Transcendence in the enumeration of lattice walks

Alin Bostan

Combinatorics and Arithmetic for Physics

IHES, October 24, 2018

Alin Bostan

Transcendence in the enumeration of lattice walks

An influential little yellow book

ations of Mathem Modelling

40

Guy Fayolle Roudolf Iasnogorodski Vadim Malyshev

Random Walks in the Quarter-Plane

Algebraic Methods, Boundary Value Problems and Applications

Springer

Probability Theory and Stochastic Modelling 40

Guy Fayolle Roudolf Iasnogorodski Vadim Malyshev

Random Walks in the Quarter Plane

Algebraic Methods, Boundary Value Problems, Applications to Queueing Systems and Analytic Combinatorics

Second Edition

Alin Bostan

... with some combinatorial flavors in the second edition

11	1 Counting Lattice Walks in the Quarter Plane		221
	11.1	A Functional Equation for a Tri-Variate CGF	222
	11.2	Group Classification of the 79 Main Random Walks	224
	11.3	Holonomy and Algebraicity of the Generating Functions	225
	11.4	The Nature of the Counting Generating Functions	227

Lattice walks with small steps in the quarter plane

▷ Nearest-neighbor walks in the quarter plane: walks in \mathbb{N}^2 starting at (0,0) and using steps in a *fixed* subset \mathfrak{S} of

 $\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}.$

▷ Counting sequence $f_{\mathfrak{S}}(n; i, j)$: number of walks of length *n* ending at (i, j).

▷ Complete generating function:

$$F_{\mathfrak{S}}(t;x,y) = \sum_{i,j,n=0}^{\infty} f_{\mathfrak{S}}(n;i,j) x^{i} y^{j} t^{n} \in \mathbb{Q}[[x,y,t]].$$

Among the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

Among the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

Among the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

simple,

Among the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

Among the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

symmetrical.

Among the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

intrinsic to the

half plane,

symmetrical.

One is left with 79 interesting distinct models.

simple,

Alin Bostan Transcendence in the enumeration of lattice walks

The 79 models

Task: classify their generating functions!

Non-singular

$$S(t) = \sum_{n=0}^{\infty} s_n t^n \in \mathbb{Q}[[t]]$$
 is

▷ algebraic if P(t, S(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$;

$$S(t) = \sum_{n=0}^{\infty} s_n t^n \in \mathbb{Q}[[t]]$$
 is

▷ algebraic if P(t, S(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$;

 \triangleright *D-finite* if $c_r(t)S^{(r)}(t) + \cdots + c_0(t)S(t) = 0$ for some $c_i \in \mathbb{Z}[t]$, not all zero;

$$S(t) = \sum_{n=0}^{\infty} s_n t^n \in \mathbb{Q}[[t]]$$
 is

▷ algebraic if P(t, S(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$;

 \triangleright *D-finite* if $c_r(t)S^{(r)}(t) + \cdots + c_0(t)S(t) = 0$ for some $c_i \in \mathbb{Z}[t]$, not all zero;

▷ hypergeometric if $\frac{s_{n+1}}{s_n} \in \mathbb{Q}(n)$.

 $S(t) = \sum_{n=0}^{\infty} s_n t^n \in \mathbb{Q}[[t]]$ is

▷ algebraic if P(t, S(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$;

 \triangleright *D-finite* if $c_r(t)S^{(r)}(t) + \cdots + c_0(t)S(t) = 0$ for some $c_i \in \mathbb{Z}[t]$, not all zero;

▷ hypergeometric if $\frac{s_{n+1}}{s_n} \in \mathbb{Q}(n)$. E.g.,

$$\ln(1-t); \quad \frac{\arcsin(\sqrt{t})}{\sqrt{t}}; \quad (1-t)^{\alpha}, \alpha \in \mathbb{Q}$$

 $S(t) = \sum_{n=0}^{\infty} s_n t^n \in \mathbb{Q}[[t]]$ is

▷ algebraic if P(t, S(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$;

 \triangleright *D-finite* if $c_r(t)S^{(r)}(t) + \cdots + c_0(t)S(t) = 0$ for some $c_i \in \mathbb{Z}[t]$, not all zero;

▷ hypergeometric if $\frac{s_{n+1}}{s_n} \in \mathbb{Q}(n)$. E.g.,

$${}_{2}F_{1}\begin{pmatrix}a & b \\ c \end{pmatrix} t = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!}, \quad (a)_{n} = a(a+1)\cdots(a+n-1).$$

 $S(t) = \sum_{n=0}^{\infty} s_n t^n \in \mathbb{Q}[[t]]$ is

▷ algebraic if P(t, S(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$;

 \triangleright *D-finite* if $c_r(t)S^{(r)}(t) + \cdots + c_0(t)S(t) = 0$ for some $c_i \in \mathbb{Z}[t]$, not all zero;

▷ hypergeometric if $\frac{s_{n+1}}{s_n} \in \mathbb{Q}(n)$. E.g.,

$${}_{2}F_{1}\left(\frac{\frac{1}{2}}{1}\frac{\frac{1}{2}}{1}\middle|t\right) = \frac{2}{\pi}\int_{0}^{1}\frac{dx}{\sqrt{(1-x^{2})(1-tx^{2})}}.$$

▷ $S \in \mathbb{Q}[[x, y, t]]$ is algebraic if it is the root of a polynomial $P \in \mathbb{Q}[x, y, t, T]$;

▷ $S \in \mathbb{Q}[[x, y, t]]$ is algebraic if it is the root of a polynomial $P \in \mathbb{Q}[x, y, t, T]$;

▷ $S \in \mathbb{Q}[[x, y, t]]$ is *D*-finite if it satisfies a system of linear partial differential equations with polynomial coefficients

$$\sum_{i} a_i(t, x, y) \frac{\partial^i S}{\partial x^i} = 0, \quad \sum_{i} b_i(t, x, y) \frac{\partial^i S}{\partial y^i} = 0, \quad \sum_{i} c_i(t, x, y) \frac{\partial^i S}{\partial t^i} = 0.$$

• k(n; i, j) = number of *n*-step { $\downarrow, \leftarrow, \nearrow$ }-walks in \mathbb{N}^2 from (0,0) to (*i*, *j*)

Question: What is the nature of the generating function $K(t; x, y) = \sum_{i,j,n=0}^{\infty} k(n; i, j) x^{i} y^{j} t^{n} \in \mathbb{Q}[[x, y, t]]?$

Theorem K(t; x, y) is an algebraic function.

- \rightarrow First proof [Gessel, 1986]: (human) Guess'n'Prove
- \rightarrow Similar result for GF of invariant measure[†] [Flatto and Hahn, 1984]: complex analysis, elliptic functions, Riemann surfaces
- \rightarrow Many other proofs, most inspired by the little yellow book!

⁺ a system of two parallel queues with two demands (continuous time)

• g(n; i, j) = number of *n*-step { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in \mathbb{N}^2 from (0, 0) to (*i*, *j*)

Question: What is the nature of the generating function $G(t; x, y) = \sum_{i,j,n=0}^{\infty} g(n; i, j) x^{i} y^{j} t^{n} \in \mathbb{Q}[[x, y, t]]?$

Theorem G(t; x, y) is an algebraic function[†].

- \rightarrow First proof [B.-Kauers, 2010]: effective, computer-driven discovery/proof
- \rightarrow Several recent (human) proofs, most inspired by the little yellow book!

+ Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has $> 10^{11}$ terms; ≈ 30 Gb (!)

Algebraic reformulation: solving a functional equation

Generating function:
$$G(t; x, y) = \sum_{i,j,n=0}^{\infty} g(n; i, j) x^i y^j t^n \in \mathbb{Q}[[x, y, t]]$$

"Kernel equation":

$$G(t; x, y) = 1 + t \left(xy + x + \frac{1}{xy} + \frac{1}{x} \right) G(t; x, y)$$

- $t \left(\frac{1}{x} + \frac{1}{x} \frac{1}{y} \right) G(t; 0, y) - t \frac{1}{xy} \left(G(t; x, 0) - G(t; 0, 0) \right)$

Algebraic reformulation: solving a functional equation

Generating function:
$$G(t; x, y) = \sum_{i,j,n=0}^{\infty} g(n; i, j) x^i y^j t^n \in \mathbb{Q}[[x, y, t]]$$

"Kernel equation":

$$G(t; x, y) = 1 + t\left(xy + x + \frac{1}{xy} + \frac{1}{x}\right)G(t; x, y)$$
$$- t\left(\frac{1}{x} + \frac{1}{x}\frac{1}{y}\right)G(t; 0, y) - t\frac{1}{xy}\left(G(t; x, 0) - G(t; 0, 0)\right)$$

Task: Solve this functional equation!

Algebraic reformulation: solving a functional equation

Generating function:
$$G(t; x, y) = \sum_{i,j,n=0}^{\infty} g(n; i, j) x^i y^j t^n \in \mathbb{Q}[[x, y, t]]$$

"Kernel equation":

$$G(t; x, y) = 1 + t\left(xy + x + \frac{1}{xy} + \frac{1}{x}\right)G(t; x, y)$$
$$- t\left(\frac{1}{x} + \frac{1}{x}\frac{1}{y}\right)G(t; 0, y) - t\frac{1}{xy}\left(G(t; x, 0) - G(t; 0, 0)\right)$$

Task: For the other models – solve 78 similar equations!

A crucial tool: the group of a model

The generating polynomial $\chi_{\mathfrak{S}} := x + \frac{1}{x} + y + \frac{1}{y}$

A crucial tool: the group of a model

The generating polynomial $\chi_{\mathfrak{S}} := x + \frac{1}{x} + y + \frac{1}{y}$ is left invariant under

$$\psi(x,y) = \left(x, \frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{1}{x}, y\right),$$

A crucial tool: the group of a model

The generating polynomial $\chi_{\mathfrak{S}} := x + \frac{1}{x} + y + \frac{1}{y}$ is left invariant under

$$\psi(x,y) = \left(x, \frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{1}{x}, y\right),$$

and thus under any element of the group

$$\langle \psi, \phi \rangle = \left\{ (x,y), \left(x, \frac{1}{y}\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(\frac{1}{x}, y\right) \right\}.$$

The group of a model: the general case

The generating polynomial
$$\chi_{\mathfrak{S}} := \sum_{(i,j)\in\mathfrak{S}} x^i y^j = \sum_{i=-1}^1 B_i(y) x^i = \sum_{j=-1}^1 A_j(x) y^j$$

The group of a model: the general case

The generating polynomial $\chi_{\mathfrak{S}} := \sum_{(i,j) \in \mathfrak{S}} x^i y^j = \sum_{i=-1}^1 B_i(y) x^i = \sum_{j=-1}^1 A_j(x) y^j$

is left invariant under the birational involutions

$$\psi(x,y) = \left(x, \frac{A_{-1}(x)}{A_{+1}(x)}\frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{B_{-1}(y)}{B_{+1}(y)}\frac{1}{x}, y\right),$$

The group of a model: the general case

The generating polynomial $\chi_{\mathfrak{S}} := \sum_{(i,j)\in\mathfrak{S}} x^i y^j = \sum_{i=-1}^1 B_i(y) x^i = \sum_{j=-1}^1 A_j(x) y^j$ is left invariant under the birational involutions

 $\psi(x,y) = \left(x, \frac{A_{-1}(x)}{A_{+1}(x)}\frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{B_{-1}(y)}{B_{+1}(y)}\frac{1}{x}, y\right),$

and thus under any element of the (dihedral) group

$$\mathcal{G}_{\mathfrak{S}} := \langle \psi, \phi \rangle.$$

Order 4,

Order 4,

order 6,

Examples of groups

Another important concept: the orbit sum (OS)

When $\mathcal{G}_{\mathfrak{S}}$ is finite, the orbit sum of \mathfrak{S} is the polynomial in $\mathbb{Q}[x, x^{-1}, y, y^{-1}]$:

$$OS_{\mathfrak{S}} := \sum_{\theta \in \mathcal{G}_{\mathfrak{S}}} (-1)^{\theta} \theta(xy)$$

▷ E.g., for the simple walk, with $\mathcal{G}_{\mathfrak{S}} = \left\{ (x, y), (x, \frac{1}{y}), (\frac{1}{x}, \frac{1}{y}), (\frac{1}{x}, y) \right\}$:

$$OS = x \cdot y - \frac{1}{x} \cdot y + \frac{1}{x} \cdot \frac{1}{y} - x \cdot \frac{1}{y}$$

▷ For 4 models, the orbit sum is zero:

E.g., for the Kreweras model:

OS
$$x \cdot y - \frac{1}{xy} \cdot y + \frac{1}{xy} \cdot x - y \cdot x + y \cdot \frac{1}{xy} - x \cdot \frac{1}{xy} = 0$$

Theorem

Let \mathfrak{S} be one of the 74 non-singular models of small-step walks in \mathbb{N}^2 . The following assertions are equivalent:

- (1) the full generating function $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating function $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^{\star} \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\})$
- (5) $\exists I \in \mathbb{Q}(x,t), J \in \mathbb{Q}(y,t) \text{ s.t. } I(x) = J(y) \text{ on the curve } \chi_{\mathfrak{S}}(x,y) = \frac{1}{t}.$
- (6) the step set \mathfrak{S} has either an axial symmetry, or zero drift and $|\mathfrak{S}| \neq 5$.

Theorem

Let \mathfrak{S} be one of the 74 non-singular models of small-step walks in \mathbb{N}^2 . The following assertions are equivalent:

- (1) the full generating function $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating function $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^* \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\}$)
- (5) $\exists I \in \mathbb{Q}(x,t), J \in \mathbb{Q}(y,t) \text{ s.t. } I(x) = J(y) \text{ on the curve } \chi_{\mathfrak{S}}(x,y) = \frac{1}{t}.$
- (6) the step set \mathfrak{S} has either an axial symmetry, or zero drift and $|\mathfrak{S}| \neq 5$.

Moreover, under (1)–(5): $F_{\mathfrak{S}}(t; x, y)$ is algebraic $\iff OS_{\mathfrak{S}} = 0 \iff \exists U \in \mathbb{Q}(x, t), V \in \mathbb{Q}(y, t)$ s.t. U(x) + V(y) = xy on the curve $\chi_{\mathfrak{S}}(x, y) = \frac{1}{t}$.

Theorem

Let \mathfrak{S} be one of the 74 non-singular models of small-step walks in \mathbb{N}^2 . The following assertions are equivalent:

- (1) the full generating function $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating function $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^* \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\})$
- (5) $\exists I \in \mathbb{Q}(x,t), J \in \mathbb{Q}(y,t) \text{ s.t. } I(x) = J(y) \text{ on the curve } \chi_{\mathfrak{S}}(x,y) = \frac{1}{t}.$
- (6) the step set \mathfrak{S} has either an axial symmetry, or zero drift and $|\mathfrak{S}| \neq 5$.

Moreover, under (1)–(5): $F_{\mathfrak{S}}(t; x, y)$ is algebraic \iff OS $_{\mathfrak{S}} = 0 \iff$ $\exists U \in \mathbb{Q}(x, t), V \in \mathbb{Q}(y, t)$ s.t. U(x) + V(y) = xy on the curve $\chi_{\mathfrak{S}}(x, y) = \frac{1}{t}$. In this case, $F_{\mathfrak{S}}(t; x, y)$ is expressible using nested radicals.

Theorem

Let \mathfrak{S} be one of the 74 non-singular models of small-step walks in \mathbb{N}^2 . The following assertions are equivalent:

- (1) the full generating function $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating function $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^* \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\})$
- (5) $\exists I \in \mathbb{Q}(x,t), J \in \mathbb{Q}(y,t) \text{ s.t. } I(x) = J(y) \text{ on the curve } \chi_{\mathfrak{S}}(x,y) = \frac{1}{t}.$
- (6) the step set \mathfrak{S} has either an axial symmetry, or zero drift and $|\mathfrak{S}| \neq 5$.

Moreover, under (1)–(5): $F_{\mathfrak{S}}(t; x, y)$ is algebraic \iff OS $_{\mathfrak{S}} = 0 \iff$ $\exists U \in \mathbb{Q}(x, t), V \in \mathbb{Q}(y, t)$ s.t. U(x) + V(y) = xy on the curve $\chi_{\mathfrak{S}}(x, y) = \frac{1}{t}$. In this case, $F_{\mathfrak{S}}(t; x, y)$ is expressible using nested radicals. If not, $F_{\mathfrak{S}}(t; x, y)$ is expressible using iterated integrals of $_2F_1$ expressions.

Theorem

Let \mathfrak{S} be one of the 74 non-singular models of small-step walks in \mathbb{N}^2 . The following assertions are equivalent:

- (1) the full generating function $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating function $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^* \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\})$
- (5) $\exists I \in \mathbb{Q}(x,t), J \in \mathbb{Q}(y,t) \text{ s.t. } I(x) = J(y) \text{ on the curve } \chi_{\mathfrak{S}}(x,y) = \frac{1}{t}.$
- (6) the step set \mathfrak{S} has either an axial symmetry, or zero drift and $|\mathfrak{S}| \neq 5$.

Moreover, under (1)–(5): $F_{\mathfrak{S}}(t; x, y)$ is algebraic \iff OS $_{\mathfrak{S}} = 0 \iff$ $\exists U \in \mathbb{Q}(x, t), V \in \mathbb{Q}(y, t)$ s.t. U(x) + V(y) = xy on the curve $\chi_{\mathfrak{S}}(x, y) = \frac{1}{t}$. In this case, $F_{\mathfrak{S}}(t; x, y)$ is expressible using nested radicals.

If not, $F_{\mathfrak{S}}(t; x, y)$ is expressible using iterated integrals of $_2F_1$ expressions.

▷ Many contributors (2010–2018): Bernardi, B., Bousquet-Mélou, Chyzak, Denisov, van Hoeij, Kauers, Kurkova, Mishna, Pech, Raschel, Salvy, Wachtel

Theorem

Let \mathfrak{S} be one of the 74 non-singular models of small-step walks in \mathbb{N}^2 . The following assertions are equivalent:

- (1) the full generating function $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating function $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^* \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\})$
- (5) $\exists I \in \mathbb{Q}(x,t), J \in \mathbb{Q}(y,t) \text{ s.t. } I(x) = J(y) \text{ on the curve } \chi_{\mathfrak{S}}(x,y) = \frac{1}{t}.$
- (6) the step set \mathfrak{S} has either an axial symmetry, or zero drift and $|\mathfrak{S}| \neq 5$.

Moreover, under (1)–(5): $F_{\mathfrak{S}}(t; x, y)$ is algebraic \iff OS $_{\mathfrak{S}} = 0 \iff$ $\exists U \in \mathbb{Q}(x, t), V \in \mathbb{Q}(y, t)$ s.t. U(x) + V(y) = xy on the curve $\chi_{\mathfrak{S}}(x, y) = \frac{1}{t}$. In this case, $F_{\mathfrak{S}}(t; x, y)$ is expressible using nested radicals. If not, $F_{\mathfrak{S}}(t; x, y)$ is expressible using iterated integrals of $_2F_1$ expressions.

▷ Proof uses various tools: algebra, complex analysis, probability theory, computer algebra, etc.

Example with infinite group: the scarecrows

[B., Raschel, Salvy, 2014]: $F_{\mathfrak{S}}(t;0,0)$ is not D-finite for the models

▷ For the 1st and the 3rd, the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$

1, 0, 0, 2, 4, 8, 28, 108, 372, ...

is $\sim K \cdot 5^n \cdot n^{-\alpha}$, with $\alpha = 1 + \pi / \arccos(1/4) = 3.383396...$ [Denisov, Wachtel, 2015]

▷ The irrationality of α prevents $F_{\mathfrak{S}}(t;0,0)$ from being D-finite. [Katz, 1970; Chudnovsky, 1985; André, 1989]

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$
 is invariant under the change of (x, y) into, respectively:

$$\left(\frac{1}{x},y\right),\left(\frac{1}{x},\frac{1}{y}\right),\left(x,\frac{1}{y}\right).$$

The kernel $\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is invariant under the change of (x, y) into, respectively:

$$\left(\frac{1}{x},y\right),\left(\frac{1}{x},\frac{1}{y}\right),\left(x,\frac{1}{y}\right).$$

$$\mathcal{K}(t;x,y)xyF(t;x,y) = xy - txF(t;x,0) - tyF(t;0,y)$$

The kernel $\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is invariant under the change of (x, y) into, respectively:

$$\left(\frac{1}{x},y\right),\left(\frac{1}{x},\frac{1}{y}\right),\left(x,\frac{1}{y}\right).$$

$$\mathcal{K}(t;x,y)xyF(t;x,y) = xy - txF(t;x,0) - tyF(t;0,y) -\mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) = -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y)$$

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$

is invariant under the change of (x, y) into, respectively:
 $\left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right).$

$$\begin{aligned} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ - \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ \mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \end{aligned}$$

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$

is invariant under the change of (x, y) into, respectively:
 $\left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right).$

$$\begin{split} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ - \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ \mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \\ - \mathcal{K}(t;x,y)x\frac{1}{y}F(t;x,\frac{1}{y}) &= -x\frac{1}{y} + txF(t;x,0) + t\frac{1}{y}F(t;0,\frac{1}{y}) \end{split}$$

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$

is invariant under the change of (x, y) into, respectively:
 $\left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right).$

Kernel equation:

$$\begin{split} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ - \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ \mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \\ - \mathcal{K}(t;x,y)x\frac{1}{y}F(t;x,\frac{1}{y}) &= -x\frac{1}{y} + txF(t;x,0) + t\frac{1}{y}F(t;0,\frac{1}{y}) \end{split}$$

Summing up yields the orbit equation:

$$\sum_{\theta \in \mathcal{G}} (-1)^{\theta} \theta \left(xy F(t; x, y) \right) = \frac{xy - \frac{1}{x}y + \frac{1}{x}\frac{1}{y} - x\frac{1}{y}}{\mathcal{K}(t; x, y)}$$

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$

is invariant under the change of (x, y) into, respectively:
 $\left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right).$

Kernel equation:

$$\begin{split} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ - \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ \mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \\ - \mathcal{K}(t;x,y)x\frac{1}{y}F(t;x,\frac{1}{y}) &= -x\frac{1}{y} + txF(t;x,0) + t\frac{1}{y}F(t;0,\frac{1}{y}) \end{split}$$

Taking positive parts yields:

$$[x^{>}y^{>}] \sum_{\theta \in \mathcal{G}} (-1)^{\theta} \theta \left(xy F(t;x,y) \right) = [x^{>}y^{>}] \frac{xy - \frac{1}{x}y + \frac{1}{x}\frac{1}{y} - x\frac{1}{y}}{\mathcal{K}(t;x,y)}$$

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$

is invariant under the change of (x, y) into, respectively:
 $\left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right).$

Kernel equation:

$$\begin{split} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ &- \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ &\mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \\ &- \mathcal{K}(t;x,y)x\frac{1}{y}F(t;x,\frac{1}{y}) &= -x\frac{1}{y} + txF(t;x,0) + t\frac{1}{y}F(t;0,\frac{1}{y}) \end{split}$$

Summing up and taking positive parts yields: $xy F(t;x,y) = [x^{>}y^{>}] \frac{xy - \frac{1}{x}y + \frac{1}{x}\frac{1}{y} - x\frac{1}{y}}{\mathcal{K}(t;x,y)}$

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$
 is invariant under the change of (x, y) into, respectively:

$$\left(\frac{1}{x},y\right),\left(\frac{1}{x},\frac{1}{y}\right),\left(x,\frac{1}{y}\right).$$

$$\begin{split} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ - \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ \mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \\ - \mathcal{K}(t;x,y)x\frac{1}{y}F(t;x,\frac{1}{y}) &= -x\frac{1}{y} + txF(t;x,0) + t\frac{1}{y}F(t;0,\frac{1}{y}) \end{split}$$

$$\mathsf{GF} = \mathsf{PosPart}\left(\frac{\mathsf{OS}}{\mathsf{kernel}}\right)$$

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$
 is invariant under the change of (x, y) into, respectively:

$$\left(\frac{1}{x},y\right),\left(\frac{1}{x},\frac{1}{y}\right),\left(x,\frac{1}{y}\right).$$

$$\begin{split} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ - \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ \mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \\ - \mathcal{K}(t;x,y)x\frac{1}{y}F(t;x,\frac{1}{y}) &= -x\frac{1}{y} + txF(t;x,0) + t\frac{1}{y}F(t;0,\frac{1}{y}) \end{split}$$

$$\mathsf{GF} = \mathsf{PosPart}\left(\frac{\mathsf{OS}}{\mathsf{ker}}\right) \text{ is D-finite [Lipshitz, 1988]}$$

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$
 is invariant under the change of (x, y) into, respectively:

$$\left(\frac{1}{x},y\right),\left(\frac{1}{x},\frac{1}{y}\right),\left(x,\frac{1}{y}\right).$$

Kernel equation:

$$\begin{split} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ - \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ \mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \\ - \mathcal{K}(t;x,y)x\frac{1}{y}F(t;x,\frac{1}{y}) &= -x\frac{1}{y} + txF(t;x,0) + t\frac{1}{y}F(t;0,\frac{1}{y}) \end{split}$$

$$\mathsf{GF} = \mathsf{PosPart}\left(\frac{\mathsf{OS}}{\mathsf{ker}}\right) \text{ is D-finite [Lipshitz, 1988]}$$

 \triangleright Argument works if OS \neq 0: algebraic version of the reflection principle

The kernel
$$\mathcal{K} = 1 - t \cdot \sum_{(i,j) \in \mathfrak{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$
 is invariant under the change of (x, y) into, respectively:

$$\left(\frac{1}{x},y\right),\left(\frac{1}{x},\frac{1}{y}\right),\left(x,\frac{1}{y}\right).$$

Kernel equation:

$$\begin{split} \mathcal{K}(t;x,y)xyF(t;x,y) &= xy - txF(t;x,0) - tyF(t;0,y) \\ - \mathcal{K}(t;x,y)\frac{1}{x}yF(t;\frac{1}{x},y) &= -\frac{1}{x}y + t\frac{1}{x}F(t;\frac{1}{x},0) + tyF(t;0,y) \\ \mathcal{K}(t;x,y)\frac{1}{x}\frac{1}{y}F(t;\frac{1}{x},\frac{1}{y}) &= \frac{1}{x}\frac{1}{y} - t\frac{1}{x}F(t;\frac{1}{x},0) - t\frac{1}{y}F(t;0,\frac{1}{y}) \\ - \mathcal{K}(t;x,y)x\frac{1}{y}F(t;x,\frac{1}{y}) &= -x\frac{1}{y} + txF(t;x,0) + t\frac{1}{y}F(t;0,\frac{1}{y}) \end{split}$$

$$\mathsf{GF} = \mathsf{PosPart}\left(\frac{\mathsf{OS}}{\mathsf{ker}}\right) \text{ is D-finite [Lipshitz, 1988]}$$

Creative Telescoping finds a differential equation for PosPart(OS/ker)

Models with D-Finite F(t; 1, 1)

	OEIS	S	Pol size	LDE size	Rec size		OEIS	S	Pol size	LDE size	Rec size
1	A005566	↔	_	(3, 4)	(2, 2)	13	A151275	\mathbf{X}	_	(5, 24)	(9, 18)
2	A018224	Х	—	(3, 5)	(2, 3)	14	A151314	₩	—	(5, 24)	(9, 18)
3	A151312	\mathbb{X}	—	(3, 8)	(4, 5)	15	A151255	Å	—	(4, 16)	(6, 8)
4	A151331	畿	—	(3, 6)	(3, 4)	16	A151287	捡	—	(5, 19)	(7, 11)
5	A151266	Ŷ	—	(5, 16)	(7, 10)	17	A001006	÷,	(2, 2)	(2, 3)	(2, 1)
6	A151307	₩	—	(5, 20)	(8, 15)	18	A129400	敎	(2, 2)	(2, 3)	(2, 1)
7	A151291	Ŷ	—	(5, 15)	(6, 10)	19	A005558		—	(3, 5)	(2, 3)
8	A151326	₩	—	(5, 18)	(7, 14)						
9	A151302	X	—	(5, 24)	(9, 18)	20	A151265	\checkmark	(6, 8)	(4, 9)	(6, 4)
10	A151329	罴	—	(5, 24)	(9, 18)	21	A151278		(6, 8)	(4, 12)	(7, 4)
11	A151261	i Âi	—	(4, 15)	(5, 8)	22	A151323	₩.	(4, 4)	(2, 3)	(2, 1)
12	A151297	鏉	_	(5, 18)	(7, 11)	23	A060900	¥.	(8, 9)	(3, 5)	(2, 3)

Equation sizes = (order, degree)

- ▷ Computerized discovery: enumeration + guessing [B., Kauers, 2009]
- ▷ 1–22: DF confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]
- ▷ 23: DF confirmed by a human proof in [B., Kurkova, Raschel, 2017]
- ▷ Explicit eqs. proved via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Models with D-Finite F(t; 1, 1)

	OEIS	S	algebraic?	asymptotics		OEIS	S	algebraic?	asymptotics
1	A005566	\Leftrightarrow	Ν	$\frac{4}{\pi} \frac{4^n}{n}$	13	A151275	X	Ν	$\frac{12\sqrt{30}}{\pi} \frac{(2\sqrt{6})^n}{n^2}$
2	A018224	Х	Ν	$\frac{2}{\pi} \frac{4^n}{n}$	14	A151314	\mathbf{X}	Ν	$\frac{\sqrt{6}\lambda\mu C^{5/2}}{5\pi}\frac{(2C)^n}{n^2}$
3	A151312	\mathbf{X}	Ν	$\frac{\sqrt{6}}{\pi} \frac{6^n}{n}$	15	A151255	λ.	Ν	$\frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2}$
4	A151331	畿	Ν	$\frac{8}{3\pi}\frac{8^n}{n}$	16	A151287	☆	Ν	$\frac{2\sqrt{2}A^{7/2}}{\pi} \frac{(2A)^n}{n^2}$
5	A151266	Ŷ	Ν	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{1/2}}$	17	A001006	₹Ţ,	Y	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{3/2}}$
6	A151307	₩	Ν	$\frac{1}{2}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	18	A129400	\	Y	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{3/2}}$
7	A151291	₩ 7	Ν	$\frac{4}{3\sqrt{\pi}}\frac{4^n}{n^{1/2}}$	19	A005558		Ν	$\frac{8}{\pi} \frac{4^n}{n^2}$
8	A151326	₩.	Ν	$\frac{2}{\sqrt{3\pi}} \frac{6^n}{n^{1/2}}$		$A = 1 + \sqrt{2}, B = 1 + \sqrt{3}, C$	$C = 1 + \sqrt{6}$, $\lambda = 7 + 3\sqrt{6}$,	$\mu = \sqrt{\frac{4\sqrt{6}-1}{19}}$
9	A151302	X	Ν	$\frac{1}{3}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	20	A151265	\checkmark	Y	$\frac{2\sqrt{2}}{\Gamma(1/4)} \frac{3^n}{n^{3/4}}$
10	A151329	翜	Ν	$\frac{1}{3}\sqrt{\frac{7}{3\pi}}\frac{7^n}{n^{1/2}}$	21	A151278		Y	$\frac{3\sqrt{3}}{\sqrt{2}\Gamma(1/4)}\frac{3^n}{n^{3/4}}$
11	A151261	Â	Ν	$\frac{12\sqrt{3}}{\pi}\frac{(2\sqrt{3})^n}{n^2}$	22	A151323	₩	Y	$\frac{\sqrt{23^{3/4}}}{\Gamma(1/4)} \frac{6^n}{n^{3/4}}$
12	A151297	銥	Ν	$\frac{\sqrt{3}B^{7/2}}{2\pi} \frac{(2B)^n}{n^2}$	23	A060900		Y	$\frac{4\sqrt{3}}{3\Gamma(1/3)}\frac{4^n}{n^{2/3}}$

▷ Computerized discovery: conv. acc. + LLL/PSLQ [B., Kauers, 2009]

▷ Asympt. confirmed by human proofs via ACSV in [Melczer, Wilson, 2016]

▷ Transcendence proofs via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Explicit expressions and transcendence for models 1-19

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let $\mathfrak S$ be one of the 19 models with finite group $\mathcal G_{\mathfrak S},$ and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of $_2F_1$ expressions.
- Among the 19 × 4 specializations of $F_{\mathfrak{S}}(t; x, y)$ at $(x, y) \in \{0, 1\}^2$, only 4 are algebraic: for $\mathfrak{S} = 4$ at (1, 1), and $\mathfrak{S} = 4$ at (1, 0), (0, 1), (1, 1)

Explicit expressions and transcendence for models 1–19

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let $\mathfrak S$ be one of the 19 models with finite group $\mathcal G_{\mathfrak S},$ and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of $_2F_1$ expressions.
- Among the 19 × 4 specializations of $F_{\mathfrak{S}}(t; x, y)$ at $(x, y) \in \{0, 1\}^2$, only 4 are algebraic: for $\mathfrak{S} = 4$ at (1, 1), and $\mathfrak{S} = 4$ at (1, 0), (0, 1), (1, 1)

Example (King walks in the quarter plane, A025595)

$$F_{\text{XXX}}(t;1,1) = \frac{1}{t} \int_0^t \frac{1}{(1+4x)^3} \cdot {}_2F_1\left(\frac{3}{2} \cdot \frac{3}{2} \left| \frac{16x(1+x)}{(1+4x)^2} \right| dx$$

 $= 1 + 3t + 18t^{2} + 105t^{3} + 684t^{4} + 4550t^{5} + 31340t^{6} + 219555t^{7} + \cdots$

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let $\mathfrak S$ be one of the 19 models with finite group $\mathcal G_{\mathfrak S},$ and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of $_2F_1$ expressions.
- Among the 19 × 4 specializations of $F_{\mathfrak{S}}(t; x, y)$ at $(x, y) \in \{0, 1\}^2$, only 4 are algebraic: for $\mathfrak{S} = 4$ at (1, 1), and $\mathfrak{S} = 4$ at (1, 0), (0, 1), (1, 1)

Example (King walks in the quarter plane, A025595)

$$F_{\text{XXX}}(t;1,1) = \frac{1}{t} \int_0^t \frac{1}{(1+4x)^3} \cdot {}_2F_1\left(\frac{3}{2} \frac{3}{2} \middle| \frac{16x(1+x)}{(1+4x)^2}\right) dx$$

 $= 1 + 3t + 18t^{2} + 105t^{3} + 684t^{4} + 4550t^{5} + 31340t^{6} + 219555t^{7} + \cdots$

Computer-driven discovery and proof; no human proof yet.
 Proof uses creative telescoping, ODE factorization, ODE solving.

Bonus: hypergeometric functions occurring in F(t; x, y)

	S	occurring $_2F_1$	w		S	occurring $_2F_1$	w
1	\Leftrightarrow	$_2F_1\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & w \end{pmatrix}$	$16t^{2}$	11		$_2F_1\left(\begin{array}{c c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array} \middle w\right)$	$\frac{16t^2}{4t^2+1}$
2	Х	$_2F_1\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right)$	$16t^{2}$	12	蘝	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array} \middle w\right)$	$\tfrac{64t^3(2t+1)}{(8t^2-1)^2}$
3	X	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	$\tfrac{64t^2}{(12t^2+1)^2}$	13	\mathbf{X}	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	$\tfrac{64t^2(t^2+1)}{(16t^2+1)^2}$
4	毲	$_2F_1\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right) $	$\frac{16t(t\!+\!1)}{(4t\!+\!1)^2}$	14	\bigotimes	$_2F_1\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	$\tfrac{64t^2(t^2+t+1)}{(12t^2+1)^2}$
5	Ŷ	$_{2}F_{1}\left(\begin{array}{c}1\\4\\1\end{array}\right)$	$64t^{4}$	15	$\dot{\mathbf{x}}$	$_2F_1\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	$64t^{4}$
6	₩	$_2F_1\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	$\tfrac{64t^3(t+1)}{(1-4t^2)^2}$	16	鈌	$_2F_1\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	$\tfrac{64t^3(t+1)}{(1-4t^2)^2}$
7	₩	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array} \middle w\right)$	$\tfrac{16t^2}{4t^2+1}$	17	₹,	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{3} & \frac{2}{3} \\ 1 \end{array}\right) w$	27 <i>t</i> ³
8	₩.	$_{2}F_{1}\left(\begin{array}{c}1\\4\\1\end{array}\right)$	$\tfrac{64t^3(2t+1)}{(8t^2-1)^2}$	18	敎	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{3} & \frac{2}{3} \\ 1 \end{array}\right) w$	$27t^2(2t+1)$
9	X	$_{2}F_{1}\left(\begin{array}{c}1\\4\\1\end{array}\right)$	$\tfrac{64t^2(t^2+1)}{(16t^2+1)^2}$	19	₹¥.	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right)$	$16t^{2}$
10	翜	$_{2}F_{1}\left(\begin{array}{c}1\\4\\1\end{array}\right)$	$\tfrac{64t^2(t^2+t+1)}{(12t^2+1)^2}$				

 \triangleright All related to the complete elliptic integrals $\int_0^{\pi/2} (1 - k^2 \sin^2 \theta)^{\pm \frac{1}{2}} d\theta$

Summary: walks with small steps in \mathbb{N}^2

Theorem: differential finiteness \iff finiteness of the group !

Extensions: Walks in \mathbb{N}^2 with small repeated steps

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017]

Extensions: Walks in \mathbb{N}^2 with small repeated steps

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017]

Question: differential finiteness ↔ finiteness of the group?
Answer: probably yes

Extensions: walks with small steps in \mathbb{N}^3

 $2^{3^3-1}\approx 67$ million models, of which ≈ 11 million inherently 3D

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017]; completed by [Bacher, Kauers, Yatchak, 2016]

Extensions: walks with small steps in \mathbb{N}^3

 $2^{3^3-1} \approx 67$ million models, of which ≈ 11 million inherently 3D

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017]; completed by [Bacher, Kauers, Yatchak, 2016]

Question: differential finiteness \iff finiteness of the group?

Answer: probably no

19 mysterious 3D-models

Open question: 3D Kreweras

Two different computations suggest: $k_{4n} \approx C \cdot 256^n / n^{3.3257570041744...},$

so excursions are very probably transcendental (and even non-D-finite)

Extensions: Walks in \mathbb{N}^2 with large steps

[B., Bousquet-Mélou, Melczer, 2018]

• Example: For the model $xyF(t;x,y) = [x^{>0}y^{>0}] \frac{(x-2x^{-2})(y-(x-x^{-2})y^{-1})}{1-t(xy^{-1}+y+x^{-2}y^{-1})}$

Extensions: Walks in \mathbb{N}^2 with large steps

[B., Bousquet-Mélou, Melczer, 2018]

Question: differential finiteness \iff finiteness of the orbit? Answer: ?
Two challenging models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2018]

For the model \leftarrow the excursions generating function $F(t^{1/2}; 0, 0)$ equals

$$\begin{aligned} \frac{1}{3t} &- \frac{1}{6t} \cdot \left(\frac{1 - 12t}{(1 + 36t)^{1/3}} \cdot {}_2F_1 \left(\frac{1}{6} \frac{2}{3} \left| \frac{108t(1 + 4t)^2}{(1 + 36t)^2} \right) + \right. \\ & \left. \sqrt{1 - 12t} \cdot {}_2F_1 \left(-\frac{1}{6} \frac{2}{3} \left| \frac{108t(1 + 4t)^2}{(1 - 12t)^2} \right) \right). \end{aligned}$$

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2018]

For the model \mathcal{K} the excursions generating function F(t; 0, 0) equals

$$\frac{(1-24 U+120 U^2-144 U^3) (1-4 U)}{(1-3 U) (1-2 U)^{3/2} (1-6 U)^{9/2}},$$

where $U = t^4 + 53 t^8 + 4363 t^{12} + \cdots$ is the unique series in $\mathbb{Q}[[t]]$ satisfying

$$U(1-2U)^3(1-3U)^3(1-6U)^9 = t^4(1-4U)^4.$$

Bibliography

- Automatic classification of restricted lattice walks, with M. Kauers. Proceedings FPSAC, 2009.
- The complete generating function for Gessel walks is algebraic, with M. Kauers. Proceedings of the American Mathematical Society, 2010.
- Explicit formula for the generating series of diagonal 3D Rook paths, with F. Chyzak, M. van Hoeij and L. Pech. Séminaire Lotharingien de Combinatoire, 2011.
- Non-D-finite excursions in the quarter plane, with K. Raschel and B. Salvy. Journal of Combinatorial Theory A, 2014.
- On 3-dimensional lattice walks confined to the positive octant, with M. Bousquet-Mélou, M. Kauers and S. Melczer. Annals of Comb., 2016.
- A human proof of Gessel's lattice path conjecture, with I. Kurkova, K. Raschel, Transactions of the American Mathematical Society, 2017.
- Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, with F. Chyzak, M. van Hoeij, M. Kauers and L. Pech, European Journal of Combinatorics, 2017.
- Counting walks with large steps in an orthant, with M. Bousquet-Mélou and S. Melczer, preprint, 2018.
- Computer Algebra for Lattice Path Combinatorics, preprint, 2018.

Thanks for your attention!