Practical activities in network courses
for MOOCs, SPOCs and eLearning
with Marionnet

Camille Cotifi
camille.coti@univ-paris13.fr

Jean-Vincent Loddot1
jean-vincent.loddo @univ-paris13.fr

Emmanuel Viennetft
emmanuel.viennet@univ-paris13.fr

1 o IUT de Villetaneuse, Université Paris 13, Sorbonne Paris Cité
1 - LIPN, CNRS UMR 7030, Institut Galilée
b o L2TI, Institut Galilée, Université Paris 13, Sorbonne Paris Cité

Abstract—In this paper, we present Marionnet, a virtual
network laboratory, and how it can be used in distance education
(MOOC, SPOC and eLearning classes) to implement practical
activities in network classes that should normally require students
to have access to specific hardware. Marionnet provides virtual
network equipment such as routers, switches, computers and
cables, and allows users to design a whole network on a single
computer. The hardware in Marionnet is virtualized and can
therefore be configured like real devices, making the practical
activities that are using it very realistic.

I. INTRODUCTION

Technical learning is generally two-fold: theory, that
presents the new notions, and practical activities, where skills
are trained. Distance education (MOOC, SPOC and eLearning
classes) benefits from a very large variety of formats to de-
liver theoretical contents: videos, interactive animations, text...
However, some practical activities require specific hardware
that may not be reasonably owned by students neither by
university structures.

In this paper, we are focusing on computer network courses.
Practical activity include installing, configuring and exploiting
computer networks that feature several computers, routers,
switches and a potentially large number of cables. Students
that follow online courses cannot reasonably be obliged to own
all this hardware, whereas laboratories and practical activities
are essential for such technical classes.

Marionnet is a virtual network laboratory that emulates
physical networks of computers and devices such as cables,
hubs, switches and routers. It features an intuitive graphical
user interface, making it really easy to use without requiring
any specific training. It accurately reproduces the behavior of
a real network, and gives the user access to each device’s
terminal in order to allow him/her to configure the said device.

Marionnet uses lightweight components to emulate each
device of the network, such as specifically patched User-
Mode Linux virtual machines[3] and the VDE communication
layer[4]. Hence, a Marionnet virtual network as a small
memory footprint, so that non-trivial networks can be emulated
on reasonably sized, not-so-recent computers without any
memory usage issue.

978-1-4799-1756-3/15/$31.00©2015 IEEE

Moreover, the networks built with Marionnet and the con-
figuration of the machines and devices can be saved for further
usage or to be transmitted to an instructor. A network and its
configuration is called a project. A project is saved in a single
file which is actually made of two parts: a representation of
the network, and the state of the machines. The state of the
machine is actually the modifications that were made from the
initial state of its filesystem; this is a copy-on-write file, which
takes typically a few megabytes of disk space.

As a consequence, Marionnet files can also be exchanged
between students and instructors, which is a really interesting
feature for eLearning courses. Instructors can send examples
or partially configured networks to students, and students can
send networks made as assignments or questions to their
instructors.

In this paper, we are presenting Marionnet, a virtual network
laboratory, and how it can be used in distance education to
implement practical activities in network classes that should
normally require students to have access to specific hardware.
Marionnet provides virtual network equipment such as routers,
switches, computers and cables, and allows users to design
a whole network on a single computer. The hardware in
Marionnet is virtualized and can therefore be configured like
real devices, making the practical activities that are using it
very realistic.

Section II presents the Marionnet virtual laboratory envi-
ronment itself. Section III presents how it can be used to
allow lab activities in a context of distant learning. Section
IV presents how it can be used in the context of a French
technical curriculum in particular.

II. A QUICK OVERVIEW OF MARIONNET

Marionnet is graphical application based on GTK+ ([5])
that offers the usual project-oriented metaphor: in order to
start using the application the user can create a new empty
project or open an existing one. In both cases a dialog window
pops up, asking to choose a file name. Once a project is
created or opened the user can freely navigate through the
functionalities offered by the interface: the device palette,
the graphical network representation (henceforth the network

graph) and the panes providing advanced functionalities (In-
terfaces, Anomalies, Filesystem history) become active.

A. Hardware devices palette

Network devices can be created, modified and controlled
from the device palette within the Hardware pane. The user is
freed from the burden of physically placing device icons in the
network graph two-dimensional space: placement is automatic,
but several parameters (for example the length of edges and
the size of icons) can be tuned if needed. The network graph
is automatically updated at each device state change (such as
startup, pause or resume) to reflect the current state.

The device palette offers two kinds of functionalities:

1) virtual network editing, including definition, modifica-
tion and removal of individual devices.

2) virtual network control features: each device can be
started-up, paused, resumed, shutdown and powered-off.

We briefly review the eight types of virtual network com-
ponents which are currently provided.

1) Virtual computer: The virtual computer device repre-
sents a computer running a GNU/Linux operating system.
Just like a physical computer a virtual computer can be off
or running. As an “extension” to what it is possible in a
physical network we also provide the possibility of pausing
computers: in the paused state computers do not react to in-
coming messages. Pausing allows to experiment with dynamic
routing protocols, making a machine temporarily unreachable.
The user can set some machine specific parameters, as the
amount of RAM reserved by the host system to the this guest
system, the number of ethernet cards (1 by default), the
particular GNU/Linux distribution (chosen among the ones
provided for guest systems by the Marionnet installation),
and possibly a variant. A variant represents a modification to
the filesystem of the selected distribution!. The user can also
select a particular guest kernel, chosen from several versions
of Linux compiled with different features enabled.

2) Virtual hub: A hub is a very simple electronic device
reproducing the signals it receives from one of its port into
all the other ports. All the network nodes connected to a
hub belong to the same Ethernet collision domain. Despite
nowadays being mostly disregarded as obsolete variants of
switches, hubs are often convenient for intercepting and ana-
lyzing network traffic: this can be easily realized by running a
sniffer application such as wireshark or tcpdump on a virtual
computer directly connected to a hub. The user can choose the
number of ethernet ports (4 by default). This kind of devices
is simulated with the VDE technology (see [4]).

3) Virtual switch: An Ethernet switch also allows to relay
several Ethernet frames through a network, but differently
from a hub it outputs data only to the intended receiving node.
Like the virtual hub, the user can select the number of ethernet

IThe COW (Copy On Write) technology supported by UML allows a very
efficient implementation of this feature, involving a single sparse file contain-
ing only the blocks which are different from the unmodified distribution. A
typical COW file takes only a few megabytes of disk space on the host.

ports (4 by default) and the simulation is again implemented
using VDE.

4) Virtual router: An IP router is a device directing packets
from a local network to another local network. The main
purpose of a router is to find the next node of a network
through which a packet should be sent to reach its final
destination in the minimum time. It is worth to emphasize
that, differently from hubs and switches which operate at
the link layer, routers work at the network layer, and their
behavior is considerably more complex. Routing tables can
be set either statically or dynamically. Router interfaces can
be configured from the Inferfaces pane or, once it is started,
accessing it with the telnet protocol. In this case, the user
access the router through the port O pre-configured to a
known IP number (by default 192.168.0.254/24). The other
parameters are close to the ones for hubs and switches. Virtual
routers are implemented with the Quagga software (see [6])
running on a UML virtual machine. Quagga allows both static
and dynamic routing (in the latest case supporting different
protocols such as RIP, OSF, BGP and ISIS).

5) Virtual cable: Ethernet cables allow to physically con-
nect nodes in the network. Marionnet simulates the most
common sort of cables deployed today, twisted pair with
“RJ45” connectors, but abstracting over such low-level details
(which are typically not relevant at the high-level where
the user works). For pedagogical reasons (perhaps pedantic
in 2015), the distinction between “straight” and crossover
cables is relevant: when an “incorrect” cable is used, for
example a crossover cable to connect a computer with a
switch, Marionnet simply does not transmit any frames. The
control actions provided by the devices palette are limited
to connect and disconnect in the case of cables. Cables are
always connected by default, but they can be disconnected
and reconnected at will by the user, as it is common while
making tests on the network at several different levels. Cables
are represented in the network graph as solid lines when
connected, and as dashed lines when disconnected.

6) Virtual Ethernet “cloud”: An cloud represents an Ether-
net (level 2) network composed of hubs, switches and cables,
with exactly two endpoints an unspecified internal structure.
The only externally observable effects of a cloud consist in
delays and other anomalies in the relaying of frames from
one endpoint to the other. This “device” is particularly useful
for the simulation of dynamic routing. Anomalies as delays
can be set from the Defects pane with a very fine level of
detail.

7) Real world access: Using the components presented up
to this moment it is possible to build a virtual network made
of computers, hubs, switches, routers and clouds connected
by “straight” and crossover Ethernet cables. Such a virtual
network is a possibly interesting and useful but completely
closed system, isolated by the outside world. For this reason,
there are also two real world access components, the gateway
and the bridge. The bridge represents a “female Ethernet
wall socket”, opening a breach in this apparent closure: when
connected to an external socket other compoenents can access

the same (non-virtual) network to which the host belongs
(supposedly Internet). The gateway has instead an associated
IP number and simply acts as a router to the host network. The
external access provide several useful opportunities as con-
necting virtual computers to the Internet and easily installing
additional software on virtual machines, for example using
apt—get install on adebian distribution or downloading
and compiling sources. The implementation of the bridge
component depends on the bridging functionality in Linux,
while the gateway is supported once again by VDE.

B. Network graph

When any virtual device changes state or a Marionnet
project is opened the network graph image is regenerated
to reflect the current situation. The configuration parameters
settable by the user from the palette next to the graph image
in the Hardware pane allow the user to tune the node icons’
size, to randomly rearranges nodes or to resets the nodes
arrangement to their initial state. Concerning edges, the user
can regenerate the image so that its main spine is drawn
horizontally or vertically, he can set the minimum edge length
or swap the ends of an edge in the image. A slider allows to
set the distance between a label and the icon representing the
node it describes. A distinct slider allows to set the size of the
canvas containing the whole image.

C. Advanced usage

Marionnet provides several advanced functionalities through
three additional GUI panes.

1) Interfaces: this pane allows the user to configure the
network interfaces of virtual computers and routers by setting
parameters like the MAC address, the IP address and gateway.
Although all these parameters can also be set after startup
by logging in the virtual computer or router and invoking
ifconfig, this interface provides a conventient shortcut.

2) Defects: with this pane the user can introduce some
artificial “faulty” behaviors like frame loss, frame duplication,
flipped bits and trasmission delay. Defects can be set up with
the granularity of the single electric line, i.e. the direction (in-
to-out or out-to-in for ports and left-to-right or right-to-left
for cables). For each direction of each cable or port of each
device the user can individually set any defect, by entering a
probability or, in the case of delays, a time in milliseconds.
Note also that defects settings can be updated “hot”, i.e. while
the network is running: the behavior is immediately affected.

3) Filesystem history: For each virtual computer or router,
a complete history of the disk states is available: each state
is saved just before startup. A machine or router can be
started up in the most recent state (which is the default
behavior), or in any previously saved state. This allows users
to freely experiment with potentially “dangerous” filesystem
modifications, as each change is reversible. For each machine
or router the filesystem history displays a tree structure keeping
track of the “parent-child” derivation relation of states. States
can also be deleted or exported as variants, to be used for new
machines or routers in the same or even in different projects.

workstation0

= - |
N bl
[}
workstation1
nis
switchi
- s;:;:g-m o} - .
(2 h =
[0}
Py o,
f By ol 3 workstation2
nrs
{a] swicha
1 2 B -
workstation3
"P - |
Figure 1. A Marionnet network for a lab project on network servers and

clients configuration.

D. File format

The Marionnet project file format is a tar archive con-
taining some OCaml marshalled objects and UML cow files.
The format has been very carefully designed to be back- and
forward-compatible: newer versions of Marionnet can read
project saved by older versions and vice-versa: when Mari-
onnet finds some information which it doesn’t “understand”,
the system simply ignores it. If instead some needed field
is lacking then a default value is generated. We hope this
to become a conventional exchange format for people who
desidred to share projects and “prepackaged” networks.

III. MARIONNET AS A TOOL FOR VIRTUAL LAB ACTIVITIES

As mentioned in the introduction, practical activities are
very important for technical learning. In this section, we detail
how Marionnet can make it possible in the context of distant
learning and how it can help leading students being more and
more autonomous.

Configuring a complete, working network requires a large
set of skills, ranging from wiring to service configuration and
route settings. Students acquire these skills one by one and
therefore, practical activities must focus on each one of them.
Asking students to install and configure a full network from
scratch at the beginning of their training would be too hard
and would put them in front of challenges and waste time on
issues that are not the core focus of a given class.

On the other hand, teachers can provide students with a
pre-configured network and ask them to work on this partly-
configured environment. As a consequence, a practical activity
here focuses on one topic in particular, and students do not
need to spend time and risk to stumble or even fail and become
discouraged by configuration steps that would not be in the
scope of the notions they are working on.

A. Activity: configure network services

One example of practical activity would consist in con-
figuring network services, such as DHCP, NTP, NIS, NFS...

cils ol - =

NG
= U= 1]~ el 5 o | =
o

Figure 2. A Marionnet network for a lab project on the configuration of 6
subnetworks.

The focus of this lab is neither on the installation nor on
the configuration of the network, but on the configuration of
services running on machines of the network. Therefore, it is
not necessary to ask the students to wire and configure the
network.

For instance, we can consider a lab project in which students
must configure various network services and client machines
on three networks (one dedicated to the servers, the other ones
for clients). The graphical display presented by Marionnet is
depicted in figure 1.

The students can be provided with a . mar file (section II-D)
that contains the pre-configured network (configuration of the
virtual hardware components, wiring) and network interfaces
for the router and the servers. As a consequence, they can
start the network from a working configuration and focus on
the core topic of the lab project. The file for this particular
network weights about 10 kB. It can therefore be reasonably
uploaded by the instructor on a server and downloaded by the
students from their home Internet access.

B. Activity: network configuration

Marionnet is also used for labs on configuring the network
elements themselves. In this situation, the instructor can pro-
vide the virtual hardware configuration and ask the students
to configure the network interfaces of the elements.

For instance, students can work on subnetworks: a network
IP address is divided into several logical networks, and one
or several routers link them together and forwards network
packets between subnetworks. Marionnet uses virtual routers
that can be configured like real-life ones (section II-A4). As a
consequence, students can work on non-trivial networks made
of several subnetworks and several routers.

Figure 2 is the graphical display presented by Marionnet
for a network made of six subnetworks and four routers. Each
subnetwork has its own switch and contains one machine.
Routers are linked together in a chain topology by point-to-
point connections using cross cables.

Using the graphical representation, students can have a
concrete view of the network topology and make a preliminary
reflection exercise on the path followed by packets transmitted
between any two machines of the network. Then they can

L OB U
o

il

mi

Figure 3. A Marionnet network for a lab project on the configuration of a
network backbone between two subnetworks.

configure the network interfaces of the hardware components
(routers and machines) and their routing tables.

In a similar way as with the previous activity, a .mar
file can be provided with all the hardware components of the
network wired together, so that the students can focus on the
configuration itself.

It can also be noted that this lab project involves four
routers, six switches and six machines. Requiring students to
have this equipment at home is hardly possible, especially in
a context of distant learning. This equipment can be found
in most network lab classroom, but not in many homes.
As a consequence, the virtualization feature of Marionnet
is exploited here to make this non-trivially sized network
possible on a single personal computer.

This idea can be followed to work on various network
topologies and configuration methods. For instance, figure 3
depicts a network with a backbone infrastructure made of four
routers connected in a ring topology.

The students can focus on the configuration of the backbone
itself. This topology is particularly interesting for a lab with
Marionnet because dynamic modifications can be made at
execution-time. For instance, virtual network cables can be
hot plugged and unplugged. Students can observe the effects
of unexpected hardware disconnections.

An example of lab activity using these features is dynamic
routing configuration, using protocols such as RIP, OSPF or
BGP. Students can start only three routers, forming a chain
between the two machines. They must configure a dynamic
routing protocol on the routers and observe the formation
of their routing tables. Then they turn on the fourth router,
configure it and observe the modifications on the routing tables
and the paths followed by packets that are sent between the
two machines. Last, they can unplug a cable and observe the
modifications that follow.

This lab focuses on the configuration of the equipment that
form a network that has a given topology. The topology can
be provided to the students in a .mar file in order to make
them focus on how they will make it work.

C. Complete configuration

If the students are not provided with any file to start from,
they need to configure their Marionnet network from scratch.

They must select the appropriate hardware, wire the devices
with each other using the correct cables (cross or straight),
and proceed with their configuration.

This hardware installation is quite realistic in a sense that,
for instance, the port a cable is plugged in must be selected
from a list of existing, available ones. Moreover, if the wrong
cable type is selected (cross instead of straight or vice versa),
connectivity will not work.

As a consequence, Marionnet allows students to set up a
complete network from scratch without requiring any specific
hardware in addition to their personal computer. Here again,
this tool is particularly suitable for distant learning courses
such as MOOCs or eLearning, since it allows practical activ-
ities without requiring any specific lab room.

D. Feedback and evaluation

As presented in section II-D, the whole configuration of the
network, including the hardware components, the connectivity
between them and a COW image of their state is saved in a
.mar file.

As a consequence, students can send their .mar files to
their instructor in order to ask a question or in an valuation
purpose. For instance, the instructor can evaluate whether the
interfaces are properly configured, if some configuration files
on the virtual machines are correct, if the devices are wired
correctly (using proper wires)...

Therefore, the instructor can evaluate students on the result-
ing network and perform practical tests on it, which cannot be
done on real hardware if students are remote.

IV. USE IN A FRENCH IUT CURRICULA
A. Context: french’s IUT

The 113 French University Institutes of Technology (IUT
— Institut Universitaire de Technologie®) provide technical
education spanning over four semesters of studies (DUT —
Diplome Universitaire de Technologie), as well as technical
bachelor with two additional semesters (Licence Profession-
nelle). IUTs are a major player in France’s superior educa-
tional system. IUTs provide technical university education,
preparing students to careers in the industry and services.
The main diploma is called DUT, Dipléme Universitaire de
Technologie [7]. They are organised in teaching departments
covering 23 different subjects ranging from humanities to
sciences.

Designed to train mid-level technical staff in 2 years, IUT
programmes also allow graduated students to pursue their
studies with a more advanced degree, such as a Licence
Professionnelle [8].

IUT of Villetaneuse, University Paris 13, has been propos-
ing a Licence Professionnelle specialized in the Security of
Information Systems and Computer Networks for more than
ten years. In order to address the growing demand of firms
and adult professional, the IUT is currently working on the
design and implementation of a new modality, suitable for

Zhttp://www.campusfrance.org/en/page/short- programs

distant learning. The targeted audience is either employed
professional already working in the field, or unemployed adults
with a background in computer science.

1) Focus of the diploma: The objective of the LP Networks
and Telecommunications option ASUR is to meet the growing
demand from companies in the areas of administration and
security of computer networks and telecommunications.

Corporate computer network administrators are now facing
major evolutions of communication technologies resulting in
important changes in working methods. Among the conse-
quences, the companies are facing:

o Needs for greater skills in the administration of appli-
cation servers (open source and commercial software,
virtual servers, etc.).

e Critical issues related to secure backup and storage of
data.

o Securing Internet communications, in the context of
growing demand for mobility: encryption, authentication
to access company’s data.

The graduate is able to understand and master the modern
techniques of administration and security in computer net-
works of companies.

The trades covered are:

o Network Administrator.

o Network Assistant engineer.

o Safety and Quality systems.

o Head of IT.

o Network Architect, Project Manager deployment net-

works

Table I gives a list of all modules, with associated amount
of hours in the face-to-face modality. Classes are organized on
approximately 6 months, summing to 550 hours. After that,
the students must complete a training internship in a company.

Table T
MODULES OF LP ASUR IN THE CLASSICAL (FACE-TO-FACE) MODALITY

Code | Module Hours
MO1 UNIX Operating Systems (intro) 24
MO02 Introduction to programming (Python) 30
MO03 Basic concepts of IT Security 12
M3i Networking 35
Mb5u UNIX Administration 36
Mé6p Cryptography 30
M3r Routing 22
M3a Network Services 30
M3w | Wifi 30
M7 Protection and Monitoring of Networks 30
M3v6 | Introduction to IPv6 12
M4 QoS and VoIP 30
MS5a Windows Administration 36
M6s Attacks’ Techniques 22
M8p Client/Server Programming 25
Mle Oral & Written Communication 30
Mla English 30
M2g Project Management 18
M2d Laws and Norms 20
M9 Project 30
Mx Misc (CISCO, Conferences) 20
Total 550

2) eLearning training plan: The new proposed training
plan is based on a mix of SPOCs (Small Online Private
Courses) and conventional face-to-face teaching. Face-to-face
teaching is required or more efficient for modules centered on
human interactions (communication, projects in groups) and
for modules requiring practice on real devices (such that IPBX,
routers, and so on). This is where Marionnet is really useful: its
usage allows us to reduce the volume of face-to-face activities,
by allowing the students to train themselves autonomously
on network configuration , supervision, and also on system
administration (e.g. network services on UNIX servers).

Our goal is to propose 75% of the training online, keeping
only 130 hours in face-to-face classes.

3) Organization of a module: In the eLearning modality,
each module will be composed of a sequence of activities,
like:

o Video lectures.

e Written tutorials;

e Quizz and online evaluation.

« Individual help: mentoring by chat, visioconference or

e-mail.

o Group activities: forums, group chats sessions.

V. CONCLUSION

In this paper, we have presented Marionnet, a virtual lab
for practical activities in network classes. Marionnet allows
students to set up, install, wire, configure and use computer
networks made of a non-trivial number of devices such as
computers, routers, switches and hubs, without requiring any
hardware in addition to a regular, personal computer.

This property makes it particularly suitable for distant
learning, making it possible for remote students to have labs
and practical activities without asking them to get the afore-
mentioned network devices. In particular, we give examples
of how these labs can be organized and how virtual networks
can be shared between instructors and students, for grading
purpose or as a starting point for some projects.

We give a specific implementation of these features in a
technical program in France called Licence Professionnelle,
and how Marionnet and distant learning can be used for an
eLearning version of this program.

REFERENCES

[1] J.-V. Loddo, L. Saiu: Marionnet: a virtual network laboratory and
simulation tool, 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems (Simulation-
Works’2008), Marseille, France, 2008.

[2] J.-V. Loddo, L. Saiu, Status report: marionnet or "how to implement
a virtual network laboratory in six months and be happy”, ACM
SIGPLAN Workshop on ML (ML'2007), Freiburg (Germany), 2007.

[3] J. Dike: User mode linux (Vol. 2), Englewood Cliffs: Prentice Hall, ISBN
0-13-186505-6, 2006.

[4] R. Davoli: VDE: Virtual Distributed Ethernet, First International Con-
ference on Testbeds and Research Infrastructures for the Development
of Networks and Communities, (TRIDENTCOM 2005), pp. 213-220,
IEEE, 2005.

[5] Owen Taylor and others: GTK+ - GNU toolkit for X windows develop-
ment, http://www.gtk.org

[6] Kunihiro Ishiguro and others: Quagga Project, http://www.quagga.net

[7]1 Assemblée des directeurs d’IUT (ADIUT) et Union nationale des
présidents de conseils d’IUT. Livre blanc sur le systtme IUT,
2007. http://www.iut-fr.net/files/fck/File/documents/publications/livre_
blanc_iut_2007.pdf.

[8] Thierry Malan. Implementing the Bologna process in France. European
Journal of Education, 39(3):289-297, 2004.

