si’s
are vectors in Rn, and the ai’s are real numbers. Note that
if all Si = 0 then one gets a 0–1 linear program. BiqCrunch
requires the objective value of (1) to be integer for any feasible
solution.

Many optimization problems can be stated as (1), for further
details about applications and solvers the reader is referred to
[2], [3]. A vast majority of solvers for continuous, mixed or
integer problems, even to solve special cases (e.g. [4]) or re-
laxations of (1) (e.g. [5]) are multithreaded. Designing parallel
versions is especially useful for Branch-and-Bound-like algo-
rithms (e.g. [6]), and several authors investigated sophisticated
approaches to take advantage of various architectures (e.g. [7],
[8]). Other authors proposed approaches to provide a more
general framework to design such parallel Branch-and-Bound
algorithms (e.g. [9]). Some specific softwares are specialized
to design this type of solvers, such as the COIN-OR High-
Performance Parallel Search Framework [10] which provides
a base layer of a hierarchy consisting of implementations of
various tree search algorithms for specific problem types.

BiqCrunch uses sophisticated high-quality semidefinite
bounds [11] and automatically sets the tightness of its
bounding procedure node by node in the search tree. Moreover,
triangle inequalities are dynamically added and removed from
the underlying nonlinear relaxations in order to obtain stronger
bounds. A complete description of the solver is given in [1] as

well as its mathematical background. The BiqCrunch website
is http://lipn.univ-paris13.fr/BiqCrunch/,
where the source code, numerical results for several classical
combinatorial problems and related papers can be downloaded.
The distribution also includes converters and heuristics for
some specific problems.

The evaluation of each node can be made independently
from the other ones, making BiqCrunch a good candidate
for parallel computing. However, the shape of the search
tree developed by the branch-and-bound procedure does not
immediately extract an optimal level of parallelism.

In this paper, we propose a two-level parallel execution,
mixing parallel, low-level computation kernels and task-based,
coarser-grained parallelism, to adapt the degree of parallelism
at each level of granularity. After a quick review of the
literature on related works, we describe BiqCrunch and how it
can be parallelized in section II. We evaluate the performance
exhibited by each level of parallelism, and its consequence on
the overall performance (including the numerical effects of the
reorganization of the computation) in section III. Moreover, we
compare the new parallel version with the sequential version
of the solver by solving three classical NP-hard combinato-
rial problems (Max-Cut, Max-Independent-Set, and Max-k-
Cluster). Last, we discuss the results and open perspectives in
section IV.

II. MULTITHREADED BRANCH-AND-BOUND

The choices we made for MLTBiqCrunch are inspired by
previous works. For instance, a performance comparison is
available in [12] between multi-core and many-core systems
by solving big optimization problems with a Branch-and-
Bound algorithm. Another branch-and-bound implementation
is described in [8] using multi-GPU systems. While the
previous papers are related to multi-CPU systems on one hand
and to multi-GPU systems on another hand, [13] implements
a Branch-and-Bound for heterogeneous architectures (both
multi-CPU systems with GPU accelerators).

Nevertheless, the solver BiqCrunch has specific characteris-
tics and features that should be taken into account. First, it was
initially designed to be used on a standard personal computer,
i.e. with a limited amount of memory and up to 8 cores.
Second, the nonlinear relaxations used in BiqCrunch have a
higher computational cost (from several seconds to several
minutes) compared to other bounds used generally in Branch-
and-Bound-like algorithms (such as linear programming for



instance). On the other hand, high-quality bounds are obtained
here and therefore one can expect a small number of nodes
to evaluate. Previous experiments with BiqCrunch2.0 show
that actually, even for difficult combinatorial problems, this
number is at most a few hundred. This means that the
communication cost will be limited in a parallel version if
the grain corresponds to one node evaluation.

However, the bounding procedure of BiqCrunch can be very
fast since the quality of the relaxation is adjustable. Thus it
may be hazardous to allocate many threads to evaluate a given
node if other nodes are ready to be evaluated.

A. Single-threaded branch-and-bound

BiqCrunch is mainly written in C, and makes calls to Fortran
libraries. The code actually makes heavy use of linear algebra
functions (LAPACK [14] or the Intel Math Kernel Library
(MKL)), it includes the nonlinear optimization routine L-
BFGS-B [15], [16], and it is provided with an updated version
of the branch-and-bound platform BOB [17]. Nevertheless, the
current version of BiqCrunch uses only the serial features of
the platform BOB (i.e. one core is used), although the latter
is precisely designed to implement Branch-and-Bound-like
algorithms that take advantage form the benefits of parallelism.

When branching on variable zi in problem (1), the BOB
branch-and-bound platform [17] creates two new subproblems
(nodes of the search tree), one where zi is fixed to 0 and
the other where zi is fixed to 1. The subproblem that has
the weakest bound (among all the nodes previously inserted
into the global priority queue) is then selected to be the next
subproblem to branch on. In the case of a tie, BOB selects the
subproblem which is lower in the search tree (i.e., having the
larger number of fixed variables).

At iteration k of the bounding procedure, the algorithm
computes a bound Fk of all the feasible solutions of the
subtree, and takes advantage of the fact that the optimal
value of the combinatorial problem is an integer. Hence, if
Fk < βk + 1, then the node of the branch-and-bound tree is
pruned, where βk is the current best feasible solution (since all
feasible solutions of the subproblem have an objective value
no better than βk). If this is not the case, then the branch-and-
bound tree needs to be explored further.

The bounding procedure of BiqCrunch enjoys some nice
features. It can actually be fast to run if the node is easy to
prune, but is also able to provide tighter but more expensive
bounds if necessary. Moreover, it stops when it is likely that
a bound which is lower than βk +1 cannot be reached within
a reasonable amount of time. The bounding procedure can
be stopped anytime and will always return a valid upper-
bound for the problem, thanks to duality properties (see [11]).
Therefore, the computation times to evaluate the nodes are
bounded, and this bound can be chosen. In addition, generic
or specific heuristics take advantage of the fractional solution
computed by the relaxation to build a feasible solution for the
initial combinatorial problem (1), in order to try improving
the current best feasible solution. This is done several times

in the bounding procedure (for further details see Section 4.2.
and Algorithm 3 in [1]).

The BiqCrunch solver stores the input problem matrices in
a sparse format in memory to keep its memory requirements
small. Moreover the memory usage of the nonlinear optimiza-
tion routine L-BFGS-B is very low and optimized. Typically,
a problem with 225 variables and 32206 constraints (which
involves a 226 × 226 symmetric matrix, i.e. 25425 variables,
to store the underlying relaxation variables) requires at most
32 MB to be solved. In order to design a parallel version
of BiqCrunch, thanks to this very limited amount of memory,
allocating a private working memory space for each thread is a
simple and still low-cost solution, even on a standard personal
computer.

B. Multithreaded computation kernels

BiqCrunch uses linear algebra kernels intensively: in par-
ticular, profiling data showed that it spends about 60% of
execution time in dsyevr, which is itself spending about
20% of the total execution time in dsytrd. Therefore, the
most basic step to take advantage of multicore architectures is
to use multithreaded routines.

This is a fine-grain, low-level parallelism. This approach
follows a fork/join model. Computation outside of the
BLAS/LAPACK routines is sequential. Besides, each call to
a routine has to pay the cost of spawning new threads and
joining them at the end. Therefore, this parallelization model
might not be sufficient.

C. Task-parallelism

We have seen in section II-A that the branch-and-bound
procedure creates a tree: the branch-and-bound search tree.
Each node of this tree can create (or not) subproblems. Each
of these subproblems forms a node, that can be computed in-
dependently from the other ones. Compared with the approach
using multithreaded computation kernels, this is a coarser-
grain parallelism.

When generated, nodes of the search tree are put in a queue.
When an idle thread is available, it pops a node from the
queue and evaluates it. Therefore, this approach follows a
task-based parallelism model. The priority system provided by
BOB handles different priorities between the different nodes
and, therefore, the different parallel tasks.

When the current best solution is updated (e.g. when an
optimal solution is found), nodes with a evaluation which is
not as good are removed from the queue by the BOB platform.
Moreover, the other threads that are working may also stop
their evaluation if their node can be pruned using this new
bound (since the bounding procedure provides valid bounds
during all the evaluation process : see remark section II-A).

At the beginning of the computation, only one node exists
and therefore, only one thread is computing. As new nodes
are generated, more threads can compute them in parallel.
Therefore, the level of parallelism increases as nodes are gen-
erated. This approach is efficient when the problem generates
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Fig. 1: Computation of a tree that generates 7 tasks, where the
optimum is found on task T8.

a large number of nodes, in order to amortize the low level of
parallelism of the initial phase.

A short example is given in Figure 1. The initial node
T0 generates two nodes T1 and T4. The sequential version
(represented by the tree in Figure 1a) computes the nodes
in the numerical order indicated (from 1 to 9) if we assume
that the value of their evaluation implies it : the branch-and-
bound does a best-first search, so if T2 has a better evaluation
than T4, T2 will be chosen first. The optimum is found on
T8 : the sequential version has already evaluated T5, T6
and T7 whereas the parallel version (Figure 1b) has not, and
potentially stops the execution of T2, T3 and T9 because the
best solution has been updated.

A drawback of this approach is possible load unbalance.
If a node takes significantly longer than the other ones to be
computed, it can delay the whole computation while the other
threads are waiting for it to complete. However, in practice,
this case does not happen and several mechanisms guarantee
bounded evaluation times and roughly equivalent computation
time (see section II-A).

D. Two-level parallelization

In order to improve the exploitation of the multiple core
platform when the branch-and-bound tree has not generated
enough nodes to keep them all busy, both previous approaches
can be combined together in a hierarchical parallelization. The
core idea is to use multiple threads to evaluate a node when
threads are idle, and one thread when there are enough nodes
to assign one to each thread.

A possible schedule is given by Figure 2 (note that the
tasks are not necessarily related to the ones on Figure 1).
At the beginning of the computation, only one node exists
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Fig. 2: Possible (perfect) thread occupation of 9 tasks on 4
threads with hierarchical parallelism.

in the branch-and-bound tree. Therefore, all the threads are
used to evaluate it. It generates two nodes: each of them is
evaluated on two threads. These nodes generate four nodes in
total, which is equal to the number of threads: each node is
evaluated on a single thread. At the end, the tree narrows and
only two nodes are generated, evaluated on two nodes each.

Choosing the number of threads to evaluate a node is not
trivial. If some threads are idle when a node evaluation begins,
later during the evaluation of this node, other nodes might be
generated and need these threads to compute them. In our
system, coarse-grain parallelism has a higher priority than the
fine-grain one on thread occupation. Therefore, idle threads are
assigned to new node evaluation rather than on multithreaded
node evaluation. Various heuristics can be defined to determine
the number of threads to be used to compute a given task.

III. PERFORMANCE EVALUATION

We evaluated and compared the performance of our imple-
mentation of the algorithms described in section II. In partic-
ular, we compared their scalability and raw performance. The
problem instances are described thoroughly and the numerical
results obtained with the current version of BiqCrunch are
given on the BiqCrunch website.

A. Scalability

We limited the number of cores used by the multithreaded
BiqCrunch and multithreaded BLAS in order to avoid using
too many cores. In particular, if our heuristic makes BiqCrunch
choose to use a number of cores for the BLAS routines such
that, later, new tasks are executed and the total number of
threads used exceeds the number assigned to BiqCrunch, the
system limits BiqCrunch in such a way that it does not use
more cores than indicated.

We used a 32-core machine that features two Intel Xeon
CPU E5-2630 v3 running at 2.4 GHz and 32 GB of RAM. The
machine runs a Linux 3.16.0 kernel. All the code was compiled
using the GNU gfortran and gcc 4.9.2 compilers with -O3
optimization flag. We compiled the code against OpenBLAS
0.2.12 and LAPACK 3.5.0. BiqCrunch provides L-BFGS-B
version 3.0, that calls LINPACK and BLAS routines provided
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Fig. 3: Scalability with the brock-200-4 problem.

with the source code. We modified it in order to call routines
from the BLAS and LAPACK libraries installed on our system
(with a wrapper to call equivalent LAPACK routines instead
of the LINPACK ones).

a) Task parallelism: The performance of BiqCrunch
increases when threads are added to the computation (see
section III-C). We evaluated the scalability of the multi-
threaded computation (one thread per node of the search
tree) on various problems. For instance, Figure 3 presents the
scalability (Figure 3a) and the speedup (Figure 3b) obtained
by the computation of brock-200-4, a Max-Independent
Set problem with n = 200 issued from the DIMACS chal-
lenge that maximizes the total weight of the vertices in the
independent set.

We can see that it scales well, up to a certain number of
threads. Unlike small problems, this problem is not limited by
the number of nodes in the search tree: it evaluates 185 nodes.
Therefore we believe that the scalability is limited by thread
management and synchronization costs.

However, this approach faces a strong limitation: in practice,
some problems generate only a few nodes, or even only one.
If the optimal solution is found on the first node, evaluating
nodes in parallel is completely useless, because the one and
only node is evaluated by one thread.

b) Multithreaded computation kernels: In order to take
advantage of the multiple cores available even when the
structure of the search tree does not allow enough parallel

tasks (as described in section II-C), we called the BLAS
routines using multiple threads. However, on small instances,
experimentally, the performance is roughly the same using 1
to 10 threads.

c) Hybrid parallelism: We evaluated the performance of
the hybrid approach in two contexts: with a number of tasks
(used to evaluate the nodes) equal to the number of cores used
(a configuration similar to the one presented by Figure 2), and
with a number of nodes smaller than the number of cores
and several threads per node. The latter configuration tries
to scale beyond the scalability limits of the node parallelism
by assigning several threads to evaluate one node: if solving
the problem scales up to 16 node evaluations in parallel, we
assigned two threads per node in order to use 32 cores in
total: it is a nested parallelism approach. The former uses
several threads per node when some threads are idle because
the search tree has not generated enough nodes to keep them
busy: it is close to a greedy approach.

Figure 4 presents the scalability of solving the bqp-250-6
problem (a pure binary quadratic problem with n = 250,
available in the OR-library and BiqMac libraries, and used in
[18], [19]) using half of the idle threads per node evaluation.
We can see that it scales poorly. We have limited to 8 threads,
since the nodes’ queue list is never longer. We analyzed the
execution of BiqCrunch and we noticed that, because of the
asynchronous nature of the scheduling of the threads that
evaluate the nodes, BiqCrunch tends to use more threads than
the number of cores assigned to the computation (recall that
we limited the number of cores available for each run, for
fairness purpose).

In Figure 6, we are presenting the performance obtained
by the brock-200-4 problem with 2 threads per node
evaluation.

We can see that it “extends” the scalability of the parallel
implementation, but the overall performance is only a few
percent better than with one thread per node evaluation (Figure
3a). It can possibly be explained by the relatively small
speedup obtained by using multithreaded node evaluation in
general.

In order to set the balance between the two levels of paral-
lelism, we used performance profiles [20]. Figure 5 gives the
performance profiles obtained for a set of 45 Max-k-Cluster
problems with n = 100 used in several papers (e.g. [21]) and
publicly available on the BiqCrunch website. The number of
threads assigned to BLAS during the node evaluation ranges
from 1 (sequential BLAS) up to 8 (in this case all the nodes
are evaluated sequentially and BLAS uses all the cores). If one
considers a set S of problems used to benchmark the solvers,
then for each problem p ∈ S, we define tmin

p as the minimum
time required to solve p over all the solvers. Then, for each
solver, we consider the performance profile function θ, which
is defined as

θ(τ) =
1

|S|
∣∣{p ∈ S : tp ≤ τtmin

p

}∣∣ , for τ ≥ 1, (2)

where tp is the time required for the solver to solve problem p.
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Fig. 4: Scalability with the bqp-250-6 use-case with half of
the idle threads per node evaluation.

Fig. 5: Performance profiles using different balancings of the
hybrid approach. Each curve θ(τ) corresponds to a given
setting (from 1 up to 8 threads assigned to BLAS).

The function θ is therefore a cumulative distribution function,
and θ(τ) represents the probability of the solver to solve a
problem from S within a multiple τ of the minimum time
required by all solvers considered. These results confirm the
one obtained in Figure 6: the best choice is to run the BLAS
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Fig. 6: Scalability with the brock-200-4 problem with 2 threads
per node evaluation.

routines using at most two threads.

B. Numerical issues

For now, the two-level parallelism is still not fully satisfac-
tory. We have noticed that using the current parameters (e.g.
tolerance) of the linear algebra functions, the multithreaded
version of BLAS tends to be numerically unstable when
the underlying nonlinear relaxation is very tight (see [11]
for further details about how adjusting the tightness of the
relaxation). We have improved this stability by setting new
values, but a lot of factors come into play here.

First, there is a ”giving up” function in the bounding
procedure that stops the evaluation of a node when the progress
of L-BFGS is too small compared to the value of the best
current feasible solution. Consequently, this can occur at a
different moment of the computation if a different number of
threads are allocated to the BLAS functions.

Second, the branching procedure actually depends on the
fractional solution to select the variable to branch on, and these
values can be slightly different when using the multithreaded
version of BLAS. Nevertheless, for most problems, it must
be pointed out that this second parallelization level does not
improve a lot the solver performance. Indeed, the proportion
of computation time during which the number of nodes in
the queue is smaller than the number of threads is often
negligible (except for ”easy” problems). Consequently, for



difficult problems (i.e. that require a large number of node
evaluations), each thread will be kept busy most of the time.
Hence, it is possible to avoid these issues by using only a
one-level parallelization (i.e. one thread corresponds to one
node evaluation). But of course, we must investigate in depth
the reasons behind this numerical instability to address the
problem: this is an ongoing work.

C. Performance comparison and computational results

In this section, we present computational results obtained
for three classical NP-hard combinatorial problems that can be
stated as 0-1 quadratic programs. All the tests are run using
the same computer: a DELL T-1600 equipped with an Intel
Xeon E3-1270 CPU running at 3.40GHz with 8 cores. The
same parameters (see the BiqCrunch documentation) are set
for both solvers except for the number of cores: BiqCrunch2.0
uses a single core and MLTBiqCrunch uses four cores (except
in Figure 7 where the number of cores ranges from two to
eight).

We chose instances that are not solved at the root of
the search tree by BiqCrunch, and thus are relevant in our
context. All the problems are publicly available and have been
used by several authors [18], [21] (see the BiqCrunch website
http://lipn.univ-paris13.fr/BiqCrunch/ for
further details and references).

In the Max-Independent-Set (MIS) problem (see Table I),
we are given a graph G = (V,E) with vertex weights wi, and
the objective is to maximize the total weight of the vertices in
an independent set (a set S of vertices having no two vertices
joined by an edge in E):

(MIS)
maximize

∑
i wizi

subject to zizj = 0, ∀(i, j) ∈ E
z ∈ {0, 1}n.

(3)

In the Max-k-Cluster problem (see Tables II, III), we are
given an edge-weighted graph with n vertices and a natural
number k, and the objective is to find a subgraph of k nodes
having maximum total edge weight:

(Max-k-Cluster)
maximize 1

2

∑
ij wijzizj

subject to
∑n

i=1 zi = k
z ∈ {0, 1}n.

(4)

In the Max-Cut problem (see Tables IV, IV, VI, VII,VIII,
IX), we are given an edge-weighted graph with n vertices,
and the objective is to maximize the total weight of the edges
between a subset of vertices and its complement:

(Max-Cut)
maximize

∑
ij wijzi(1− zj)

subject to z ∈ {0, 1}n.
(5)

MLTBiqCrunch is always faster and in some cases it
generates fewer nodes. In some other cases (for example
brock200 1) the optimal solution is found late in the traver-
sal of the search tree; that explains the much larger number of
nodes for MLTBiqCrunch. Let us to point out that solving this
problem requires only 47 MB with MLTBiqCrunch. It involves
200 binary variables (20 100 for the underlying relaxations)
and 5267 equality constraints.

When using MLTBiqCrunch, we have observed a super-
linear speedup for several problems, especially for the most
difficult instances (see Table III). Actually, as pointed out in
Section II-C, the current best feasible solution can be updated
earlier (maybe several times) and therefore, fewer nodes are
generated in the search tree. Moreover, since the bounding
procedure can be interrupted at any time, a superlinear speedup
can even occur with the same number of nodes in the search
tree when several bounding procedures are stopped earlier at
the same time.

Fig. 7: Performance profiles of BiqCrunch2.0 and
MLTBiqCrunch (each curve θ(τ) corresponds to a given
number of threads).

In Figure 7, we illustrate the expected performance from
a standard user point of view when using MLTBiqCrunch
instead of BiqCrunch (the current version is BiqCrunch2.0).
This figure gives the performance profiles [20] obtained for
the set of problems used in Figure 5. Obviously, increasing
the number of threads improves the performance profiles of
the solver. Recall that now BLAS uses at most two threads,
and thus all the additional free cores are assigned to evaluate
the available nodes in the queue.

TABLE I: CPU times and number of nodes in the search tree
to solve Max-Independent-Set problems (DIMACS library)

BiqCrunch 2.0

n m nodes time (s)

MANN a9 45 72 5 3.90
keller4 171 5100 155 155.24
brock200 1 200 5066 1393 1822.81
brock200 2 200 10024 53 87.01
brock200 3 200 7852 107 157.45
brock200 4 200 6811 185 263.32

MLTBiqCrunch

nodes time (s)

3 0.64
113 88.55

2861 747.38
79 73.78

321 113.04
185 77.51

IV. CONCLUSION

In this paper, we have analyzed and compared the perfor-
mance gain of two parallelization strategies for the BiqCrunch



TABLE II: CPU times and number of nodes (in the search
tree) averaged over five instances for each triple (n,k,d) (d
is the graph density) required to solve medium-sized Max-k-
Cluster problems

BiqCrunch 2.0

n k d(%) nodes time (s)

120 30 25 64.6 133.04
50 110.6 177.20
75 236.6 297.84

60 25 28.6 59.09
50 43.8 90.66
75 19.0 38.95

90 25 1.0 3.53
50 6.2 28.79
75 1.0 2.38

MLTBiqCrunch

nodes time (s)

54.6 29.56
109.0 43.73
222.4 70.05
27.4 21.36
43.0 28.41
19.0 16.76
1.0 3.54
7.4 20.05
1.0 2.24

TABLE III: CPU times and number of nodes (in the search
tree) averaged over five instances for each triple (n,k,d) (d
is the graph density) required to solve to solve large Max-k-
Cluster problems

BiqCrunch 2.0

n k d(%) nodes time (s)

160 40 25 501.0 1927.53
50 6061.6 15411.70
75 4427.8 10798.50

80 25 207.4 854.28
50 505.8 1791.06
75 2017.4 7242.98

120 25 10.2 74.53
50 7.0 63.67
75 3.8 30.64

MLTBiqCrunch

nodes time (s)

535.4 397.59
6430.6 3731.51
5103.8 2624.43
195.4 177.25
536.6 471.94

2101.4 1786.57
10.6 38.75
6.2 30.95
5.0 28.39

TABLE IV: CPU times and number of nodes in the search
tree to solve the w100.d050 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 307 434.02
1 111 188.84
2 57 93.21
3 297 401.06
4 471 646.58
5 349 529.17
6 99 135.20
7 33 62.39
8 403 557.02
9 33 66.20

MLTBiqCrunch

nodes time (s)

345 121.88
109 53.47
59 32.07

319 115.11
451 168.42
363 147.94
99 49.42
31 21.14

401 149.92
31 25.49

branch-and-bound solver. We have seen that a coarse-grain,
task-based approach gives a satisfying speed-up, but is limited
by the start-up phase of the computation, when the search tree
is not wide enough to take advantage of all the available cores.
On the other hand, we have seen that a fine-grain, kernel-level
parallelization is too fine-grained to give a good speed-up,
even in these phases.

Although the evaluation of each node is hardly data-parallel,
parallelizing the evaluation of each node is an interesting
approach that deserves some consideration. The bigger gran-
ularity of this approach might give better results that the one

TABLE V: CPU times and number of nodes in the search tree
to solve the w100.d090 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 229 360.93
1 1555 2288.50
2 551 809.24
3 779 1080.00
4 321 491.79
5 7 16.96
6 55 118.44
7 185 283.12
8 93 192.86
9 259 368.84

MLTBiqCrunch

nodes time (s)

213 97.04
1559 646.63
529 215.36
879 312.68
297 136.62

7 14.33
63 43.40

171 77.38
99 57.93

297 111.79

TABLE VI: CPU times and number of nodes in the search
tree to solve the pw100.d050 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 945 1099.56
1 317 386.65
2 365 452.35
3 91 116.66
4 467 631.61
5 123 172.50
6 745 1054.98
7 149 227.40
8 43 86.13
9 203 278.38

MLTBiqCrunch

nodes time (s)

1121 415.40
293 112.24
399 148.70
93 43.31

373 162.82
115 52.99
663 283.41
139 71.93
43 31.13

241 100.75

TABLE VII: CPU times and number of nodes in the search
tree to solve the pw100.d090 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 291 407.79
1 523 674.41
2 135 197.70
3 111 158.40
4 235 316.92
5 307 502.81
6 221 264.78
7 503 687.72
8 181 316.72
9 137 227.82

MLTBiqCrunch

nodes time (s)

303 128.56
479 178.22
153 62.19
119 52.87
227 93.91
319 144.38
245 84.40
529 199.04
175 88.35
141 65.92

TABLE VIII: CPU times and number of nodes in the search
tree to solve the pm1d100.d090 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 635 796.95
1 1187 1464.82
2 885 1070.42
3 189 266.69
4 567 720.50
5 155 209.20
6 139 203.60
7 57 104.56
8 47 64.67
9 243 309.30

MLTBiqCrunch

nodes time (s)

739 235.88
1159 372.35
823 262.49
249 100.45
573 194.33
159 61.25
127 51.13
57 35.06
37 20.05

239 87.01



TABLE IX: CPU times and number of nodes in the search
tree to solve the g05.n100 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 379 417.26
1 1683 1886.18
2 103 138.52
3 589 554.84
4 33 44.26
5 107 167.96
6 107 151.56
7 255 331.53
8 163 198.11
9 219 222.28

MLTBiqCrunch

nodes time (s)

387 129.32
1889 648.07

91 38.30
705 172.63
35 16.71

105 45.98
109 43.59
257 92.36
175 60.99
219 61.44

based on multithreaded computation routines, would the data
dependencies allow it.

Overall, the coarse-grain, node-level parallelization presents
good results, with a satisfying speed-up on large problems that
generate a non-trivial number of nodes. Large instances can
be solved in less than an hour, which is very positive: these
instances can be solved in reasonable time on a desktop work-
station. Smaller instances can already be solved in reasonable
time, so they are not the core target of MLTBiqCrunch, which
aims at making it possible to solve 0-1 quadratic problems
on mainstream desktop computers. In that sense, the multi-
threaded version we are presenting here fulfills this goal.

Quite surprisingly, we have noticed that the small loss of
precision suffered by parallel computation routines, due to the
reorganization of the computation in the kernels, can affect the
branch-and-bound computation dramatically, causing a slower
convergence or, more annoyingly, creating extra nodes in
the search tree. The numerical stability and accuracy of the
parallel computation routines is therefore of major importance.
Another perspective for future works consists in exploring
the gain provided by extended-precision or arbitrary-precision
routines, such as MPACK [22] or xBLAS [23].
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