Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Camille Coti

LIPN, CNRS UMR 7030, SPC, Université Paris 13

April 15th, 2016
Roadmap

1. Introduction
 - Large-scale systems
 - Reliability

2. CAQR

3. FT-CAQR
 - FT-TSQR
 - FT-CAQR

4. Performance

5. Conclusion
Scalability

BIG machines

- How do we program them?
- Need for **scalable** algorithms
BIG machines

- How do we program them?
- Need for **scalable** algorithms

What is scalability?

- How does the algorithm evolve when we add cores
- Two dimensions
 - Operations
 - Communications
BIG machines

- How do we program them?
- Need for **scalable** algorithms

What is scalability?

- How does the algorithm evolve when we add cores
- Two dimensions
 - Operations
 - Communications

Computations vs communications

- Nodes are **fast**
- Communication speed is limited by physical constraints
Reliability of components

Life expectancy of an electronic component: the famous bathtub curve

![The Bathtub Curve](image-url)
Reliability of a distributed system

Mean Time Between Failures

\[
MTBF_{total} = \left(\sum_{i=0}^{n-1} \frac{1}{MTBF_i} \right)^{-1}
\]

\[(1) \]

\[\rightarrow \] The more components a system is made of, the more likely it is to have a failure.
Therefore, algorithms must be:

- **Scalable**
 - Scale with the number of processes
- **Fault tolerant**
 - Able to survive beyond failures

→ communication-avoiding algorithms
→ User-Level Failure Mitigation for algorithm-based fault tolerance
Introduction

- Large-scale systems
- Reliability

CAQR

FT-CAQR

FT-TSQR

FT-CAQR

Performance

Conclusion
Communication-Avoiding QR

Works by **panels**:

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} = Q_1 \begin{pmatrix}
R_{11} & R_{12} \\
0 & A_{22}^1
\end{pmatrix}
\]

Then, recursively, work on \(A_{22}^1\)...
Communication-Avoiding QR

Works by \textbf{panels}:

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} & R_{12} \\ 0 & A_{22}^1 \end{pmatrix}
\]

Then, recursively, work on \(A_{22}^1 \)...

\textbf{CAQR algorithm}

1. Panel factorization:
 \[
 \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} \\ 0 \end{pmatrix}
 \]

2. Compact representation:
 \[
 Q_1 = I - Y_1 T_1 Y_1^T
 \]

3. Update the trailing matrix:
 \[
 (I - Y_1 T_1 Y_1^T) \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} = \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} - Y_1 (T_1^T Y_1^T \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix}) = \begin{pmatrix} R_{12} \\ A_{22}^1 \end{pmatrix}
 \]

4. Continue recursively on the trailing matrix \(A_{22}^1 \)
Panel factorization: cornerstone of the CAQR algorithm

\[
\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} \\ 0 \end{pmatrix}
\]

The matrix \(\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \) is **tall and skinny**:

- number of lines \(\gg \) number of columns

Specific algorithm to compute the QR factorization of a tall and skinny matrix: **TSQR**
TSQR algorithm

Goal: compute the QR factorization of a matrix A:
- $A = QR$
- A is tall and skinny

To compute it in parallel on P processes:
- $M = \text{number of lines}$, $N = \text{number of columns}$
- $M \geq NP$
 - at least square matrices on each process

\[
\begin{pmatrix}
A_1 \\
A_2 \\
A_3 \\
A_4
\end{pmatrix}
= Q_1
\begin{pmatrix}
R_1 \\
0 \\
0 \\
0
\end{pmatrix}
\]
Update of the trailing matrix

Trailing matrix: denoted C, each C_i being on process i.

$$C_i = \left(\begin{array}{c} C'_i \\ C''_i \end{array} \right) = \left(\begin{array}{c} C_i[:N-1] \\ C_i[N:] \end{array} \right)$$
Update of the trailing matrix

Trailing matrix: denoted C, each C_i being on process i.

$$C_i = \begin{pmatrix} C'_i \\ C''_i \end{pmatrix} = \begin{pmatrix} C_i[: N - 1] \\ C_i[N :] \end{pmatrix}$$

Operation to perform:

$$\begin{pmatrix} R_0 & C'_0 \\ R_1 & C'_1 \end{pmatrix} = \begin{pmatrix} QR & C'_0 \\ \hat{C}'_0 & \hat{C}'_1 \end{pmatrix} = Q \begin{pmatrix} R & \hat{C}'_0 \\ \hat{C}'_1 \end{pmatrix}$$
Trailing matrix: denoted C, each C_i being on process i.

$$C_i = \begin{pmatrix} C'_i \\ C''_i \end{pmatrix} = \begin{pmatrix} C_i[:\ N - 1] \\ C_i[N:] \end{pmatrix}$$

Operation to perform:

$$\begin{pmatrix} R_0 & C'_0 \\ R_1 & C'_1 \end{pmatrix} = \begin{pmatrix} QR & C'_0 \\ 0 & C'_1 \end{pmatrix} = Q \begin{pmatrix} R & \hat{C}'_0 \\ 0 & \hat{C}'_1 \end{pmatrix}$$

The compact representation becomes:

$$\begin{pmatrix} \hat{C}'_0 \\ \hat{C}'_1 \end{pmatrix} = \left(I - \begin{pmatrix} I \\ Y_0 \end{pmatrix} T^T \begin{pmatrix} I \\ Y_1 \end{pmatrix}^T \right) \begin{pmatrix} C'_0 \\ C'_1 \end{pmatrix}$$
Update of the trailing matrix: tree

Step 0

P_0

\[\begin{array}{c}
C_{ij} \\
\end{array} \]

P_1

P_2

P_3
Update of the trailing matrix: tree

Step 0

P_0

P_1

P_2

P_3

C_{ij}

Step 1

P_0

P_1

P_2

P_3
Update of the trailing matrix: tree

Step 0

P_0

P_1

P_2

P_3

C_{ij}

Step 1

Step 2

P_0

P_1

P_2

P_3
1 Introduction
 - Large-scale systems
 - Reliability

2 CAQR

3 FT-CAQR
 - FT-TSQR
 - FT-CAQR

4 Performance

5 Conclusion
Fault tolerant TSQR

Let’s look at TSQR in details

\[
\begin{align*}
 QR & \\
 P_0 & A_0 \rightarrow R_0, V_0 \\
 P_1 & A_1 \rightarrow R_1, V_1 \\
 P_2 & A_2 \rightarrow R_2, V_2 \\
 P_3 & A_3 \rightarrow R_3, V_3
\end{align*}
\]
Fault tolerant TSQR

Let’s look at TSQR in details

\[
\begin{align*}
\text{QR} & \quad \text{Send/Recv} & \quad \text{QR} \\
\text{P}_0 & \quad A_0 & \quad R_0 & \quad V_0 & \quad R_0 & \quad V_0' \\
\text{P}_1 & \quad A_1 & \quad R_1 & \quad V_1 & \quad R_1 & \quad V_1' \\
\text{P}_2 & \quad A_2 & \quad R_2 & \quad V_2 & \quad R_2 & \quad V_2' \\
\text{P}_3 & \quad A_3 & \quad R_3 & \quad V_3 & \quad R_3 & \quad V_3'
\end{align*}
\]
Fault tolerant TSQR

Let’s look at TSQR in details

\[
\begin{align*}
P_0 & \quad A_0 \quad \rightarrow \quad R_0 \quad \rightarrow \quad R_0' \quad \rightarrow \quad R_0 \\
P_1 & \quad A_1 \quad \rightarrow \quad R_1 \quad \rightarrow \quad R_2 \quad \rightarrow \quad R_2' \\
P_2 & \quad A_2 \quad \rightarrow \quad R_2 \quad \rightarrow \quad R_2' \\
P_3 & \quad A_3 \quad \rightarrow \quad R_3 \quad \rightarrow \quad R_3'
\end{align*}
\]
Let’s look at TSQR in details

- P_0 works beginning \rightarrow end
- P_2 works during the first two steps, then stops
- P_1 and P_3 work during the first step, then stops

Let’s put these lazy dudes to work!
What do we expect from fault tolerance?

Have **one result** at the end

- No matter how many processes survive, one of them has the final answer
- Here: *Redundant TSQR*
What do we expect from fault tolerance?

Have **one result** at the end
- No matter how many processes survive, one of them has the final answer
- Here: *Redundant TSQR*

Have the result **on a given process** at the end
- No matter how many processes survive, the one we want has the final answer
- Here: *Replace TSQR*
What do we expect from fault tolerance?

Have **one result** at the end

- No matter how many processes survive, one of them has the final answer
- Here: *Redundant TSQR*

Have the result **on a given process** at the end

- No matter how many processes survive, the one we want has the final answer
- Here: *Replace TSQR*

Have the result on the expected process and **all the processes are alive**

- Finish with a system that looks as if nothing bad happened
- Here: *Self-Healing TSQR*
Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

\[QR \]

\[
\begin{align*}
P_0 & \quad A_0 \quad R_0 \\
& \quad V_0 \\

P_1 & \quad A_1 \quad R_1 \\
& \quad V_1 \\

P_2 & \quad A_2 \quad R_2 \\
& \quad V_2 \\

P_3 & \quad A_3 \quad R_3 \\
& \quad V_3
\end{align*}
\]
Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

\[
\begin{align*}
P_0 & \quad A_0 & \rightarrow & \quad R_0 & \quad V_0 & \quad R_0 \\
 & & \rightarrow & \quad R_1 \\
 & & \rightarrow & \quad R_1 \\
 & & \rightarrow & \quad R_2 \\
 & & \rightarrow & \quad R_3 \\
\end{align*}
\]
Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

\[\begin{array}{c}
\text{QR} & \text{Send/Recv} & \text{QR} \\
\end{array} \]

\[\begin{array}{c}
P_0 & A_0 & R_0 & V_0 & R_0 & V_0' \\
P_1 & A_1 & R_1 & V_1 & R_0 & V_0' \\
P_2 & A_2 & R_2 & V_2 & R_2 & V_2' \\
P_3 & A_3 & R_3 & V_3 & R_2 & V_2' \\
\end{array} \]
Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.
Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

QR	Send/Recv	QR	Send/Recv	QR
P_0 | \(A_0\) | \(R_0\) | \(V_0\) | \(R_0\) | \(V_0'\) | \(R\)
P_1 | \(A_1\) | \(R_1\) | \(V_1\) | \(R_0\) | \(V_0'\) | \(R\)
P_2 | \(A_2\) | \(R_2\) | \(V_2\) | \(R_2\) | \(V_2'\) | \(R\)
P_3 | \(A_3\) | \(R_3\) | \(V_3\) | \(R_2\) | \(V_2'\) | \(R\)
Redundant TSQR: failure

If a process fails: the other ones can continue, except those who need to communicate with the failed process.
Fault Tolerant TSQR: Replace TSQR

When a process fails, another one takes its place: P_1 acts as P_2.

QR Send/Recv QR Send/Recv QR

P_0 A_0 R_0 V_0 R_0 V_0' R_0 V R

P_1 A_1 R_1 V_1 R_0 V_0' R_0 V R

P_2 A_2 R_2 V_2 R_2 R_2' R_0 V R

P_3 A_3 R_3 V_3 R_2 R_3 R_0 V R

CRASH
Fault Tolerant TSQR: Self-healing TSQR

Spawn a new process that recovers the data from a twin process
1 Introduction
 - Large-scale systems
 - Reliability

2 CAQR

3 FT-CAQR
 - FT-TSQR
 - FT-CAQR

4 Performance

5 Conclusion
Update of the trailing matrix: algorithm

- P_0 sends its C'_0 to P_1 while P_1 computes T
Update of the trailing matrix: algorithm

\[W = T^T (C'_0 - Y_1^T C'_1) \]

1. \(P_0 \) sends its \(C'_0 \) to \(P_1 \) while \(P_1 \) computes \(T \)
2. \(P_1 \) computes \(W \)
Update of the trailing matrix: algorithm

\[W = T^T (C'_0 - Y_1^T C'_1) \]

1. \(P_0 \) sends its \(C'_0 \) to \(P_1 \) while \(P_1 \) computes \(T \)
2. \(P_1 \) computes \(W \)
3. \(P_1 \) sends \(W \) to \(P_0 \)
Update of the trailing matrix: algorithm

\[W = T^T(C_0' - Y_1^T C_1') \]

\[\hat{C}_0 = C_0' - W \]

\[\hat{C}_1 = C_1' - Y_1 W \]

1. \(P_0 \) sends its \(C_0' \) to \(P_1 \) while \(P_1 \) computes \(T \)
2. \(P_1 \) computes \(W \)
3. \(P_1 \) sends \(W \) to \(P_0 \)
4. \(P_0 \) computes \(\hat{C}_0' \) and \(P_1 \) computes \(\hat{C}_1' \)

Continue... by pairs of processes.
Update of the trailing matrix: tree

\[P_0 \]
\[P_1 \]
\[P_2 \]
\[P_3 \]
Doing the pairwise computation on both processes

P_0 and P_1 exchange their C_i', P_1 sends its Y_1
Doing the pairwise computation on both processes

\[W = T^T (C_0' - Y_1^T C_1') \]

1. \(P_0 \) and \(P_1 \) exchange their \(C_i' \), \(P_1 \) sends its \(Y_1 \)

2. \(P_0 \) and \(P_1 \) both compute \(W \)
Doing the pairwise computation on both processes

\[W = T^T(C_0' - Y_1^T C_1') \]

\[\hat{C}_0 = C_0' - W \]

\[\hat{C}_1 = C_1' - Y_1 W \]

1. \(P_0 \) and \(P_1 \) exchange their \(C_i' \), \(P_1 \) sends its \(Y_1 \)
2. \(P_0 \) and \(P_1 \) both compute \(W \)
3. \(P_0 \) computes \(\hat{C}_0' \) and \(P_1 \) computes \(\hat{C}_1' \)

Continue... by pairs of processes.
Failure recovery

At the end of a given step, between \(P_i \) and \(P_j \):

- \(P_i \) has \(W, T, C'_i, C'_j, \) and \(\hat{C}'_i \);
 - if \(P_j \) fails, \(P_i \) can send sufficient data for any process that has \(Y_j \) to recalculate \(\hat{C}'_j = C'_j - Y_j W \)

Variant: Exchange \(C'_x \) and \(Y_x \) → symmetric
Failure recovery

At the end of a given step, between \(P_i \) and \(P_j \):

- \(P_i \) has \(W, T, C'_i, C'_j, \) and \(\hat{C}'_i \); if \(P_j \) fails, \(P_i \) can send sufficient data for any process that has \(Y_j \) to recalculate \(\hat{C}'_j = C'_j - Y_j W \)

- \(P_j \) has \(W, T, C'_j, C'_i, Y_i \) and \(\hat{C}'_j \); if \(P_i \) fails, \(P_j \) can recalculate \(\hat{C}'_i = C'_i - Y_i W \)

Variant: Exchange \(C'_x \) and \(Y_x \) → symmetric
1 Introduction
 - Large-scale systems
 - Reliability

2 CAQR

3 FT-CAQR
 - FT-TSQR
 - FT-CAQR

4 Performance

5 Conclusion
Performance evaluation: what do we measure?

- Overhead during fault-free execution
 - Very important!
 - Cost of the mechanisms put in place to make the FT possible
 - Here: additional communications
 - Same for the three algorithms
Performance evaluation: what do we measure?

- **Overhead during fault-free execution**
 - Very important!
 - Cost of the mechanisms put in place to make the FT possible
 - Here: additional communications
 - Same for the three algorithms

- **Recovery time**
 - Depends on a lot of factors!
 - Failure detection (impossible with asynchronous communications)
 - Recovery made by the RTE (spawn and reconnect a new process)
 - Recovery protocol of the algorithm ← only interesting thing here, but hard to measure independently
Performance overhead on TSQR

64 processes, 64 columns ($P = 64$, $N = 64$)
Performance overhead on TSQR

256 processes, 64 columns ($P = 256, \ N = 64$)
Performance overhead on TSQR

16 processes, 128 columns \((P = 16, N = 128)\)
1 Introduction
 - Large-scale systems
 - Reliability

2 CAQR

3 FT-CAQR
 - FT-TSQR
 - FT-CAQR

4 Performance

5 Conclusion
Conclusion

Three protocols for fault-tolerant QR factorization of tall-and-skinny matrices
- Cornerstone for general QR factorization
- Three recovery algorithms, one for each semantics

Algorithm for FT update of the trailing matrix
- Fault-tolerant QR for general matrices (R)

Scalable FT protocol based on scalable algorithms

Makes use of new features provided by the MPI-3 standard
- FT API now provided by MPI-3
- *User-Level Failure Mitigation*

Next step:
- Apply this to LU, Cholesky (the other *amigos*)
- Reconstruction of the Householder vectors (Q)
- Full performance analysis
References

