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Random tables

Set of initial conditions
Finite number of results
→ 2-D table:

1 2 3 4 5 6 7 8 9 10
A α α α β β β β γ γ γ

B α β β β γ γ δ δ δ δ

C α γ γ γ γ γ γ δ δ δ

D α α β β γ γ γ γ δ δ

Dimension reduction: A: +0, B: +10, C: +20, D: +30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
α α α β β β β γ γ γ α β β β γ γ δ δ δ δ

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
α γ γ γ γ γ γ δ δ δ α α β β γ γ γ γ δ δ

Tiny font, because very long!
J.-C. Dubacq, J.-Y. Moyen Compact Table problem
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Compact tables
Shortening the information

Some lines may overlap partially...
Known problem! This is the superword problem. NP-complete. But here,
zero overlap!
However, we can also shuffle around the lines...

Example

δδδδγγ

αββββααγγγ

γδδδγγ

A: +6→ αααββββγγγ

B: +0→ αβββγγδδδδ

C: +12→ αγγγγγγδδδ

D: +9→ ααββγγγγδδ
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Initial motivation
Real wargames, no computers involved

Dimension reduction is crucial (easily-readable tables)
Size of reduced table important (easily-learnable tables)

J.-C. Dubacq, J.-Y. Moyen Compact Table problem



Compact table problem
NP-Completeness

Conclusion and perspectives

Random-choices tables
Formal description
Other applications

Initial motivation
Real wargames, no computers involved

Dimension reduction is crucial (easily-readable tables)
Size of reduced table important (easily-learnable tables)

J.-C. Dubacq, J.-Y. Moyen Compact Table problem



Compact table problem
NP-Completeness

Conclusion and perspectives

Random-choices tables
Formal description
Other applications

Initial motivation
Real wargames, no computers involved

Dimension reduction is crucial (easily-readable tables)
Size of reduced table important (easily-learnable tables)

J.-C. Dubacq, J.-Y. Moyen Compact Table problem



Compact table problem
NP-Completeness

Conclusion and perspectives

Random-choices tables
Formal description
Other applications

Probabilistic automata
Automata rule the world

If the set of initial conditions matches the set of outcomes, we get a probabilistic
automaton. Efficient representation of probabilistic automata.
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Formal Descriptions of Decision Problems

Compact Table problem
Instance Alphabet Σ, integer `, set of words S ⊂ Σ`, integer k
Answer YES if there exists a word τ ∈ Σk such that for any word

u ∈ S, there exists a permutation σ and words v and w such
that τ = v · σ(u) · w, NO in all other cases.

Compact table of order `
Instance Alphabet Σ, set of words S ⊂ Σ`, integer k
Answer YES if there exists a word τ ∈ Σk such that for any word

u ∈ S, there exists a permutation σ and words v and w such
that τ = v · σ(u) · w, NO in all other cases.
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DNA single strand analysis

Weights of A, C, G and T molecules are different
Replicate an unknown DNA strand, cut it in small pieces
Centrifugate and weight each small piece
Infer the ACGT percentages
Reconstruct the shortest possible single-strand DNA sequence possible
with CT.
Will not work, since it is NP-complete.
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NP-Completeness and Hamiltonian Path
HP is definitely not Harry Potter!

Theorem
The Hamiltonian Path problem can be reduced to the Compact Table
problem. Thus, the Compact Table problem is NP-complete.

Proof.
We define Σ to be the set E ∪ V . Each vertex v is associated to a word τv of
Σ` which is the set of edges adjacent to v (in no particular order) and padded
(since G is not forced to be regular) by as many occurrences of v as deemed
necessary. k is determined to be n(`− 1) + 1.
Being in NP is straightforward.
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Example of construction

A

B

C

D E

FG

a

b c

d

e

f

g

h

i
j

τA = abdf
τB = BBbc
τC = cdeh
τD = Daeg
τE = EEgi
τF = Fhij
τG = GGjf

Hamiltonian path ABCDEFG corresponding to the word (of length
n(`− 1) + 1 = 22)

τ = adfbBBcdheDagEEiFhjGGf
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NP-Completeness proof

HP exists→ CT exists
Along the Hamiltonian path, edges can be collapsed, yields a word of length
n(`− 1) + 1. An edge is never used twice!

CT exists→ HP exists
Overlap only on edges, so τ describes a path in G. Because of length
constraints, the path goes only once through each vertex.

#P-completeness remark
Transformation is not parcimonious (many possible permutations). But given an
instance, number of solutions is either 0 or (`− 1)2

∏
1≤i≤n

(`− 2)!

(`− d(i))!
.

Therefore, the problem is also #P-complete, even though the reduction is not
(and probably cannot) be parcimonious.
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Amplitude ` > 2
Work is already done

Theorem
The Compact Table problem of order ` > 2 is NP-complete.

Proof.
Our reduction reduces HP of degree ` to CT of order `. Since HP is still
NP-complete with degree 3, done.
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Amplitude ` = 2
From Hamilton to Euler

Theorem
The Compact Table problem of order ` = 2 is in P.

Proof.
Consider the results as vertices, initial conditions are edges. One can see
easily that giving the smallest word containing all lines of the table is akin to
describe a graph containing all edges of the graph. Details about unconnected
components are in the paper. Proof details
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2-results case
Everything is so easy now

Theorem
CTP is solvable in linear time in case there are only two possible results.

Proof.
Use a sequence of m1 times the first result “0” followed by m2 times the second
result “1”, where m1 is the largest number of “0” for any initial condition and m2
is the largest number of “1”.

Limited amplitude+limited outcomes, trivial (finite number of words).
2 results: CT method not efficient (prob. success enough)
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3-results case
Unfinished fun on triangles

Number of possible words of amplitude `:
(
`+k−1

`

)
.

Proof.
Number of occurrences of each result, including 0, in bijection with words on
{x, y} of length `+ k − 1 with k − 1 y letters separating runs of x (run i is the
number of occurrence of result i).

Superword of size
(
`+k−1

`

)
+ `− 1 containing all permutations? → Open

problem.
3 outputs, amplitude 1: abc.
Amplitude 2: caabbcc.
` = 3: abcccaaabbbc.
` = 4: abacbcbccccaaaabbbbc.
Recurrence? 4-results? Beyond?
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Conclusion and perspectives

Summary and Open problems
Stuff we couldn’t do in time

Answered Questions
Works even if words of different lengths;
Permutations do not help;
They may even make things harder;
Some things remain simple.

Open Questions
The superword problem is known to be NP-hard but approximable;
For Compact table: not clear. Heuristics may apply, but ratio is not a
constant.
Restriction to 3 or more results: still open. 3 results may be possible
(winding out from the inside to the outside).
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Appendix

Some details on proof in case ` = 2
You probably asked for it!

α β γ δ ε

A 1 1
B 1 1
C 1 1
D 1 1
E 1 1
F 1 1
G 1 1

α

β γ

δ ε

A B

C

D

E
F

G
Go back
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Appendix

Some details on proof in case ` = 2 (cont.)

We separate in A (connected components with vertices of odd degree) and the
other ones (B). We want to reach (a, b, n/2) = (1, 0, 1).
α Adding one edge going from one component to itself: either [0, 0, 1]

between two even vertices, [0, 0, 0] between an even vertex and an odd
vertex, [0, 0,−1] between two odd vertices. There is a special case for
the last one: the move could also be [−1, 1,−1].

β Adding one edge between two components of A: [−1, 0, 1] between two
even vertices, [−1, 0, 0] between an even vertex and an odd vertex,
[−1, 0,−1] between two odd vertices.

J.-C. Dubacq, J.-Y. Moyen Compact Table problem



Appendix

Some details on proof in case ` = 2 (cont.)

γ Adding one edge between one component of A and one of B: [0,−1, 1] if
the vertex in the component in A was of even degree, [0,−1, 0]
otherwise. There is always an even number of odd-degree vertices in a
component, so a never decreases this way.

δ Adding one edge between two components of B: [1,−2, 1] (always).

If a = 0, then n = 0 and b > 1. The transformation δγb−2 leads us to
the final state and is of length b + n− 1 = b− 1.
If a > 0, then transformation βa−1γbαn−a leads us to the final state and
is of length b + n− 1.
In each case, there is only one subcase that decreases b + n; there may
be some choice for the exact edge to be added.

Go back
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