
Distributed Snapshot for Rollback-Recovery with One-Sided Communications

Distributed Snapshot for Rollback-Recovery with
One-Sided Communications

Franck Butelle, Camille Coti

LIPN, CNRS UMR 7030, SPC, Université Paris 13, France

HPCS 2018
July 18th, 2018, Orléans, France



Distributed Snapshot for Rollback-Recovery with One-Sided Communications

Outline

Context and problem
Distributed snapshot
Communication model
Problem

Algorithms
Message delay
Peek-and-get
Double barrier

Comparison between the algorithms

Conclusion and future works



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Distributed snapshot

Goal : store a consistent state of the system
I Take a checkpoint of each process
I Get a consistent cut
I No message is crossing the cut

-> Problem : synchronize the processes

P0

P1

P2

P3

P4



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Chandy & Lamport’s algorithm (1985)

Idea : circulate a marker
I Initiate the checkpoint wave by sending a first marker
I Once a process receives the marker :

I Flush the communication channels
I Take a local snapshot
I Send the maker to all the other processes

I Checkpoint wave done (locally) after reception of all the other processes’
markers.

P0

P1

P2

m
1

m
2

m
arker

m
arker

Checkpoint

Checkpoint

Checkpoint

m
3



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Chandy & Lamport’s algorithm (1985)

Idea : circulate a marker
I Initiate the checkpoint wave by sending a first marker
I Once a process receives the marker :

I Flush the communication channels
I Take a local snapshot
I Send the maker to all the other processes

I Checkpoint wave done (locally) after reception of all the other processes’
markers.

P0

P1

P2

m
1

m
2

m
arker

m
arker

Checkpoint

Checkpoint

Checkpoint

m
3



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Chandy & Lamport’s algorithm (1985)

Idea : circulate a marker
I Initiate the checkpoint wave by sending a first marker
I Once a process receives the marker :

I Flush the communication channels
I Take a local snapshot
I Send the maker to all the other processes

I Checkpoint wave done (locally) after reception of all the other processes’
markers.

P0

P1

P2

m
1

m
2

m
arker

m
arker

Checkpoint

Checkpoint

Checkpoint

m
3



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Chandy & Lamport’s algorithm (1985)

Idea : circulate a marker
I Initiate the checkpoint wave by sending a first marker
I Once a process receives the marker :

I Flush the communication channels
I Take a local snapshot
I Send the maker to all the other processes

I Checkpoint wave done (locally) after reception of all the other processes’
markers.

P0

P1

P2

m
1

m
2

m
arker

m
arker

Checkpoint

Checkpoint

Checkpoint

m
3



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Chandy & Lamport’s algorithm (1985)

Idea : circulate a marker
I Initiate the checkpoint wave by sending a first marker
I Once a process receives the marker :

I Flush the communication channels
I Take a local snapshot
I Send the maker to all the other processes

I Checkpoint wave done (locally) after reception of all the other processes’
markers.

P0

P1

P2

m
1

m
2

m
arker

m
arker

Checkpoint

Checkpoint

Checkpoint

m
3



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Communications during the checkpoint wave

“Flush” ? ? ?
I What happens with the communication channels during the checkpoint

wave ?
I Two possible interpretations :

I Log the messages sent during the wave (Lemarinier et al, Cluster 2004)
I Block the messages until the end of the wave (Coti et al, SC 2006)

Why does it work ?
I Communication channels ave the FIFO property
I Messages do not pass the markers (and vice versa)



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Application to fault-tolerance

Can be used for fault tolerance
I Store the checkpoints on a reliable storage support
I Rollback on the checkpoints after a process failure

Example : implementation in MPICH-V 1

mpiexec

MPI process

Checkpoint
server

Checkpoint
scheduler

Network

1. http://mpich-v.lri.fr

http://mpich-v.lri.fr


Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Application to fault-tolerance

Can be used for fault tolerance
I Store the checkpoints on a reliable storage support
I Rollback on the checkpoints after a process failure

Example : implementation in MPICH-V 1

mpiexec

MPI process

Checkpoint
server

Checkpoint
scheduler

Network

1. http://mpich-v.lri.fr

http://mpich-v.lri.fr


Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Application to fault-tolerance

Can be used for fault tolerance
I Store the checkpoints on a reliable storage support
I Rollback on the checkpoints after a process failure

Example : implementation in MPICH-V 1

mpiexec

MPI process

Checkpoint
server

Checkpoint
scheduler

Network

1. http://mpich-v.lri.fr

http://mpich-v.lri.fr


Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Application to fault-tolerance

Can be used for fault tolerance
I Store the checkpoints on a reliable storage support
I Rollback on the checkpoints after a process failure

Example : implementation in MPICH-V 1

mpiexec

MPI process

Checkpoint
server

Checkpoint
scheduler

Network

1. http://mpich-v.lri.fr

http://mpich-v.lri.fr


Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Application to fault-tolerance

Can be used for fault tolerance
I Store the checkpoints on a reliable storage support
I Rollback on the checkpoints after a process failure

Example : implementation in MPICH-V 1

mpiexec

MPI process

Checkpoint
server

Checkpoint
scheduler

Network

1. http://mpich-v.lri.fr

http://mpich-v.lri.fr


Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

One-sided communication model

Only one process takes active part of the communication
I The source process
I Other process : target process

Two communication primitives
I put() : the source process writes into the target process’s memory
I get() : the source process reads from the target process’s memory

P0 P1 P2

get put

Implementations : RDMA NICs (InfiniBand...), PGAS languages,
OpenSHMEM, MPI one-sided communications...



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Problem

Now, distributed snapshot with one-sided communications ?

P0

P1

P2

put m
ar
ke
r

Checkpoint

Checkpoint

Checkpoint

get



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Problem

Now, distributed snapshot with one-sided communications ?

P0

P1

P2

put m
ar
ke
r

Checkpoint

Checkpoint

Checkpoint

get



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Context and problem

Problem

Now, distributed snapshot with one-sided communications ?

P0

P1

P2

put m
ar
ke
r

Checkpoint

Checkpoint

Checkpoint

get

→ The return of the get() crosses the checkpoint line
I The cut is not consistent



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

What do we want to avoid ?

Messages crossing the wave
I A message sent before the source takes its

checkpoint is received after the target has
taken its checkpoint.

Why is it a problem ?
I Breaks consistency

P0

P1

put
Ckpt

Ckpt

Messages overlapping the wave
I A message request sent before the source

takes its checkpoint is completed after the
checkpoint

I ... but the source is reached after it has taken
its own checkpoint.

Is it a problem ?
I Depends on what is stored in the checkpoint

P0

P1

get

Ckpt

Ckpt



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

What do we want to avoid ?

Messages crossing the wave
I A message sent before the source takes its

checkpoint is received after the target has
taken its checkpoint.

Why is it a problem ?
I Breaks consistency

P0

P1

put
Ckpt

Ckpt

Messages overlapping the wave
I A message request sent before the source

takes its checkpoint is completed after the
checkpoint

I ... but the source is reached after it has taken
its own checkpoint.

Is it a problem ?
I Depends on what is stored in the checkpoint

P0

P1

get

Ckpt

Ckpt



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

Message delay
Switch into checkpointing state upon reception of the first marker

I Switch back to normal state after completion of the checkpoint wave.
I Delay communication requests while in checkpointing state.

How can it be implemented ?
I e.g., on Verbs/InfiniBand : modify the queue pair’s receiving state.

P0

P1

P2

put m
ar
ke
r

state : checkpointing

Ckpt

Ckpt

Ckpt

ge
t

Properties :
I Can overlap the checkpoint wave %or "
I Cannot cross it "



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

Message delay
Switch into checkpointing state upon reception of the first marker

I Switch back to normal state after completion of the checkpoint wave.
I Delay communication requests while in checkpointing state.

How can it be implemented ?
I e.g., on Verbs/InfiniBand : modify the queue pair’s receiving state.

P0

P1

P2

put m
ar
ke
r

state : checkpointing

Ckpt

Ckpt

Ckpt

ge
t

Properties :
I Can overlap the checkpoint wave %or "
I Cannot cross it "



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

Message delay
Switch into checkpointing state upon reception of the first marker

I Switch back to normal state after completion of the checkpoint wave.
I Delay communication requests while in checkpointing state.

How can it be implemented ?
I e.g., on Verbs/InfiniBand : modify the queue pair’s receiving state.

P0

P1

P2

put m
ar
ke
r

state : checkpointing

Ckpt

Ckpt

Ckpt

ge
t

Properties :
I Can overlap the checkpoint wave %or "
I Cannot cross it "



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

Peek-and-get
Switch into checkpointing state upon reception of the first marker

I Switch back to normal state after completion of the checkpoint wave.
I Before a get() communication : peek to see if the target is ready.

If the target switches into checkpointing state between peek and get() :
I The get() returns an error.

P0

P1

P2

put m
ar
ke
r

get

state : checkpointing

peek

no

peek

no

peek

yes

Ckpt

Ckpt

Ckpt

Properties :
I Cannot overlap the checkpoint wave "
I Cannot cross it "



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

Double barrier

Perform two barriers
I First one : circulation of the marker
I Can be crossed by a get()
I Therefore, second one
I Stop communicating upon reception of the first maker
I Checkpoint after completion of the second barrier

P0

P1

P2
put

get

m
ar
ke
r

Ckpt

Ckpt

Ckpt



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

Double barrier

Perform two barriers
I First one : circulation of the marker
I Can be crossed by a get()
I Therefore, second one
I Stop communicating upon reception of the first maker
I Checkpoint after completion of the second barrier

P0

P1

P2
put

get

m
ar
ke
r

Ckpt

Ckpt

Ckpt



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

Double barrier (optimized)

Perform this extra synchronizing communication on processes with a pending
get() only

I Fewer messages
I Sufficient to ensure communication channel flushing

P0

P1

P2

put

get
m
ar
ke
r

Ckpt

Ckpt

Ckpt

Properties :
I Cannot overlap the checkpoint wave "
I Cannot cross it "



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Algorithms

Double barrier (optimized)

Perform this extra synchronizing communication on processes with a pending
get() only

I Fewer messages
I Sufficient to ensure communication channel flushing

P0

P1

P2

put

get
m
ar
ke
r

Ckpt

Ckpt

Ckpt

Properties :
I Cannot overlap the checkpoint wave "
I Cannot cross it "



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Comparison between the algorithms

Comparison
Implementation level

I Double barrier : in the checkpointing protocol
I Peek-and-get and delay : either in the protocol or in the driver

I Peek-and-get : in the communication routine
I Delay : in the state of the queue pair

Number of messages
I Double barrier : n(n− 1) additional messages (x2)

I Optimized : 2 additional messages per pending get()
I Peek-and-get : many additional messages, until the end of the checkpoint

wave
I Delay : no additional messages, requires intervention on the driver

Properties

Overlap Cross
Vanilla % %

Delay % "

Peek-and-get " "

Double barrier " "



Distributed Snapshot for Rollback-Recovery with One-Sided Communications
Conclusion and future works

Conclusion
Distributed snapshot

I Used to get a global state of a distributed system
I Requires specific care with communication channels
I Chandy & Lamport’s algorithm : checkpoint wave, process synchronization

One-sided communications
I Only the source process takes an active part of the communication
I Primitives : put() and get()
I put() in one message
I get() in two messages : request and data
I RDMA : MPI3, OpenSHMEM, UPC...

Chandy & Lamport’s algorithm checkpoint wave crossed by get()
I Three algorithm for synchronization during the checkpoint wave
I Delay, peek-and-get, double barrier
I Different levels of implementation
I Different overhead

-> Next : implementation and performance evaluation


	Context and problem
	Distributed snapshot
	Communication model
	Problem

	Algorithms
	Message delay
	Peek-and-get
	Double barrier

	Comparison between the algorithms
	Conclusion and future works

