
Different Kinds of Neighborhood-Varying Cellular Automata

Jean-Christophe Dubacq

October 24, 2013

Abstract

The mainframe of this work has been the study of cellular automata as very simple SIMD
systems. We introduce some variations over the basic definition of cellular automata in order
to compare these new models with other models of cellular automata. The neighborhood-
varying cellular automata is shown to be as powerful as time-varying cellular automata. The
dynamically reconfigurable cellular automata are more interesting because they effectively
reduce the running-time for some normal CA computations. Then some possible applications
of these works are browsed.

Contents

1 Introduction 2

2 Definitions 3

3 Equivalence results 5

4 Dynamic Reconfiguration 9

5 Speed-up with DRCA 11

6 Applications 17

7 Conclusion 20

1

1 Introduction

In this report, we want to study the properties of cellular automata as very simple interconnected
computers, for which it would be possible to change its own topology. This has already been used
by Wu and Rosenfeld in [8], and the initial focus of this work was the study of graph cellular
automata, which are an extension of cellular automata. The interesting possibilities of these
automata in graph recognition induced the desire of having a reconfiguration of some networks,
in other that were better fitted for other computations.

The first idea was to have a certain topology (array or line) and to change the neighborhood
with the time. As some work had already been done with automata changing of function ac-
cording to a time table, we compared the resulting possibilities of these two classes of automata,
with adding the combination of both, i.e. automata that can change both their neighborhood
and their functions, as time varies.

The second idea was to have only local transformations, as cellular automata are essentially
dealing with local processes. So we would allow one cell to use its neighbors or the neighbors
of its neighbors only. Moreover, the change would have to be embedded in the definition of the
automata itself. With these constraints, it is possible to prove that these automata, that are
still entirely deterministic (tough it is possible to define non-deterministic versions), are for some
computations, much faster than normal cellular automata.

A choice has been made in the second part, it is to suppose one-way communication. Hence,
each cell can be considered as having an infinite fan-out, such as an output bus ; meanwhile, the
fan-in (number of arguments for the computation) is constant.

The other choice that could have been done would have been to suppose two-way communi-
cations. But this would be more complicated to define, as deadlocks could result from certain
configurations. Hence, this possibility has not been considered for the present.

Some applications of all these new classes are exposed. The first part doesn’t lead to many
applications, because of the equivalence results proved in theorem 1, while the second part allows
a greater number of possibilities due to the instrinsic differences with the usual models.

2

2 Definitions

2.1 Time-Varying Cellular Automata (TVCA)

A Time-varying CA is a CA for which the transition function can vary in the time. The con-
nections between the cells (i.e. the neighborhood) remain constant. The power of the TVCA
changes according to the complexity of the function that gives the number of the neighborhood
for each iteration. A survey of these possibilities can be found in [4]. More specific results about
the power of these automata are given in [6] and [5].

A TVCA is given by T = (d,Σ, N,L1, . . . ,Ln−1, δ1, . . . , δn) where :

• d ∈ NN is an integer, the dimension of the TVCA.

• Σ is the set of states of T .

• N is the neighborhood of the CA. It is a finite subset of ZZd.

• L1, . . . ,Ln−1 are tally languages, such that

∀i, j ≤ n− 1,Li ∩ Lj = ∅

The set of all these languages is sometimes called oracle of the TVCA because it can be
seen as an implicit question to an oracle.

• δ1, . . . , δn are n functions of Σ]N → Σ

2.2 Neighborhood-Varying Cellular Automata (NVCA)

The idea of the Neighborhood-Varying CA is that the function will not change, but the local
connections will depend on the time. The size of the different neighborhoods has to be the same,
as the function is of constant arity.

A NVCA is given by N = (d,Σ, N1, . . . , Nn,L1, . . . ,Ln−1, δ) where :

• d ∈ NN is an integer, the dimension of the NVCA.

• Σ is the set of states of T .

• N1, . . . , Nn are the neighborhoods of the NVCA. These are subsets of ZZd, such that]N1 =
. . . =]Nn. The neighborhoods are considered as a]N1-uple. It means there is an order
on the neighbors, such that a permutation on a neighborhood changes it. For example,
neighborhood {0,−1, 1} is not considered as the same as {−1, 0, 1}.

• L1, . . . ,Ln−1 have the same definition than for TVCA

• δ is a function of Σ]N1 → Σ

2.3 Varying Cellular Automata (VCA)

A Varying-CA combines the properties of NVCA and TVCA. Both function and neighborhood
depend on the time, through a control similar to these of NVCA and TVCA.

A VCA is given by V = (d,Σ, N1, . . . , Nn,L1, . . . ,Ln−1, δ1, . . . , δn) where :

• d ∈ NN is an integer, the dimension of the NVCA.

• Σ is the set of states of T .

3

• N1, . . . , Nn are the neighborhoods of the VCA. These need to be of the same size1.

• L1, . . . ,Ln−1 have the same definition than for TVCA

• ∀i, δi is a function of Σ]Ni → Σ

2.4 Global function

We can define for each of the preceding CA, a configuration as being a mapping from ZZd → Σ.
It means, we consider we have a bunch of cells put in an infinite array of dimension d, each
containing a value of Σ. The set of all configurations will be denoted by CA for the CA A.

Applying a CA to a configuration is considering that each cell will apply a function to a
certain neighborhood to guess what will be his next state, in a synchronous way (i.e. all cells
change of state at the same time). In our definition, the neighborhood and the function can
depend on the time t. This defines a mapping from CA into CA that is said to be the global
function of A and that will be denoted by FA

Applying a CA k times to a configuration means iterating the application of the CA from
time t = 0 to time t = k − 1.

TVCA For the TVCA, the neighborhood is set. The function applied by the CA is :

• δi, 1 ≤ i ≤ n− 1, if 0t ∈ Li.

• δn, if 0t /∈
⋃i=n−1
i=1 Li.

NVCA For the NVCA, the function is set. Note that it is the reason why the size of the
neighborhood is a constant. The neighborhood used to compute the arguments of the function
by the CA is :

• Ni, 1 ≤ i ≤ n− 1, if 0t ∈ Li.

• Nn, if 0t /∈
⋃i=n−1
i=1 Li.

VCA For the VCA, both function and neighborhood depend of time. The neighborhood used
to compute the arguments of the function by the CA is :

• Ni, 1 ≤ i ≤ n− 1, if 0t ∈ Li.

• Nn, if 0t /∈
⋃i=n−1
i=1 Li.

The function applied to the cells is :

• δi, 1 ≤ i ≤ n− 1, if 0t ∈ Li.

• δn, if 0t /∈
⋃i=n−1
i=1 Li.

1It is possible to give a definition where the sizes of the neighborhoods are not the same, but it is easier to
understand with fixed-size neighborhoods.

4

2.5 Language recognition

The power of the different models is studied through the languages that can be accepted by the
CA. For a better definition of language recognition by CA, see [3].

A given CA accepts a word by having a special cell, called the distinguished cell, going
in a special acceptance state2, being given the word as input (i.e. embedded in the initial
configuration). In a similar way, it rejects a word by having its distinguished cell going in a
refusal state. The input is given as the initial state of the cells3.

A given CA is said to accept the language L iff it accepts any word of L and rejects any word
not in L.

Note that the set of states of the CA must include the alphabet over which L is built, but
can include supplementary states.

3 Equivalence results

We are going to show that all the different classes of varying cellular automata have the same
effective power of computation.

Lemma 1 Given any set of tally languages of empty intersection O = L1, . . . ,Ln−1, and any
TVCA T with oracle O, then there exists a NVCA N with oracle O such that there exists an
injection ι : CT → CN and that ι ◦ FT = FN ◦ ι4.

Proof. Let a TVCA T = (1, σ,N,O, δ1, . . . , δn). Let’s take the following :

• Σ′ = Σ× {1, . . . , n}, n copies of Σ.

• Ni = (a1, . . . , ak,+i, 0) where N = (a1, . . . , ak). It means that Ni is the concatenation of
N with the cell located i cells to the right (or to the left, depends on convention) and the
center cell.

• δ((q1, j1), . . . , (qk+2, jk+2)) = (δ(jk+1−jk+2+1) mod n(q1, . . . , qk), jk+2).

• N is a NVCA given by (1, σ′, N1, . . . , Nn,O, δ)

• ι(C) is such that if the mth cell of C in state q then the mth cell of ι(C) is in state
(q,m mod n). As we will see it later, this transformation can be done in linear time by
any type of CA. This is important for the section about linear-time results. See figure 2
for an example.

Note that this definition is correct for one-dimensionnal CA. But the construction can be extended
easily to any greater dimension, you just have to consider the additional neighbor as being along
the first coordinate axis, at distance i. For example, for a two-dimensional CA, you just consider
the two additionnal neighbors as being along the x axis, and ι adds marks only in that direction.

Now let’s prove that ι ◦ FT = FN ◦ ι. We already have that the last two neighbors provide a
measure of the function that has to be used : one has just to compute the difference of the second
fields modulo n, it will be the same for all cells and will depend only on the chosen neighborhood.
This is because the cells are given an identification, and they can compute how far is a pointed

2Some other models use the fact that all cells go in an acceptance state, but it won’t be used here.
3For example, 1101 would be encoded with four cells, each of these having either 1 or 0 as initial state
4ι is the function that converts a configuration of T in a configuration of N . The equality means that the two

automata compute similar global functions over their respective sets of configurations.

5

. . . p−2 p−1 p0 p1 p2 . . .
⇓ Action of δ1
. . . q−2 q−1 q0 q1 q2 . . .
⇓ Action of δ2
. . . r−2 r−1 r0 r1 r2 . . .
⇓ Action of δ3
. . . s−2 s−1 s0 s1 s2 . . .

Figure 1: Action of T over a configuration.

. . . p−2 p−1 p0 p1 p2 . . .
⇓ Action of ι
. . . p−2, 1 p−1, 2 p0, 0 p1, 1 p2, 2 . . .

Figure 2: Transfomation of configurations.

cell without knowing what the effective neighborhood is. This computation is modulo n but that
is just what we need to make a difference between all the parts of the oracle.

Now let’s have a look at the construction of δ : δ first computes which function it has to use,
this is the (jk+1− jk+2 + 1) mod n, and then applies the right function to the other neighbors as
would have done T . The other part of the state remains quiescent. It comes from there that the
second field of the image of a cell is the same, whether you apply ι ◦ FT or FN ◦ ι. For the first
field, the equality comes from the fact that the final state is whether δ((q1, j1), . . . , (qk+2, jk+2)
or δl(q1, . . . , qk), where l is the number of the function to be applied, i.e. (jk+1− jk+2 +1) mod n
as explained above. Hence, the first field is the same for both functions. Hence we have the
equality

ι ◦ FT = FN ◦ ι

♦

Example Let’s see how the simulation works. Let’s suppose we have the transformations in
figure 1.

Now observe, how the configurations are transformed in figure 2. The difference of the second
numbers of any cell, and a cell in some fixed relative position (for example, two cells to the right)
computed modulo 3, is a constant throughout the whole line of cells, and will be used to compute
which neighborhood is being used, and so which “function” should be applied.

This is shown in figure 3. Each cell is able to compute which neighborhood is being used ;
and the function δ includes both δ1 and δ2, which means each cell can choose the function to
apply. As the neighborhood is the same for all cells, the number of the function will be computed
to be the same for all cells correctly.

Corollary 1 Any language accepted by a TVCA in linear-time (resp. with no boundary on the
time) can be accepted by a NVCA with an equivalent oracle in linear-time (resp. with no boundary

6

. . . p−2, 1 p−1, 2 p0, 0 p1, 1 p2, 2 . . .
⇓ Action of δ(. . . , i, i+ 1) = δ1(. . .)
. . . q−2, 1 q−1, 2 q0, 0 q1, 1 q2, 2 . . .
⇓ Action of δ(. . . , i, i+ 2) = δ2(. . .)
. . . r−2, 1 r−1, 2 r0, 0 r1, 1 r2, 2 . . .
⇓ Action of δ(. . . , i, i+ 3) = δ3(. . .)
. . . s−2, 1 s−1, 2 s0, 0 s1, 1 s2, 2 . . .

Figure 3: Action of N over a configuration.

. . .

N0︷ ︸︸ ︷︸ ︷︷ ︸
N=N0∪N1

p−2 p−1

N1︷ ︸︸ ︷
p0 p1 p2 . . .

Figure 4: Merging many neighborhoods into a bigger one

on the time)5.

Proof. This can be deduced from the preceding. As there already exists the possibility of
computing in the same way with a NVCA, which is what is proved by lemma 1, we just have to
make a function that computes the configuration with all the second fields correctly set. This
is very easy to do in time O(n), with a signal traveling at unit speed from the distinguished
cell and when reaching the end of data, coming back to begin the computation by generating a
“firesquad synchronisation”, i.e. the effective computation will begin at time t = 3n+ 1. So the
oracle of the NVCA has to be shifted in order to get exactly the same computation. ♦

Lemma 2 Given any VCA V with oracle O, there exists a TVCA T with oracle O that simulates
V with no loss of time.

Proof. Let V be defined as (d,Σ, N1, . . . , Nn,O, δ1, . . . , δn). Then let’s define T as (d,Σ, N,O,∆1, . . . ,∆n),
where :

• N =
⋃
i∈{1,...,n}Ni, ordered in such a way that there exists ν1, . . . , νn n functions defined

like follows :
νi : {1, . . . ,]Ni} → {1, . . . ,]N}

The xth element of N is the νi(x)th element of Ni or ? if it is not in Ni.

• ∆i is the extension to N of δi, i.e.

∆i(a1, . . . , ak) = δi(aνi(1), . . . , aνi(k))

where a? are ignored.

In fact, it is very easy, the function ∆i is just the projection of δi on a biggest neighborhood N ,
that contains all the neighborhoods N1, . . . , Nn like in figure 4 and that doesn’t need to change.
Hence, the computation acts exactly in the same way. ♦

5If we allow arbitrarily large neighborhoods, then linear-time is equivalent to real-time. This is why the results
about real-time are not discussed here.

7

Lemma 3 Given any NVCA N with oracle O, there exists a VCA V with oracle O that simulates
N with no loss of time.

This is the easy part. It is enough to give the same definition to N and V, but the different
functions of the VCA will all be equal to the function of N .

Theorem 1 The class of languages accepted by NVCA is exactly the class of languages accepted
by VCA and exactly the class of languages accepted by TVCA with the same oracle. If a language
is accepted in linear-time by one of these CA, then it is accepted in linear-time by any of the
three kind of CA.

This is just a consequence of lemma 1,2 and 3.

8

4 Dynamic Reconfiguration

Here, we shall try to study some properties of Cellular Automata that could, as part of their
transition function, change their neighbors for the neighbors of their neighbors. The first thing
that could be studied is the different kind of networks that could be obtained in such ways
(see [8]). The second part would be to know whether this gives a greater power of computation
to these automata (that still have a deterministic table of transition).

4.1 Formal definition

We can describe a dynamically reconfigurable cellular automata (DRCA) as A = (d,Σ,NI , δ, ν)
where:

• d ∈ NN is the dimension of the DRCA.

• Σ is the set of states of the DRCA.

• NI is a finite subset of ZZd, {~r1, . . . , ~rk}. It is the initial neighborhood of the DRCA. We
shall denote by k =]NI the arity of A.

• δ is a function from Σk → Σ. This is the transition function of the DRCA.

• ν is a function from Σk × {1, . . . , k} → {1, . . . , k} × {1, . . . , k}. This is the Neighborhood-
transition function of the DRCA6.

Then we shall define a configuration of the DRCA as an application

C : ZZd → Σ× (ZZd)k

which means that each cell contains both its internal state and the relative position of its neigh-
bors. The notation can be made more explicit by having more fonctions :

• Each cell is a vector ~c of ZZd

• The state of ~c in configuration C is SC(~c).

• The ith neighbor of ~v is given by a vector ~vi = N i
C(~c) and is the cell ~c+ ~vi (neighborhood

is given in relative coordinates).

The set of all configurations of A will be denoted by CA.
An initial configuration is a configuration such that

∀~c ∈ ZZd,∀i ∈ {1, . . . , k}, N i
C(~c) = ~ri

This means that the initial neighborhood is the same for all cell in the initial state, and is equal
to NI . We shall denote by NC(~c) = (N1

C(~c), . . . , Nk
C(~c)) the neighborhood of cell ~c.

6see further examples on page 10 for the use of this function.

9

4.2 Computation with DRCA

The global function of a DRCA is a mapping from the set of configurations into itself usually
denoted by the same letter as the automata, defined as follows:

A : CA −→ CA

C 7−→ C ′

SC′(~c) = δ(SC(~c+N1
C(~c)), . . . , SC(~c+Nk

C(~c)))

N i
C′(~c) = N bi

C (~c+Nai
C (~c)) +Nai

C (~c)

(ai, bi) = ν(SC(~c+N1
C(~c)), . . . , SC(~c+Nk

C(~c)), i)

Hence, the computation of the new state occurs for each cell as in a normal CA, and the new
neighborhood is computed in the following way :

• The neighbor from which the new ith neighbor is to be taken is the first part of ν(. . .)(i).

• The neighbor is set relatively to the preceding computed neighbor by the second part of
ν(. . .)(i) (this is the reason of the + sign, because neighborhoods are stored as relative
neighborhoods).

The new neighborhood is obtained through an indirection.

Example If we take ν defined by ν(a1, . . . , ak, 0) = (0, 0) and ν(a1, . . . , ak, 1) = (0, 1), with
neighbor 0 being the cell itself (the center cell), then the neighborhood will not change, as
neighbor 0 becomes itself and so does neighbor 1. If we take ν defined by ν(a1, . . . , ak, 0) = (0, 0)
and ν(a1, . . . , ak, 1) = (1, 0), with neighbor 0 being the cell itself (the center cell), then the
neighborhood will not change, as neighbor 0 becomes itself and neighbor 1 becomes neighbor 0
of itself, hence nothing changes.

If we take ν defined by ν(a1, . . . , ak, 0) = (0, 0) and ν(a1, . . . , ak, 1) = (1, 1), with neighbor 0
being the cell itself (the center cell), Then the neighborhood will change, each cell pointing on
itself and on the neighbor’s neighbor. Hence, if each cell points at the beginning on the cell to
the right, then next iteration, it will point two cells away to the right, then next iteration, it will
point four cells away to the right, and so on. This is an important construction in the following.

If we take three neighbors, with neighbor 0 and 1 quiescent, and ν(a1, . . . , ak, 2) = (2, 1)
then neighbor 2 will “scroll” along the cells. It means each iteration, the second neighbor will
point on a cell that is one cell further. This is because each cell is able to remember its initial
neighborhood.

4.3 Why these definitions ?

The purpose of building such automata is to keep certain properties of CA, but giving the new
model higher power, through the possibility of reconfiguration.

The first thing that is to be kept, is the local aspect of CA. That’s why everything is given
in relative position, and nothing is absolute. Even if the connections are given as reference
to absolute numbers, the knowledge of these numbers acts only through local communications.
Hence, the shift-invariance of CA is kept.

The second thing that has to be kept, is uniformity. Except for the distinguished accepting
cell, and the embedding of the initial configuration in the states of the cell, the initial neighbor-
hood is the same for all cells. It is not possible, so, to include a special graph structure in the

10

neighborhoods (which would certainly give much more possibilities). So the initial neighborhood
has to remain the same.

Another thing is to suppress external control. The CA works with no external control,
opposite to TVCA. But the power of the TVCA is strongly related to the complexity of the
oracle involved. Instead, we consider the set of neighbors as part of each cell, and as such, give it
a deterministic table of transition. This is the important fact : a configuration and the definition
of the automata contains all the information that is necessary to compute the state after any
number of iterations.

The other details come from the first three points : the constant number of neighbors, the
way of referencing the new neighbors, and the way to compute the next state is made to look
like CA, but including this special transition table for the neighbors. The definition becomes a
bit more complicated, but the idea is still easy to grasp.

5 Speed-up with DRCA

Theorem 2 The language L = {1n, n ≥ 1} can be recognized in time t = dlog (n)e+ 1.

Proof. We give an exemple of a DRCA that recognizes this language. LetD be (1, {], 0, 1, y, n}, {0, 1}, δ, ν)
with the following defintions for δ and ν :

• δ is defined by the following array :

Neighbor 1→ 0 1 y]
0 0 0 0 0
1 0 1 1 y
y is the (quiescent) acceptation state
] is the quiescent state

• ν is defined by the following rule :

– ∀a, b, ν(a, b, 0) = (0, 0)

– ∀a,∀b ∈ {0, 1, y}, ν(a, b, 1) = (1, 1)

– ∀a, ν(a,], 1) = (0, 1)

This DRCA checks whether the pattern that is given as ω](0|1)n]ω is a pattern made only of
1. It accepts the given pattern by the leftmost cell going to state y and it rejects the specified
pattern by the leftmost cell going to state 0.

We can suppose that the leftmost cell is numbered 0, and hence, the first cell containing] is
cell number n.

In fact, the following sentence is always checked : at time t for cell c, neighbor 0 points always
on c, neighbor 1 points on cell max(c+ 2t, n) ; the content of cell c is either 1 if all cells from c
to max(c+ 2t, n)− 1 contained at the beginning only the symbol 1, y if the same range contains
only 1 and that the cell points on cell n before the computation, and is 0 otherwise (except if it
is] which is the quiescent state).

First, let’s check that it allows the acceptance of L in time dlog (n)e + 1. If the word is 1n,
then according to the preceding sentence, at iteration number dlog (n)e, the leftmost cell will
point on the cell n as 2dlog(n)e ≥ n. So at iteration dlog (n)e, the leftmost cell will be in state y.

In a second part, we have to check that the word is rejected if there is any 0 in the pattern.
It is quite easy to see that the leftmost cell will eventually cover the whole pattern. Hence, if

11

Time Leftmost cell Other cells Rightmost cell
Before k $ $ $

... f q l
Fire - 2 r q l
Fire - 1 r q s

Fire F F F

Table 1: Evolution of the cells during the synchronisation

there is a zero, according to the second part of the sentence, the state of the leftmost cell will be
0. Remark that rejection of a word is made in time dlog (n)e.

Now we have to prove the assertion. It is true after the first iteration. because of the form
of ν, the two rightmost cell will both point on themselves and the first] cell, and the other will
point two cells to their right. And the other conditions are true, as δ is mainly a and operation
between the two cells.

If we suppose it true at iteration t, it remains true at iteration t+ 1. The first part because
the state can be 1 only if c+ 2t < n and the state of the two cells is 1 ; hence the state of all cells
from c to c+ 2t + 2t − 1 = c+ 2t+1 − 1 was 1 at the beginning. The y state can obviously been
reached only if the good conditoins are assumed, as it needs to come from a 1 and a] symbols.
And all other possibilities lead to state 0, so the third part of the sentence is also true.

Hence the sentence is true for all n. This concludes the proof. See also figure 5 for an example
of acceptance and figure 6 for an example of refusal. ♦

Theorem 3 (Synchronisation Theorem) Given a DRCA D with initial neighborhood con-
taining {-1,0,1} such that before time k, all the cells reach a special state $, then there exists
another DRCA that computes the same thing as D and for which all cells reach a special state
F simultaneously and for the first time at time k′, and k′ ≤ k + dlog (n)e+ 1.

The preceding theorem states that if each cell knows after its computation that it has to
synchronize with other cells (this is what is meant by all the cell reaching $ before time k) then
the whole line can be synchronized in time dlog (n)e + 1 since the moment where the last cell
reaches the state $.

This allows to make several computations one after another, with cells having non-quiescent
states. This result is important. Even if it is still not possible to have cells in quiescent state syn-
chronized in not-linear time (only in linear time, this is the well-known “firing-squad” theorem),
it is possible to “merge” two DRCA and having a transition time of only O(log(n)) between the
two automata.

The principle of the proof is that each cell will try to point on a common cell that will give
the signal of fire. But as the firing cell has to know if everyone is pointing on it, it will be chosen
to be the leftmost cell and will try to point on the rightmost cell. When the rightmost cell gives
the information that it is pointing on the leftmost one, then every cell is pointing on it, as it is
the furthest possible. Hence we will call the state of the leftmost cell f (as in first), then r (as
in ready), the state of the rightmost cell will evolve from l (as in last) to s (as in set) and all
the other cells will remain in a q state (as in query). Note that in fact, the l and f states are
equivalent to the query-state (see table 5)

Proof. Let D be a DRCA. We shall build D′ which does the same computation than D except
that all cell will finally reach a special state F . In fact, D′ is the combination of two DRCA, one

12

Initial configuration, containing the pattern 11111111.

]]1

6

1

6

1

6

1

6

1

6

1

6

1

6

1

6

First iteration of D.

]]1

6

1

6

1

6

1

6

1

6

1

6

1

6

y

6

Second iteration of D.

]]1

6

1

6

1

6

1

6

1

6

1

6

y

6

y

6

Third iteration of D.

]]1

6

1

6

1

6

1

6

y

6

y

6

y

6

y

6

Fourth iteration of D.

]]y

6

y

6

y

6

y

6

y

6

y

6

y

6

y

6

Figure 5: An exemple of DRCA
.

13

Initial configuration, containing the pattern 11101011.

]]1

6

1

6

1

6

0

6

1

6

0

6

1

6

1

6

First iteration of D.

]]1

6

1

6

0

6

0

6

0

6

0

6

1

6

y

6

Second iteration and refusal of the pattern by D.

]]0

6

0

6

0

6

0

6

0

6

0

6

y

6

y

6

Figure 6: An exemple of refusal by the same DRCA
.

that does exactly the same work as D, and then puts each cell in state $ and one that begins
from the state $ as an initial state. Only this one will be described. We assume that it uses
additional neighbors that remain quiescent during the work of the first automata. We shall call
σ any state that is not one of the states of the synchronization automata.

We shall assume that D is of dimension one, but it is very easy to extend this synchronisation
routine for higher dimensions.

Let’s define DS as (1, {], σ, $, q, f, l, r, s, F}, (0,−1, 1), δ, ν), with the following tables for δ and
ν :

• δ is defined by following tables. We shall denote by a the state of the cell (neighbor 0),
columns are for identical left neighbor (neighbor 1), rows are for identical right neighbor
(neighbor 2).

• If a =], then the state remains].

• If a = σ, then it may either go in state σ or state $ (computation phase).

• If a = $:
] $, q, σ f

] F l s
$, σ, q f q q
l r q q

• If a = q :
$, σ f, r, q

$, σ q q
l, q q q
s F F

14

]]f

6

q

6

q

6

σ

6

q

6

σ

6

q

6

l

6

Figure 7: Sample scheme for synchronisation theorem
Only right neighbors are shown.

See how the leftmost cell has the leftmost right neighbor.
σ is any computational state.

• If a = l, then the state remains l, unless the left neighbor is in state f , in which case the
state become s.

• If a = f , then the state remains f , unless the right neighbor becomes either s or l. In the
first case, the state becomes F , in the second case, the state becomes r.

• If a = r then it remains r, unless the left neighbor becomes s, in which case next state is
F .

• If a = s, then the state becomes F .

• ν is defined very easily :

– Neighbor 0 never changes, and is always pointing to the cell itself.

– Neighbor 1 (left neighbor) either changes to itself if the state of the pointed cell is σ
or $, changes to the cell itself if the state of the pointed cell is] or changes to the
left neighbor’s left neighbor if the pointed cell is in state q, f, r. In fact, as the left
neighbor of the first cell is itself, it doesn’t matter whether the neighbor keeps the
same value or keeps going to the left, as it points to the same cell.

– Neighbor 2 (right neighbor) acts symetrically. It changes to itself if the pointed cell
is σ or $, to the cell itself if it is the rightmost cell (i.e. if the pointed cell is in state
]), and to the right neighbor’s right neighbor in all other cases.

Correctness We will first prove that all the cells reach simultaneaously and for the first time
the state F .

There are two special cases : when there is only one cell, it reaches the state F just after the
state $. And if there are only two cells, it works also.

From now on we will suppose that there are at least three cells. Every cell will expand its
neighborhood each iteration, till it reaches either one of the border or a σ or $ cell. As before
time k, all cell will be in state $, after time k, all cells will let their neighborhood grow till it
reaches both ends.

The next step of the proof is that all the cells will always point further than the first cell.
For example, all cells will always have a right neighbor more to the right than the one of the
leftmost cell (see also figure 7). The same thing occurs for the other direction. We shall denote
by rt(x) the right neighbor of cell x at time t.

Given a and b two cells, with a < b, either b is pointing on a q cell and in this case, rt+1(a) ≤
rt(rt(a)), rt + 1(b) = rt(rt(b)) and the order is preserved. If b is not pointing on a q cell, then
either it is pointing on the last cell, either it is pointing on a σ or a $ cell, and none of the cells

15

to the left of that one could possibly point further. Hence, rt+1(a) ≤ rt(b) = rt+1(b). The proof
is symetric for the left neighbor.

So, after a certain time (which will be proved to be lesser than k + dlog (n)e) the first cell
points on the rightmost one. So it reaches a state r. Only after that, the rightmost cell can reach
the state s. At that time anyway, all the cells are pointing on the rightmost cell. So when the
state of the rightmost cell changes to s, everyone will at next turn go into state F .

Running-Time It can be easily proved by induction, in the same way than for theorem 2. After
time k, we will prove that rt+k(c) ≥ max(n−1, c+2t). This is true at time k. And from there on,
rt+1(c) = rt(rt(c)) ≥ max(n−1, rt(c)+2t) ≥ max(n−1, c+2t+2t), and this proves the induction.
The symmetrical argument stands for the left neighbor. Hence, at time k + dlog (n)e + 1, the
first cell will be in state r and the fire will take place at time k′ = k + dlog (n)e+ 3.

♦

16

6 Applications

6.1 Applications of VCA

The application of VCA is to have a small number of neighbor and a smallest function for some
kind of computation. This works mainly in dimension 2, where the neighborhood can sometimes
be reduced as far as the square root of the initial neighborhood. This is especially useful for
image processing, which is a large area of applications for all systolic systems.

Theorem 4 Given a cellular automaton A of dimension 2 under its totalistic form, with weight
array W of size n×n, it is possible to reduce the number of neighbors to 2n−1 with only doubling
the computation time.

Proof. We will first suppose that the rank of W is 1, i.e.

W =

 a0
...

an−1

 (b0 . . . bn−1)

The set of neighbors of the original automata is a n× n array, and the state st+1(c) of each
cell at time t+ 1 is equal to :

st(c) = Φ


i=k0+n−1
j=k1+n−1∑

i=k0
j=k1

Wi,jst(c+ (i, j))


Usually, n = 2m+ 1, and k0 = k1 = −m (array centered on the cell itself).
We shall compute the sum first across the columns, and second across the lines and apply Φ to

the result. Hence, the intermediary state in each cell will be
∑i=n−1
i=0 aist(c+ (i+ k0, 0)) and the

final state of the cell will be Φ
(∑j=n−1

j=0

∑i=n−1
i=0 aibjst(c+ (i+ k0, j + k1))

)
. As aibj = Wi,j ,

the simulation is correct. And the number of neighbors is reduced from n2 to 2n− 1.
If the rank of W is higher than 1, then it can be seen as the sum of arrays of rank 1. Then

all the computations happen at same time for all the arrays of rank 1, and the final application
of Φ is on the sum of all intermediary results. The number of neighbor is still 2n − 1, but the
number of states has to be increased.

♦

Example The typical applications of such totalistic automata are the applications in image
processing : bluring, differential operators (Prewitt, laplacian operator). For exemple, a typical
bluring operator of size 5× 5 can be given by the following array :

W =


1 2 4 2 1
2 4 8 4 2
4 8 16 8 4
2 4 8 4 2
1 2 4 2 1

 =


1
2
4
2
1

 (1 2 4 2 1)

17

6.2 Applications of DRCA

The set of languages (or patterns if we consider the two-dimensional case) which can be recognized
by DRCA in time O(dlog (n)e) is quite interesting because the same languages require time O(n)
for normal CA.

Theorem 5 The fractal patterns can be recognized in time O(dlog (n)e) by DRCA.

First, let’s define what is a fractal pattern. A fractal pattern may be defined on an array of
dimension 1 or 2, or even greater, and is given by a set of states, an initial state and rewriting
rules. Each instantiation of a fractal pattern is given by its depth : It is the number of times
each symbol will be transformed using the rewriting rules.

Example The Thue-Morse pattern is given by two states {a, b}, and the following rules :

a −→ ab

b −→ ba

The initial configuration beeing a, the following words are the configuration of depth 1,2,3
and 4 : ab, abba, abbabaab, abbabaabbaababba.

The equivalent in dimension 2 is splitting a square in four subsquares. The patterns that can
be obtained through that way are well known : Sierpinski carpet, Thue-Morse pattern, chess
board.

For more about the fractal patterns, see for example [1].

Proof. The DRCA that will recognize the language has the “basic unit” as initial neigborhood.
For example, in dimension 1, the initial neighborhood will be {0, 1}, in dimension 2, it will
be {(0, 0), (0, 1), (1, 0), (1, 1)}. As in previous DRCA, the rule for changing neighbors will be
very simple : if the ith neighbor is in a quiescent state, then don’t change anything. Else the
ith neighbor becomes the ith neighbor’s ith neighbor. This creates a tree for the cells, and in
dimension 2, builds a quadtree instead of a tree.

As the pattern is built along a quadtree, it is very simple to recognize a specific pattern. The
set of states is of size 2k + 1, where k is the number of internal states for the pattern, and a state
either means “My subtree can be generated with the following states as initial states” (this gives
exactly 2k different states), and a special state that means “My subtree doesn’t belong to the
pattern”. The state-transition table is built according to the rewriting rules. For the Thue-Morse
code, the state-transition table would be :

Cell Right neighbor resulting state
a b a
b a b
a a ⊥
b b ⊥

Note that this is a special case, because none of the rules are ambiguous, so that no ab state
is needed. All the lines of the table containing ⊥ have obviously the result of ⊥ (if a subtree can
not be obtained through any initial state, then the tree can not be obtained too).

This DRCA admits the patterns that are part of the language by having its leftmost (and
topmost for dimension 2) cell going in the initial state of the tree, and by finding it explore the
whole pattern (when its neighbor is a quiescent cell). It rejects a tree by having the same cell
going in the ⊥ state. The set of patterns accepted comes from the definition of the DRCA, and
is the requested fractal pattern. And any pattern that is an instanciation of the fractal pattern
will be recognized, as the DRCA will try to reduce the depth of the given pattern.

18

Active cell
- Analysis
- Synchronization -�

-�
-�
-�

-�
-�

6?
6

?

6

?

6

?

6

?

6

?

6
?
6
?

The analysed pattern The first step of analysis

-�
-�
-�
-�

-�
-�

6?
6

?

6

?

6

?

6

?

6

?

6
?
6
?

-�
-�
-�
-�

-�
-�

Final analysis Information retropropagation

Figure 8: Example of pattern analysis

Remark The final accepting symbol has to be different from the ”possible subtree” symbols.
Else the right branch of each tree could not be of the same depth than the left one. If the
accepting symbol is encountered in a further evolution, then it must be taken as beeing a refusal
symbol.

If the accepting symbol is considered as a ”possible subtree” symbol, then the right branch
can be smaller than the left one. This is what is done when recognizing the language {1n} in
theorem 2. In fact, this is the pattern given by the rule 1 −→ 1 1 with initial state 1, but as a
branch can be shorter than another, the tree can count as many 1s as necessary. ♦

6.3 Application of the synchronisation theorem

This theorem is meant to merge two DRCA easily. Merging two automatas is useful for some
computations. For exemple, we described an automata that could identify whether its input
pattern was uniform or not. In a later section, we described how some fractal patterns could
be identified. But It is possible to want to identify a certain pattern across the lines, and then
identifying the resulting pattern across the columns.

For example, if we have an image of different colours, indexed by numbers (e.g. 0 for back-
ground, 1 for blue and 2 for red), we might be interested in knowing if the connexe component
is of a uniform color. This can be done by a simple method described below (see also figure 8)
if the components are considered simple enough7 :

1. Each cell looks at its line, checking if there are only cells of its color. Then it waits to be
synchronized with the cells of its columns.

2. After synchronization, each cell repeats the same operation on the columns. If there is an
error, at least one column of cells is in refusal state.

3. All the cells begin a new synchronisation with the cell of its lines, and checks whether there
is at least one cell on its line in refusal state, as in step 1.

4. After that, all the cells know whether their component is uniform or not.

The synchronisation is important there. It allows all the cells to restart the analysis only when
all the cells have already finished their previous computation. As the time of the synchronisation
is equivalent to the time of the effective computation, the O(dlog (n)e) running-time is kept.

7In fact, step 1 and 2 have to be repeated a sufficient number of times for more complicated components, as
well as step 3 and step 2 to convey the information back.

19

7 Conclusion

This report presents the results about a new variation of CA.
It has been shown in this report that the concept of CA having varying neighborhood is

interesting, especially if we consider the possibility of a dynamic reconfiguration, as in the case
of DRCA.

There remains many open problems. For example, the Cellular Graph Automaton are capable
of analysing their own graph structure as in [9, 10]. The question whether it is possible or not
to use DRCA to solve such problems, or at least to configure themselves in a specifed graph
structure (see also [8]) may be very interesting.

Another problem is to know if the DRCA are always more powerful than the corresponding
CA. We saw in theorem 2 that the running-time could be decreased from O(n) to O(dlog (n)e).
But is that speed-up always possible is still an unsolved problem.

The initial purpose of these automata was in fact to generate fault-tolerant algorithms, as
in [7, 2]. The synchronisation theorem perhaps gives an answer to that question as giving the
possibility to check the integrity of a cellular space in time O(dlog (n)e) instead of linear-time.
But more specific algorithms could be developed. Moreover, the synchronisation theorem itself
is “tolerant”, because it doesn’t need to have all the cells finishing their computations at the
same time.

The power of these automata should be carefully studied ; and the possibility of physical
implementations too. Whether these variations of CA can model existing computers, like the
Connection Machine is a matter which can be probed into. These automata have a better
use of the paralellism of SIMD machines ; this could lead to interesting algorithms, in image
processing for example, because of the intrinsec presence of a quadtree in the building of these
automata.

Acknowledgement This work is carried out during my visit to Department of Computer
Science ans Engineering, Indian Institute of Tehcnology, Madras, India on my internship. I thank
Professor Kamala Krithivasan and Meena Mahajan for several helpful technical discussions at
various stages of the development of the report. Last but not least, I thank all the Theoretical
Computer Science Lab students for their warmth and help throughout my stay.

20

References

[1] J. Berstel and M. Morcrette. Compact representation of patterns by finite automata. In
Proceedings of PIXIM 89, 1989.

[2] M. Harao and S. Noguchi. Fault tolerant cellular automata. Journal of Computer and
System Sciences, 11:171–170, 1975.

[3] Alvy Ray Smith III. Real-time language recognition by one-dimensional cellular automata.
Journal of Computer and System Sciences, 6:233–253, 1972.

[4] M. Mahajan. Studies in the Language Classes Defined by Different Types of Time-Varying
Cellular Automata. PhD thesis, Indian Institute of Technology, Madras (India), 1993.

[5] M. Mahajan and K. Krithivasan. Some results on time-varying and relativised cellular
automata. Intern. J. Computer Math., 43:21–38, 1992.

[6] M. Mahajan and K. Krithivasan. Language classes defined by time-bounded relativised
cellular automata. Informatique Théorique et Applications, 27:403–432, 1993.

[7] H. Nishio and Y. Kobuchi. Fault tolerant cellular spaces. Journal of Computer and System
Sciences, 11:150–170, 1975.

[8] A. Rosenfeld and A. Wu. Reconfigurable cellular computers. Information and Control, 50,
July 1972.

[9] A. Wu and A. Rosenfeld. Cellular graph automata i. basic concepts, graph property mea-
surement, closure properties. Inforamation and Control, 42:305–329, September 1979.

[10] A. Wu and A. Rosenfeld. Cellular graph automata ii. graph and subgraph isomorphism,
graph structure recognition. Inforamation and Control, 42:330–353, September 1979.

21

