Study of the NP-completeness of the Compact Table problem NP-completeness comes to wargaming

J.-C. Dubacq J.-Y. Moyen

Laboratory LIPN – UMR 7030 CNRS – Université Paris 13

Journées Automates Cellulaires 2008

Outline

Compact table problem

- Random-choices tables
- Formal description
- Other applications

2 NP-Completeness

- General case
- Fixed amplitude case
- Bounded number of results case

Onclusion and perspectives

Random-choices tables Formal description Other applications

Outline

Compact table problem

Random-choices tables

- Formal description
- Other applications

2 NP-Completeness

- General case
- Fixed amplitude case
- Bounded number of results case

3 Conclusion and perspectives

< A

.

Random-choices tables Formal description Other applications

Random tables

- Set of initial conditions
- Finite number of results
- ightarrow 2-D table:

	1	2	3	4	5	6	7	8	9	10
A	α	α	α	β	β	β	β	γ	γ	γ
В	α	β	β	β	γ	γ	δ	δ	δ	δ
С	α	γ	γ	γ	γ	γ	γ	δ	δ	δ
D	α	α	β	β	γ	γ	γ	γ	δ	δ

• Dimension reduction: A: +0, B: +10, C: +20, D: +30

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
α	α	α	β	β	β	β	γ	γ	γ	α	β	β	β	γ	γ	δ	δ	δ	δ
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
α	γ	γ	γ	γ	γ	γ	δ	δ	δ	α	α	β	β	γ	γ	γ	γ	δ	δ

▶ **4 3** ▶

• Tiny font, because very long!

Compact tables Shortening the information

- Some lines may overlap partially...
- Known problem! This is the superword problem. NP-complete. But here, zero overlap!
- However, we can also shuffle around the lines...

Example	
$lphaetaetaetaetalphalpha\gamma$	$\gamma\gamma$
• A: $+6 \rightarrow \alpha \alpha \alpha \beta \beta \beta \beta \gamma \gamma \gamma \gamma$	
• B: $+0 \rightarrow \alpha\beta\beta\beta\gamma\gamma\delta\delta\delta\delta$	
• C: +12 $\rightarrow \alpha \gamma \gamma \gamma \gamma \gamma \gamma \delta \delta \delta$	
• D: $+9 \rightarrow \alpha \alpha \beta \beta \gamma \gamma \gamma \gamma \delta \delta$	
	J.
	《日》《母》《臣》《臣》 聖旨 원의(

Compact tables Shortening the information

- Some lines may overlap partially...
- Known problem! This is the superword problem. NP-complete. But here, zero overlap!
- However, we can also shuffle around the lines...

Example

$\delta\delta\delta\delta\gamma\gamma\alpha\beta\beta\beta\beta\alpha\alpha\gamma\gamma\gamma$

- A: $+6 \rightarrow \alpha \alpha \alpha \beta \beta \beta \beta \gamma \gamma \gamma$
- **B**: $+0 \rightarrow \alpha\beta\beta\beta\gamma\gamma\delta\delta\delta\delta$
- C: $+12 \rightarrow \alpha \gamma \gamma \gamma \gamma \gamma \gamma \delta \delta \delta$
- D: $+9 \rightarrow \alpha \alpha \beta \beta \gamma \gamma \gamma \gamma \delta \delta$

▶ **4 3** ▶

Compact tables Shortening the information

- Some lines may overlap partially...
- Known problem! This is the superword problem. NP-complete. But here, zero overlap!
- However, we can also shuffle around the lines...

Example

 $\delta\delta\delta\delta\gamma\gamma\alpha\beta\beta\beta\beta\alpha\alpha\gamma\gamma\gamma\gamma\delta\delta\delta\gamma\gamma$

- A: $+6 \rightarrow \alpha \alpha \alpha \beta \beta \beta \beta \gamma \gamma \gamma$
- **B**: $+0 \rightarrow \alpha\beta\beta\beta\gamma\gamma\delta\delta\delta\delta$
- C: $+12 \rightarrow \alpha \gamma \gamma \gamma \gamma \gamma \gamma \delta \delta \delta$
- D: $+9 \rightarrow \alpha \alpha \beta \beta \gamma \gamma \gamma \gamma \delta \delta$

3 K K 3 K

Compact tables Shortening the information

- Some lines may overlap partially...
- Known problem! This is the superword problem. NP-complete. But here, zero overlap!
- However, we can also shuffle around the lines...

Example

 $\delta\delta\delta\delta\gamma\gamma\alpha\beta\beta\beta\beta\alpha\alpha\gamma\gamma\gamma\gamma\delta\delta\delta\gamma\gamma$

- A: $+6 \rightarrow \alpha \alpha \alpha \beta \beta \beta \beta \gamma \gamma \gamma$
- **B**: $+0 \rightarrow \alpha\beta\beta\beta\gamma\gamma\delta\delta\delta\delta$
- C: +12 $\rightarrow \alpha \gamma \gamma \gamma \gamma \gamma \gamma \delta \delta \delta$
- D: $+9 \rightarrow \alpha \alpha \beta \beta \gamma \gamma \gamma \gamma \delta \delta$

3 K K 3 K

Random-choices tables Formal description Other applications

Initial motivation Real wargames, no computers involved

- Dimension reduction is crucial (easily-readable tables)
- Size of reduced table important (easily-learnable tables)

Random-choices tables Formal description Other applications

Initial motivation Real wargames, no computers involved

- Dimension reduction is crucial (easily-readable tables)
- Size of reduced table important (easily-learnable tables)

J.-C. Dubacq, J.-Y. Moyen Compact Table problem

Random-choices tables Formal description Other applications

Initial motivation Real wargames, no computers involved

- Dimension reduction is crucial (easily-readable tables)
- Size of reduced table important (easily-learnable tables)

Random-choices tables Formal description Other applications

Probabilistic automata Automata rule the world

If the set of initial conditions matches the set of outcomes, we get a probabilistic automaton. Efficient representation of probabilistic automata.

э

Random-choices tables Formal description Other applications

Outline

Compact table problem

Random-choices tables

Formal description

Other applications

2 NP-Completeness

- General case
- Fixed amplitude case
- Bounded number of results case

3 Conclusion and perspectives

Random-choices tables Formal description Other applications

Formal Descriptions of Decision Problems

Compact Table problem

Instance Alphabet Σ , integer ℓ , set of words $S \subset \Sigma^{\ell}$, integer kAnswer YES if there exists a word $\tau \in \Sigma^k$ such that for any word $u \in S$, there exists a permutation σ and words v and w such that $\tau = v \cdot \sigma(u) \cdot w$, No in all other cases.

Compact table of order ℓ

nstance Alphabet Σ , set of words $S \subset \Sigma^{\ell}$, integer kAnswer YES if there exists a word $\tau \in \Sigma^k$ such that for any word $u \in S$, there exists a permutation σ and words v and w such that $\tau = v \cdot \sigma(u) \cdot w$, No in all other cases.

く ロ ト く 同 ト く 三 ト く 三 ト

Formal Descriptions of Decision Problems

Compact Table problem

Instance Alphabet Σ , integer ℓ , set of words $S \subset \Sigma^{\ell}$, integer kAnswer YES if there exists a word $\tau \in \Sigma^k$ such that for any word $u \in S$, there exists a permutation σ and words v and w such that $\tau = v \cdot \sigma(u) \cdot w$, No in all other cases.

Compact table of order ℓ

Instance Alphabet Σ , set of words $S \subset \Sigma^{\ell}$, integer kAnswer YES if there exists a word $\tau \in \Sigma^k$ such that for any word $u \in S$, there exists a permutation σ and words v and w such that $\tau = v \cdot \sigma(u) \cdot w$, No in all other cases.

Random-choices tables Formal description Other applications

Outline

Compact table problem

- Random-choices tables
- Formal description
- Other applications

2 NP-Completeness

- General case
- Fixed amplitude case
- Bounded number of results case

3 Conclusion and perspectives

DNA single strand analysis

- Weights of A, C, G and T molecules are different
- Replicate an unknown DNA strand, cut it in small pieces
- Centrifugate and weight each small piece
- Infer the ACGT percentages
- Reconstruct the shortest possible single-strand DNA sequence possible with CT.
- Will not work, since it is NP-complete.

Outline

Compact table problem

- Random-choices tables
- Formal description
- Other applications

2 NP-Completeness

- General case
- Fixed amplitude case
- Bounded number of results case

3 Conclusion and perspectives

< AP

.

General case Fixed amplitude case Bounded number of results case

NP-Completeness and Hamiltonian Path

HP is definitely not Harry Potter!

Theorem

The Hamiltonian Path problem can be reduced to the Compact Table problem. Thus, the Compact Table problem is NP-complete.

Proof.

We define Σ to be the set $E \cup V$. Each vertex v is associated to a word τ_v of Σ^{ℓ} which is the set of edges adjacent to v (in no particular order) and padded (since G is not forced to be regular) by as many occurrences of v as deemed necessary. k is determined to be $n(\ell - 1) + 1$. Being in NP is straightforward.

General case Fixed amplitude case Bounded number of results case

NP-Completeness and Hamiltonian Path

HP is definitely not Harry Potter!

Theorem

The Hamiltonian Path problem can be reduced to the Compact Table problem. Thus, the Compact Table problem is NP-complete.

Proof.

We define Σ to be the set $E \cup V$. Each vertex v is associated to a word τ_v of Σ^{ℓ} which is the set of edges adjacent to v (in no particular order) and padded (since *G* is not forced to be regular) by as many occurrences of v as deemed necessary. *k* is determined to be $n(\ell - 1) + 1$. Being in NP is straightforward.

General case Fixed amplitude case Bounded number of results case

Example of construction

au= adfbBBcdheDagEEiFhjGGi

◆□▶ ◆圖▶ ◆回▶ ◆回▶ ●目目 ののの

General case Fixed amplitude case Bounded number of results case

Example of construction

 $\tau = adf bBBcdheDagEEiFhjGGf$

▲口▶▲御▶▲臣▶▲臣▶ 토吉 釣요?

General case Fixed amplitude case Bounded number of results case

NP-Completeness proof

$\text{HP exists} \rightarrow \text{CT exists}$

Along the Hamiltonian path, edges can be collapsed, yields a word of length $n(\ell - 1) + 1$. An edge is never used twice!

$CT exists \rightarrow HP exists$

Overlap only on edges, so τ describes a path in *G*. Because of length constraints, the path goes only once through each vertex.

#P-completeness remark

Transformation is not parcimonious (many possible permutations). But given an instance, number of solutions is either 0 or $(\ell - 1)^2 \prod_{1 \le i \le n} \frac{(\ell - 2)!}{(\ell - d(i))!}$. Therefore, the problem is also #P-complete, even though the reduction is not

General case Fixed amplitude case Bounded number of results case

NP-Completeness proof

$\text{HP exists} \rightarrow \text{CT exists}$

Along the Hamiltonian path, edges can be collapsed, yields a word of length $n(\ell - 1) + 1$. An edge is never used twice!

$\mathsf{CT}\ \text{exists} \to \mathsf{HP}\ \text{exists}$

Overlap only on edges, so τ describes a path in *G*. Because of length constraints, the path goes only once through each vertex.

#P-completeness remark

Transformation is not parcimonious (many possible permutations). But given an instance, number of solutions is either 0 or $(\ell - 1)^2 \prod_{1 \le i \le n} \frac{(\ell - 2)!}{(\ell - d(i))!}$.

Therefore, the problem is also #P-complete, even though the reduction is no (and probably cannot) be parcimonious.

General case Fixed amplitude case Bounded number of results case

NP-Completeness proof

$\text{HP exists} \rightarrow \text{CT exists}$

Along the Hamiltonian path, edges can be collapsed, yields a word of length $n(\ell - 1) + 1$. An edge is never used twice!

$\mathsf{CT}\ \text{exists} \to \mathsf{HP}\ \text{exists}$

Overlap only on edges, so τ describes a path in *G*. Because of length constraints, the path goes only once through each vertex.

#P-completeness remark

Transformation is not parcimonious (many possible permutations). But given an instance, number of solutions is either 0 or $(\ell - 1)^2 \prod_{1 \le i \le n} \frac{(\ell - 2)!}{(\ell - d(i))!}$.

Therefore, the problem is also #P-complete, even though the reduction is not (and probably cannot) be parcimonious.

Outline

Compact table problem

- Random-choices tables
- Formal description
- Other applications

2 NP-Completeness

- General case
- Fixed amplitude case
- Bounded number of results case

3 Conclusion and perspectives

< A

.

General case Fixed amplitude case Bounded number of results case

$\underset{\text{Work is already done}}{\text{Mork is already done}} 2$

Theorem

The Compact Table problem of order $\ell > 2$ is NP-complete.

Proof.

Our reduction reduces HP of degree ℓ to CT of order ℓ . Since HP is still NP-complete with degree 3, done.

......

< = > < # > < = > < = >

General case Fixed amplitude case Bounded number of results case

 $\underset{\text{Work is already done}}{\text{Mork is already done}} 2$

Theorem

The Compact Table problem of order $\ell > 2$ is NP-complete.

Proof.

Our reduction reduces HP of degree ℓ to CT of order ℓ . Since HP is still NP-complete with degree 3, done.

General case Fixed amplitude case Bounded number of results case

$\underset{\text{From Hamilton to Euler}}{\text{Amplitude } \ell = 2}$

Theorem

The Compact Table problem of order $\ell = 2$ is in P.

Proof.

Consider the results as vertices, initial conditions are edges. One can see easily that giving the smallest word containing all lines of the table is akin to describe a graph containing all edges of the graph. Details about unconnected components are in the paper. • Proof details

글 🕨 🖌 글

General case Fixed amplitude case Bounded number of results case

Amplitude $\ell = 2$ From Hamilton to Euler

Theorem

The Compact Table problem of order $\ell = 2$ is in P.

Proof.

Consider the results as vertices, initial conditions are edges. One can see easily that giving the smallest word containing all lines of the table is akin to describe a graph containing all edges of the graph. Details about unconnected components are in the paper. • Proof details

Outline

Compact table problem

- Random-choices tables
- Formal description
- Other applications

2 NP-Completeness

- General case
- Fixed amplitude case
- Bounded number of results case

3 Conclusion and perspectives

< A

.

General case Fixed amplitude case Bounded number of results case

2-results case Everything is so easy now

Theorem

CTP is solvable in linear time in case there are only two possible results.

Proof.

Use a sequence of m_1 times the first result "0" followed by m_2 times the second result "1", where m_1 is the largest number of "0" for any initial condition and m_2 is the largest number of "1".

- Limited amplitude+limited outcomes, trivial (finite number of words).
- 2 results: CT method not efficient (prob. success enough)

General case Fixed amplitude case Bounded number of results case

2-results case Everything is so easy now

Theorem

CTP is solvable in linear time in case there are only two possible results.

Proof.

Use a sequence of m_1 times the first result "0" followed by m_2 times the second result "1", where m_1 is the largest number of "0" for any initial condition and m_2 is the largest number of "1".

- Limited amplitude+limited outcomes, trivial (finite number of words).
- 2 results: CT method not efficient (prob. success enough)

General case Fixed amplitude case Bounded number of results case

2-results case Everything is so easy now

Theorem

CTP is solvable in linear time in case there are only two possible results.

Proof.

Use a sequence of m_1 times the first result "0" followed by m_2 times the second result "1", where m_1 is the largest number of "0" for any initial condition and m_2 is the largest number of "1".

- Limited amplitude+limited outcomes, trivial (finite number of words).
- 2 results: CT method not efficient (prob. success enough)

General case Fixed amplitude case Bounded number of results case

3-results case Unfinished fun on triangles

Number of possible words of amplitude ℓ : $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with k - 1 y letters separating runs of x (run i is the number of occurrence of result i).

- 3 outputs, amplitude 1: *abc*.
- Amplitude 2: caabbcc.
- $\ell = 3$: abcccaaabbbc.
- $\ell = 4$: abacbcbccccaaaabbbbc.
- Recurrence? 4-results? Beyond?

General case Fixed amplitude case Bounded number of results case

3-results case Unfinished fun on triangles

Number of possible words of amplitude ℓ : $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with k - 1 y letters separating runs of x (run i is the number of occurrence of result i).

- 3 outputs, amplitude 1: *abc*.
- Amplitude 2: caabbcc.
- $\ell = 3$: abcccaaabbbc.
- $\ell = 4$: abacbcbccccaaaabbbbc.
- Recurrence? 4-results? Beyond?

Number of possible words of amplitude ℓ : $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with k - 1 y letters separating runs of x (run i is the number of occurrence of result i).

Superword of size $\binom{\ell+k-1}{\ell} + \ell - 1$ containing all permutations? \rightarrow **Open problem**.

- 3 outputs, amplitude 1: *abc*.
- Amplitude 2: caabbcc.
- $\ell = 3$: abcccaaabbbc.
- $\ell = 4$: abacbcbccccaaaabbbbc.
- Recurrence? 4-results? Beyond?

→ ∃ → < ∃</p>

Number of possible words of amplitude ℓ : $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with k - 1 y letters separating runs of x (run i is the number of occurrence of result i).

- 3 outputs, amplitude 1: abc.
- Amplitude 2: caabbcc.
- $\ell = 3$: abcccaaabbbc.
- $\ell = 4$: abacbcbccccaaaabbbbc.
- Recurrence? 4-results? Beyond?

Number of possible words of amplitude ℓ : $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with k - 1 y letters separating runs of x (run i is the number of occurrence of result i).

- 3 outputs, amplitude 1: abc.
- Amplitude 2: caabbcc.
- $\ell = 3$: abcccaaabbbc.
- $\ell = 4$: abacbcbccccaaaabbbbc.
- Recurrence? 4-results? Beyond?

Number of possible words of amplitude ℓ : $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with k - 1 y letters separating runs of x (run i is the number of occurrence of result i).

- 3 outputs, amplitude 1: abc.
- Amplitude 2: caabbcc.
- $\ell = 3$: abcccaaabbbc.
- $\ell = 4$: abacbcbccccaaaabbbbc.
- Recurrence? 4-results? Beyond?

Number of possible words of amplitude ℓ : $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with k - 1 y letters separating runs of x (run i is the number of occurrence of result i).

- 3 outputs, amplitude 1: abc.
- Amplitude 2: caabbcc.
- $\ell = 3$: abcccaaabbbc.
- $\ell = 4$: abacbcbccccaaaabbbbc
- Recurrence? 4-results? Beyond?

Number of possible words of amplitude ℓ : $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with k - 1 y letters separating runs of x (run i is the number of occurrence of result i).

- 3 outputs, amplitude 1: abc.
- Amplitude 2: caabbcc.
- ℓ = 3: abcccaaabbbc.
- $\ell = 4$: abacbcbccccaaaabbbbc.
- Recurrence? 4-results? Beyond?

Summary and Open problems

Stuff we couldn't do in time

Answered Questions

- Works even if words of different lengths;
- Permutations do not help;
- They may even make things harder;
- Some things remain simple.

Open Questions

- The superword problem is known to be NP-hard but approximable;
- For Compact table: not clear. Heuristics may apply, but ratio is not a constant.
- Restriction to 3 or more results: still open. 3 results may be possible (winding out from the inside to the outside).

Summary and Open problems

Stuff we couldn't do in time

Answered Questions

- Works even if words of different lengths;
- Permutations do not help;
- They may even make things harder;
- Some things remain simple.

Open Questions

- The superword problem is known to be NP-hard but approximable;
- For Compact table: not clear. Heuristics may apply, but ratio is not a constant.
- Restriction to 3 or more results: still open. 3 results may be possible (winding out from the inside to the outside).

This slide intentionally left blank

Appendix

Compact Table problem

(日本) (日本) (日本) (日本) (日本) (日本)

J.-C. Dubacq, J.-Y. Moyen

Some details on proof in case $\ell = 2$

You probably asked for it!

Some details on proof in case $\ell = 2$ (cont.)

We separate in *A* (connected components with vertices of odd degree) and the other ones (*B*). We want to reach (a, b, n/2) = (1, 0, 1).

- α Adding one edge going from one component to itself: either [0, 0, 1] between two even vertices, [0, 0, 0] between an even vertex and an odd vertex, [0, 0, -1] between two odd vertices. There is a special case for the last one: the move could also be [-1, 1, -1].
- β Adding one edge between two components of A: [-1, 0, 1] between two even vertices, [-1, 0, 0] between an even vertex and an odd vertex, [-1, 0, -1] between two odd vertices.

ロト (得) (종) (종) (종) 문)

Some details on proof in case $\ell = 2$ (cont.)

- γ Adding one edge between one component of *A* and one of *B*: [0, -1, 1] if the vertex in the component in *A* was of even degree, [0, -1, 0] otherwise. There is always an even number of odd-degree vertices in a component, so *a* never decreases this way.
- δ Adding one edge between two components of *B*: [1, -2, 1] (always).
- If a = 0, then n = 0 and b > 1. The transformation $\delta \gamma^{b-2}$ leads us to the final state and is of length b + n 1 = b 1.
- If a > 0, then transformation $\beta^{a-1}\gamma^b \alpha^{n-a}$ leads us to the final state and is of length b + n 1.
- In each case, there is only one subcase that decreases *b* + *n*; there may be some choice for the exact edge to be added.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日本 の