
Motivation Contribution Summary

Methods for Partitioning Data to Improve Parallel
Execution Time for Sorting on Heterogeneous

Clusters

C. Cérin1 J.-C. Dubacq1 J.-L. Roch2

1LIPN
Université de Paris Nord

2ID-IMAG
Université Joseph Fourier, Grenoble

Global and Pervasive Computing 2006 (台中市)

Motivation Contribution Summary

Outline

1 Motivation
The partitioning problem
Splitting data

2 Contribution
General exact analytic approach
Dynamic evaluation of complexity function
Non uniformly related processors
Experiments

Motivation Contribution Summary

Outline

1 Motivation
The partitioning problem
Splitting data

2 Contribution
General exact analytic approach
Dynamic evaluation of complexity function
Non uniformly related processors
Experiments

Motivation Contribution Summary

Partitioning large data sets for sorting

Large data sets require lot of computation time for sorting;

Data chunks of equal size used to do the job on parallel
machines.

Modelisation

Infinite point-to-point bandwidth;

Heterogeneous speed: relative linear speed;

No study of memory effect.

Motivation Contribution Summary

Partitioning large data sets for sorting

Large data sets require lot of computation time for sorting;

Data chunks of equal size used to do the job on parallel
machines.

Modelisation

Infinite point-to-point bandwidth;

Heterogeneous speed: relative linear speed;

No study of memory effect.

Motivation Contribution Summary

Partitioning large data sets for sorting

Large data sets require lot of computation time for sorting;

Data chunks of equal size used to do the job on parallel
machines.

Modelisation

Infinite point-to-point bandwidth;

Heterogeneous speed: relative linear speed;

No study of memory effect.

Motivation Contribution Summary

Partitioning large data sets for sorting

Large data sets require lot of computation time for sorting;

Data chunks of equal size used to do the job on parallel
machines.

Modelisation

Infinite point-to-point bandwidth;

Heterogeneous speed: relative linear speed;

No study of memory effect.

Motivation Contribution Summary

Partitioning large data sets for sorting

Large data sets require lot of computation time for sorting;

Data chunks of equal size used to do the job on parallel
machines.

Modelisation

Infinite point-to-point bandwidth;

Heterogeneous speed: relative linear speed;

No study of memory effect.

Motivation Contribution Summary

Methodology

1 Data chunks are sent from node 0 to nodes 1, . . . , p − 1;

2 Each processor sorts locally its data chunk;

3 Node 0 receives p− 1 pivots, sorts them and broadcasts them;

4 Each processor uses the pivots to split its data;

5 Each processor transmits all its (split) data to the others;

6 Each processor merges all data it received with its own.

Observation

With fixed p, the computation-intensive part is step 2.

Motivation Contribution Summary

Methodology

1 Data chunks are sent from node 0 to nodes 1, . . . , p − 1;

2 Each processor sorts locally its data chunk;

3 Node 0 receives p− 1 pivots, sorts them and broadcasts them;

4 Each processor uses the pivots to split its data;

5 Each processor transmits all its (split) data to the others;

6 Each processor merges all data it received with its own.

Observation

With fixed p, the computation-intensive part is step 2.

Motivation Contribution Summary

Methodology

1 Data chunks are sent from node 0 to nodes 1, . . . , p − 1;

2 Each processor sorts locally its data chunk;

3 Node 0 receives p− 1 pivots, sorts them and broadcasts them;

4 Each processor uses the pivots to split its data;

5 Each processor transmits all its (split) data to the others;

6 Each processor merges all data it received with its own.

Observation

With fixed p, the computation-intensive part is step 2.

Motivation Contribution Summary

Methodology

1 Data chunks are sent from node 0 to nodes 1, . . . , p − 1;

2 Each processor sorts locally its data chunk;

3 Node 0 receives p− 1 pivots, sorts them and broadcasts them;

4 Each processor uses the pivots to split its data;

5 Each processor transmits all its (split) data to the others;

6 Each processor merges all data it received with its own.

Observation

With fixed p, the computation-intensive part is step 2.

Motivation Contribution Summary

Methodology

1 Data chunks are sent from node 0 to nodes 1, . . . , p − 1;

2 Each processor sorts locally its data chunk;

3 Node 0 receives p− 1 pivots, sorts them and broadcasts them;

4 Each processor uses the pivots to split its data;

5 Each processor transmits all its (split) data to the others;

6 Each processor merges all data it received with its own.

Observation

With fixed p, the computation-intensive part is step 2.

Motivation Contribution Summary

Methodology

1 Data chunks are sent from node 0 to nodes 1, . . . , p − 1;

2 Each processor sorts locally its data chunk;

3 Node 0 receives p− 1 pivots, sorts them and broadcasts them;

4 Each processor uses the pivots to split its data;

5 Each processor transmits all its (split) data to the others;

6 Each processor merges all data it received with its own.

Observation

With fixed p, the computation-intensive part is step 2.

Motivation Contribution Summary

Methodology

1 Data chunks are sent from node 0 to nodes 1, . . . , p − 1;

2 Each processor sorts locally its data chunk;

3 Node 0 receives p− 1 pivots, sorts them and broadcasts them;

4 Each processor uses the pivots to split its data;

5 Each processor transmits all its (split) data to the others;

6 Each processor merges all data it received with its own.

Observation

With fixed p, the computation-intensive part is step 2.

Motivation Contribution Summary

Context: Grid’5000, heterogeneous clusters

GRID’5000: French national research
project on grids;

Goal: 5000 nodes dedicated to
experimental development;

Current state: 2300 nodes, 13+
separated clusters, 9 sites, dedicated 10
Gb/s black fibre connexion;

Heterogeneity

Clusters have different processors, same family-processors have
different clock speeds.

Motivation Contribution Summary

Context: Grid’5000, heterogeneous clusters

GRID’5000: French national research
project on grids;

Goal: 5000 nodes dedicated to
experimental development;

Current state: 2300 nodes, 13+
separated clusters, 9 sites, dedicated 10
Gb/s black fibre connexion;

Heterogeneity

Clusters have different processors, same family-processors have
different clock speeds.

Motivation Contribution Summary

Context: Grid’5000, heterogeneous clusters

GRID’5000: French national research
project on grids;

Goal: 5000 nodes dedicated to
experimental development;

Current state: 2300 nodes, 13+
separated clusters, 9 sites, dedicated 10
Gb/s black fibre connexion;

Heterogeneity

Clusters have different processors, same family-processors have
different clock speeds.

Motivation Contribution Summary

Context: Grid’5000, heterogeneous clusters

GRID’5000: French national research
project on grids;

Goal: 5000 nodes dedicated to
experimental development;

Current state: 2300 nodes, 13+
separated clusters, 9 sites, dedicated 10
Gb/s black fibre connexion;

Heterogeneity

Clusters have different processors, same family-processors have
different clock speeds.

Motivation Contribution Summary

Outline

1 Motivation
The partitioning problem
Splitting data

2 Contribution
General exact analytic approach
Dynamic evaluation of complexity function
Non uniformly related processors
Experiments

Motivation Contribution Summary

From homogeneous to heterogeneous processors

Goal

We have N objects to transmit and transform using p nodes. We
want all computation to end at exactly the same time. Final
merging is not relevant.

Theorem (Homogeneous case)

If all nodes work at same speed, the splitting of the data is optimal
if one uses chunks of size N/p.

We define the relative speed ki of a node i as the quantity of
operations it can do by unit of time compared to a reference node,
and K =

∑
j kj .

Motivation Contribution Summary

From homogeneous to heterogeneous processors

Goal

We have N objects to transmit and transform using p nodes. We
want all computation to end at exactly the same time. Final
merging is not relevant.

Theorem (Homogeneous case)

If all nodes work at same speed, the splitting of the data is optimal
if one uses chunks of size N/p.

We define the relative speed ki of a node i as the quantity of
operations it can do by unit of time compared to a reference node,
and K =

∑
j kj .

Motivation Contribution Summary

From homogeneous to heterogeneous processors

Goal

We have N objects to transmit and transform using p nodes. We
want all computation to end at exactly the same time. Final
merging is not relevant.

Theorem (Homogeneous case)

If all nodes work at same speed, the splitting of the data is optimal
if one uses chunks of size N/p.

We define the relative speed ki of a node i as the quantity of
operations it can do by unit of time compared to a reference node,
and K =

∑
j kj .

Motivation Contribution Summary

Previous works

Näıve algorithm uses chunks of size ki
K N and yields inadequate

computation time.

Example (näıve algorithm)

Node 1 k1 = 1 n1 = N
3 T1 = n1 log n1

Node 2 k2 = 2 n2 = 2N
3 T2 = n2 log n2

k2

T2 = n1 log (2n1) = T1 + n1 log 2 6= T1

Theorem (Cérin,Koskas,Jemni,Fkaier)

For large N, optimal chunk size is

ni =
ki
K

N + εi , (1 ≤ i ≤ p) where εi =
N

ln N

 ki
K 2

p∑
j=1

kj ln

(
kj
ki

)

Motivation Contribution Summary

Previous works

Näıve algorithm uses chunks of size ki
K N and yields inadequate

computation time.

Example (näıve algorithm)

Node 1 k1 = 1 n1 = N
3 T1 = n1 log n1

Node 2 k2 = 2 n2 = 2N
3 T2 = n2 log n2

k2

T2 = n1 log (2n1) = T1 + n1 log 2 6= T1

Theorem (Cérin,Koskas,Jemni,Fkaier)

For large N, optimal chunk size is

ni =
ki
K

N + εi , (1 ≤ i ≤ p) where εi =
N

ln N

 ki
K 2

p∑
j=1

kj ln

(
kj
ki

)

Motivation Contribution Summary

Previous works

Näıve algorithm uses chunks of size ki
K N and yields inadequate

computation time.

Example (näıve algorithm)

Node 1 k1 = 1 n1 = N
3 T1 = n1 log n1

Node 2 k2 = 2 n2 = 2N
3 T2 = n2 log n2

k2

T2 = n1 log (2n1) = T1 + n1 log 2 6= T1

Theorem (Cérin,Koskas,Jemni,Fkaier)

For large N, optimal chunk size is

ni =
ki
K

N + εi , (1 ≤ i ≤ p) where εi =
N

ln N

 ki
K 2

p∑
j=1

kj ln

(
kj
ki

)

Motivation Contribution Summary

Outline

1 Motivation
The partitioning problem
Splitting data

2 Contribution
General exact analytic approach
Dynamic evaluation of complexity function
Non uniformly related processors
Experiments

Motivation Contribution Summary

Basic approach

We use f̃ as the complexity function (Ti = f̃ (n1)/ki).

T =
f̃ (n1)

k1
=

f̃ (n2)

k2
= · · · =

f̃ (np)

kp

n1 + n2 ++ np = N

Thus we can derive these compact equations for equality:

ni = f̃ −1(T .ki) and

p∑
i=1

f̃ −1(T .ki) = N

Only one unknown variable left!

Motivation Contribution Summary

Basic approach

We use f̃ as the complexity function (Ti = f̃ (n1)/ki).

T =
f̃ (n1)

k1
=

f̃ (n2)

k2
= · · · =

f̃ (np)

kp

n1 + n2 ++ np = N

Thus we can derive these compact equations for equality:

ni = f̃ −1(T .ki) and

p∑
i=1

f̃ −1(T .ki) = N

Only one unknown variable left!

Motivation Contribution Summary

Basic approach

We use f̃ as the complexity function (Ti = f̃ (n1)/ki).

T =
f̃ (n1)

k1
=

f̃ (n2)

k2
= · · · =

f̃ (np)

kp

n1 + n2 ++ np = N

Thus we can derive these compact equations for equality:

ni = f̃ −1(T .ki) and

p∑
i=1

f̃ −1(T .ki) = N

Only one unknown variable left!

Motivation Contribution Summary

Basic approach

We use f̃ as the complexity function (Ti = f̃ (n1)/ki).

T =
f̃ (n1)

k1
=

f̃ (n2)

k2
= · · · =

f̃ (np)

kp

n1 + n2 ++ np = N

Thus we can derive these compact equations for equality:

ni = f̃ −1(T .ki)

and

p∑
i=1

f̃ −1(T .ki) = N

Only one unknown variable left!

Motivation Contribution Summary

Basic approach

We use f̃ as the complexity function (Ti = f̃ (n1)/ki).

T =
f̃ (n1)

k1
=

f̃ (n2)

k2
= · · · =

f̃ (np)

kp

n1 + n2 ++ np = N

Thus we can derive these compact equations for equality:

ni = f̃ −1(T .ki) and

p∑
i=1

f̃ −1(T .ki) = N

Only one unknown variable left!

Motivation Contribution Summary

Basic approach

We use f̃ as the complexity function (Ti = f̃ (n1)/ki).

T =
f̃ (n1)

k1
=

f̃ (n2)

k2
= · · · =

f̃ (np)

kp

n1 + n2 ++ np = N

Thus we can derive these compact equations for equality:

ni = f̃ −1(T .ki) and

p∑
i=1

f̃ −1(T .ki) = N

Only one unknown variable left!

Motivation Contribution Summary

The polynomial case

Theorem (Polynomial case)

If f̃ : x 7→ αxβ, then the optimal division is obtained by chunks
sizes:

ni =
k

1/β
i∑p

i=1 k
1/β
i

N.

Proof: f̃ is multiplicative.

p∑
i=1

f̃ −1(T .ki) = N =⇒ N = f̃ −1(T)

p∑
i=1

f̃ −1(ki)

=⇒ T = f̃

(
N∑p

i=1 f̃ −1(ki)

)

Motivation Contribution Summary

The polynomial case

Theorem (Polynomial case)

If f̃ : x 7→ αxβ, then the optimal division is obtained by chunks
sizes:

ni =
k

1/β
i∑p

i=1 k
1/β
i

N.

Proof: f̃ is multiplicative.

p∑
i=1

f̃ −1(T .ki) = N =⇒ N = f̃ −1(T)

p∑
i=1

f̃ −1(ki)

=⇒ T = f̃

(
N∑p

i=1 f̃ −1(ki)

)

Motivation Contribution Summary

The polynomial case

Theorem (Polynomial case)

If f̃ : x 7→ αxβ, then the optimal division is obtained by chunks
sizes:

ni =
k

1/β
i∑p

i=1 k
1/β
i

N.

Proof: f̃ is multiplicative.

p∑
i=1

f̃ −1(T .ki) = N =⇒ N = f̃ −1(T)

p∑
i=1

f̃ −1(ki)

=⇒ T = f̃

(
N∑p

i=1 f̃ −1(ki)

)

Motivation Contribution Summary

The polylog case

Theorem

Initial values of ni can be asymptotically computed by

p∑
i=1

Tki + Tki ln ln(Tki)

(ln(Tki))2
= N and ni =

Tki + Tki ln ln(Tki)

(ln(Tki))2

Proof.

We use the Lambert W function which is the inverse function of
x 7→ x log x .
A well known approximation is W (x) = ln x − ln ln(x) + o(1).

Motivation Contribution Summary

The polylog case

Theorem

Initial values of ni can be asymptotically computed by

p∑
i=1

Tki + Tki ln ln(Tki)

(ln(Tki))2
= N and ni =

Tki + Tki ln ln(Tki)

(ln(Tki))2

Proof.

We use the Lambert W function which is the inverse function of
x 7→ x log x .

A well known approximation is W (x) = ln x − ln ln(x) + o(1).

Motivation Contribution Summary

The polylog case

Theorem

Initial values of ni can be asymptotically computed by

p∑
i=1

Tki + Tki ln ln(Tki)

(ln(Tki))2
= N and ni =

Tki + Tki ln ln(Tki)

(ln(Tki))2

Proof.

We use the Lambert W function which is the inverse function of
x 7→ x log x .
A well known approximation is W (x) = ln x − ln ln(x) + o(1).

Motivation Contribution Summary

Outline

1 Motivation
The partitioning problem
Splitting data

2 Contribution
General exact analytic approach
Dynamic evaluation of complexity function
Non uniformly related processors
Experiments

Motivation Contribution Summary

Framework for unknown complexity function

Goal

We want to cope with unknown complexity functions. We have
several batches of data.

If the speed vector is unknown, first submit a batch assuming
vector is [1, . . . , 1]. Time-differences will tell what the relative
speed is. So we may assume the speed vector is known;

Deduce ni chunk sizes to send to node i (in parallel for each
node). Node ni measures the treatment time for the chunk,
and reports it at the end.

A piecewise representation of the complexity function is built,
and missing values are interpolated.

Motivation Contribution Summary

Framework for unknown complexity function

Goal

We want to cope with unknown complexity functions. We have
several batches of data.

If the speed vector is unknown, first submit a batch assuming
vector is [1, . . . , 1]. Time-differences will tell what the relative
speed is. So we may assume the speed vector is known;

Deduce ni chunk sizes to send to node i (in parallel for each
node). Node ni measures the treatment time for the chunk,
and reports it at the end.

A piecewise representation of the complexity function is built,
and missing values are interpolated.

Motivation Contribution Summary

Framework for unknown complexity function

Goal

We want to cope with unknown complexity functions. We have
several batches of data.

If the speed vector is unknown, first submit a batch assuming
vector is [1, . . . , 1]. Time-differences will tell what the relative
speed is. So we may assume the speed vector is known;

Deduce ni chunk sizes to send to node i (in parallel for each
node). Node ni measures the treatment time for the chunk,
and reports it at the end.

A piecewise representation of the complexity function is built,
and missing values are interpolated.

Motivation Contribution Summary

Framework for unknown complexity function

Goal

We want to cope with unknown complexity functions. We have
several batches of data.

If the speed vector is unknown, first submit a batch assuming
vector is [1, . . . , 1]. Time-differences will tell what the relative
speed is. So we may assume the speed vector is known;

Deduce ni chunk sizes to send to node i (in parallel for each
node). Node ni measures the treatment time for the chunk,
and reports it at the end.

A piecewise representation of the complexity function is built,
and missing values are interpolated.

Motivation Contribution Summary

Detailed algorithm

1 For each node i , precompute the mapping (T , i) 7→ ni as
previously, using interpolated values for f if necessary. Deduce
a mapping T 7→ n by summing the mappings over all i .

2 Use a dichotomic search through T 7→ n mapping to find the
ideal value of T (and thus of all the ni) and assign chunks of
data to node i ;

3 When chunk i of size ni is being treated:
1 Record the cost C = Tni ki of the computation for size ni .
2 If ni already had a non-interpolated value, choose a new value

C ′ according to some strategy.
3 If ni was not a known point, set C ′ = C .
4 Ensure that the mapping as defined by n 6= ni 7→ C (n) and the

new value ni 7→ C ′ is still monotonous increasing.

4 A new batch can begin.

Motivation Contribution Summary

Detailed algorithm

1 For each node i , precompute the mapping (T , i) 7→ ni as
previously, using interpolated values for f if necessary. Deduce
a mapping T 7→ n by summing the mappings over all i .

2 Use a dichotomic search through T 7→ n mapping to find the
ideal value of T (and thus of all the ni) and assign chunks of
data to node i ;

3 When chunk i of size ni is being treated:
1 Record the cost C = Tni ki of the computation for size ni .
2 If ni already had a non-interpolated value, choose a new value

C ′ according to some strategy.
3 If ni was not a known point, set C ′ = C .
4 Ensure that the mapping as defined by n 6= ni 7→ C (n) and the

new value ni 7→ C ′ is still monotonous increasing.

4 A new batch can begin.

Motivation Contribution Summary

Detailed algorithm

1 For each node i , precompute the mapping (T , i) 7→ ni as
previously, using interpolated values for f if necessary. Deduce
a mapping T 7→ n by summing the mappings over all i .

2 Use a dichotomic search through T 7→ n mapping to find the
ideal value of T (and thus of all the ni) and assign chunks of
data to node i ;

3 When chunk i of size ni is being treated:

1 Record the cost C = Tni ki of the computation for size ni .
2 If ni already had a non-interpolated value, choose a new value

C ′ according to some strategy.
3 If ni was not a known point, set C ′ = C .
4 Ensure that the mapping as defined by n 6= ni 7→ C (n) and the

new value ni 7→ C ′ is still monotonous increasing.

4 A new batch can begin.

Motivation Contribution Summary

Detailed algorithm

1 For each node i , precompute the mapping (T , i) 7→ ni as
previously, using interpolated values for f if necessary. Deduce
a mapping T 7→ n by summing the mappings over all i .

2 Use a dichotomic search through T 7→ n mapping to find the
ideal value of T (and thus of all the ni) and assign chunks of
data to node i ;

3 When chunk i of size ni is being treated:
1 Record the cost C = Tni ki of the computation for size ni .

2 If ni already had a non-interpolated value, choose a new value
C ′ according to some strategy.

3 If ni was not a known point, set C ′ = C .
4 Ensure that the mapping as defined by n 6= ni 7→ C (n) and the

new value ni 7→ C ′ is still monotonous increasing.

4 A new batch can begin.

Motivation Contribution Summary

Detailed algorithm

1 For each node i , precompute the mapping (T , i) 7→ ni as
previously, using interpolated values for f if necessary. Deduce
a mapping T 7→ n by summing the mappings over all i .

2 Use a dichotomic search through T 7→ n mapping to find the
ideal value of T (and thus of all the ni) and assign chunks of
data to node i ;

3 When chunk i of size ni is being treated:
1 Record the cost C = Tni ki of the computation for size ni .
2 If ni already had a non-interpolated value, choose a new value

C ′ according to some strategy.

3 If ni was not a known point, set C ′ = C .
4 Ensure that the mapping as defined by n 6= ni 7→ C (n) and the

new value ni 7→ C ′ is still monotonous increasing.

4 A new batch can begin.

Motivation Contribution Summary

Detailed algorithm

1 For each node i , precompute the mapping (T , i) 7→ ni as
previously, using interpolated values for f if necessary. Deduce
a mapping T 7→ n by summing the mappings over all i .

2 Use a dichotomic search through T 7→ n mapping to find the
ideal value of T (and thus of all the ni) and assign chunks of
data to node i ;

3 When chunk i of size ni is being treated:
1 Record the cost C = Tni ki of the computation for size ni .
2 If ni already had a non-interpolated value, choose a new value

C ′ according to some strategy.
3 If ni was not a known point, set C ′ = C .

4 Ensure that the mapping as defined by n 6= ni 7→ C (n) and the
new value ni 7→ C ′ is still monotonous increasing.

4 A new batch can begin.

Motivation Contribution Summary

Detailed algorithm

1 For each node i , precompute the mapping (T , i) 7→ ni as
previously, using interpolated values for f if necessary. Deduce
a mapping T 7→ n by summing the mappings over all i .

2 Use a dichotomic search through T 7→ n mapping to find the
ideal value of T (and thus of all the ni) and assign chunks of
data to node i ;

3 When chunk i of size ni is being treated:
1 Record the cost C = Tni ki of the computation for size ni .
2 If ni already had a non-interpolated value, choose a new value

C ′ according to some strategy.
3 If ni was not a known point, set C ′ = C .
4 Ensure that the mapping as defined by n 6= ni 7→ C (n) and the

new value ni 7→ C ′ is still monotonous increasing.

4 A new batch can begin.

Motivation Contribution Summary

Detailed algorithm

1 For each node i , precompute the mapping (T , i) 7→ ni as
previously, using interpolated values for f if necessary. Deduce
a mapping T 7→ n by summing the mappings over all i .

2 Use a dichotomic search through T 7→ n mapping to find the
ideal value of T (and thus of all the ni) and assign chunks of
data to node i ;

3 When chunk i of size ni is being treated:
1 Record the cost C = Tni ki of the computation for size ni .
2 If ni already had a non-interpolated value, choose a new value

C ′ according to some strategy.
3 If ni was not a known point, set C ′ = C .
4 Ensure that the mapping as defined by n 6= ni 7→ C (n) and the

new value ni 7→ C ′ is still monotonous increasing.

4 A new batch can begin.

Motivation Contribution Summary

Outline

1 Motivation
The partitioning problem
Splitting data

2 Contribution
General exact analytic approach
Dynamic evaluation of complexity function
Non uniformly related processors
Experiments

Motivation Contribution Summary

Non-uniformly related processors

Goal

We want to cope with complexity functions that depend on the
node characteristics.

We can minimise the following formula by dynamic programming:

T (N, p) = max
i=1,...,p

{fi (ni)} = min
(x1, . . . , xp) ∈ Np∑p

i=1 xi = N

{
max

i=1,...,p
{fi (xi)}

}

T (m, i) = min
ni=0..m

max(fi (ni),C (m − ni , i − 1))

Theorem

Computation of optimal partition is done in O(N2p) time.

Motivation Contribution Summary

Non-uniformly related processors

Goal

We want to cope with complexity functions that depend on the
node characteristics.

We can minimise the following formula by dynamic programming:

T (N, p) = max
i=1,...,p

{fi (ni)} = min
(x1, . . . , xp) ∈ Np∑p

i=1 xi = N

{
max

i=1,...,p
{fi (xi)}

}

T (m, i) = min
ni=0..m

max(fi (ni),C (m − ni , i − 1))

Theorem

Computation of optimal partition is done in O(N2p) time.

Motivation Contribution Summary

Non-uniformly related processors

Goal

We want to cope with complexity functions that depend on the
node characteristics.

We can minimise the following formula by dynamic programming:

T (N, p) = max
i=1,...,p

{fi (ni)} = min
(x1, . . . , xp) ∈ Np∑p

i=1 xi = N

{
max

i=1,...,p
{fi (xi)}

}

T (m, i) = min
ni=0..m

max(fi (ni),C (m − ni , i − 1))

Theorem

Computation of optimal partition is done in O(N2p) time.

Motivation Contribution Summary

Non-uniformly related processors

Goal

We want to cope with complexity functions that depend on the
node characteristics.

We can minimise the following formula by dynamic programming:

T (N, p) = max
i=1,...,p

{fi (ni)} = min
(x1, . . . , xp) ∈ Np∑p

i=1 xi = N

{
max

i=1,...,p
{fi (xi)}

}

T (m, i) = min
ni=0..m

max(fi (ni),C (m − ni , i − 1))

Theorem

Computation of optimal partition is done in O(N2p) time.

Motivation Contribution Summary

Outline

1 Motivation
The partitioning problem
Splitting data

2 Contribution
General exact analytic approach
Dynamic evaluation of complexity function
Non uniformly related processors
Experiments

Motivation Contribution Summary

Experiments

Motivation Contribution Summary

Experiments

Records of 100 bytes long, two classes of computers (k = 1
and k = 1.5);

54 GB of data, 50 runs for each experiment, bi-opteron
processor, cpu-burning;

96 nodes used;

Minute Sort benchmark compliant;

naive algo partitioning partitioning (2 threads)

125.4s 112.7s 69.4s

Motivation Contribution Summary

Experiments

Records of 100 bytes long, two classes of computers (k = 1
and k = 1.5);

54 GB of data, 50 runs for each experiment, bi-opteron
processor, cpu-burning;

96 nodes used;

Minute Sort benchmark compliant;

naive algo partitioning partitioning (2 threads)

125.4s 112.7s 69.4s

Motivation Contribution Summary

Experiments

Records of 100 bytes long, two classes of computers (k = 1
and k = 1.5);

54 GB of data, 50 runs for each experiment, bi-opteron
processor, cpu-burning;

96 nodes used;

Minute Sort benchmark compliant;

naive algo partitioning partitioning (2 threads)

125.4s 112.7s 69.4s

Motivation Contribution Summary

Experiments

Records of 100 bytes long, two classes of computers (k = 1
and k = 1.5);

54 GB of data, 50 runs for each experiment, bi-opteron
processor, cpu-burning;

96 nodes used;

Minute Sort benchmark compliant;

naive algo partitioning partitioning (2 threads)

125.4s 112.7s 69.4s

Motivation Contribution Summary

Experiments

Records of 100 bytes long, two classes of computers (k = 1
and k = 1.5);

54 GB of data, 50 runs for each experiment, bi-opteron
processor, cpu-burning;

96 nodes used;

Minute Sort benchmark compliant;

naive algo partitioning partitioning (2 threads)

125.4s 112.7s 69.4s

Motivation Contribution Summary

Summary

Polynomial complexity functions yield a simple formula

ni =
f̃ −1(ki)∑p
i=1 f̃ −1(ki)

N.

Unknown complexity functions can still be managed, but
require incremental construction;

Dynamic programming can also be used in more general cases.

Future work

Limited bandwidth models and heterogeneous network links.
Non-linear computation time models.
Global optimisation.

Motivation Contribution Summary

Summary

Polynomial complexity functions yield a simple formula

ni =
f̃ −1(ki)∑p
i=1 f̃ −1(ki)

N.

Unknown complexity functions can still be managed, but
require incremental construction;

Dynamic programming can also be used in more general cases.

Future work

Limited bandwidth models and heterogeneous network links.
Non-linear computation time models.
Global optimisation.

Motivation Contribution Summary

Summary

Polynomial complexity functions yield a simple formula

ni =
f̃ −1(ki)∑p
i=1 f̃ −1(ki)

N.

Unknown complexity functions can still be managed, but
require incremental construction;

Dynamic programming can also be used in more general cases.

Future work

Limited bandwidth models and heterogeneous network links.
Non-linear computation time models.
Global optimisation.

Motivation Contribution Summary

Summary

Polynomial complexity functions yield a simple formula

ni =
f̃ −1(ki)∑p
i=1 f̃ −1(ki)

N.

Unknown complexity functions can still be managed, but
require incremental construction;

Dynamic programming can also be used in more general cases.

Future work

Limited bandwidth models and heterogeneous network links.
Non-linear computation time models.
Global optimisation.

	Motivation
	The partitioning problem
	Splitting data

	Contribution
	General exact analytic approach
	Dynamic evaluation of complexity function
	Non uniformly related processors
	Experiments

