Signals for Cellular Automata in dimension 2 or higher

Jean-Christophe Dubacq – LRI, Orsay, France Véronique Terrier – GREYC, Caen, France

LATIN'02 - CANCÚN, MEXICO - FRIDAY, APRIL 5TH

A cellular automaton is a local synchronous system, that evolves on a discrete regular space (line, grid).

A cellular automaton is a local synchronous system, that evolves on a discrete regular space (line, grid).

A cellular automaton is a local synchronous system, that evolves on a discrete regular space (line, grid).

A cellular automaton is a local synchronous system, that evolves on a discrete regular space (line, grid).

A cellular automaton is a local synchronous system, that evolves on a discrete regular space (line, grid).

Space-Time Diagram

Definition 2 (Global function) The global function of a cellular automata is the mapping $\tilde{f} : S^{\mathbb{Z}^d} \to S^{\mathbb{Z}^d}$ that maps a configuration C onto the image configuration $\tilde{f}(C)$:

$$\langle \mathbf{u} \rangle = f\left(\left\langle \mathbf{u} + \mathbf{x}^1 \right\rangle, \dots, \left\langle \mathbf{u} + \mathbf{x}^v \right\rangle \right)$$

Space-Time Diagram

Definition 2 (Global function) The global function of a cellular automata is the mapping $\tilde{f} : S^{\mathbb{Z}^d} \to S^{\mathbb{Z}^d}$ that maps a configuration C onto the image configuration $\tilde{f}(C)$:

$$\langle \mathbf{u} \rangle = f\left(\left\langle \mathbf{u} + \mathbf{x}^1 \right\rangle, \dots, \left\langle \mathbf{u} + \mathbf{x}^v \right\rangle \right)$$

Thus, a sequence of configurations can be defined by iteration. This sequence is called the space-time diagram of the cellular automaton.

Space-Time Diagram

Definition 2 (Global function) The global function of a cellular automata is the mapping $\tilde{f} : S^{\mathbb{Z}^d} \to S^{\mathbb{Z}^d}$ that maps a configuration C onto the image configuration $\tilde{f}(C)$:

$$\langle \mathbf{u} \rangle = f\left(\left\langle \mathbf{u} + \mathbf{x}^{1} \right\rangle, \dots, \left\langle \mathbf{u} + \mathbf{x}^{v} \right\rangle \right)$$

Thus, a sequence of configurations can be defined by iteration. This sequence is called the space-time diagram of the cellular automaton.

Why signals?

Wolfram created an empirical classification of CA in 4 classes: nilpotents, periodical behavior, random and complex.

This classification was meant to help studying dynamical behaviour of CA (especially in class IV).

فيرد والمستري الراقي المراجع المراجع

_

المحاف المراجع المراجع فالمحاف المحاج المراجع المراجع

-

Different neighbourhoods

Different neighbourhoods

Different neighbourhoods

Sample space-time diagram of a CA (9 states):

Sample space-time diagram of a CA (9 states):

Construction Partition the states.

Sample space-time diagram of a CA (9 states):

Construction Partition the states.

Sample space-time diagram of a CA (9 states):

Construction Partition the states.

Sample space-time diagram of a CA (9 states):

Increasing time

Construction Partition the states.

Detection Decide of a direction.

Support Use a finite automaton.

Definition 3 (Impulse CA) We shall use CA \mathcal{A} with two distinguished states, \square and \square such that $f(\square, ..., \square) =$ \square . We study the space-time diagram of \mathcal{A} applied to ∞ **Definition 3 (Impulse CA)** We shall use CA A with two distinguished states, and such that $f(\square, ..., \square) =$. We study the space-time diagram of A applied to ∞ .

Definition 4 (Signal) A V-signal Γ is a sequence of sites $\{(\mathbf{u}(t), t)\}_{t>0}$ such that

• $\mathbf{u}(0) = \mathbf{0}$.

• $\forall t \ge 0$: $\mathbf{u}(t+1) - \mathbf{u}(t) \in V$.

Definition 3 (Impulse CA) We shall use CA A with two distinguished states, and such that $f(\square, ..., \square) =$. We study the space-time diagram of A applied to ∞ .

Definition 4 (Signal) A V-signal Γ is a sequence of sites $\{(\mathbf{u}(t), t)\}_{t>0}$ such that

- $\mathbf{u}(0) = \mathbf{0}$.
- $\forall t \ge 0$: $\mathbf{u}(t+1) \mathbf{u}(t) \in V$.

Definition 5 (Base signals) *Base signals are the ultimately periodic signals.*

Doing fast signals

The 'fastest' signal one can find is the real-time signal:

Doing fast signals

The 'fastest' signal one can find is the real-time signal:

A signal 'defines' a function f , either by the signal $(n,n+f(n))\mbox{,}$

Doing fast signals

The 'fastest' signal one can find is the real-time signal:

A signal 'defines' a function f, either by the signal (n, n + f(n)), or by the signal $(n - f(n), n + f(n)) \implies$ ratio of the signal.

Non-basic fast signals construction

We show that not all signals can be generated.

Theorem 1 Let *A* be a *q*-states CA. It is not possible to suport a signal which is not ultimately periodic with a ratio smaller than:

• $\log_q(n)$ in dimension 1,

• $\log_{\text{lcm }1...q}(n)$ in higher dimension.

Dimension 1: periodic strips

We consider a strip of cells of width L. The strip can be cut into layers.

Dimension 1: periodic strips

We consider a strip of cells of width L. The strip can be cut into layers. Each layer is completely determined by the former layer.

Dimension 1: periodic strips

We consider a strip of cells of width L. The strip can be cut into layers. Each layer is completely determined by the former layer. Hence the periodicity.

Higher dimension: generalisation

 \mathcal{D}_{i} is defined as follows:

$$\mathcal{D}_{\mathbf{i}}^{t} = \langle t \cdot \mathbf{1} - \mathbf{i}, t \rangle$$
$$\mathcal{D}_{\mathbf{i}} = \begin{cases} (\mathcal{D}_{\mathbf{i}}^{t})_{t \geq \lceil \max(i_{1}, \dots, i_{k})/2 \rceil} & \text{if } \mathbf{i} \in \mathbf{N}^{k} \\ \lambda^{\infty} & \text{else.} \end{cases}$$

• \mathcal{D}_0 is the real-time signal.

Higher dimension: generalisation

 \mathcal{D}_i is defined as follows:

$$\mathcal{D}_{\mathbf{i}}^t = \langle t \cdot \mathbf{1} - \mathbf{i}, t \rangle$$

 $\mathcal{D}_{\mathbf{i}} = \begin{cases} (\mathcal{D}_{\mathbf{i}}^t)_{t \geq \lceil \max(i_1, \dots, i_k)/2 \rceil} & \text{if } \mathbf{i} \in \mathbf{N}^k \\ \lambda^{\infty} & \text{else.} \end{cases}$

• \mathcal{D}_0 is the real-time signal.
Higher dimension: generalisation

 $\mathcal{D}_i \text{ is defined as follows:}$

$$\mathcal{D}_{\mathbf{i}}^t = \langle t \cdot \mathbf{1} - \mathbf{i}, t \rangle$$

 $\mathcal{D}_{\mathbf{i}} = \begin{cases} (\mathcal{D}_{\mathbf{i}}^t)_{t \ge \lceil \max(i_1, \dots, i_k)/2 \rceil} & \text{if } \mathbf{i} \in \mathbf{N}^k \\ \lambda^{\infty} & \text{else.} \end{cases}$

• \mathcal{D}_0 is the real-time signal.

 Infinite words, defined starting with a potentially nonquiescent state.

Higher dimension: generalisation

 $\mathcal{D}_i \text{ is defined as follows:}$

$$\mathcal{D}_{\mathbf{i}}^t = \langle t \cdot \mathbf{1} - \mathbf{i}, t \rangle$$

 $\mathcal{D}_{\mathbf{i}} = \begin{cases} (\mathcal{D}_{\mathbf{i}}^t)_{t \ge \lceil \max(i_1, \dots, i_k)/2 \rceil} & \text{if } \mathbf{i} \in \mathbf{N}^k \\ \lambda^{\infty} & \text{else.} \end{cases}$

• \mathcal{D}_0 is the real-time signal.

 Infinite words, defined starting with a potentially nonquiescent state.

As $\mathcal{D}_{\mathbf{i}}^{t+1}$ is a function of $\mathcal{D}_{\mathbf{i}-\mathbf{x}-1}^{t}$ for $\mathbf{x} \in V_{Moore}$,

As $\mathcal{D}_{\mathbf{i}}^{t+1}$ is a function of $\mathcal{D}_{\mathbf{i}-\mathbf{x}-1}^{t}$ for $\mathbf{x} \in V_{Moore}$,

 $\begin{aligned} \mathcal{D}_{i-x-1} \text{ is periodic } (\mathbf{x} \in V_{\text{Moore}}) \\ \Rightarrow \mathcal{D}_i \text{ is periodic.} \end{aligned}$

 \mathcal{D}_{i-x-1} is periodic ($x \in V_{Moore}$) $\Rightarrow \mathcal{D}_i$ is periodic. The periods do collapse: $2, 3, 5, 6, 10 \Rightarrow 30$ and not 1800. Therefore, the period of the 8-tuple is the lcm of the periods.

 \mathcal{D}_{i-x-1} is periodic ($x \in V_{Moore}$) $\Rightarrow \mathcal{D}_i$ is periodic. The periods do collapse: $2, 3, 5, 6, 10 \Rightarrow 30$ and not 1800. Therefore, the period of the 8-tuple is the lcm of the periods.

 \Rightarrow Thus, each period divides $lcm(1, \ldots, q)^k$.

States reduction: logarithm

Let $\ell(t) = \lfloor \log_2(t+1) \rfloor$. It is possible to detect the signal $\Gamma = (t - \ell(t), t - \ell(t), t + \ell(t))$ with trellis neighbourhood.

a	b	с	d	f(a,b,c,d)	Rule #	a h
λ	λ	λ	λ	λ	#o	the ce
1	λ	λ	λ	0	#1	tive co
0	λ	λ	λ	1	#2	
λ	λ	0	1	1	#3	• a
1	λ	0	1	0	#4	- Aller
0	λ	0	1	1	#5	• bi
1	λ	1	0	1 /	#6	Nº G
1	λ	0	0	1	#7	
0	λ	1	0	0	#8	• •
0	λ	0	0	0	#9	1
*	1	λ	*	1	#10	• a
*	1	1	*	1 1/2	#11	The ru
*	1	0	*	0	#12	by or
*	0	*	*	0	#13	dence
*	*	*	*	λ	#14	achiec

= 10- 21- 21-
a, b , c and d are
the cells with rela-
tive coordinates:
• a is $\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$,
• b is $\begin{pmatrix} -1\\ 1\\ -1 \end{pmatrix}$,
• c is $\begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}$,
• d is $\begin{pmatrix} 1\\ -1\\ -1 \end{pmatrix}$.
The rules are sorted
by order of prece-

States reduction: logarithm

Let $\ell(t) = \lfloor \log_2(t+1) \rfloor$. It is possible to detect the signal $\Gamma = (t - \ell(t), t - \ell(t), t + \ell(t))$ with trellis neighbourhood.

a	b	с	d	f(a,b,c,d)	Rule #
λ	λ	λ	λ	λ	#o
1	λ	λ	λ	0	#1
0	λ	λ	λ	11728	#2
λ	λ	0	1	1	#3
1	λ	0	1	0	#4
0	λ	0	1	1	#5
1	λ	1	0	1 1	#6
1	λ	0	0	1	#7
0	λ	1	0	0	#8
0	λ	0	0	0	#9
*	1	λ	*	1	#10
*	1	1	*	1 1/2	#11
*	1	0	*	0	#12
*	0	*	*	0	#13
*	*	*	*	λ	#14

a, b, c and d are the cells with relative coordinates: • $a ext{ is } \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$, • $b ext{ is } \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$, • $c ext{ is } \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$, • $d ext{ is } \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$. The rules are corted

The rules are sorted by order of precedence. 2 states $+ \lambda$ (dimension 2) 3 states $+ \lambda$ (dimension 1)

Optimal result: 2 states \Rightarrow impossible in dimension 2 or 1

3D representation of the first steps

Enhancement: any basis

 \Rightarrow Let x and y be numbers such that gcd(x, y) = 1.

a	b	С	d	f(a,b,c,d)		Rule #
λ	λ	λ	λ	λ		#o
Rules for $l = 0$						
π_j	λ	λ	λ	π_{j+1}	(or π_1 if $j = k$)	#1
π_x	λ	π_k	κ_{\star}	π_0	$(k \neq x)$	#2
π_j	λ	π_k	κ_{\star}	π_j	$(j, k \neq x)$	#3
π_x	λ	π_x	κ_k	π_0	$(k \neq y - 1)$	#4
π_j	λ	π_x	κ_k	π_j	$(j \neq x, k \neq y - 1)$	#5
π_j	λ	π_x	κ_{y-1}	π_{j+1}	(or π_1 if $j = k$)	#6
λ	λ	π_x	κ_{y-1}	π_1		#7
Rules for $l = 1$						
κ_{y-1}	π_x	λ,κ_y	λ	κ_y	Hich The It	#8
κ_{y-1}	π_k	λ,κ_y	λ	κ_0	$(k \neq x)$	#9
κ_y	π_{\star}	λ,κ_y	λ	κ_1		#10
κ_j	π_{\star}	λ,κ_y	λ	κ_{j+1}	$(j \neq y - 1, y)$	#11
κ_y	π_{\star}	κ_k	λ	κ_0	$(k \neq y)$	#12
κ_j	π_{\star}	κ_k	λ	κ_j	$(j \neq y, k \neq y)$	#13
λ	π_1	λ,κ_y	λ	κ_1		#14
*	*	*	*	λ	212 1 1 1 1 1	#15

Function \log_{xy} in $\max(x, y) + 2$ states (with minor enhancement).

 $\Rightarrow \text{ Clear gain} \\ \text{over 1D (at least} \\ xy + 1 \text{ states).} \end{cases}$

Gap for signal construction, independently of the dimension;

- Gap for signal construction, independently of the dimension;
- Conjecture: the number of states necessary to build \log_a is related to the decomposition of a with prime numbers;

- Gap for signal construction, independently of the dimension;
- Conjecture: the number of states necessary to build \log_a is related to the decomposition of a with prime numbers;
- Possible link between the constructible signals and OCA recognisable languages.

- Gap for signal construction, independently of the dimension;
- Conjecture: the number of states necessary to build \log_a is related to the decomposition of a with prime numbers;
- Possible link between the constructible signals and OCA recognisable languages.

Functions equivalent to integer logarithm:

- Gap for signal construction, independently of the dimension;
- Conjecture: the number of states necessary to build \log_a is related to the decomposition of a with prime numbers;
- Possible link between the constructible signals and OCA recognisable languages.
 - Functions equivalent to integer logarithm:
 - Non-integer logarithms,

- Gap for signal construction, independently of the dimension;
- Conjecture: the number of states necessary to build \log_a is related to the decomposition of a with prime numbers;
- Possible link between the constructible signals and OCA recognisable languages.
 - Functions equivalent to integer logarithm:
 - Non-integer logarithms,
 - Other functions (lcm inverse function).