Tropical Combinatorial Nullstellensatz and Fewnomials

Dima Grigoriev (Lille)
(jointly with V. Podolskii)

CNRS
24/10/2018, IHES, Bures-sur-Yvette

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes. If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\max , \otimes:=+$.
semi-skew-field (resp. tropical semi-field) w.r.t.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes. If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=$ max, $\otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\varnothing:=-$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=$ max, $\otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{-\infty}^{+}:=\mathbb{Z}^{+} \cup\{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0 , in its turn 0 plays a role of 1 ;

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\max , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples • $\mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{-\infty}^{+}:=\mathbb{Z}^{+} \cup\{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\max , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{-\infty}^{+}:=\mathbb{Z}^{+} \cup\{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;
- $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\max , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples • $\mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{-\infty}^{+}:=\mathbb{Z}^{+} \cup\{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;
- $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\max , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{-\infty}^{+}:=\mathbb{Z}^{+} \cup\{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;
- $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$. Tropical polynomial $f=\bigoplus_{j}\left(a_{j} \otimes x_{1}^{i_{1 j}} \otimes \cdots \otimes x_{n}^{j_{j n}}\right)=\max _{j}\left\{Q_{j}\right\} ;$

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\max , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{-\infty}^{+}:=\mathbb{Z}^{+} \cup\{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;
- $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$. Tropical polynomial $f=\bigoplus_{j}\left(a_{j} \otimes x_{1}^{i_{j 1}} \otimes \cdots \otimes x_{n}^{j_{j n}}\right)=\max _{j}\left\{Q_{j}\right\}$; $x=\left(x_{1}, \ldots, x_{n}\right)$ is a tropical zero of f if maximum $\max _{j}\left\{Q_{j}\right\}$ is attained for at least two different values of j.

(Classical) Weak Combinatorial Nullstellensatz

(Classical) Weak Combinatorial Nullstellensatz

Polynomial $h \in F\left[X_{1}, \ldots, X_{n}\right]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz)

(Classical) Weak Combinatorial Nullstellensatz

Polynomial $h \in F\left[X_{1}, \ldots, X_{n}\right]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $\operatorname{deg}_{X_{i}}(h) \leq d_{i}, 1 \leq i \leq n$.

(Classical) Weak Combinatorial Nullstellensatz

Polynomial $h \in F\left[X_{1}, \ldots, X_{n}\right]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $\operatorname{deg}_{X_{i}}(h) \leq d_{i}, 1 \leq i \leq n$. Consider subsets $D_{i} \subset F,\left|D_{i}\right|>d_{i}, 1 \leq i \leq n$.

(Classical) Weak Combinatorial Nullstellensatz

Polynomial $h \in F\left[X_{1}, \ldots, X_{n}\right]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $\operatorname{deg}_{X_{i}}(h) \leq d_{i}, 1 \leq i \leq n$. Consider subsets $D_{i} \subset F,\left|D_{i}\right|>d_{i}, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). h can't vanish on the grid $D_{1} \times \cdots \times D_{n}$.

(Classical) Weak Combinatorial Nullstellensatz

Polynomial $h \in F\left[X_{1}, \ldots, X_{n}\right]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $\operatorname{deg}_{X_{i}}(h) \leq d_{i}, 1 \leq i \leq n$. Consider subsets $D_{i} \subset F,\left|D_{i}\right|>d_{i}, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). h can't vanish on the grid $D_{1} \times \cdots \times D_{n}$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

(Classical) Weak Combinatorial Nullstellensatz

Polynomial $h \in F\left[X_{1}, \ldots, X_{n}\right]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $\operatorname{deg}_{X_{i}}(h) \leq d_{i}, 1 \leq i \leq n$. Consider subsets $D_{i} \subset F,\left|D_{i}\right|>d_{i}, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). h can't vanish on the grid $D_{1} \times \cdots \times D_{n}$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.
Support $\operatorname{Supp}(h) \subset \mathbb{Z}^{n}$ is the set of multiindices $I=\left(i_{1}, \ldots, i_{n}\right)$ such that monomial $X^{\prime}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ occurs in h.

(Classical) Weak Combinatorial Nullstellensatz

Polynomial $h \in F\left[X_{1}, \ldots, X_{n}\right]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $\operatorname{deg}_{X_{i}}(h) \leq d_{i}, 1 \leq i \leq n$. Consider subsets $D_{i} \subset F,\left|D_{i}\right|>d_{i}, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). h can't vanish on the grid $D_{1} \times \cdots \times D_{n}$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically. Support $\operatorname{Supp}(h) \subset \mathbb{Z}^{n}$ is the set of multiindices $I=\left(i_{1}, \ldots, i_{n}\right)$ such that monomial $X^{\prime}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ occurs in h.
Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp (h).

(Classical) Weak Combinatorial Nullstellensatz

Polynomial $h \in F\left[X_{1}, \ldots, X_{n}\right]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $\operatorname{deg}_{x_{i}}(h) \leq d_{i}, 1 \leq i \leq n$. Consider subsets $D_{i} \subset F,\left|D_{i}\right|>d_{i}, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). h can't vanish on the grid $D_{1} \times \cdots \times D_{n}$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.
Support Supp $(h) \subset \mathbb{Z}^{n}$ is the set of multiindices $I=\left(i_{1}, \ldots, i_{n}\right)$ such that monomial $X^{\prime}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ occurs in h.
Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp (h).

When $\operatorname{deg}_{x_{i}}(h) \leq d_{i}, 1 \leq i \leq n$, so $\operatorname{Supp}(h)=\left\{0, \ldots, d_{1}\right\} \times \cdots \times\left\{0, \ldots, d_{n}\right\}$, this follows from the Alon's Theorem.

Tropical Combinatorial Nullstellensatz

We call a pair of sets $S, D \subset \mathbb{R}^{n}$ iso-ordered if there exists a bijection $g: S \rightarrow D$ such that for any two points $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in S$ we

Tropical Combinatorial Nullstellensatz

We call a pair of sets $S, D \subset \mathbb{R}^{n}$ iso-ordered

Tropical Combinatorial Nullstellensatz

We call a pair of sets $S, D \subset \mathbb{R}^{n}$ iso-ordered if there exists a bijection $g: S \rightarrow D$ such that for any two points $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in S$ we have $x_{i} \leq y_{i} \Leftrightarrow g\left(x_{i}\right) \leq g\left(y_{i}\right), 1 \leq i \leq n$.

Tropical Combinatorial Nullstellensatz

We call a pair of sets $S, D \subset \mathbb{R}^{n}$ iso-ordered if there exists a bijection $g: S \rightarrow D$ such that for any two points $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in S$ we have $x_{i} \leq y_{i} \Leftrightarrow g\left(x_{i}\right) \leq g\left(y_{i}\right), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^{n}$ iso-ordered to $\operatorname{Supp}(f)$.

Tropical Combinatorial Nullstellensatz

We call a pair of sets $S, D \subset \mathbb{R}^{n}$ iso-ordered if there exists a bijection $g: S \rightarrow D$ such that for any two points $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in S$ we have $x_{i} \leq y_{i} \Leftrightarrow g\left(x_{i}\right) \leq g\left(y_{i}\right), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^{n}$ iso-ordered to Supp (f).

For $\operatorname{deg}_{x_{i}}(f) \leq d_{i}, 1 \leq i \leq n$ and a grid $D=D_{1} \times \cdots \times D_{n},\left|D_{i}\right|=d_{i}+1$ we get a tropical analog of Alon's weak combinatorial Nullstellensatz.

Tropical Combinatorial Nullstellensatz

We call a pair of sets $S, D \subset \mathbb{R}^{n}$ iso-ordered if there exists a bijection $g: S \rightarrow D$ such that for any two points $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in S$ we have $x_{i} \leq y_{i} \Leftrightarrow g\left(x_{i}\right) \leq g\left(y_{i}\right), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^{n}$ iso-ordered to $\operatorname{Supp}(f)$.

For $\operatorname{deg}_{X_{i}}(f) \leq d_{i}, 1 \leq i \leq n$ and a grid $D=D_{1} \times \cdots \times D_{n},\left|D_{i}\right|=d_{i}+1$ we get a tropical analog of Alon's weak combinatorial Nullstellensatz. For $D=\operatorname{Supp}(f)$ we get a tropical analog of Risler-Ronga conjecture.

Tropical Analog of Schwartz-Zippel Lemma

```
Lemma
(Sohwrart:-Zippel, 1979) For a set S © C a polynomial
h}\in\mathbb{C}[\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}]\mathrm{ can vanish at most at
points of }\mp@subsup{S}{}{n}\subset\mp@subsup{\mathbb{C}}{}{n}\mathrm{ . 
polynomial of a given degree vanishes identically.
```


Tropical Analog of Schwartz-Zippel Lemma

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ can vanish at most at $(\operatorname{deg}(h)) \cdot|S|^{n-1}$ points of $S^{n} \subset \mathbb{C}^{n}$. The bound is sharp and provides a probabilistic test, whether a
polynomial of a given degree vanishes identically.
Theorem
Let $D_{1}, \ldots, D_{n} \subset \mathbb{R}, d<\min _{1} \leq i \leq n\left\{\left|D_{i}\right|\right\}$. A tropical polynomial f either
of degree d or $d e g x_{i}(f) \leq d, 1 \leq i \leq n$ can vanish at most at
points from $D_{1} \times \cdots \times D_{n} \times n$.

Tropical Analog of Schwartz-Zippel Lemma

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial
$h \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ can vanish at most at

$$
(\operatorname{deg}(h)) \cdot|S|^{n-1}
$$

points of $S^{n} \subset \mathbb{C}^{n}$.
The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

A tropical polynomial f either

Tropical Analog of Schwartz-Zippel Lemma

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ can vanish at most at

$$
(\operatorname{deg}(h)) \cdot|S|^{n-1}
$$

points of $S^{n} \subset \mathbb{C}^{n}$.
The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem
 Let $D_{1}, \ldots, D_{n} \subset \mathbb{R}, d<\min _{1 \leq i \leq n}\left\{\left|D_{i}\right|\right\}$.

Tropical Analog of Schwartz-Zippel Lemma

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial
$h \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ can vanish at most at

$$
(\operatorname{deg}(h)) \cdot|S|^{n-1}
$$

points of $S^{n} \subset \mathbb{C}^{n}$.
The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem
 Let $D_{1}, \ldots, D_{n} \subset \mathbb{R}, d<\min _{1 \leq i \leq n}\left\{\left|D_{i}\right|\right\}$. A tropical polynomial f either of degree d or $\operatorname{deg}_{X_{i}}(f) \leq d, 1 \leq i \leq n$

[^0]
Tropical Analog of Schwartz-Zippel Lemma

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial
$h \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ can vanish at most at

$$
(\operatorname{deg}(h)) \cdot|S|^{n-1}
$$

points of $S^{n} \subset \mathbb{C}^{n}$.
The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

```
Theorem
Let }\mp@subsup{D}{1}{},\ldots,\mp@subsup{D}{n}{}\subset\mathbb{R},d<\mp@subsup{\operatorname{min}}{1\leqi\leqn{|Di|}{\prime}|.A tropical polynomial f either
of degree d or }\mp@subsup{\operatorname{deg}}{\mp@subsup{X}{i}{}}{(}(f)\leqd,1\leqi\leqn can vanish at most at
    \Pi}\mp@subsup{\prod}{1\leqi\leqn}{}|\mp@subsup{D}{i}{}|-\mp@subsup{\prod}{1\leqi\leqn}{}(|\mp@subsup{D}{i}{}|-d
points from D D }\times\cdots\times\mp@subsup{\overline{D}}{n}{}\mathrm{ .
```


Tropical Analog of Schwartz-Zippel Lemma

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial
$h \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ can vanish at most at

$$
(\operatorname{deg}(h)) \cdot|S|^{n-1}
$$

points of $S^{n} \subset \mathbb{C}^{n}$.
The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem

Let $D_{1}, \ldots, D_{n} \subset \mathbb{R}, d<\min _{1 \leq i \leq n}\left\{\left|D_{i}\right|\right\}$. A tropical polynomial f either of degree d or $\operatorname{deg}_{x_{i}}(f) \leq d, 1 \leq i \leq n$ can vanish at most at

$$
\prod_{1 \leq i \leq n}\left|D_{i}\right|-\prod_{1 \leq i \leq n}\left(\left|D_{i}\right|-d\right)
$$

points from $D_{1} \times \cdots \times \bar{D}_{n}$.
Both bounds are sharp.

Universal Testing Sets for Fewnomials

so find its monomials and coefficients.

Universal Testing Sets for Fewnomials

Let a polynomial $h=\sum_{1 \leq j \leq k} a_{l_{j}} X^{l_{j}} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be k-sparse.

Universal Testing Sets for Fewnomials

Let a polynomial $h=\sum_{1 \leq j \leq k} a_{l j} X^{l_{j}} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be k-sparse. For pairwise distinct primes p_{1}, \ldots, p_{n} denote a point $s_{i}:=\left(p_{1}^{i}, \ldots, p_{n}^{i}\right) \in \mathbb{Z}^{n}$.
so find its monomials and coefficients.

Universal Testing Sets for Fewnomials

Let a polynomial $h=\sum_{1 \leq j \leq k} a_{l_{j}} X^{l_{j}} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be k-sparse. For pairwise distinct primes p_{1}, \ldots, p_{n} denote a point $s_{i}:=\left(p_{1}^{i}, \ldots, p_{n}^{i}\right) \in \mathbb{Z}^{n}$.
We say that a family of points in \mathbb{C}^{n} constitutes a universal testing set for k-sparse polynomials if no k-sparse polynomial vanishes on this family.

Universal Testing Sets for Fewnomials

Let a polynomial $h=\sum_{1 \leq j \leq k} a_{l_{j}} X^{\prime} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be k-sparse. For pairwise distinct primes p_{1}, \ldots, p_{n} denote a point $s_{i}:=\left(p_{1}^{i}, \ldots, p_{n}^{i}\right) \in \mathbb{Z}^{n}$.
We say that a family of points in \mathbb{C}^{n} constitutes a universal testing set for k-sparse polynomials if no k-sparse polynomial vanishes on this family.

Theorem

(G. - M. Karpinski, 1987) k points s_{1}, \ldots, s_{k} constitute a universal testing set for k-sparse polynomials.
can interpolate k-sparse h, so find its monomials and coefficients.

Universal Testing Sets for Fewnomials

Let a polynomial $h=\sum_{1 \leq j \leq k} a_{l j} X^{l_{j}} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be k-sparse. For pairwise distinct primes p_{1}, \ldots, p_{n} denote a point $s_{i}:=\left(p_{1}^{i}, \ldots, p_{n}^{i}\right) \in \mathbb{Z}^{n}$.
We say that a family of points in \mathbb{C}^{n} constitutes a universal testing set for k-sparse polynomials if no k-sparse polynomial vanishes on this family.

Theorem

(G. - M. Karpinski, 1987) k points s_{1}, \ldots, s_{k} constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h\left(s_{1}\right), \ldots, h\left(s_{2 k}\right)$ one can interpolate k-sparse h,

Universal Testing Sets for Fewnomials

Let a polynomial $h=\sum_{1 \leq j \leq k} a_{l_{j}} X^{l_{j}} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be k-sparse. For pairwise distinct primes p_{1}, \ldots, p_{n} denote a point
$s_{i}:=\left(p_{1}^{i}, \ldots, p_{n}^{i}\right) \in \mathbb{Z}^{n}$.
We say that a family of points in \mathbb{C}^{n} constitutes a universal testing set for k-sparse polynomials if no k-sparse polynomial vanishes on this family.

Theorem

(G. - M. Karpinski, 1987) k points s_{1}, \ldots, s_{k} constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h\left(s_{1}\right), \ldots, h\left(s_{2 k}\right)$ one can interpolate k-sparse h, so find its monomials and coefficients.

Tropical Universal Testing Set over \mathbb{R}

```
Theorem
The minima size of a universal testing set over \(\mathbb{R}\) for \(k\)-sparse tropical polynomials equals \(k\).
```

```
Tropical Universal Testing Sets over
Denote by s(k,n) the minimal size of universal testing sets over \mathbb{Q for}
k-sparse tropical polynomials in n variables.
```


Tropical Universal Testing Set over \mathbb{R}

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Denote by $s(k, n)$ the minimal size of universal testing sets over \mathbb{Q} for k-sparse tropical polynomials in n variables.

Tropical Universal Testing Set over \mathbb{R}

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over \mathbb{Q}

Tropical Universal Testing Set over \mathbb{R}

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over \mathbb{Q}

Denote by $s(k, n)$ the minimal size of universal testing sets over \mathbb{Q} for k-sparse tropical polynomials in n variables.

Tropical Universal Testing Set over \mathbb{R}

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over \mathbb{Q}

Denote by $s(k, n)$ the minimal size of universal testing sets over \mathbb{Q} for k-sparse tropical polynomials in n variables.

Theorem

- (Exact Bound for 2 variables) $s(k, 2)=2 k-1$;

Tropical Universal Testing Set over \mathbb{R}

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over \mathbb{Q}

Denote by $s(k, n)$ the minimal size of universal testing sets over \mathbb{Q} for k-sparse tropical polynomials in n variables.

Theorem

- (Exact Bound for 2 variables) $s(k, 2)=2 k-1$;
- (Lower Bound) $s(k, n) \geq(k-1)(n+1) / 2+1$;

Tropical Universal Testing Set over \mathbb{R}

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over \mathbb{Q}

Denote by $s(k, n)$ the minimal size of universal testing sets over \mathbb{Q} for k-sparse tropical polynomials in n variables.

Theorem

- (Exact Bound for 2 variables) $s(k, 2)=2 k-1$;
- (Lower Bound) $s(k, n) \geq(k-1)(n+1) / 2+1$;
- (Non-constructive Upper Bound) $s(k, n) \leq k(n+1)+1$.

Relations to Combinatorial Convex Geometry

number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S. Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^{n}, and its

Relations to Combinatorial Convex Geometry

Denote by $k(s, n)$ the function inverse to $s(k, n)$, i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S.

Relations to Combinatorial Convex Geometry

Denote by $k(s, n)$ the function inverse to $s(k, n)$, i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^{n}, and its tropical roots are the boundaries of these polyhedra,

Relations to Combinatorial Convex Geometry

Denote by $k(s, n)$ the function inverse to $s(k, n)$, i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^{n}, and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

Relations to Combinatorial Convex Geometry

Denote by $k(s, n)$ the function inverse to $s(k, n)$, i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S.
Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^{n}, and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.
For a set $S \subset \mathbb{Q}^{n}$ its single (respectively, double) covering is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S

Relations to Combinatorial Convex Geometry

Denote by $k(s, n)$ the function inverse to $s(k, n)$, i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^{n}, and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.
For a set $S \subset \mathbb{Q}^{n}$ its single (respectively, double) covering is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors

Relations to Combinatorial Convex Geometry

Denote by $k(s, n)$ the function inverse to $s(k, n)$, i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^{n}, and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.
For a set $S \subset \mathbb{Q}^{n}$ its single (respectively, double) covering is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes.

Relations to Combinatorial Convex Geometry

Denote by $k(s, n)$ the function inverse to $s(k, n)$, i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^{n}, and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^{n}$ its single (respectively, double) covering is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_{1}(s, n)$ (respectively, $k_{2}(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any s points in \mathbb{Q}^{n}.

Relations to Combinatorial Convex Geometry

Denote by $k(s, n)$ the function inverse to $s(k, n)$, i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^{n} there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^{n}, and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^{n}$ its single (respectively, double) covering is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_{1}(s, n)$ (respectively, $k_{2}(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any spoints in \mathbb{Q}^{n}.

Lemma

$k(s, n) \geq k_{2}(s, n)$.

Constructive Upper Bound

Denote by $E(n)$ the maximal number such that any large enough set of points in \mathbb{R}^{n} contains a subset of $E(n)$ points being vertices of a convex polytope without points of this set in the interior of the polytope. Theorem
(P. Valtr, 1992) • $E(n)$ is bounded from above by an explicit function of a factorial growth; - $7 \leq E(3) \leq 22$.

- $k_{2}(s, n) \geq k_{1}(s, n)$.

Constructive Upper Bound

Denote by $E(n)$ the maximal number such that any large enough set of points in \mathbb{R}^{n} contains a subset of $E(n)$ points being vertices of a convex polytope without points of this set in the interior of the polytope.

Constructive Upper Bound

Denote by $E(n)$ the maximal number such that any large enough set of points in \mathbb{R}^{n} contains a subset of $E(n)$ points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(P. Valtr, 1992) • $E(n)$ is bounded from above by an explicit function of a factorial growth;

Constructive Upper Bound

Denote by $E(n)$ the maximal number such that any large enough set of points in \mathbb{R}^{n} contains a subset of $E(n)$ points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(P. Valtr, 1992) • $E(n)$ is bounded from above by an explicit function of a factorial growth;

- $7 \leq E(3) \leq 22$.
- $k_{2}(s, n) \geq k_{1}(s, n)$

Constructive Upper Bound

Denote by $E(n)$ the maximal number such that any large enough set of points in \mathbb{R}^{n} contains a subset of $E(n)$ points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(P. Valtr, 1992) • $E(n)$ is bounded from above by an explicit function of a factorial growth;

- $7 \leq E(3) \leq 22$.

Lemma

- $k_{1}(s, n) \geq s / E(n)$ for large enough s;

Constructive Upper Bound

Denote by $E(n)$ the maximal number such that any large enough set of points in \mathbb{R}^{n} contains a subset of $E(n)$ points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(P. Valtr, 1992) • $E(n)$ is bounded from above by an explicit function of a factorial growth;

- $7 \leq E(3) \leq 22$.

Lemma

- $k_{1}(s, n) \geq s / E(n)$ for large enough s;
- $k_{2}(s, n) \geq k_{1}(s, n)$.

Constructive Upper Bound

Denote by $E(n)$ the maximal number such that any large enough set of points in \mathbb{R}^{n} contains a subset of $E(n)$ points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(P. Valtr, 1992) • $E(n)$ is bounded from above by an explicit function of a factorial growth;

- $7 \leq E(3) \leq 22$.

Lemma

- $k_{1}(s, n) \geq s / E(n)$ for large enough s;
- $k_{2}(s, n) \geq k_{1}(s, n)$.

Corollary
 $k(s, n) \geq s / E(n)$ for large enough s.

Constructive Upper Bound

Denote by $E(n)$ the maximal number such that any large enough set of points in \mathbb{R}^{n} contains a subset of $E(n)$ points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(P. Valtr, 1992) • $E(n)$ is bounded from above by an explicit function of a factorial growth;

- $7 \leq E(3) \leq 22$.

Lemma

- $k_{1}(s, n) \geq s / E(n)$ for large enough s;
- $k_{2}(s, n) \geq k_{1}(s, n)$.

Corollary

$k(s, n) \geq s / E(n)$ for large enough s.
Question. Is the following problem $N P$-hard: given a set $S \subset \mathbb{Q}^{n}$ and k, whether there exists a k-sparse tropical polynomial vanishing on S ?

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem
(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical the tropical powering is for free)

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem
(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem
(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem
(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials).

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem
(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power.

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem
(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem

(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem

(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

Shub-Smale's τ-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem

(M. Shub - S. Smale, 1995). τ-conjecture implies $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

Tropical circuits with exponential number of roots

 linear function)
Consider a rational tropical function

k-th iteration t_{k} of t has 2^{k} intervals of linearity (on the interval $[0,1]$).

Tropical circuits with exponential number of roots

Tropical circuit admits $\oplus:=\mathrm{max}, \otimes:=+$

Rational tropical circuit admits

Consider a rational tropical function

k-th iteration t_{k} of t has 2^{k} intervals of linearity (on the interval $[0,1]$).

Tropical circuits with exponential number of roots

Tropical circuit admits $\oplus:=\mathrm{max}, \otimes:=+$ (defines a convex piece-wise linear function).

Consider a rational tropical function

Tropical circuits with exponential number of roots

Tropical circuit admits $\oplus:=\max , \otimes:=+$ (defines a convex piece-wise linear function).
Rational tropical circuit admits \oplus, \otimes, \oslash (defines a piece-wise linear

Tropical circuits with exponential number of roots

 Tropical circuit admits $\oplus:=$ max, $\otimes:=+$ (defines a convex piece-wise linear function).Rational tropical circuit admits \oplus, \otimes, \oslash (defines a piece-wise linear function).

Consider a rational tropical function

Tropical circuits with exponential number of roots

 Tropical circuit admits $\oplus:=$ max, $\otimes:=+$ (defines a convex piece-wise linear function).Rational tropical circuit admits $\oplus, \otimes, \varnothing$ (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Tropical circuits with exponential number of roots

Tropical circuit admits $\oplus:=$ max, $\otimes:=+$ (defines a convex piece-wise linear function).
Rational tropical circuit admits $\oplus, \otimes, \varnothing$ (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function

$$
t:=1 \oslash x^{\otimes 2} \oplus(-1) \otimes x^{\otimes 2}=\max \{-2 x+1,2 x-1\} .
$$

Tropical circuits with exponential number of roots

 Tropical circuit admits $\oplus:=$ max, $\otimes:=+$ (defines a convex piece-wise linear function).Rational tropical circuit admits $\oplus, \otimes, \varnothing$ (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function

$$
t:=1 \oslash x^{\otimes 2} \oplus(-1) \otimes x^{\otimes 2}=\max \{-2 x+1,2 x-1\} .
$$

Lemma

(borrowed from the deep learning).

Tropical circuits with exponential number of roots

 Tropical circuit admits $\oplus:=$ max, $\otimes:=+$ (defines a convex piece-wise linear function).Rational tropical circuit admits $\oplus, \otimes, \varnothing$ (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function

$$
t:=1 \oslash x^{\otimes 2} \oplus(-1) \otimes x^{\otimes 2}=\max \{-2 x+1,2 x-1\} .
$$

Lemma

(borrowed from the deep learning). k-th iteration t_{k} of t has 2^{k} intervals of linearity

Tropical circuits with exponential number of roots

 Tropical circuit admits $\oplus:=$ max, $\otimes:=+$ (defines a convex piece-wise linear function).Rational tropical circuit admits $\oplus, \otimes, \varnothing$ (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function

$$
t:=1 \oslash x^{\otimes 2} \oplus(-1) \otimes x^{\otimes 2}=\max \{-2 x+1,2 x-1\} .
$$

Lemma

(borrowed from the deep learning). k-th iteration t_{k} of t has 2^{k} intervals of linearity (on the interval $[0,1]$).

Tropical circuits with exponential number of roots

 Tropical circuit admits $\oplus:=$ max, $\otimes:=+$ (defines a convex piece-wise linear function).Rational tropical circuit admits $\oplus, \otimes, \varnothing$ (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function

$$
t:=1 \oslash x^{\otimes 2} \oplus(-1) \otimes x^{\otimes 2}=\max \{-2 x+1,2 x-1\} .
$$

Lemma

(borrowed from the deep learning). k-th iteration t_{k} of t has 2^{k} intervals of linearity (on the interval $[0,1]$).

Transform the rational tropical circuit computing t_{1}, t_{2}, \ldots into a tropical circuit computing $r_{1}, s_{1}, r_{2}, s_{2}, \ldots$ being tropical numerators and denominators of $t_{k}=r_{k} \oslash s_{k}$

Tropical circuits with exponential number of roots

 Tropical circuit admits $\oplus:=$ max, $\otimes:=+$ (defines a convex piece-wise linear function).Rational tropical circuit admits \oplus, \otimes, \oslash (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function

$$
t:=1 \oslash x^{\otimes 2} \oplus(-1) \otimes x^{\otimes 2}=\max \{-2 x+1,2 x-1\} .
$$

Lemma

(borrowed from the deep learning). k-th iteration t_{k} of t has 2^{k} intervals of linearity (on the interval $[0,1]$).

Transform the rational tropical circuit computing t_{1}, t_{2}, \ldots into a tropical circuit computing $r_{1}, s_{1}, r_{2}, s_{2}, \ldots$ being tropical numerators and denominators of $t_{k}=r_{k} \oslash s_{k}$ according to the usual rules of adding, multiplying, dividing tropical fractions.

Tropical circuits with exponential number of roots

 Tropical circuit admits $\oplus:=\max , \otimes:=+$ (defines a convex piece-wise linear function).Rational tropical circuit admits \oplus, \otimes, \oslash (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function

$$
t:=1 \oslash x^{\otimes 2} \oplus(-1) \otimes x^{\otimes 2}=\max \{-2 x+1,2 x-1\}
$$

Lemma

(borrowed from the deep learning). k-th iteration t_{k} of t has 2^{k} intervals of linearity (on the interval $[0,1]$).

Transform the rational tropical circuit computing t_{1}, t_{2}, \ldots into a tropical circuit computing $r_{1}, s_{1}, r_{2}, s_{2}, \ldots$ being tropical numerators and denominators of $t_{k}=r_{k} \oslash s_{k}$ according to the usual rules of adding, multiplying, dividing tropical fractions. Then one of r_{k}, s_{k} has at least 2^{k-1} tropical roots due to the Lemma.

Tropical Linear Variety

Tropical Linear Variety

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Tropical Linear Variety

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider a linear system $A \cdot X=b$ with $m \times n$ matrix $A=\left(a_{i, j}\right)$ and vector $b=\left(b_{i}\right)$ over K. Denote by $P \subset K^{n}$ the linear plane determined by this system.

Tropical Linear Variety

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider a linear system $A \cdot X=b$ with $m \times n$ matrix $A=\left(a_{i, j}\right)$ and vector $b=\left(b_{i}\right)$ over K. Denote by $P \subset K^{n}$ the linear plane determined by this system.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.

Tropical Linear Variety

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider a linear system $A \cdot X=b$ with $m \times n$ matrix $A=\left(a_{i, j}\right)$ and vector $b=\left(b_{i}\right)$ over K. Denote by $P \subset K^{n}$ the linear plane determined by this system.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(P)} \subset \mathbb{R}^{n}$ is called a tropical linear variety.

Tropical Linear Variety

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider a linear system $A \cdot X=b$ with $m \times n$ matrix $A=\left(a_{i, j}\right)$ and vector $b=\left(b_{i}\right)$ over K. Denote by $P \subset K^{n}$ the linear plane determined by this system.

Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Tr} o p(P)} \subset \mathbb{R}^{n}$ is called a tropical linear variety.

We study the complexity of the problem of recognizing a tropical linear variety, i.e., for a given real algebraic vector $v=\left(v_{1}, \ldots, v_{n}\right) \in(\mathbb{R} \cap \overline{\mathbb{Q}})^{n}$ to test whether $v \in V$.

Algorithmical Representation of Puiseux Series

```
Primitive element z K is given as a root of a polynomial equation
h(t,z)=0 where h\in\mathbb{Z}[t,Z], and by means of a further specifying a
beginning of the expansion of z as a Puiseux series over the field \overline{Q}0
algebraic numbers (to make a root of h to be unique with this
beginning of the expansion). One can produce such an expansion
within the polynomial complexity (Chistov)
```


Algorithmical Representation of Puiseux Series

Primitive element $z \in K$ is given as a root of a polynomial equation $h(t, z)=0$ where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion).

Algorithmical Representation of Puiseux Series

Primitive element $z \in K$ is given as a root of a polynomial equation $h(t, z)=0$ where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).

Algorithmical Representation of Puiseux Series

Primitive element $z \in K$ is given as a root of a polynomial equation $h(t, z)=0$ where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).
Also we are supplied with rational functions $h_{i, j}, h_{i} \in \mathbb{Q}(t)[Z]$ such that $a_{i, j}=h_{i, j}(z), b_{i}=h_{i}(z), 1 \leq i \leq m, 1 \leq j \leq n$. We suppose that $\operatorname{deg}(h), \operatorname{deg}\left(h_{i, j}\right), \operatorname{deg}\left(h_{i}\right) \leq d$.

Algorithmical Representation of Puiseux Series

Primitive element $z \in K$ is given as a root of a polynomial equation $h(t, z)=0$ where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).
Also we are supplied with rational functions $h_{i, j}, h_{i} \in \mathbb{Q}(t)[Z]$ such that
$a_{i, j}=h_{i, j}(z), b_{i}=h_{i}(z), 1 \leq i \leq m, 1 \leq j \leq n$.
We suppose that $\operatorname{deg}(h), \operatorname{deg}\left(h_{i, j}\right), \operatorname{deg}\left(h_{i}\right) \leq d$.
In addition, we assume that each rational coefficient of the polynomials $h, h_{i, j}, h_{i}$ is given as a quotient of a pair of integers with absolute values less than 2^{M}. The latter means that the bit-size of this rational number is bounded by $2 M$.

Algorithmical Representation of Puiseux Series

Primitive element $z \in K$ is given as a root of a polynomial equation $h(t, z)=0$ where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).
Also we are supplied with rational functions $h_{i, j}, h_{i} \in \mathbb{Q}(t)[Z]$ such that
$a_{i, j}=h_{i, j}(z), b_{i}=h_{i}(z), 1 \leq i \leq m, 1 \leq j \leq n$.
We suppose that $\operatorname{deg}(h), \operatorname{deg}\left(h_{i, j}\right), \operatorname{deg}\left(h_{i}\right) \leq d$.
In addition, we assume that each rational coefficient of the polynomials $h, h_{i, j}, h_{i}$ is given as a quotient of a pair of integers with absolute values less than 2^{M}. The latter means that the bit-size of this rational number is bounded by $2 M$.
The algorithm represents the coefficients of the series as elements from a finite (algebraic) extension of \mathbb{Q}. The extension is given by a primitive element.

Reduction: from Puiseux to Power Series

First, the algorithm cleans the denominator in the exponents of the Puiseux series of z replacing $t^{1 / q}$ by t for a suitable $q \leq d$ to make z to be a Laurent series with integer exponents (and keeping the same notation for $\left.z, h, h_{i, j}, h_{i}\right)$. The coordinates of the vector v we also multiply by s and keep the same notation for v.

Reduction: from Puiseux to Power Series

First, the algorithm cleans the denominator in the exponents of the Puiseux series of z replacing $t^{1 / q}$ by t for a suitable $q \leq d$ to make z to be a Laurent series with integer exponents (and keeping the same notation for $\left.z, h, h_{i, j}, h_{i}\right)$.

Reduction: from Puiseux to Power Series

First, the algorithm cleans the denominator in the exponents of the Puiseux series of z replacing $t^{1 / q}$ by t for a suitable $q \leq d$ to make z to be a Laurent series with integer exponents (and keeping the same notation for $z, h, h_{i, j}, h_{i}$). The coordinates of the vector v we also multiply by s and keep the same notation for v.

Reduction: from Puiseux to Power Series

First, the algorithm cleans the denominator in the exponents of the Puiseux series of z replacing $t^{1 / q}$ by t for a suitable $q \leq d$ to make z to be a Laurent series with integer exponents (and keeping the same notation for $z, h, h_{i, j}, h_{i}$). The coordinates of the vector v we also multiply by s and keep the same notation for v.

We say that two coordinates $v_{j_{1}}, v_{j_{2}}$ of v are congruent if $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$.

Reduction: from Puiseux to Power Series

First, the algorithm cleans the denominator in the exponents of the Puiseux series of z replacing $t^{1 / q}$ by t for a suitable $q \leq d$ to make z to be a Laurent series with integer exponents (and keeping the same notation for $\left.z, h, h_{i, j}, h_{i}\right)$. The coordinates of the vector v we also multiply by s and keep the same notation for v.

We say that two coordinates $v_{j_{1}}, v_{j_{2}}$ of v are congruent if $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$. Consider any solution x of $A \cdot X=b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α, denote by $x^{(\alpha)}:=\left(x_{1}^{(\alpha)}, \ldots, x_{n}^{(\alpha)}\right)$ the resulting vector consisting of these selected subsums of x_{1}, \ldots, x_{n}.

Reduction: from Puiseux to Power Series

First, the algorithm cleans the denominator in the exponents of the Puiseux series of z replacing $t^{1 / q}$ by t for a suitable $q \leq d$ to make z to be a Laurent series with integer exponents (and keeping the same notation for $\left.z, h, h_{i, j}, h_{i}\right)$. The coordinates of the vector v we also multiply by s and keep the same notation for v.

We say that two coordinates $v_{j_{1}}, v_{j_{2}}$ of v are congruent if $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$. Consider any solution x of $A \cdot X=b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α, denote by $x^{(\alpha)}:=\left(x_{1}^{(\alpha)}, \ldots, x_{n}^{(\alpha)}\right)$ the resulting vector consisting of these selected subsums of x_{1}, \ldots, x_{n}.
Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X=b$, and any other $\boldsymbol{X}^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)}=0$, hence $A \cdot\left(t^{-\alpha} \cdot x^{(\alpha)}\right)=0$ and $t^{-\alpha} \cdot \boldsymbol{x}^{(\alpha)}$ is a Laurent series.

Reduction: from Puiseux to Power Series

First, the algorithm cleans the denominator in the exponents of the Puiseux series of z replacing $t^{1 / q}$ by t for a suitable $q \leq d$ to make z to be a Laurent series with integer exponents (and keeping the same notation for $z, h, h_{i, j}, h_{i}$). The coordinates of the vector v we also multiply by s and keep the same notation for v.

We say that two coordinates $v_{j_{1}}, v_{j_{2}}$ of v are congruent if $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$. Consider any solution x of $A \cdot X=b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α, denote by $x^{(\alpha)}:=\left(x_{1}^{(\alpha)}, \ldots, x_{n}^{(\alpha)}\right)$ the resulting vector consisting of these selected subsums of x_{1}, \ldots, x_{n}.
Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X=b$, and any other $x^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)}=0$, hence $A \cdot\left(t^{-\alpha} \cdot x^{(\alpha)}\right)=0$ and $t^{-\alpha} \cdot x^{(\alpha)}$ is a Laurent series.

Thus, we get the following

Partitioning the Coordinates of a Vector into Congruence Classes

Lemma
Vector $v \in \overline{\operatorname{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \mathbb{Q} \cap \mathbb{R}$ holds. System $A \cdot X=b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X=0$ when $\alpha \notin \mathbb{Z})$ has a solution $x=\left(x_{1}, \ldots, x_{n}\right)$ in Laurent series x_{1}, \ldots, x_{n} satisfying the conditions either $\operatorname{Trop}\left(x_{j}\right)+\alpha=v_{j}$ when v_{j} belongs to the congruence class of α, or $\operatorname{Trop}\left(x_{j}\right)+\alpha>v_{j}$ otherwise, $1 \leq j \leq n$.

Partitioning the Coordinates of a Vector into Congruence Classes

Lemma

Vector $v \in \overline{\operatorname{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds.

Partitioning the Coordinates of a Vector into Congruence Classes

Lemma

Vector $v \in \overline{\operatorname{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X=b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X=0$ when $\alpha \notin \mathbb{Z}$) has a solution $x=\left(x_{1}, \ldots, x_{n}\right)$ in Laurent series x_{1}, \ldots, x_{n} satisfying the conditions either $\operatorname{Trop}\left(x_{j}\right)+\alpha=v_{j}$ when v_{j} belongs to the congruence class of α,

Partitioning the Coordinates of a Vector into Congruence Classes

Lemma

Vector $v \in \overline{\operatorname{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X=b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X=0$ when $\alpha \notin \mathbb{Z}$) has a solution $x=\left(x_{1}, \ldots, x_{n}\right)$ in Laurent series x_{1}, \ldots, x_{n} satisfying the conditions either $\operatorname{Trop}\left(x_{j}\right)+\alpha=v_{j}$ when v_{j} belongs to the congruence class of α, or $\operatorname{Trop}\left(x_{j}\right)+\alpha>v_{j}$ otherwise, $1 \leq j \leq n$.

Partitioning the Coordinates of a Vector into Congruence Classes

Lemma

Vector $v \in \overline{\operatorname{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X=b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X=0$ when $\alpha \notin \mathbb{Z})$ has a solution $x=\left(x_{1}, \ldots, x_{n}\right)$ in Laurent series x_{1}, \ldots, x_{n} satisfying the conditions either $\operatorname{Trop}\left(x_{j}\right)+\alpha=v_{j}$ when v_{j} belongs to the congruence class of α, or $\operatorname{Trop}\left(x_{j}\right)+\alpha>v_{j}$ otherwise, $1 \leq j \leq n$.

We assume that the vector v is provided in the following way. A primitive real algebraic element $u \in \overline{\mathbb{Q}} \cap \mathbb{R}$ is given as a root of a polynomial $g \in \mathbb{Z}[Y]$ together with specifying a rational interval $\left[e_{1}, e_{2}\right]$ which contains the unique root u of g.

Partitioning the Coordinates of a Vector into Congruence Classes

Lemma

Vector $v \in \overline{\operatorname{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X=b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X=0$ when $\alpha \notin \mathbb{Z})$ has a solution $x=\left(x_{1}, \ldots, x_{n}\right)$ in Laurent series x_{1}, \ldots, x_{n} satisfying the conditions either $\operatorname{Trop}\left(x_{j}\right)+\alpha=v_{j}$ when v_{j} belongs to the congruence class of α, or $\operatorname{Trop}\left(x_{j}\right)+\alpha>v_{j}$ otherwise, $1 \leq j \leq n$.

We assume that the vector v is provided in the following way. A primitive real algebraic element $u \in \overline{\mathbb{Q}} \cap \mathbb{R}$ is given as a root of a polynomial $g \in \mathbb{Z}[Y]$ together with specifying a rational interval $\left[e_{1}, e_{2}\right]$ which contains the unique root u of g. In addition, certain polynomials $g_{j} \in \mathbb{Q}[Y], 1 \leq j \leq n$ are given such that $v_{j}=g_{j}(u)$.

Partitioning the Coordinates of a Vector into Congruence Classes

Lemma

Vector $v \in \overline{\operatorname{Trop(P)}}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X=b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X=0$ when $\alpha \notin \mathbb{Z}$) has a solution $x=\left(x_{1}, \ldots, x_{n}\right)$ in Laurent series x_{1}, \ldots, x_{n} satisfying the conditions either $\operatorname{Trop}\left(x_{j}\right)+\alpha=v_{j}$ when v_{j} belongs to the congruence class of α, or $\operatorname{Trop}\left(x_{j}\right)+\alpha>v_{j}$ otherwise, $1 \leq j \leq n$.

We assume that the vector v is provided in the following way. A primitive real algebraic element $u \in \overline{\mathbb{Q}} \cap \mathbb{R}$ is given as a root of a polynomial $g \in \mathbb{Z}[Y]$ together with specifying a rational interval $\left[e_{1}, e_{2}\right]$ which contains the unique root u of g. In addition, certain polynomials $g_{j} \in \mathbb{Q}[Y], 1 \leq j \leq n$ are given such that $v_{j}=g_{j}(u)$. We suppose that $\operatorname{deg}(g), \operatorname{deg}\left(g_{j}\right) \leq d$ and that the absolute values of the numerators and denominators of the (rational) coefficients of g, g_{j} and of e_{1}, e_{2} do not exceed 2^{M}.

Shifting Vector to Zero

To detect whether for a pair of the coordinates the congruence $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $\left|v_{j_{1}}-v_{j_{2}}-e\right|<1 / 2$ (provided that it does exist) and then verifies whether $v_{j_{1}}-v_{j_{2}}=e$.

Shifting Vector to Zero

To detect whether for a pair of the coordinates the congruence $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $\left|v_{j_{1}}-v_{j_{2}}-e\right|<1 / 2$ (provided that it does exist) and then verifies whether $v_{j_{1}}-v_{j_{2}}=e$. This supplies us with the partition of the coordinates v_{1}, \ldots, v_{n} into the classes of congruence.

Shifting Vector to Zero

To detect whether for a pair of the coordinates the congruence $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $\left|v_{j_{1}}-v_{j_{2}}-e\right|<1 / 2$ (provided that it does exist) and then verifies whether $v_{j_{1}}-v_{j_{2}}=e$. This supplies us with the partition of the coordinates v_{1}, \ldots, v_{n} into the classes of congruence.

Thus, for the time being we fix a congruence class α. The algorithm searches for vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ satisfying the conditions in Lemma.

Shifting Vector to Zero

To detect whether for a pair of the coordinates the congruence $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $\left|v_{j_{1}}-v_{j_{2}}-e\right|<1 / 2$ (provided that it does exist) and then verifies whether $v_{j_{1}}-v_{j_{2}}=e$. This supplies us with the partition of the coordinates v_{1}, \ldots, v_{n} into the classes of congruence.

Thus, for the time being we fix a congruence class α. The algorithm searches for vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ satisfying the conditions in Lemma.

Denote by $J \subset\{1, \ldots, n\}$ the set of j such that v_{j} belongs to the fixed congruence class.

Shifting Vector to Zero

To detect whether for a pair of the coordinates the congruence $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $\left|v_{j_{1}}-v_{j_{2}}-e\right|<1 / 2$ (provided that it does exist) and then verifies whether $v_{j_{1}}-v_{j_{2}}=e$. This supplies us with the partition of the coordinates v_{1}, \ldots, v_{n} into the classes of congruence.

Thus, for the time being we fix a congruence class α. The algorithm searches for vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ satisfying the conditions in Lemma.

Denote by $J \subset\{1, \ldots, n\}$ the set of j such that v_{j} belongs to the fixed congruence class. For every $j \in J$ we replace $a_{i, j}$ by $t^{v_{j}-\alpha} \cdot a_{i, j}, 1 \leq i \leq m$. For every $j \notin J$ let $\alpha+s-1<v_{j}<\alpha+s$ for a suitable (unique) integer s, then we replace $a_{i, j}$ by $t^{s} \cdot a_{i, j}, 1 \leq i \leq m$.

Shifting Vector to Zero

To detect whether for a pair of the coordinates the congruence $v_{j_{1}}-v_{j_{2}} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $\left|v_{j_{1}}-v_{j_{2}}-e\right|<1 / 2$ (provided that it does exist) and then verifies whether $v_{j_{1}}-v_{j_{2}}=e$. This supplies us with the partition of the coordinates v_{1}, \ldots, v_{n} into the classes of congruence.
Thus, for the time being we fix a congruence class α. The algorithm searches for vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ satisfying the conditions in Lemma.

Denote by $J \subset\{1, \ldots, n\}$ the set of j such that v_{j} belongs to the fixed congruence class. For every $j \in J$ we replace $a_{i, j}$ by $t^{v_{j}-\alpha} \cdot a_{i, j}, 1 \leq i \leq m$. For every $j \notin J$ let $\alpha+s-1<v_{j}<\alpha+s$ for a suitable (unique) integer s, then we replace $a_{i, j}$ by $t^{s} \cdot a_{i, j}, 1 \leq i \leq m$.
After this replacement the algorithm searches for vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ satisfying the properties $\operatorname{Trop}\left(x_{j}\right)=0, j \in J$ and $\operatorname{Trop}\left(x_{j}\right) \geq 0, j \notin J$.

Truncation of Puiseux/Power Series

Then by elementary transformations with the rows of matrix A over the quotient-ring $\mathbb{Q}(t)[Z] / h$ and an appropriate permutation of columns, the algorithm brings A to the form $a_{i, i}=1, a_{i, i}=0,1 \leq i \neq j \leq m$ (one can assume w.l.o.g. that $r k(A)=m$). For $m<j \leq n$ denote $r_{j}:=-\min _{1 \leq i \leq m}\left\{\operatorname{Trop}\left(a_{i, j}\right)\right\}$. If $r_{j}<0$ we put the coordinate $x_{i}=1$. Else if $r_{j} \geq 0$ we put $x_{j}=y_{i .0}+y_{i .1} \cdot t+\cdots+y_{i . r_{i}} \cdot t^{r_{j}}$ with the indeterminates $y_{j, 0}, \ldots, y_{j, r_{i}}$ over $\overline{\mathbb{Q}}$.

Truncation of Puiseux/Power Series

Then by elementary transformations with the rows of matrix A over the quotient-ring $\mathbb{Q}(t)[Z] / h$ and an appropriate permutation of columns, the algorithm brings A to the form $a_{i, i}=1, a_{i, j}=0,1 \leq i \neq j \leq m$ (one can assume w.l.o.g. that $r k(A)=m$).

Truncation of Puiseux/Power Series

Then by elementary transformations with the rows of matrix A over the quotient-ring $\mathbb{Q}(t)[Z] / h$ and an appropriate permutation of columns, the algorithm brings A to the form $a_{i, i}=1, a_{i, j}=0,1 \leq i \neq j \leq m$ (one can assume w.l.o.g. that $r k(A)=m$).
For $m<j \leq n$ denote $r_{j}:=-\min _{1 \leq i \leq m}\left\{\operatorname{Trop}\left(a_{i, j}\right)\right\}$. If $r_{j}<0$ we put the coordinate $x_{j}=1$. Else if $r_{j} \geq 0$ we put $x_{j}=y_{j, 0}+y_{j, 1} \cdot t+\cdots+y_{j, r_{j}} \cdot t^{r_{j}}$ with the indeterminates $y_{j, 0}, \ldots, y_{j, r_{j}}$ over $\overline{\mathbb{Q}}$.

Truncation of Puiseux/Power Series

Then by elementary transformations with the rows of matrix A over the quotient-ring $\mathbb{Q}(t)[Z] / h$ and an appropriate permutation of columns, the algorithm brings A to the form $a_{i, i}=1, a_{i, j}=0,1 \leq i \neq j \leq m$ (one can assume w.l.o.g. that $r k(A)=m$).
For $m<j \leq n$ denote $r_{j}:=-\min _{1 \leq i \leq m}\left\{\operatorname{Trop}\left(a_{i, j}\right)\right\}$. If $r_{j}<0$ we put the coordinate $x_{j}=1$. Else if $r_{j} \geq 0$ we put $x_{j}=y_{j, 0}+y_{j, 1} \cdot t+\cdots+y_{j, r_{j}} \cdot t^{r_{j}}$ with the indeterminates $y_{j, 0}, \ldots, y_{j, r_{j}}$ over $\overline{\mathbb{Q}}$.
Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_{i}=0,1 \leq i \leq m$ (cf. Lemma).

Truncation of Puiseux/Power Series

Then by elementary transformations with the rows of matrix A over the quotient-ring $\mathbb{Q}(t)[Z] / h$ and an appropriate permutation of columns, the algorithm brings A to the form $a_{i, i}=1, a_{i, j}=0,1 \leq i \neq j \leq m$ (one can assume w.l.o.g. that $r k(A)=m$).
For $m<j \leq n$ denote $r_{j}:=-\min _{1 \leq i \leq m}\left\{\operatorname{Trop}\left(a_{i, j}\right)\right\}$. If $r_{j}<0$ we put the coordinate $x_{j}=1$. Else if $r_{j} \geq 0$ we put $x_{j}=y_{j, 0}+y_{j, 1} \cdot t+\cdots+y_{j, r_{j}} \cdot t^{r_{j}}$ with the indeterminates $y_{j, 0}, \ldots, y_{j, r_{j}}$ over $\overline{\mathbb{Q}}$.
Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_{i}=0,1 \leq i \leq m$ (cf. Lemma).
For $1 \leq i \leq m$ denote $s_{i}=\min _{m<j \leq n}\left\{\operatorname{Trop}\left(a_{i, j}\right)\right.$, $\left.\operatorname{Trop}\left(b_{i}\right)\right\}$. The i-th equation of system $A \cdot X=b$ one can rewrite as
$x_{i}+\sum_{m<j \leq n} a_{i, j} \cdot x_{j}=b_{i}$.

Truncation of Puiseux/Power Series

Then by elementary transformations with the rows of matrix A over the quotient-ring $\mathbb{Q}(t)[Z] / h$ and an appropriate permutation of columns, the algorithm brings A to the form $a_{i, i}=1, a_{i, j}=0,1 \leq i \neq j \leq m$ (one can assume w.l.o.g. that $r k(A)=m$).
For $m<j \leq n$ denote $r_{j}:=-\min _{1 \leq i \leq m}\left\{\operatorname{Trop}\left(a_{i, j}\right)\right\}$. If $r_{j}<0$ we put the coordinate $x_{j}=1$. Else if $r_{j} \geq 0$ we put $x_{j}=y_{j, 0}+y_{j, 1} \cdot t+\cdots+y_{j, r_{j}} \cdot t^{r_{j}}$ with the indeterminates $y_{j, 0}, \ldots, y_{j, r_{j}}$ over $\overline{\mathbb{Q}}$.
Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_{i}=0,1 \leq i \leq m$ (cf. Lemma).
For $1 \leq i \leq m$ denote $s_{i}=\min _{m<j \leq n}\left\{\operatorname{Trop}\left(a_{i, j}\right)\right.$, $\left.\operatorname{Trop}\left(b_{i}\right)\right\}$. The i-th equation of system $A \cdot X=b$ one can rewrite as
$x_{i}+\sum_{m<j \leq n} a_{i, j} \cdot x_{j}=b_{i}$.
For every $s_{i} \leq k \leq 0$ one can express the coefficient of
$\sum_{m<j \leq n} a_{i, j} \cdot x_{j}-b_{i}$ at the power t^{k} as a linear function $L_{i, k}$ over $\overline{\mathbb{Q}}$ in the indeterminates $Y:=\left\{y_{j, l}, m<j \leq n, 0 \leq I \leq r_{j}\right\}$.

Reduction to a System of Linear Equations and Inequations

Consider the linear system in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family does not vanish identically on the space of solutions of the system.

Reduction to a System of Linear Equations and Inequations

Consider the linear system
$L_{i, k}=0,1 \leq i \leq m, s_{i} \leq k<0$ in the indeterminates Y.

Reduction to a System of Linear Equations and Inequations

Consider the linear system
$L_{i, k}=0,1 \leq i \leq m, s_{i} \leq k<0$
in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family
$L:=\left\{L_{i, 0}, i \in J, 1 \leq i \leq m ; y_{j, 0}, j \in J, m<j \leq n\right\}$
does not vanish identically on the space of solutions of the system.

Reduction to a System of Linear Equations and Inequations

Consider the linear system
$L_{i, k}=0,1 \leq i \leq m, s_{i} \leq k<0$
in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family
$L:=\left\{L_{i, 0}, i \in J, 1 \leq i \leq m ; y_{j, 0}, j \in J, m<j \leq n\right\}$
does not vanish identically on the space of solutions of the system.
If all of them do not vanish identically then take any values of Y which fulfil the system with non-zero values of all the linear functions from the family L.

Reduction to a System of Linear Equations and Inequations

Consider the linear system
$L_{i, k}=0,1 \leq i \leq m, s_{i} \leq k<0$
in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family
$L:=\left\{L_{i, 0}, i \in J, 1 \leq i \leq m ; y_{j, 0}, j \in J, m<j \leq n\right\}$ does not vanish identically on the space of solutions of the system. If all of them do not vanish identically then take any values of Y which fulfil the system with non-zero values of all the linear functions from the family L. Then equation $x_{i}+\sum_{m<j \leq n} a_{i, j} \cdot x_{j}=b_{i}$ determines uniquely x_{i} with $\operatorname{Trop}\left(x_{i}\right)=0$ when $i \in J$ and $\operatorname{Trop}\left(x_{i}\right) \geq 0$ when $i \notin J$.

Reduction to a System of Linear Equations and Inequations

Consider the linear system
$L_{i, k}=0,1 \leq i \leq m, s_{i} \leq k<0$
in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family
$L:=\left\{L_{i, 0}, i \in J, 1 \leq i \leq m ; y_{j, 0}, j \in J, m<j \leq n\right\}$ does not vanish identically on the space of solutions of the system. If all of them do not vanish identically then take any values of Y which fulfil the system with non-zero values of all the linear functions from the family L. Then equation $x_{i}+\sum_{m<j \leq n} a_{i, j} \cdot x_{j}=b_{i}$ determines uniquely x_{i} with $\operatorname{Trop}\left(x_{i}\right)=0$ when $i \in J$ and $\operatorname{Trop}\left(x_{i}\right) \geq 0$ when $i \notin J$. This provides a solution x of the input system $A \cdot X=b$ satisfying $\operatorname{Trop}\left(x_{j}\right)=0$ when $j \in J$ and $\operatorname{Trop}\left(x_{j}\right) \geq 0$ when $j \notin J$ (cf. Lemma).

Reduction to a System of Linear Equations and Inequations

Consider the linear system
$L_{i, k}=0,1 \leq i \leq m, s_{i} \leq k<0$
in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family
$L:=\left\{L_{i, 0}, i \in J, 1 \leq i \leq m ; y_{j, 0}, j \in J, m<j \leq n\right\}$ does not vanish identically on the space of solutions of the system. If all of them do not vanish identically then take any values of Y which fulfil the system with non-zero values of all the linear functions from the family L. Then equation $x_{i}+\sum_{m<j \leq n} a_{i, j} \cdot x_{j}=b_{i}$ determines uniquely x_{i} with $\operatorname{Trop}\left(x_{i}\right)=0$ when $i \in J$ and $\operatorname{Trop}\left(x_{i}\right) \geq 0$ when $i \notin J$. This provides a solution x of the input system $A \cdot X=b$ satisfying $\operatorname{Trop}\left(x_{j}\right)=0$ when $j \in J$ and $\operatorname{Trop}\left(x_{j}\right) \geq 0$ when $j \notin J$ (cf. Lemma).
Otherwise, if some of the linear functions from the family L vanishes identically on the space of solutions of the system then the input system $A \cdot X=b$ has no solutions satisfying the conditions of Lemma.

Employing Vandermonde Matrix to Solve a System of Linear Equations/Inequations

functions from the family L the algorithm finds a basis
$w_{1}, \ldots, w_{r} \in(\overline{\mathbb{O}})^{N}$ and a vector $w \in(\overline{\mathbb{O}})^{N}$ where $N=\mid Y$ such that the
r-dimensional space of solutions of the linear system is the linear hull of the vectors w_{1}, \ldots, w_{r} shifted by the vector w

If each linear function from the family I does not vanish identically on this space then all of them do not vanish on at least one of the vectors from the family

because any linear function can vanish on at most of r vectors from F due to the non-singularity of the Vandermonde matrices.

Employing Vandermonde Matrix to Solve a System of Linear Equations/Inequations

To test the above requirement of identically non-vanishing of the linear functions from the family L the algorithm finds a basis $w_{1}, \ldots, w_{r} \in(\overline{\mathbb{Q}})^{N}$ and a vector $w \in(\overline{\mathbb{Q}})^{N}$ where $N=|Y|$ such that the r-dimensional space of solutions of the linear system is the linear hull of the vectors w_{1}, \ldots, w_{r} shifted by the vector w.

Employing Vandermonde Matrix to Solve a System of Linear Equations/Inequations

To test the above requirement of identically non-vanishing of the linear functions from the family L the algorithm finds a basis
$w_{1}, \ldots, w_{r} \in(\overline{\mathbb{Q}})^{N}$ and a vector $w \in(\overline{\mathbb{Q}})^{N}$ where $N=|Y|$ such that the r-dimensional space of solutions of the linear system is the linear hull of the vectors w_{1}, \ldots, w_{r} shifted by the vector w.
If each linear function from the family L does not vanish identically on this space then all of them do not vanish on at least one of the vectors from the family
$F:=\left\{w+\sum_{1 \leq I \leq r} p^{\prime} \cdot w_{l}, 1 \leq p \leq|J| r+1 \leq n r+1\right\}$
because any linear function can vanish on at most of r vectors from F due to the non-singularity of the Vandermonde matrices.

Employing Vandermonde Matrix to Solve a System of Linear Equations/Inequations

To test the above requirement of identically non-vanishing of the linear functions from the family L the algorithm finds a basis
$w_{1}, \ldots, w_{r} \in(\overline{\mathbb{Q}})^{N}$ and a vector $w \in(\overline{\mathbb{Q}})^{N}$ where $N=|Y|$ such that the r-dimensional space of solutions of the linear system is the linear hull of the vectors w_{1}, \ldots, w_{r} shifted by the vector w.
If each linear function from the family L does not vanish identically on this space then all of them do not vanish on at least one of the vectors from the family
$F:=\left\{w+\sum_{1 \leq I \leq r} p^{\prime} \cdot w_{l}, 1 \leq p \leq|J| r+1 \leq n r+1\right\}$
because any linear function can vanish on at most of r vectors from F due to the non-singularity of the Vandermonde matrices.
So, the algorithm substitutes each of the vectors of F into the linear functions from L and either finds a required one Y or discovers that the input system $A \cdot X=b$ has no solution satisfying the conditions of Lemma.

Complexity

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions
\qquad

Complexity

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d.

Complexity

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Complexity

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V:=\overline{\operatorname{Trop}(P)}$ defined by a linear system $A \cdot X=b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup\{\infty\})^{n}$ belongs to V.

Complexity

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V:=\overline{\operatorname{Trop}(P)}$ defined by a linear system $A \cdot X=b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup\{\infty\})^{n}$ belongs to V. If yes then the algorithm yields a solution $x \in K^{n}$ of $A \cdot X=b$ with $\operatorname{Trop}(x)=v$.

Complexity

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V:=\overline{\operatorname{Trop}(P)}$ defined by a linear system $A \cdot X=b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup\{\infty\})^{n}$ belongs to V. If yes then the algorithm yields a solution $x \in K^{n}$ of $A \cdot X=b$ with $\operatorname{Trop}(x)=v$. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X=b$ and of the vector v.

Complexity

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V:=\overline{\operatorname{Trop}(P)}$ defined by a linear system $A \cdot X=b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup\{\infty\})^{n}$ belongs to V. If yes then the algorithm yields a solution $x \in K^{n}$ of $A \cdot X=b$ with $\operatorname{Trop}(x)=v$. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X=b$ and of the vector v.

For a given real vector $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ one can test whether it belongs to V following the described above algorithm, provided that one is able to test whether $v_{i}-v_{j}$ is an integer and find it in this case.

[^0]: Both bounds are sharp.

