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Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := max, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

−∞ := Z+ ∪ {−∞} are commutative
tropical semi-rings. −∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z−∞ are semi-fields;
• n × n matrices over Z−∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = maxj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if maximum maxj{Qj} is attained
for at least two different values of j .
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(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



(Classical) Weak Combinatorial Nullstellensatz
Polynomial h ∈ F [X1, . . . ,Xn] over any field F (not necessarily
algebraically closed unlike Hilbert’s Nullstellensatz) with
degXi (h) ≤ di , 1 ≤ i ≤ n. Consider subsets
Di ⊂ F , |Di | > di , 1 ≤ i ≤ n.

Theorem
(N. Alon, 1999). h can’t vanish on the grid D1 × · · · × Dn.

It provides a deterministic test, whether a polynomial with given
degrees in each variable, vanishes identically.
Support Supp(h) ⊂ Zn is the set of multiindices I = (i1, . . . , in) such
that monomial X I = X i1

1 · · ·X
in
n occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can’t vanish on
Supp(h).

When degXi (h) ≤ di , 1 ≤ i ≤ n, so
Supp(h) = {0, . . . ,d1} × · · · × {0, . . . ,dn}, this follows from the Alon’s
Theorem.

Dima Grigoriev (CNRS) Tropical Combinatorial Nullstellensatz 24.10.18 3 / 1



Tropical Combinatorial Nullstellensatz

We call a pair of sets S,D ⊂ Rn iso-ordered if there exists a bijection
g : S → D such that for any two points (x1, . . . , xn), (y1, . . . , yn) ∈ S we
have xi ≤ yi ⇔ g(xi) ≤ g(yi), 1 ≤ i ≤ n.

Theorem
A tropical polynomial f in n variables can’t vanish on any set D ⊂ Rn

iso-ordered to Supp(f ).

For degXi (f ) ≤ di , 1 ≤ i ≤ n and a grid D = D1 × · · · ×Dn, |Di | = di + 1
we get a tropical analog of Alon’s weak combinatorial Nullstellensatz.
For D = Supp(f ) we get a tropical analog of Risler-Ronga conjecture.
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For degXi (f ) ≤ di , 1 ≤ i ≤ n and a grid D = D1 × · · · ×Dn, |Di | = di + 1
we get a tropical analog of Alon’s weak combinatorial Nullstellensatz.
For D = Supp(f ) we get a tropical analog of Risler-Ronga conjecture.
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Tropical Analog of Schwartz-Zippel Lemma

Lemma
(Schwartz-Zippel, 1979) For a set S ⊂ C a polynomial
h ∈ C[X1, . . . ,Xn] can vanish at most at

(deg(h)) · |S|n−1

points of Sn ⊂ Cn.

The bound is sharp and provides a probabilistic test, whether a
polynomial of a given degree vanishes identically.

Theorem
Let D1, . . . ,Dn ⊂ R, d < min1≤i≤n{|Di |}. A tropical polynomial f either
of degree d or degXi (f ) ≤ d , 1 ≤ i ≤ n can vanish at most at∏

1≤i≤n |Di | −
∏

1≤i≤n(|Di | − d)
points from D1 × · · · × Dn.

Both bounds are sharp.
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Universal Testing Sets for Fewnomials

Let a polynomial h =
∑

1≤j≤k aIj X
Ij ∈ C[X1, . . . ,Xn] be k -sparse. For

pairwise distinct primes p1, . . . ,pn denote a point
si := (pi

1, . . . ,p
i
n) ∈ Zn.

We say that a family of points in Cn constitutes a universal testing set
for k-sparse polynomials if no k -sparse polynomial vanishes on this
family.

Theorem
(G. - M. Karpinski, 1987) k points s1, . . . , sk constitute a universal
testing set for k-sparse polynomials.

Theorem
(M. Ben-Or - P. Tiwari, 1988) From the values h(s1), . . . ,h(s2k ) one
can interpolate k-sparse h, so find its monomials and coefficients.
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Tropical Universal Testing Set over R

Theorem
The minimal size of a universal testing set over R for k-sparse tropical
polynomials equals k.

Tropical Universal Testing Sets over Q
Denote by s(k ,n) the minimal size of universal testing sets over Q for
k -sparse tropical polynomials in n variables.

Theorem
• (Exact Bound for 2 variables) s(k ,2) = 2k − 1;

• (Lower Bound) s(k ,n) ≥ (k − 1)(n + 1)/2 + 1;

• (Non-constructive Upper Bound) s(k ,n) ≤ k(n + 1) + 1.
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Relations to Combinatorial Convex Geometry
Denote by k(s,n) the function inverse to s(k ,n), i. e. the minimal
number k such that for any set S with s points in Qn there exists a
k -sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear
function. Its domains of linearity are convex polyhedra in Rn, and its
tropical roots are the boundaries of these polyhedra, thus each root
belongs to at least two of these polyhedra.

For a set S ⊂ Qn its single (respectively, double) covering is a family of
pairwise disjoint (in their interiors) polytopes with the vertices in S not
containing points of S in their interiors such that every point of S
belongs to at least one (respectively, two) of the polytopes. Denote by
k1(s,n) (respectively, k2(s,n)) the minimal number of polytopes that
suffices to single (respectively, double) cover any s points in Qn.

Lemma
k(s,n) ≥ k2(s,n).
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Constructive Upper Bound
Denote by E(n) the maximal number such that any large enough set of
points in Rn contains a subset of E(n) points being vertices of a
convex polytope without points of this set in the interior of the polytope.

Theorem
(P. Valtr, 1992) • E(n) is bounded from above by an explicit function of
a factorial growth;
• 7 ≤ E(3) ≤ 22.

Lemma
• k1(s,n) ≥ s/E(n) for large enough s;
• k2(s,n) ≥ k1(s,n).

Corollary
k(s,n) ≥ s/E(n) for large enough s.

Question. Is the following problem NP-hard: given a set S ⊂ Qn and
k , whether there exists a k -sparse tropical polynomial vanishing on S?
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Shub-Smale’s τ -conjecture
The number of integer roots of a univariate polynomial is bounded by a
polynomial in its circuit complexity (the conjecture is reduced to
depth-4 circuits by M. Agrawal, V. Vinay, 2008).

Theorem
(M. Shub - S. Smale, 1995). τ -conjecture implies PC 6= NPC.

Small complexity tropical formula has small number of roots
Consider a tropical formula admitting gates max,+ and multiplying by
a positive integer (positive reals would be also allowed if to extend the
concept of tropical polynomials). The latter operation is the tropical
taking a power. The size of a formula is the number of max,+ in it (so,
the tropical powering is for free).

Theorem
If a tropical univariate polynomial is given by a tropical formula of size
c then the polynomial has at most c tropical roots.
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Tropical circuits with exponential number of roots
Tropical circuit admits ⊕ := max, ⊗ := + (defines a convex piece-wise
linear function).
Rational tropical circuit admits ⊕, ⊗, � (defines a piece-wise linear
function).

Rational tropical circuit with exponential number of roots
Consider a rational tropical function
t := 1� x⊗2 ⊕ (−1)⊗ x⊗2 = max{−2x + 1, 2x − 1}.

Lemma
(borrowed from the deep learning).
k-th iteration tk of t has 2k intervals of linearity (on the interval [0,1]).

Transform the rational tropical circuit computing t1, t2, . . . into a tropical
circuit computing r1, s1, r2, s2, . . . being tropical numerators and
denominators of tk = rk � sk according to the usual rules of adding,
multiplying, dividing tropical fractions. Then one of rk , sk has at least
2k−1 tropical roots due to the Lemma.
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Tropical Linear Variety

K = C((t1/∞)) = {c = c0t i0/q + c1t(i0+1)/q + · · · }

is a field of Puiseux series where i0 ∈ Z, 1 ≤ q ∈ Z.

Consider a linear system A · X = b with m × n matrix A = (ai,j) and
vector b = (bi) over K . Denote by P ⊂ K n the linear plane determined
by this system.

Tropicalization Trop(c) = i0/q, Trop(0) =∞.

The closure in the Euclidean topology V := Trop(P) ⊂ Rn is called a
tropical linear variety.

We study the complexity of the problem of recognizing a tropical linear
variety, i.e., for a given real algebraic vector v = (v1, . . . , vn) ∈ (R ∩Q)n

to test whether v ∈ V .
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Algorithmical Representation of Puiseux Series
Primitive element z ∈ K is given as a root of a polynomial equation
h(t , z) = 0 where h ∈ Z[t ,Z ], and by means of a further specifying a
beginning of the expansion of z as a Puiseux series over the field Q of
algebraic numbers (to make a root of h to be unique with this
beginning of the expansion). One can produce such an expansion
within the polynomial complexity (Chistov).
Also we are supplied with rational functions hi,j ,hi ∈ Q(t)[Z ] such that
ai,j = hi,j(z), bi = hi(z), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
We suppose that deg(h), deg(hi,j), deg(hi) ≤ d .
In addition, we assume that each rational coefficient of the polynomials
h,hi,j ,hi is given as a quotient of a pair of integers with absolute values
less than 2M . The latter means that the bit-size of this rational number
is bounded by 2M.
The algorithm represents the coefficients of the series as elements
from a finite (algebraic) extension of Q. The extension is given by a
primitive element.
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Reduction: from Puiseux to Power Series
First, the algorithm cleans the denominator in the exponents of the
Puiseux series of z replacing t1/q by t for a suitable q ≤ d to make z to
be a Laurent series with integer exponents (and keeping the same
notation for z, h, hi,j , hi ). The coordinates of the vector v we also
multiply by s and keep the same notation for v .

We say that two coordinates vj1 , vj2 of v are congruent if vj1 − vj2 ∈ Z.
Consider any solution x of A · X = b. For each congruence class
α ∈ Q ∩ R of v select from x all the monomials with the exponents
which belong to α, denote by x (α) := (x (α)

1 , . . . , x (α)
n ) the resulting

vector consisting of these selected subsums of x1, . . . , xn.

Then x (0) which corresponds to the congruence class of the integers
satisfies A · X = b, and any other x (α) with α 6∈ Z satisfies the
homogeneous linear system A · x (α) = 0, hence A · (t−α · x (α)) = 0 and
t−α · x (α) is a Laurent series.

Thus, we get the following
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Partitioning the Coordinates of a Vector into
Congruence Classes
Lemma

Vector v ∈ Trop(P) iff the conjunction of the following statements for all
the congruence classes α ∈ Q ∩ R holds. System A · X = b when
α ∈ Z (or respectively, the homogeneous system A · X = 0 when
α 6∈ Z) has a solution x = (x1, . . . , xn) in Laurent series x1, . . . , xn
satisfying the conditions either Trop(xj) +α = vj when vj belongs to the
congruence class of α, or Trop(xj) + α > vj otherwise, 1 ≤ j ≤ n.

We assume that the vector v is provided in the following way. A
primitive real algebraic element u ∈ Q ∩ R is given as a root of a
polynomial g ∈ Z[Y ] together with specifying a rational interval [e1,e2]
which contains the unique root u of g. In addition, certain polynomials
gj ∈ Q[Y ], 1 ≤ j ≤ n are given such that vj = gj(u). We suppose that
deg(g), deg(gj) ≤ d and that the absolute values of the numerators and
denominators of the (rational) coefficients of g,gj and of e1,e2 do not
exceed 2M .
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Shifting Vector to Zero
To detect whether for a pair of the coordinates the congruence
vj1 − vj2 ∈ Z holds, the algorithm computes an integer approximation
e ∈ Z of |vj1 − vj2 − e| < 1/2 (provided that it does exist) and then
verifies whether vj1 − vj2 = e. This supplies us with the partition of the
coordinates v1, . . . , vn into the classes of congruence.

Thus, for the time being we fix a congruence class α. The algorithm
searches for vectors x = (x1, . . . , xn) satisfying the conditions in
Lemma.

Denote by J ⊂ {1, . . . ,n} the set of j such that vj belongs to the fixed
congruence class. For every j ∈ J we replace ai,j by
tvj−α · ai,j , 1 ≤ i ≤ m. For every j 6∈ J let α+ s − 1 < vj < α+ s for a
suitable (unique) integer s, then we replace ai,j by ts · ai,j , 1 ≤ i ≤ m.

After this replacement the algorithm searches for vectors
x = (x1, . . . , xn) satisfying the properties Trop(xj) = 0, j ∈ J and
Trop(xj) ≥ 0, j 6∈ J.
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Truncation of Puiseux/Power Series
Then by elementary transformations with the rows of matrix A over the
quotient-ring Q(t)[Z ]/h and an appropriate permutation of columns,
the algorithm brings A to the form ai,i = 1, ai,j = 0, 1 ≤ i 6= j ≤ m (one
can assume w.l.o.g. that rk(A) = m).
For m < j ≤ n denote rj := −min1≤i≤m{Trop(ai,j)}. If rj < 0 we put the
coordinate xj = 1. Else if rj ≥ 0 we put xj = yj,0 + yj,1 · t + · · ·+ yj,rj · t

rj

with the indeterminates yj,0, . . . , yj,rj over Q.
Below w.l.o.g. we carry out the calculations for the case of the
congruence class of integers α ∈ Z. When α 6∈ Z one should put below
bi = 0, 1 ≤ i ≤ m (cf. Lemma).
For 1 ≤ i ≤ m denote si = minm<j≤n{Trop(ai,j), Trop(bi)}. The i-th
equation of system A · X = b one can rewrite as
xi +

∑
m<j≤n ai,j · xj = bi .

For every si ≤ k ≤ 0 one can express the coefficient of∑
m<j≤n ai,j · xj − bi at the power tk as a linear function Li,k over Q in

the indeterminates Y := {yj,l , m < j ≤ n, 0 ≤ l ≤ rj}.
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Reduction to a System of Linear Equations and
Inequations
Consider the linear system
Li,k = 0, 1 ≤ i ≤ m, si ≤ k < 0
in the indeterminates Y . The algorithm solves this system and tests
whether each of n linear functions from the family
L := {Li,0, i ∈ J,1 ≤ i ≤ m; yj,0, j ∈ J,m < j ≤ n}
does not vanish identically on the space of solutions of the system.
If all of them do not vanish identically then take any values of Y which
fulfil the system with non-zero values of all the linear functions from the
family L. Then equation xi +

∑
m<j≤n ai,j · xj = bi determines uniquely

xi with Trop(xi) = 0 when i ∈ J and Trop(xi) ≥ 0 when i 6∈ J. This
provides a solution x of the input system A · X = b satisfying
Trop(xj) = 0 when j ∈ J and Trop(xj) ≥ 0 when j 6∈ J (cf. Lemma).
Otherwise, if some of the linear functions from the family L vanishes
identically on the space of solutions of the system then the input
system A · X = b has no solutions satisfying the conditions of Lemma.
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Employing Vandermonde Matrix to Solve a System
of Linear Equations/Inequations
To test the above requirement of identically non-vanishing of the linear
functions from the family L the algorithm finds a basis
w1, . . . ,wr ∈ (Q)N and a vector w ∈ (Q)N where N = |Y | such that the
r -dimensional space of solutions of the linear system is the linear hull
of the vectors w1, . . . ,wr shifted by the vector w .
If each linear function from the family L does not vanish identically on
this space then all of them do not vanish on at least one of the vectors
from the family
F := {w +

∑
1≤l≤r pl · wl , 1 ≤ p ≤ |J|r + 1 ≤ nr + 1}

because any linear function can vanish on at most of r vectors from F
due to the non-singularity of the Vandermonde matrices.
So, the algorithm substitutes each of the vectors of F into the linear
functions from L and either finds a required one Y or discovers that the
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Complexity
To estimate the complexity of the designed algorithm observe that it
solves the linear system of the size bounded by a polynomial in n,d
with the coefficients from a finite extension of Q having the bit-size less
than linear in M and polynomial in n,d . Thus, the algorithm solves this
system within the complexity polynomial in M,n,d , by a similar
magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety V := Trop(P)
defined by a linear system A · X = b over the field K of Puiseux series,
recognizes whether a given real algebraic vector v ∈ ((R ∩Q) ∪ {∞})n

belongs to V . If yes then the algorithm yields a solution x ∈ K n of
A · X = b with Trop(x) = v. The complexity of the algorithm is
polynomial in the bit-sizes of the system A · X = b and of the vector v.

For a given real vector v = (v1, . . . , vn) ∈ Rn one can test whether it
belongs to V following the described above algorithm, provided that
one is able to test whether vi − vj is an integer and find it in this case.
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