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Why signals?

Wolfram created an empirical classification of CA in 4
classes: nilpotents, periodical behavior, random and com-
plex.

This classification was meant to help studying dynamical
behaviour of CA (especially in class IV).
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Notion of signal

Sample space-time diagram of a CA (9 states):

Construction Partition the states.

Detection Decide of a direction.

Support Use a finite automaton.

Increasing time
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. We study the space-time diagram of A applied to
∞ ∞.

Definition 4 (Signal) A V-signal Γ is a sequence of sites
{(u(t), t)}t≥0 such that

• u(0) = 0.

• ∀t ≥ 0: u(t+ 1)− u(t) ∈ V .

Definition 5 (Base signals) Basesignalsare theultimately
periodic signals.
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Doing fast signals

The ‘fastest’ signal one can find is the real-time signal:

T
im

e

f(n)

n

A signal ‘defines’ a function f , either by the signal (n, n+

f(n)), or by the signal (n− f(n), n+ f(n))

=⇒ ratio of the signal.



Non-basic fast signals construction

We show that not all signals can be generated.

Theorem 1 Let A be a q-states CA. It is not possible to
suport a signal which is not ultimately periodic with a ratio
smaller than:

• logq(n) in dimension 1,

• loglcm 1...q(n) in higher dimension.
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Dimension 1: periodic strips

n < qL

We consider a strip of cells of width L. The strip can be
cut into layers. Each layer is completely determined by the
former layer. Hence the periodicity.
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As Dt+1
i is a function of Dti−x−1 for x ∈ VMoore, there is a

relation between the period ofDi and the period ofDi−x−1
for x ∈ VMoore.

Di−x−1 is periodic (x ∈ VMoore)
⇒ Di is periodic.
The periods do collapse:
2, 3, 5, 6, 10⇒ 30 and not 1800.
Therefore, the period of the 8-tuple is
the lcm of the periods.

⇒ Thus, each period divides lcm(1, . . . , q)k.



States reduction: logarithm

Let `(t) = blog2(t+ 1)c. It is possible to detect the signal
Γ = (t− `(t), t− `(t), t+ `(t))with trellis neighbourhood.
a b c d f(a, b, c, d) Rule #
λ λ λ λ λ #0
1 λ λ λ 0 #1
0 λ λ λ 1 #2
λ λ 0 1 1 #3
1 λ 0 1 0 #4
0 λ 0 1 1 #5
1 λ 1 0 1 #6
1 λ 0 0 1 #7
0 λ 1 0 0 #8
0 λ 0 0 0 #9
? 1 λ ? 1 #10
? 1 1 ? 1 #11
? 1 0 ? 0 #12
? 0 ? ? 0 #13
? ? ? ? λ #14

a, b, c and d are
the cells with rela-
tive coordinates:

• a is
(
−1
−1
−1

)
,

• b is
(
−1
1
−1

)
,

• c is
(

1
1
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,

• d is
(

1
−1
−1
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.

The rules are sorted
by order of prece-
dence.
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
2 states + λ

(dimension 2)
3 states + λ

(dimension 1)
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Enhancement: any basis

⇒ Let x and y be numbers such that gcd(x, y) = 1.
a b c d f(a, b, c, d) Rule #
λ λ λ λ λ #0

Rules for l = 0

πj λ λ λ πj+1 (or π1 if j = k) #1
πx λ πk κ? π0 (k 6= x) #2
πj λ πk κ? πj (j, k 6= x) #3
πx λ πx κk π0 (k 6= y − 1) #4
πj λ πx κk πj (j 6= x, k 6= y − 1) #5
πj λ πx κy−1 πj+1 (or π1 if j = k) #6
λ λ πx κy−1 π1 #7

Rules for l = 1

κy−1 πx λ, κy λ κy #8
κy−1 πk λ, κy λ κ0 (k 6= x) #9
κy π? λ, κy λ κ1 #10
κj π? λ, κy λ κj+1 (j 6= y − 1, y) #11
κy π? κk λ κ0 (k 6= y) #12
κj π? κk λ κj (j 6= y, k 6= y) #13
λ π1 λ, κy λ κ1 #14
? ? ? ? λ #15

Function logxy
in max(x, y) +

2 states (with
minor enhance-
ment).
⇒ Clear gain
over 1D (at least
xy + 1 states).
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Conclusion

• Gap for signal construction, independently of the
dimension;

• Conjecture: the number of states necessary to build loga
is related to the decomposition of awith prime numbers;

• Possible link between the constructible signals and OCA
recognisable languages.

• Functions equivalent to integer logarithm:

– Non-integer logarithms,
– Other functions (lcm inverse function).


