
POSH:ParisOpenSHMEM
Camille Coti
coti@lipn.fr

OpenSHMEM
OpenSHMEM standard [1]:

• One-sided communications
• RDMA-fashion

Shared, public memory areas are sym-
metric

One-sided communication
Remote memory access, one-sided com-
munications [3]

• put, get operations

– Write data in another pro-
cess’s symmetric heap

– Read data from another pro-
cess’s symmetric heap

• collective communications

P0 P1 P2

Remote
getRemote

put

Remote
put

Communication engine
Segment of shared memory

• Based on Boost.Interprocess
• Using the POSIX shm API

Optimized memcpy

• Peer-to-peer communication =
copy from/in other processes’
symmetric heap

• Optimized memcpy → better com-
munication performance

• SSE, MMX implementations are
available

Memory Model
Each process has a symmetric heap

• Memory allocations must be performed in a symmetric way
• Data is placed everywhere at the same relative address (see eq. 1)

Static global variables are also located in the symmetric heap.

P0 P1 P2

Private
memory

Symmetric
heap

Static global
objects

Symmetric
objects

Template implementation
Each communication operation is declined for each datatype:

• shmem_char_put, shmem_short_put, shmem_int_put, shmem_long_put...
• Same action but on a different datatype
→ Can be generated by the compiler!

template<class T> void shmem_template_put(T*, const T*, size_t, int);

void shmem_char_put(char *target, const char *source, size_t nelems, int pe

){

shmem_template_put(target, source, nelems, pe);

}

void shmem_short_put(short *target, const short *source, size_t nelems, int pe){

shmem_template_put(target, source, nelems, pe);

}

Same as if the programmer had written different functions, easier to write and main-
tain.

Properties
Fact 1 If all the processing elements are running on the same architecture, the offset
between the beginning of a symmetric heap and a symmetric object which is contained
by this heap is the same on each processing element.

Address of a remote variable:

addrremote = heapremote + (addrlocal − heaplocal) (1)

Lemma 1 Non-symmetric, temporary memory allocations in the heap of a subset of
the processing elements that are performed during collective operations do not break
the symmetry of the heaps outside of the concerned collective operation.

Performance: latency and throughput

 1

 10

 100

 0 200 400 600 800 1000

T
im

e
 (

n
s
)

Message size (b)

Latency

put operations
get operations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

B
a
n

d
w

id
th

 (
G

b
/s

)

Message size (b)

Bandwidth

Performance
Point-to-point communication performance

SHMEM latency (ns)
Best copy memcpy

get put get put
Caire 38.40 38.40 38.40 38.40
Jaune 1741.85 1665.90 1667.90 1663.90
Magi10 38.40 38.40 38.40 38.40
Maximum 38.40 38.40 38.40 38.40
Pastel 1830.40 1689.60 1830.40 1689.60

SHMEM bandwidth (Gb/s)
Best copy memcpy

get put get put
Caire 18.36 18.38 18.36 18.38
Jaune 17.62 17.55 10.52 10.59
Magi10 20.46 20.16 20.46 20.16
Maximum 74.09 76.15 68.51 69.28
Pastel 26.07 25.50 26.07 25.50

Comparison with Berkeley UPC :
UPC latency (ns)

get put
Caire 39.40 37.55
Jaune 1623.90 1623.90
Magi10 73.80 54.90
Maximum 26.75 25.00
Pastel 2025.10 1689.95

UPC bandwidth (Gb/s)
get put

Caire 18.03 18.45
Jaune 9.95 10.63
Magi10 18.64 16.33
Maximum 67.45 68.86
Pastel 23.52 25.06

Get POSH
How to get POSH:

• Web page: http://lipn.univ-paris13.fr/~coti/POSH/
• On GitHub: https://github.com/coti/POSH

References
[1] High Performance Computing Tools group at the University of Houston and Oak

Ridge National Laboratory Extreme Scale Systems Center: OpenSHMEM ap-
plication programming interface, version 1.0 final. http://www.openshmem.org,
January 2012.

[2] C. Coti: POSH: Paris OpenSHMEM: A High-Performance OpenSHMEM Imple-
mentation for Shared Memory Systems, in CoRR abs/1403.7791 [cs.DC], March
2014.

[3] F. Butelle, C. Coti: A Model for Coherent Distributed Memory For Race Condition
Detection, in Proceedings of the 13th Workshop on Advances in Parallel and
Distributed Computational Models (APDCM’11), Anchorage, Ak, May 2011.

