Tropical Combinatorial Nullstellensatz and Fewnomials

Dima Grigoriev (Lille) (jointly with V. Podolskii)

CNRS

24/10/2018, IHES, Bures-sur-Yvette

Dima Grigoriev (CNRS)

Tropical Combinatorial Nullstellensatz

24.10.18 1 / 1

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max, \otimes := +$. If *T* is an ordered (resp. abelian) group then *T* is a *tropical semi-skew-field* (resp. *tropical semi-field*) w.r.t. $\otimes := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields; • $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring:

 $(a_{ij})\otimes(b_{kl}):=(\oplus_{1\leq j\leq n}a_{ij}\otimes b_{jl})$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. *tropical semi-field*) w.r.t. $\otimes := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;

• $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max, \otimes := +$.

- If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.
- **Examples** $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;
- $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max$, $\otimes := +$. If *T* is an ordered (resp. abelian) group then *T* is a *tropical semi-skew-field* (resp. *tropical semi-field*) w.r.t. $\otimes := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;

• $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;

• $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;

• $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;

• $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;

• $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \max, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{-\infty} := \mathbb{Z}^+ \cup \{-\infty\}$ are commutative tropical semi-rings. $-\infty$ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{-\infty}$ are semi-fields;

• $n \times n$ matrices over $\mathbb{Z}_{-\infty}$ form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \max_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if maximum $\max_j \{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $deg_{X_i}(h) \leq d_i, 1 \leq i \leq n$. Consider subsets $D_i \subset F, |D_i| > d_i, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with

 $deg_{X_i}(h) \le d_i, \ 1 \le i \le n.$ Consider subsets $D_i \subset F, \ |D_i| > d_i, \ 1 \le i \le n.$

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $deg_{X_i}(h) \leq d_i, 1 \leq i \leq n$. Consider subsets $D_i \subset F, |D_i| > d_i, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $deg_{X_i}(h) \le d_i, \ 1 \le i \le n$. Consider subsets $D_i \subset F, \ |D_i| > d_i, \ 1 \le i \le n$.

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in *h*.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $deg_{X_i}(h) \leq d_i, 1 \leq i \leq n$. Consider subsets $D_i \subset F, |D_i| > d_i, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in h.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $deg_{X_i}(h) \leq d_i, 1 \leq i \leq n$. Consider subsets $D_i \subset F, |D_i| > d_i, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in *h*.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $deg_{X_i}(h) \leq d_i, 1 \leq i \leq n$. Consider subsets $D_i \subset F, |D_i| > d_i, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in *h*.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $deg_{X_i}(h) \leq d_i, 1 \leq i \leq n$. Consider subsets $D_i \subset F, |D_i| > d_i, 1 \leq i \leq n$.

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in *h*.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

Polynomial $h \in F[X_1, ..., X_n]$ over any field F (not necessarily algebraically closed unlike Hilbert's Nullstellensatz) with $deg_{X_i}(h) \le d_i, \ 1 \le i \le n$. Consider subsets $D_i \subset F, \ |D_i| > d_i, \ 1 \le i \le n$.

Theorem

(N. Alon, 1999). *h* can't vanish on the grid $D_1 \times \cdots \times D_n$.

It provides a deterministic test, whether a polynomial with given degrees in each variable, vanishes identically.

Support Supp $(h) \subset \mathbb{Z}^n$ is the set of multiindices $I = (i_1, \ldots, i_n)$ such that monomial $X^I = X_1^{i_1} \cdots X_n^{i_n}$ occurs in *h*.

Conjecture (J.-J. Risler - F. Ronga, 1990). h can't vanish on Supp(h).

We call a pair of sets $S, D \subset \mathbb{R}^n$ iso-ordered if there exists a bijection $g: S \to D$ such that for any two points $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in S$ we have $x_i \leq y_i \Leftrightarrow g(x_i) \leq g(y_i), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^n$ iso-ordered to Supp(f).

For $deg_{X_i}(f) \le d_i$, $1 \le i \le n$ and a grid $D = D_1 \times \cdots \times D_n$, $|D_i| = d_i + 1$ we get a tropical analog of Alon's weak combinatorial Nullstellensatz. For D = Supp(f) we get a tropical analog of Risler-Ronga conjecture.

< 🗇 > < 🖻 > <

We call a pair of sets $S, D \subset \mathbb{R}^n$ iso-ordered if there exists a bijection $g: S \to D$ such that for any two points $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in S$ we have $x_i \leq y_i \Leftrightarrow g(x_i) \leq g(y_i), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^n$ iso-ordered to Supp(f).

For $deg_{X_i}(f) \le d_i$, $1 \le i \le n$ and a grid $D = D_1 \times \cdots \times D_n$, $|D_i| = d_i + 1$ we get a tropical analog of Alon's weak combinatorial Nullstellensatz. For D = Supp(f) we get a tropical analog of Risler-Ronga conjecture.

< 🗇 > < 🖻 > <

We call a pair of sets $S, D \subset \mathbb{R}^n$ iso-ordered if there exists a bijection $g: S \to D$ such that for any two points $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in S$ we have $x_i \leq y_i \Leftrightarrow g(x_i) \leq g(y_i), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^n$ iso-ordered to Supp(f).

For $deg_{X_i}(f) \le d_i$, $1 \le i \le n$ and a grid $D = D_1 \times \cdots \times D_n$, $|D_i| = d_i + 1$ we get a tropical analog of Alon's weak combinatorial Nullstellensatz. For D = Supp(f) we get a tropical analog of Risler-Ronga conjecture.

・吊 ・ ・ ラ ・ ・ ラ ・

We call a pair of sets $S, D \subset \mathbb{R}^n$ *iso-ordered* if there exists a bijection $g: S \to D$ such that for any two points $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in S$ we have $x_i \leq y_i \Leftrightarrow g(x_i) \leq g(y_i), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^n$ iso-ordered to Supp(f).

For $deg_{X_i}(f) \le d_i$, $1 \le i \le n$ and a grid $D = D_1 \times \cdots \times D_n$, $|D_i| = d_i + 1$ we get a tropical analog of Alon's weak combinatorial Nullstellensatz. For D = Supp(f) we get a tropical analog of Risler-Ronga conjecture.

We call a pair of sets $S, D \subset \mathbb{R}^n$ *iso-ordered* if there exists a bijection $g: S \to D$ such that for any two points $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in S$ we have $x_i \leq y_i \Leftrightarrow g(x_i) \leq g(y_i), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^n$ iso-ordered to Supp(f).

For $deg_{X_i}(f) \le d_i$, $1 \le i \le n$ and a grid $D = D_1 \times \cdots \times D_n$, $|D_i| = d_i + 1$ we get a tropical analog of Alon's weak combinatorial Nullstellensatz.

For D = Supp(f) we get a tropical analog of Risler-Ronga conjecture.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ

We call a pair of sets $S, D \subset \mathbb{R}^n$ *iso-ordered* if there exists a bijection $g: S \to D$ such that for any two points $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in S$ we have $x_i \leq y_i \Leftrightarrow g(x_i) \leq g(y_i), 1 \leq i \leq n$.

Theorem

A tropical polynomial f in n variables can't vanish on any set $D \subset \mathbb{R}^n$ iso-ordered to Supp(f).

For $deg_{X_i}(f) \le d_i$, $1 \le i \le n$ and a grid $D = D_1 \times \cdots \times D_n$, $|D_i| = d_i + 1$ we get a tropical analog of Alon's weak combinatorial Nullstellensatz. For D = Supp(f) we get a tropical analog of Risler-Ronga conjecture.

(ロ) (同) (ヨ) (ヨ) 三日

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}[X_1, ..., X_n]$ can vanish at most at $(\deg(h)) \cdot |S|^{n-1}$ points of $S^n \subset \mathbb{C}^n$

The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem

Let $D_1, \ldots, D_n \subset \mathbb{R}$, $d < \min_{1 \le i \le n} \{|D_i|\}$. A tropical polynomial f either of degree d or $deg_{X_i}(f) \le d$, $1 \le i \le n$ can vanish at most at $\prod_{1 \le i \le n} |D_i| - \prod_{1 \le i \le n} (|D_i| - d)$ points from $D_1 \times \cdots \times D_n$.

Both bounds are sharp.

< ロ > < 同 > < 三 > < 三

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}[X_1, \ldots, X_n]$ can vanish at most at $(deg(h)) \cdot |S|^{n-1}$ points of $S^n \subset \mathbb{C}^n$.

The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem

Let $D_1, \ldots, D_n \subset \mathbb{R}$, $d < \min_{1 \le i \le n} \{|D_i|\}$. A tropical polynomial f either of degree d or $deg_{X_i}(f) \le d$, $1 \le i \le n$ can vanish at most at $\prod_{1 \le i \le n} |D_i| - \prod_{1 \le i \le n} (|D_i| - d)$ points from $D_1 \times \cdots \times D_n$.

Both bounds are sharp.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}[X_1, \ldots, X_n]$ can vanish at most at $(deg(h)) \cdot |S|^{n-1}$ points of $S^n \subset \mathbb{C}^n$.

The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem

Let $D_1, \ldots, D_n \subset \mathbb{R}$, $d < \min_{1 \le i \le n} \{|D_i|\}$. A tropical polynomial f either of degree d or $deg_{X_i}(f) \le d$, $1 \le i \le n$ can vanish at most at $\prod_{1 \le i \le n} |D_i| - \prod_{1 \le i \le n} (|D_i| - d)$ points from $D_1 \times \cdots \times D_n$.

Both bounds are sharp.

(日)

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}[X_1, \ldots, X_n]$ can vanish at most at $(deg(h)) \cdot |S|^{n-1}$ points of $S^n \subset \mathbb{C}^n$.

The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem

Let $D_1, \ldots, D_n \subset \mathbb{R}$, $d < \min_{1 \le i \le n} \{|D_i|\}$. A tropical polynomial f either of degree d or $deg_{X_i}(f) \le d$, $1 \le i \le n$ can vanish at most at $\prod_{1 \le i \le n} |D_i| - \prod_{1 \le i \le n} (|D_i| - d)$ points from $D_1 \times \cdots \times D_n$.

Both bounds are sharp.

(日)

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}[X_1, \ldots, X_n]$ can vanish at most at $(deg(h)) \cdot |S|^{n-1}$ points of $S^n \subset \mathbb{C}^n$.

The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem

Let $D_1, \ldots, D_n \subset \mathbb{R}$, $d < \min_{1 \le i \le n} \{|D_i|\}$. A tropical polynomial f either of degree d or $deg_{X_i}(f) \le d$, $1 \le i \le n$ can vanish at most at $\prod_{1 \le i \le n} |D_i| - \prod_{1 \le i \le n} (|D_i| - d)$ points from $D_1 \times \cdots \times D_n$.

Both bounds are sharp.

(日)

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}[X_1, \ldots, X_n]$ can vanish at most at $(deg(h)) \cdot |S|^{n-1}$ points of $S^n \subset \mathbb{C}^n$.

The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem

Let $D_1, \ldots, D_n \subset \mathbb{R}$, $d < \min_{1 \le i \le n} \{|D_i|\}$. A tropical polynomial f either of degree d or $deg_{X_i}(f) \le d$, $1 \le i \le n$ can vanish at most at $\prod_{1 \le i \le n} |D_i| - \prod_{1 \le i \le n} (|D_i| - d)$ points from $D_1 \times \cdots \times D_n$.

Both bounds are sharp.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

(Schwartz-Zippel, 1979) For a set $S \subset \mathbb{C}$ a polynomial $h \in \mathbb{C}[X_1, \ldots, X_n]$ can vanish at most at $(deg(h)) \cdot |S|^{n-1}$ points of $S^n \subset \mathbb{C}^n$.

The bound is sharp and provides a probabilistic test, whether a polynomial of a given degree vanishes identically.

Theorem

Let $D_1, \ldots, D_n \subset \mathbb{R}$, $d < \min_{1 \le i \le n} \{|D_i|\}$. A tropical polynomial f either of degree d or $deg_{X_i}(f) \le d$, $1 \le i \le n$ can vanish at most at $\prod_{1 \le i \le n} |D_i| - \prod_{1 \le i \le n} (|D_i| - d)$ points from $D_1 \times \cdots \times D_n$.

Both bounds are sharp.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let a polynomial $h = \sum_{1 \le j \le k} a_{l_j} X^{l_j} \in \mathbb{C}[X_1, \dots, X_n]$ be *k*-sparse. For pairwise distinct primes p_1, \dots, p_n denote a point $s_i := (p_1^i, \dots, p_n^i) \in \mathbb{Z}^n$.

We say that a family of points in Cⁿ constitutes a *universal testing set for k-sparse polynomials* if no *k*-sparse polynomial vanishes on this family.

Theorem

(**G. - M. Karpinski, 1987**) k points s_1, \ldots, s_k constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h(s_1), \ldots, h(s_{2k})$ one can interpolate k-sparse h, so find its monomials and coefficients.

< ロ > < 同 > < 三 > < 三

Let a polynomial $h = \sum_{1 \le j \le k} a_{l_j} X^{l_j} \in \mathbb{C}[X_1, \dots, X_n]$ be *k*-sparse. For

pairwise distinct primes p_1, \ldots, p_n denote a point

 $s_i := (p'_1, \ldots, p'_n) \in \mathbb{Z}^n.$

We say that a family of points in \mathbb{C}^n constitutes a *universal testing set* for *k*-sparse polynomials if no *k*-sparse polynomial vanishes on this family.

Theorem

(**G. - M. Karpinski, 1987**) k points s_1, \ldots, s_k constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h(s_1), \ldots, h(s_{2k})$ one can interpolate k-sparse h, so find its monomials and coefficients.

< ロ > < 同 > < 三 > < 三

Let a polynomial $h = \sum_{1 \le j \le k} a_{l_j} X^{l_j} \in \mathbb{C}[X_1, \dots, X_n]$ be *k*-sparse. For pairwise distinct primes p_1, \dots, p_n denote a point $s_i := (p_1^i, \dots, p_n^i) \in \mathbb{Z}^n$.

We say that a family of points in \mathbb{C}^n constitutes a *universal testing set* for *k*-sparse polynomials if no *k*-sparse polynomial vanishes on this family.

Theorem

(G. - M. Karpinski, 1987) k points s_1, \ldots, s_k constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h(s_1), \ldots, h(s_{2k})$ one can interpolate k-sparse h, so find its monomials and coefficients.

< ロ > < 同 > < 回 > < 回 >

Let a polynomial $h = \sum_{1 \le j \le k} a_{l_j} X^{l_j} \in \mathbb{C}[X_1, \dots, X_n]$ be *k*-sparse. For pairwise distinct primes p_1, \dots, p_n denote a point $s_i := (p_1^i, \dots, p_n^i) \in \mathbb{Z}^n$.

We say that a family of points in \mathbb{C}^n constitutes a *universal testing set* for *k*-sparse polynomials if no *k*-sparse polynomial vanishes on this family.

Theorem

(**G. - M. Karpinski, 1987**) k points s_1, \ldots, s_k constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h(s_1), \ldots, h(s_{2k})$ one can interpolate k-sparse h, so find its monomials and coefficients.
Universal Testing Sets for Fewnomials

Let a polynomial $h = \sum_{1 \le j \le k} a_{l_j} X^{l_j} \in \mathbb{C}[X_1, \dots, X_n]$ be *k*-sparse. For pairwise distinct primes p_1, \dots, p_n denote a point $s_i := (p_1^i, \dots, p_n^i) \in \mathbb{Z}^n$.

We say that a family of points in \mathbb{C}^n constitutes a *universal testing set* for *k*-sparse polynomials if no *k*-sparse polynomial vanishes on this family.

Theorem

(**G.** - **M.** Karpinski, 1987) k points s_1, \ldots, s_k constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h(s_1), \ldots, h(s_{2k})$ one can interpolate k-sparse h, so find its monomials and coefficients.

・ロット (雪) (日) (日)

Universal Testing Sets for Fewnomials

Let a polynomial $h = \sum_{1 \le j \le k} a_{l_j} X^{l_j} \in \mathbb{C}[X_1, \dots, X_n]$ be *k*-sparse. For pairwise distinct primes p_1, \dots, p_n denote a point $s_i := (p_1^i, \dots, p_n^i) \in \mathbb{Z}^n$.

We say that a family of points in \mathbb{C}^n constitutes a *universal testing set* for *k*-sparse polynomials if no *k*-sparse polynomial vanishes on this family.

Theorem

(**G.** - **M.** Karpinski, 1987) k points s_1, \ldots, s_k constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h(s_1), \ldots, h(s_{2k})$ one can interpolate k-sparse h, so find its monomials and coefficients.

(日)

Universal Testing Sets for Fewnomials

Let a polynomial $h = \sum_{1 \le j \le k} a_{l_j} X^{l_j} \in \mathbb{C}[X_1, \dots, X_n]$ be *k*-sparse. For pairwise distinct primes p_1, \dots, p_n denote a point $s_i := (p_1^i, \dots, p_n^i) \in \mathbb{Z}^n$.

We say that a family of points in \mathbb{C}^n constitutes a *universal testing set* for *k*-sparse polynomials if no *k*-sparse polynomial vanishes on this family.

Theorem

(**G.** - **M.** Karpinski, 1987) k points s_1, \ldots, s_k constitute a universal testing set for k-sparse polynomials.

Theorem

(M. Ben-Or - P. Tiwari, 1988) From the values $h(s_1), \ldots, h(s_{2k})$ one can interpolate k-sparse h, so find its monomials and coefficients.

(日)

Theorem

The minimal size of a universal testing set over $\mathbb R$ for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over ${\mathbb Q}$

Denote by s(k, n) the minimal size of universal testing sets over \mathbb{Q} for *k*-sparse tropical polynomials in *n* variables.

Theorem

- (Exact Bound for 2 variables) s(k, 2) = 2k 1;
- (Lower Bound) $s(k, n) \ge (k 1)(n + 1)/2 + 1;$

• (Non-constructive Upper Bound) $s(k, n) \le k(n+1) + 1$.

< ロ > < 同 > < 回 > < 回

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over ${\mathbb Q}$

Denote by s(k, n) the minimal size of universal testing sets over \mathbb{Q} for *k*-sparse tropical polynomials in *n* variables.

Theorem

- (Exact Bound for 2 variables) s(k, 2) = 2k 1;
- (Lower Bound) $s(k, n) \ge (k 1)(n + 1)/2 + 1;$

• (Non-constructive Upper Bound) $s(k, n) \le k(n+1) + 1$.

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over ${\mathbb Q}$

Denote by s(k, n) the minimal size of universal testing sets over \mathbb{Q} for k-sparse tropical polynomials in n variables.

Theorem

- (Exact Bound for 2 variables) s(k, 2) = 2k 1;
- (Lower Bound) $s(k, n) \ge (k 1)(n + 1)/2 + 1$;

• (Non-constructive Upper Bound) $s(k, n) \le k(n + 1) + 1$.

< ロ > < 同 > < 三 > < 三

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over \mathbb{Q}

Denote by s(k, n) the minimal size of universal testing sets over \mathbb{Q} for *k*-sparse tropical polynomials in *n* variables.

Theorem

- (Exact Bound for 2 variables) s(k, 2) = 2k 1;
- (Lower Bound) $s(k, n) \ge (k 1)(n + 1)/2 + 1$;

• (Non-constructive Upper Bound) $s(k, n) \le k(n + 1) + 1$.

< ロ > < 同 > < 回 > < 回 >

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over ${\mathbb Q}$

Denote by s(k, n) the minimal size of universal testing sets over \mathbb{Q} for *k*-sparse tropical polynomials in *n* variables.

Theorem

- (Exact Bound for 2 variables) s(k, 2) = 2k 1;
- (Lower Bound) $s(k, n) \ge (k 1)(n + 1)/2 + 1$;

• (Non-constructive Upper Bound) $s(k,n) \le k(n+1) + 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over \mathbb{Q}

Denote by s(k, n) the minimal size of universal testing sets over \mathbb{Q} for *k*-sparse tropical polynomials in *n* variables.

Theorem

- (Exact Bound for 2 variables) s(k, 2) = 2k 1;
- (Lower Bound) $s(k, n) \ge (k 1)(n + 1)/2 + 1$;

• (Non-constructive Upper Bound) $s(k, n) \le k(n + 1) + 1$.

Theorem

The minimal size of a universal testing set over \mathbb{R} for k-sparse tropical polynomials equals k.

Tropical Universal Testing Sets over ${\mathbb Q}$

Denote by s(k, n) the minimal size of universal testing sets over \mathbb{Q} for *k*-sparse tropical polynomials in *n* variables.

Theorem

- (Exact Bound for 2 variables) s(k, 2) = 2k 1;
- (Lower Bound) $s(k, n) \ge (k 1)(n + 1)/2 + 1$;
- (Non-constructive Upper Bound) $s(k, n) \le k(n+1) + 1$.

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_1(s, n)$ (respectively, $k_2(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any *s* points in \mathbb{Q}^n .

Lemma

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_1(s, n)$ (respectively, $k_2(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any *s* points in \mathbb{Q}^n .

Lemma

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_1(s, n)$ (respectively, $k_2(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any *s* points in \mathbb{Q}^n .

Lemma

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_1(s, n)$ (respectively, $k_2(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any *s* points in \mathbb{Q}^n .

Lemma

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_1(s, n)$ (respectively, $k_2(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any s points in \mathbb{Q}^n .

Lemma

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_1(s, n)$ (respectively, $k_2(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any *s* points in \mathbb{Q}^n .

Lemma

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by

suffices to single (respectively, double) cover any *s* points in \mathbb{Q}^n .

Lemma

 $k(s,n) \geq k_2(s,n).$

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_1(s, n)$ (respectively, $k_2(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any *s* points in \mathbb{Q}^n .

Lemma

Denote by k(s, n) the function inverse to s(k, n), i. e. the minimal number k such that for any set S with s points in \mathbb{Q}^n there exists a k-sparse tropical polynomial in n variables vanishing on S.

Geometrically, a tropical polynomial is a convex piece-wise linear function. Its domains of linearity are convex polyhedra in \mathbb{R}^n , and its tropical roots are the boundaries of these polyhedra, thus each root belongs to at least two of these polyhedra.

For a set $S \subset \mathbb{Q}^n$ its *single* (respectively, *double*) *covering* is a family of pairwise disjoint (in their interiors) polytopes with the vertices in S not containing points of S in their interiors such that every point of S belongs to at least one (respectively, two) of the polytopes. Denote by $k_1(s, n)$ (respectively, $k_2(s, n)$) the minimal number of polytopes that suffices to single (respectively, double) cover any *s* points in \mathbb{Q}^n .

Lemma

 $k(s, n) \geq k_2(s, n).$

Denote by E(n) the maximal number such that any large enough set of points in \mathbb{R}^n contains a subset of E(n) points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(**P. Valtr, 1992**) • E(n) is bounded from above by an explicit function of a factorial growth; • $7 \le E(3) \le 22$.

Lemma

• $k_1(s,n) \ge s/E(n)$ for large enough s; • $k_2(s,n) \ge k_1(s,n)$.

Corollary

 $k(s,n) \ge s/E(n)$ for large enough s.

Question. Is the following problem *NP*-hard: given a set $S \subset \mathbb{Q}^n$ and k, whether there exists a k-sparse tropical polynomial vanishing on Sign

Dima Grigoriev (CNRS)

Tropical Combinatorial Nullstellensatz

24.10.18 9 / 1

Denote by E(n) the maximal number such that any large enough set of points in \mathbb{R}^n contains a subset of E(n) points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(**P. Valtr, 1992**) • E(n) is bounded from above by an explicit function of a factorial growth;

• $7 \le E(3) \le 22.$

Lemma

• $k_1(s,n) \ge s/E(n)$ for large enough s; • $k_2(s,n) \ge k_1(s,n)$.

Corollary

 $k(s,n) \ge s/E(n)$ for large enough s.

Question. Is the following problem *NP*-hard: given a set $S \subset \mathbb{Q}^n$ and k, whether there exists a k-sparse tropical polynomial vanishing on Si

Denote by E(n) the maximal number such that any large enough set of points in \mathbb{R}^n contains a subset of E(n) points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(**P. Valtr, 1992**) • E(n) is bounded from above by an explicit function of a factorial growth;

• $7 \le E(3) \le 22$.

Lemma

*k*₁(*s*, *n*) ≥ *s*/*E*(*n*) for large enough *s*;
*k*₂(*s*, *n*) ≥ *k*₁(*s*, *n*).

Corollary

 $k(s,n) \ge s/E(n)$ for large enough s.

Question. Is the following problem *NP*-hard: given a set $S \subset \mathbb{Q}^n$ and k, whether there exists a k-sparse tropical polynomial vanishing on SR

Dima Grigoriev (CNRS)

Tropical Combinatorial Nullstellensatz

Denote by E(n) the maximal number such that any large enough set of points in \mathbb{R}^n contains a subset of E(n) points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(**P. Valtr, 1992**) • E(n) is bounded from above by an explicit function of a factorial growth;

• $7 \le E(3) \le 22$.

Lemma

• $k_1(s,n) \ge s/E(n)$ for large enough s; • $k_2(s,n) \ge k_1(s,n)$.

Corollary

 $k(s,n) \ge s/E(n)$ for large enough s.

Question. Is the following problem *NP*-hard: given a set $S \subset \mathbb{Q}^n$ and k, whether there exists a k-sparse tropical polynomial vanishing on SR

Denote by E(n) the maximal number such that any large enough set of points in \mathbb{R}^n contains a subset of E(n) points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(**P. Valtr, 1992**) • E(n) is bounded from above by an explicit function of a factorial growth;

• $7 \le E(3) \le 22$.

Lemma

*k*₁(*s*, *n*) ≥ *s*/*E*(*n*) for large enough *s*;
*k*₂(*s*, *n*) ≥ *k*₁(*s*, *n*).

Corollary

 $k(s,n) \ge s/E(n)$ for large enough s.

Question. Is the following problem *NP*-hard: given a set $S \subset \mathbb{Q}^n$ and k, whether there exists a k-sparse tropical polynomial vanishing on S is a

Denote by E(n) the maximal number such that any large enough set of points in \mathbb{R}^n contains a subset of E(n) points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(**P. Valtr, 1992**) • E(n) is bounded from above by an explicit function of a factorial growth;

• $7 \le E(3) \le 22$.

Lemma

- $k_1(s, n) \ge s/E(n)$ for large enough s;
- $k_2(s, n) \ge k_1(s, n)$.

Corollary

 $k(s,n) \ge s/E(n)$ for large enough s.

Question. Is the following problem *NP*-hard: given a set $S \subset \mathbb{Q}^n$ and k, whether there exists a *k*-sparse tropical polynomial vanishing on S

Dima Grigoriev (CNRS)

Tropical Combinatorial Nullstellensatz

24.10.18 9 / 1

Denote by E(n) the maximal number such that any large enough set of points in \mathbb{R}^n contains a subset of E(n) points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(**P. Valtr, 1992**) • E(n) is bounded from above by an explicit function of a factorial growth;

• $7 \le E(3) \le 22$.

Lemma

- $k_1(s, n) \ge s/E(n)$ for large enough s;
- $k_2(s, n) \ge k_1(s, n)$.

Corollary

 $k(s, n) \ge s/E(n)$ for large enough s.

Question. Is the following problem NP-hard: given a set $S \subset \mathbb{Q}^n$ andk, whether there exists a k-sparse tropical polynomial vanishing on $S_{\infty} \propto$ Dima Grigoriev (CNRs)Tropical Combinatorial Nullstellensatz24.10.189/1

Denote by E(n) the maximal number such that any large enough set of points in \mathbb{R}^n contains a subset of E(n) points being vertices of a convex polytope without points of this set in the interior of the polytope.

Theorem

(**P. Valtr, 1992**) • E(n) is bounded from above by an explicit function of a factorial growth;

• $7 \le E(3) \le 22$.

Lemma

- $k_1(s, n) \ge s/E(n)$ for large enough s;
- $k_2(s, n) \ge k_1(s, n)$.

Corollary

 $k(s, n) \ge s/E(n)$ for large enough s.

Question. Is the following problem *NP*-hard: given a set $S \subset \mathbb{Q}^n$ and k, whether there exists a k-sparse tropical polynomial vanishing on S?

Dima Grigoriev (CNRS)

Tropical Combinatorial Nullstellensatz

24.10.18 9 / 1

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates \max , + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of \max , + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates \max , + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of \max , + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates \max , + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of \max , + in it (so, the tropical powering is for free).

Theorem

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max. + in it (so, the tropical powering is for free).

Theorem

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so the tropical powering is for free).

Theorem

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.
Shub-Smale's *τ*-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

Shub-Smale's *τ*-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

Dima Grigoriev (CNRS)

Shub-Smale's *τ*-conjecture

The number of integer roots of a univariate polynomial is bounded by a polynomial in its circuit complexity (the conjecture is reduced to depth-4 circuits by **M. Agrawal, V. Vinay, 2008**).

Theorem

(M. Shub - S. Smale, 1995). τ -conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Small complexity tropical formula has small number of roots

Consider a tropical formula admitting gates max, + and multiplying by a positive integer (positive reals would be also allowed if to extend the concept of tropical polynomials). The latter operation is the tropical taking a power. The size of a formula is the number of max, + in it (so, the tropical powering is for free).

Theorem

If a tropical univariate polynomial is given by a tropical formula of size c then the polynomial has at most c tropical roots.

Dima Grigoriev (CNRS)

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \oslash (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \oslash (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \otimes (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \otimes (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \oslash (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \otimes (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k-th iteration* t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \otimes (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0,1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \otimes (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning).

k-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \otimes (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0,1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \otimes (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \oslash (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Transform the rational tropical circuit computing $t_1, t_2, ...$ into a tropical circuit computing $r_1, s_1, r_2, s_2, ...$ being tropical numerators and denominators of $t_k = r_k \oslash s_k$ according to the usual rules of adding, multiplying, dividing tropical fractions. Then one of r_k, s_k has at least 2^{k-1} tropical roots due to the Lemma.

Dima Grigoriev (CNRS)

Tropical Combinatorial Nullstellensatz

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \oslash (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Transform the rational tropical circuit computing $t_1, t_2, ...$ into a tropical circuit computing $r_1, s_1, r_2, s_2, ...$ being tropical numerators and denominators of $t_k = r_k \oslash s_k$ according to the usual rules of adding, multiplying, dividing tropical fractions. Then one of r_k, s_k has at least 2^{k-1} tropical roots due to the Lemma.

Dima Grigoriev (CNRS)

Tropical Combinatorial Nullstellensatz

Tropical circuit admits $\oplus := \max$, $\otimes := +$ (defines a convex piece-wise linear function).

Rational tropical circuit admits \oplus , \otimes , \otimes (defines a piece-wise linear function).

Rational tropical circuit with exponential number of roots

Consider a rational tropical function $t := 1 \oslash x^{\otimes 2} \oplus (-1) \bigotimes x^{\otimes 2} = \max\{-2x + 1, 2x - 1\}.$

Lemma

(borrowed from the deep learning). *k*-th iteration t_k of t has 2^k intervals of linearity (on the interval [0, 1]).

Transform the rational tropical circuit computing $t_1, t_2, ...$ into a tropical circuit computing $r_1, s_1, r_2, s_2, ...$ being tropical numerators and denominators of $t_k = r_k \oslash s_k$ according to the usual rules of adding, multiplying, dividing tropical fractions. Then one of r_k , s_k has at least 2^{k-1} tropical roots due to the Lemma.

Dima Grigoriev (CNRS)

Tropical Combinatorial Nullstellensatz

 $K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$

is a field of Puiseux series where $i_0 \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Consider a linear system $A \cdot X = b$ with $m \times n$ matrix $A = (a_{i,j})$ and vector $b = (b_i)$ over K. Denote by $P \subset K^n$ the linear plane determined by this system.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(P)} \subset \mathbb{R}^n$ is called a **tropical linear variety**.

We study the complexity of the problem of recognizing a tropical linear variety, i.e., for a given real algebraic vector $v = (v_1, \ldots, v_n) \in (\mathbb{R} \cap \overline{\mathbb{Q}})^n$ to test whether $v \in V$.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider a linear system $A \cdot X = b$ with $m \times n$ matrix $A = (a_{i,j})$ and vector $b = (b_i)$ over K. Denote by $P \subset K^n$ the linear plane determined by this system.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(P)} \subset \mathbb{R}^n$ is called a **tropical linear variety**.

We study the complexity of the problem of recognizing a tropical linear variety, i.e., for a given real algebraic vector $v = (v_1, \ldots, v_n) \in (\mathbb{R} \cap \overline{\mathbb{Q}})^n$ to test whether $v \in V$.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Consider a linear system $A \cdot X = b$ with $m \times n$ matrix $A = (a_{i,j})$ and vector $b = (b_i)$ over K. Denote by $P \subset K^n$ the linear plane determined by this system.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(P)} \subset \mathbb{R}^n$ is called a **tropical linear variety**.

We study the complexity of the problem of recognizing a tropical linear variety, i.e., for a given real algebraic vector $v = (v_1, \ldots, v_n) \in (\mathbb{R} \cap \overline{\mathbb{Q}})^n$ to test whether $v \in V$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Consider a linear system $A \cdot X = b$ with $m \times n$ matrix $A = (a_{i,j})$ and vector $b = (b_i)$ over K. Denote by $P \subset K^n$ the linear plane determined by this system.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(P)} \subset \mathbb{R}^n$ is called a **tropical linear variety**.

We study the complexity of the problem of recognizing a tropical linear variety, i.e., for a given real algebraic vector $v = (v_1, \ldots, v_n) \in (\mathbb{R} \cap \overline{\mathbb{Q}})^n$ to test whether $v \in V$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}, \ 1 \leq q \in \mathbb{Z}$.

Consider a linear system $A \cdot X = b$ with $m \times n$ matrix $A = (a_{i,j})$ and vector $b = (b_i)$ over K. Denote by $P \subset K^n$ the linear plane determined by this system.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(P)} \subset \mathbb{R}^n$ is called a **tropical linear variety**.

We study the complexity of the problem of recognizing a tropical linear variety, i.e., for a given real algebraic vector $v = (v_1, \ldots, v_n) \in (\mathbb{R} \cap \overline{\mathbb{Q}})^n$ to test whether $v \in V$.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Consider a linear system $A \cdot X = b$ with $m \times n$ matrix $A = (a_{i,j})$ and vector $b = (b_i)$ over K. Denote by $P \subset K^n$ the linear plane determined by this system.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(P)} \subset \mathbb{R}^n$ is called a **tropical linear variety**.

We study the complexity of the problem of recognizing a tropical linear variety, i.e., for a given real algebraic vector $v = (v_1, \ldots, v_n) \in (\mathbb{R} \cap \overline{\mathbb{Q}})^n$ to test whether $v \in V$.

Primitive element $z \in K$ is given as a root of a polynomial equation h(t, z) = 0 where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).

Also we are supplied with rational functions $h_{i,j}$, $h_i \in \mathbb{Q}(t)[Z]$ such that

$$a_{i,j} = h_{i,j}(z), \ b_i = h_i(z), \ 1 \le i \le m, \ 1 \le j \le n.$$

We suppose that $\deg(h), \deg(h_{i,j}), \deg(h_i) \leq d$.

In addition, we assume that each rational coefficient of the polynomials $h, h_{i,j}, h_i$ is given as a quotient of a pair of integers with absolute values less than 2^{M} . The latter means that the bit-size of this rational number is bounded by 2M.

The algorithm represents the coefficients of the series as elements from a finite (algebraic) extension of Q. The extension is given by a primitive element.

Primitive element $z \in K$ is given as a root of a polynomial equation h(t, z) = 0 where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).

Also we are supplied with rational functions $h_{i,j}$, $h_i \in \mathbb{Q}(t)[Z]$ such that

 $a_{i,j} = n_{i,j}(Z), \ b_i = n_i(Z), \ 1 \le i \le m, \ 1 \le j \le n.$

We suppose that $\deg(h), \deg(h_{i,j}), \deg(h_i) \leq d$.

In addition, we assume that each rational coefficient of the polynomials $h, h_{i,j}, h_i$ is given as a quotient of a pair of integers with absolute values less than 2^M. The latter means that the bit-size of this rational number is bounded by 2*M*.

The algorithm represents the coefficients of the series as elements from a finite (algebraic) extension of Q. The extension is given by a primitive element.

Primitive element $z \in K$ is given as a root of a polynomial equation h(t, z) = 0 where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).

Also we are supplied with rational functions $h_{i,j}$, $h_i \in \mathbb{Q}(t)[Z]$ such that $a_{i,j} = h_{i,j}(z)$, $b_i = h_i(z)$, $1 \le i \le m$, $1 \le j \le n$.

We suppose that $\deg(h), \deg(h_{i,j}), \deg(h_i) \leq d$.

In addition, we assume that each rational coefficient of the polynomials $h, h_{i,j}, h_i$ is given as a quotient of a pair of integers with absolute values less than 2^{M} . The latter means that the bit-size of this rational number is bounded by 2M.

The algorithm represents the coefficients of the series as elements from a finite (algebraic) extension of Q. The extension is given by a primitive element.

Primitive element $z \in K$ is given as a root of a polynomial equation h(t, z) = 0 where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).

Also we are supplied with rational functions $h_{i,j}$, $h_i \in \mathbb{Q}(t)[Z]$ such that

$$a_{i,j} = h_{i,j}(z), \ b_i = h_i(z), \ 1 \le i \le m, \ 1 \le j \le n.$$

We suppose that $\deg(h), \deg(h_{i,j}), \deg(h_i) \leq d$.

In addition, we assume that each rational coefficient of the polynomials $h, h_{i,j}, h_i$ is given as a quotient of a pair of integers with absolute values less than 2^{M} . The latter means that the bit-size of this rational number is bounded by 2M.

The algorithm represents the coefficients of the series as elements from a finite (algebraic) extension of \mathbb{Q} . The extension is given by a primitive element.

Primitive element $z \in K$ is given as a root of a polynomial equation h(t, z) = 0 where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).

Also we are supplied with rational functions $h_{i,j}$, $h_i \in \mathbb{Q}(t)[Z]$ such that

$$a_{i,j} = h_{i,j}(z), \ b_i = h_i(z), \ 1 \le i \le m, \ 1 \le j \le n.$$

We suppose that $\deg(h), \deg(h_{i,j}), \deg(h_i) \leq d$.

In addition, we assume that each rational coefficient of the polynomials h, $h_{i,j}$, h_i is given as a quotient of a pair of integers with absolute values less than 2^M . The latter means that the bit-size of this rational number is bounded by 2M.

The algorithm represents the coefficients of the series as elements from a finite (algebraic) extension of \mathbb{Q} . The extension is given by a primitive element.

Primitive element $z \in K$ is given as a root of a polynomial equation h(t, z) = 0 where $h \in \mathbb{Z}[t, Z]$, and by means of a further specifying a beginning of the expansion of z as a Puiseux series over the field $\overline{\mathbb{Q}}$ of algebraic numbers (to make a root of h to be unique with this beginning of the expansion). One can produce such an expansion within the polynomial complexity (Chistov).

Also we are supplied with rational functions $h_{i,j}$, $h_i \in \mathbb{Q}(t)[Z]$ such that

$$a_{i,j} = h_{i,j}(z), \ b_i = h_i(z), \ 1 \le i \le m, \ 1 \le j \le n.$$

We suppose that $\deg(h), \deg(h_{i,j}), \deg(h_i) \leq d$.

In addition, we assume that each rational coefficient of the polynomials h, $h_{i,j}$, h_i is given as a quotient of a pair of integers with absolute values less than 2^M . The latter means that the bit-size of this rational number is bounded by 2M.

The algorithm represents the coefficients of the series as elements from a finite (algebraic) extension of \mathbb{Q} . The extension is given by a primitive element.

First, the algorithm cleans the denominator in the exponents of the Puiseux series of *z* replacing $t^{1/q}$ by *t* for a suitable $q \le d$ to make *z* to be a Laurent series with integer exponents (and keeping the same notation for *z*, *h*, *h*_{*i*,*j*}, *h*_{*i*}). The coordinates of the vector *v* we also multiply by *s* and keep the same notation for *v*.

We say that two coordinates v_{j_1} , v_{j_2} of v are *congruent* if $v_{j_1} - v_{j_2} \in \mathbb{Z}$. Consider any solution x of $A \cdot X = b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α , denote by $x^{(\alpha)} := (x_1^{(\alpha)}, \ldots, x_n^{(\alpha)})$ the resulting vector consisting of these selected subsums of x_1, \ldots, x_n .

Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X = b$, and any other $x^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)} = 0$, hence $A \cdot (t^{-\alpha} \cdot x^{(\alpha)}) = 0$ and $t^{-\alpha} \cdot x^{(\alpha)}$ is a Laurent series.

Thus, we get the following

First, the algorithm cleans the denominator in the exponents of the Puiseux series of *z* replacing $t^{1/q}$ by *t* for a suitable $q \le d$ to make *z* to be a Laurent series with integer exponents (and keeping the same notation for *z*, *h*, *h*_{*i*,*j*}, *h*_{*i*}). The coordinates of the vector *v* we also multiply by *s* and keep the same notation for *v*.

We say that two coordinates v_{j_1} , v_{j_2} of v are *congruent* if $v_{j_1} - v_{j_2} \in \mathbb{Z}$. Consider any solution x of $A \cdot X = b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α , denote by $x^{(\alpha)} := (x_1^{(\alpha)}, \ldots, x_n^{(\alpha)})$ the resulting vector consisting of these selected subsums of x_1, \ldots, x_n .

Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X = b$, and any other $x^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)} = 0$, hence $A \cdot (t^{-\alpha} \cdot x^{(\alpha)}) = 0$ and $t^{-\alpha} \cdot x^{(\alpha)}$ is a Laurent series.

Thus, we get the following

・ロッ ・雪 ・ ・ ヨ ・ ・

First, the algorithm cleans the denominator in the exponents of the Puiseux series of *z* replacing $t^{1/q}$ by *t* for a suitable $q \le d$ to make *z* to be a Laurent series with integer exponents (and keeping the same notation for *z*, *h*, *h*_{*i*,*j*}, *h*_{*i*}). The coordinates of the vector *v* we also multiply by *s* and keep the same notation for *v*.

We say that two coordinates v_{j_1} , v_{j_2} of v are *congruent* if $v_{j_1} - v_{j_2} \in \mathbb{Z}$. Consider any solution x of $A \cdot X = b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α , denote by $x^{(\alpha)} := (x_1^{(\alpha)}, \dots, x_n^{(\alpha)})$ the resulting vector consisting of these selected subsums of x_1, \dots, x_n .

Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X = b$, and any other $x^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)} = 0$, hence $A \cdot (t^{-\alpha} \cdot x^{(\alpha)}) = 0$ and $t^{-\alpha} \cdot x^{(\alpha)}$ is a Laurent series.

Thus, we get the following

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

First, the algorithm cleans the denominator in the exponents of the Puiseux series of *z* replacing $t^{1/q}$ by *t* for a suitable $q \le d$ to make *z* to be a Laurent series with integer exponents (and keeping the same notation for *z*, *h*, *h*_{*i*,*j*}, *h*_{*i*}). The coordinates of the vector *v* we also multiply by *s* and keep the same notation for *v*.

We say that two coordinates v_{j_1} , v_{j_2} of v are *congruent* if $v_{j_1} - v_{j_2} \in \mathbb{Z}$. Consider any solution x of $A \cdot X = b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α , denote by $x^{(\alpha)} := (x_1^{(\alpha)}, \ldots, x_n^{(\alpha)})$ the resulting vector consisting of these selected subsums of x_1, \ldots, x_n .

Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X = b$, and any other $x^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)} = 0$, hence $A \cdot (t^{-\alpha} \cdot x^{(\alpha)}) = 0$ and $t^{-\alpha} \cdot x^{(\alpha)}$ is a Laurent series.

Thus, we get the following

First, the algorithm cleans the denominator in the exponents of the Puiseux series of *z* replacing $t^{1/q}$ by *t* for a suitable $q \le d$ to make *z* to be a Laurent series with integer exponents (and keeping the same notation for *z*, *h*, *h*_{*i*,*j*}, *h*_{*i*}). The coordinates of the vector *v* we also multiply by *s* and keep the same notation for *v*.

We say that two coordinates v_{j_1} , v_{j_2} of v are *congruent* if $v_{j_1} - v_{j_2} \in \mathbb{Z}$. Consider any solution x of $A \cdot X = b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α , denote by $x^{(\alpha)} := (x_1^{(\alpha)}, \ldots, x_n^{(\alpha)})$ the resulting vector consisting of these selected subsums of x_1, \ldots, x_n .

Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X = b$, and any other $x^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)} = 0$, hence $A \cdot (t^{-\alpha} \cdot x^{(\alpha)}) = 0$ and $t^{-\alpha} \cdot x^{(\alpha)}$ is a Laurent series.

Thus, we get the following

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

First, the algorithm cleans the denominator in the exponents of the Puiseux series of *z* replacing $t^{1/q}$ by *t* for a suitable $q \le d$ to make *z* to be a Laurent series with integer exponents (and keeping the same notation for *z*, *h*, *h*_{*i*,*j*}, *h*_{*i*}). The coordinates of the vector *v* we also multiply by *s* and keep the same notation for *v*.

We say that two coordinates v_{j_1} , v_{j_2} of v are *congruent* if $v_{j_1} - v_{j_2} \in \mathbb{Z}$. Consider any solution x of $A \cdot X = b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α , denote by $x^{(\alpha)} := (x_1^{(\alpha)}, \ldots, x_n^{(\alpha)})$ the resulting vector consisting of these selected subsums of x_1, \ldots, x_n .

Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X = b$, and any other $x^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)} = 0$, hence $A \cdot (t^{-\alpha} \cdot x^{(\alpha)}) = 0$ and $t^{-\alpha} \cdot x^{(\alpha)}$ is a Laurent series.

Thus, we get the following

First, the algorithm cleans the denominator in the exponents of the Puiseux series of *z* replacing $t^{1/q}$ by *t* for a suitable $q \le d$ to make *z* to be a Laurent series with integer exponents (and keeping the same notation for *z*, *h*, *h*_{*i*,*j*}, *h*_{*i*}). The coordinates of the vector *v* we also multiply by *s* and keep the same notation for *v*.

We say that two coordinates v_{j_1} , v_{j_2} of v are *congruent* if $v_{j_1} - v_{j_2} \in \mathbb{Z}$. Consider any solution x of $A \cdot X = b$. For each congruence class $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ of v select from x all the monomials with the exponents which belong to α , denote by $x^{(\alpha)} := (x_1^{(\alpha)}, \ldots, x_n^{(\alpha)})$ the resulting vector consisting of these selected subsums of x_1, \ldots, x_n .

Then $x^{(0)}$ which corresponds to the congruence class of the integers satisfies $A \cdot X = b$, and any other $x^{(\alpha)}$ with $\alpha \notin \mathbb{Z}$ satisfies the homogeneous linear system $A \cdot x^{(\alpha)} = 0$, hence $A \cdot (t^{-\alpha} \cdot x^{(\alpha)}) = 0$ and $t^{-\alpha} \cdot x^{(\alpha)}$ is a Laurent series.

Thus, we get the following

(ロ) (四) (E) (E) (E) (E)

Partitioning the Coordinates of a Vector into Congruence Classes

Lemma

Vector $v \in \overline{\text{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X = b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X = 0$ when $\alpha \notin \mathbb{Z}$) has a solution $x = (x_1, \dots, x_n)$ in Laurent series x_1, \dots, x_n satisfying the conditions either $\text{Trop}(x_j) + \alpha = v_j$ when v_j belongs to the congruence class of α , or $\text{Trop}(x_j) + \alpha > v_j$ otherwise, $1 \le j \le n$.

We assume that the vector v is provided in the following way. A primitive real algebraic element $u \in \overline{\mathbb{Q}} \cap \mathbb{R}$ is given as a root of a polynomial $g \in \mathbb{Z}[Y]$ together with specifying a rational interval $[e_1, e_2]$ which contains the unique root u of g. In addition, certain polynomials $g_j \in \mathbb{Q}[Y]$, $1 \le j \le n$ are given such that $v_j = g_j(u)$. We suppose that $\deg(g), \deg(g_j) \le d$ and that the absolute values of the numerators and denominators of the (rational) coefficients of g, g_j and of e_1, e_2 do not exceed 2^M .
Lemma

Vector $v \in \overline{\text{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X = b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X = 0$ when $\alpha \notin \mathbb{Z}$) has a solution $x = (x_1, \dots, x_n)$ in Laurent series x_1, \dots, x_n satisfying the conditions either $\text{Trop}(x_j) + \alpha = v_j$ when v_j belongs to the congruence class of α , or $\text{Trop}(x_j) + \alpha > v_j$ otherwise, $1 \le j \le n$.

Lemma

Vector $v \in \overline{\operatorname{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X = b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X = 0$ when $\alpha \notin \mathbb{Z}$) has a solution $x = (x_1, \ldots, x_n)$ in Laurent series x_1, \ldots, x_n satisfying the conditions either $\operatorname{Trop}(x_j) + \alpha = v_j$ when v_j belongs to the congruence class of α , or $\operatorname{Trop}(x_j) + \alpha > v_j$ otherwise, $1 \le j \le n$.

Lemma

Vector $v \in \overline{\text{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X = b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X = 0$ when $\alpha \notin \mathbb{Z}$) has a solution $x = (x_1, \ldots, x_n)$ in Laurent series x_1, \ldots, x_n satisfying the conditions either $\text{Trop}(x_j) + \alpha = v_j$ when v_j belongs to the congruence class of α , or $\text{Trop}(x_j) + \alpha > v_j$ otherwise, $1 \le j \le n$.

Lemma

Vector $v \in \overline{\text{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X = b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X = 0$ when $\alpha \notin \mathbb{Z}$) has a solution $x = (x_1, \ldots, x_n)$ in Laurent series x_1, \ldots, x_n satisfying the conditions either $\text{Trop}(x_j) + \alpha = v_j$ when v_j belongs to the congruence class of α , or $\text{Trop}(x_j) + \alpha > v_j$ otherwise, $1 \le j \le n$.

Lemma

Vector $v \in \overline{\text{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X = b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X = 0$ when $\alpha \notin \mathbb{Z}$) has a solution $x = (x_1, \ldots, x_n)$ in Laurent series x_1, \ldots, x_n satisfying the conditions either $\text{Trop}(x_j) + \alpha = v_j$ when v_j belongs to the congruence class of α , or $\text{Trop}(x_j) + \alpha > v_j$ otherwise, $1 \le j \le n$.

Lemma

Vector $v \in \overline{\text{Trop}(P)}$ iff the conjunction of the following statements for all the congruence classes $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ holds. System $A \cdot X = b$ when $\alpha \in \mathbb{Z}$ (or respectively, the homogeneous system $A \cdot X = 0$ when $\alpha \notin \mathbb{Z}$) has a solution $x = (x_1, \ldots, x_n)$ in Laurent series x_1, \ldots, x_n satisfying the conditions either $\text{Trop}(x_j) + \alpha = v_j$ when v_j belongs to the congruence class of α , or $\text{Trop}(x_j) + \alpha > v_j$ otherwise, $1 \le j \le n$.

We assume that the vector v is provided in the following way. A primitive real algebraic element $u \in \overline{\mathbb{Q}} \cap \mathbb{R}$ is given as a root of a polynomial $g \in \mathbb{Z}[Y]$ together with specifying a rational interval $[e_1, e_2]$ which contains the unique root u of g. In addition, certain polynomials $g_j \in \mathbb{Q}[Y]$, $1 \le j \le n$ are given such that $v_j = g_j(u)$. We suppose that $\deg(g), \deg(g_j) \le d$ and that the absolute values of the numerators and denominators of the (rational) coefficients of g, g_j and of e_1, e_2 do not exceed 2^M .

To detect whether for a pair of the coordinates the congruence $v_{j_1} - v_{j_2} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $|v_{j_1} - v_{j_2} - e| < 1/2$ (provided that it does exist) and then verifies whether $v_{j_1} - v_{j_2} = e$. This supplies us with the partition of the coordinates v_1, \ldots, v_n into the classes of congruence.

Thus, for the time being we fix a congruence class α . The algorithm searches for vectors $x = (x_1, \ldots, x_n)$ satisfying the conditions in Lemma.

Denote by $J \subset \{1, ..., n\}$ the set of j such that v_j belongs to the fixed congruence class. For every $j \in J$ we replace $a_{i,j}$ by $t^{v_j - \alpha} \cdot a_{i,j}, 1 \le i \le m$. For every $j \notin J$ let $\alpha + s - 1 < v_j < \alpha + s$ for a suitable (unique) integer s, then we replace $a_{i,j}$ by $t^s \cdot a_{i,j}, 1 \le i \le m$.

After this replacement the algorithm searches for vectors $x = (x_1, ..., x_n)$ satisfying the properties $Trop(x_j) = 0, j \in J$ and $Trop(x_j) \ge 0, j \notin J$.

To detect whether for a pair of the coordinates the congruence $v_{j_1} - v_{j_2} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $|v_{j_1} - v_{j_2} - e| < 1/2$ (provided that it does exist) and then verifies whether $v_{j_1} - v_{j_2} = e$. This supplies us with the partition of the coordinates v_1, \ldots, v_n into the classes of congruence.

Thus, for the time being we fix a congruence class α . The algorithm searches for vectors $x = (x_1, \dots, x_n)$ satisfying the conditions in Lemma.

Denote by $J \subset \{1, ..., n\}$ the set of j such that v_j belongs to the fixed congruence class. For every $j \in J$ we replace $a_{i,j}$ by $t^{v_j - \alpha} \cdot a_{i,j}, 1 \le i \le m$. For every $j \notin J$ let $\alpha + s - 1 < v_j < \alpha + s$ for a suitable (unique) integer s, then we replace $a_{i,j}$ by $t^s \cdot a_{i,j}, 1 \le i \le m$.

After this replacement the algorithm searches for vectors $x = (x_1, ..., x_n)$ satisfying the properties $Trop(x_j) = 0, j \in J$ and $Trop(x_j) \ge 0, j \notin J$.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

To detect whether for a pair of the coordinates the congruence $v_{j_1} - v_{j_2} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $|v_{j_1} - v_{j_2} - e| < 1/2$ (provided that it does exist) and then verifies whether $v_{j_1} - v_{j_2} = e$. This supplies us with the partition of the coordinates v_1, \ldots, v_n into the classes of congruence.

Thus, for the time being we fix a congruence class α . The algorithm searches for vectors $x = (x_1, \ldots, x_n)$ satisfying the conditions in Lemma.

Denote by $J \subset \{1, ..., n\}$ the set of *j* such that v_j belongs to the fixed congruence class. For every $j \in J$ we replace $a_{i,j}$ by $t^{v_j - \alpha} \cdot a_{i,j}, 1 \le i \le m$. For every $j \notin J$ let $\alpha + s - 1 < v_j < \alpha + s$ for a suitable (unique) integer *s*, then we replace $a_{i,j}$ by $t^s \cdot a_{i,j}, 1 \le i \le m$.

After this replacement the algorithm searches for vectors $x = (x_1, ..., x_n)$ satisfying the properties $Trop(x_j) = 0, j \in J$ and $Trop(x_j) \ge 0, j \notin J$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To detect whether for a pair of the coordinates the congruence $v_{j_1} - v_{j_2} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $|v_{j_1} - v_{j_2} - e| < 1/2$ (provided that it does exist) and then verifies whether $v_{j_1} - v_{j_2} = e$. This supplies us with the partition of the coordinates v_1, \ldots, v_n into the classes of congruence.

Thus, for the time being we fix a congruence class α . The algorithm searches for vectors $x = (x_1, \ldots, x_n)$ satisfying the conditions in Lemma.

Denote by $J \subset \{1, ..., n\}$ the set of j such that v_j belongs to the fixed congruence class. For every $j \in J$ we replace $a_{i,j}$ by $t^{v_j - \alpha} \cdot a_{i,j}, 1 \le i \le m$. For every $j \notin J$ let $\alpha + s - 1 < v_j < \alpha + s$ for a suitable (unique) integer s, then we replace $a_{i,j}$ by $t^s \cdot a_{i,j}, 1 \le i \le m$. After this replacement the algorithm searches for vectors $x = (x_1, ..., x_n)$ satisfying the properties $Trop(x_j) = 0, j \in J$ and

(日)

To detect whether for a pair of the coordinates the congruence $v_{j_1} - v_{j_2} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $|v_{j_1} - v_{j_2} - e| < 1/2$ (provided that it does exist) and then verifies whether $v_{j_1} - v_{j_2} = e$. This supplies us with the partition of the coordinates v_1, \ldots, v_n into the classes of congruence.

Thus, for the time being we fix a congruence class α . The algorithm searches for vectors $x = (x_1, \ldots, x_n)$ satisfying the conditions in Lemma.

Denote by $J \subset \{1, ..., n\}$ the set of *j* such that v_j belongs to the fixed congruence class. For every $j \in J$ we replace $a_{i,j}$ by $t^{v_j - \alpha} \cdot a_{i,j}, 1 \le i \le m$. For every $j \notin J$ let $\alpha + s - 1 < v_j < \alpha + s$ for a suitable (unique) integer *s*, then we replace $a_{i,j}$ by $t^s \cdot a_{i,j}, 1 \le i \le m$.

After this replacement the algorithm searches for vectors $x = (x_1, ..., x_n)$ satisfying the properties $Trop(x_j) = 0, j \in J$ and $Trop(x_j) \ge 0, j \notin J$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To detect whether for a pair of the coordinates the congruence $v_{j_1} - v_{j_2} \in \mathbb{Z}$ holds, the algorithm computes an integer approximation $e \in \mathbb{Z}$ of $|v_{j_1} - v_{j_2} - e| < 1/2$ (provided that it does exist) and then verifies whether $v_{j_1} - v_{j_2} = e$. This supplies us with the partition of the coordinates v_1, \ldots, v_n into the classes of congruence.

Thus, for the time being we fix a congruence class α . The algorithm searches for vectors $x = (x_1, \ldots, x_n)$ satisfying the conditions in Lemma.

Denote by $J \subset \{1, ..., n\}$ the set of *j* such that v_j belongs to the fixed congruence class. For every $j \in J$ we replace $a_{i,j}$ by $t^{v_j - \alpha} \cdot a_{i,j}, 1 \le i \le m$. For every $j \notin J$ let $\alpha + s - 1 < v_j < \alpha + s$ for a suitable (unique) integer *s*, then we replace $a_{i,j}$ by $t^s \cdot a_{i,j}, 1 \le i \le m$.

After this replacement the algorithm searches for vectors $x = (x_1, ..., x_n)$ satisfying the properties $Trop(x_j) = 0, j \in J$ and $Trop(x_j) \ge 0, j \notin J$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Then by elementary transformations with the rows of matrix *A* over the quotient-ring $\mathbb{Q}(t)[Z]/h$ and an appropriate permutation of columns, the algorithm brings *A* to the form $a_{i,i} = 1$, $a_{i,j} = 0$, $1 \le i \ne j \le m$ (one can assume w.l.o.g. that rk(A) = m).

For $m < j \le n$ denote $r_j := -\min_{1 \le i \le m} \{ \operatorname{Trop}(a_{i,j}) \}$. If $r_j < 0$ we put the coordinate $x_j = 1$. Else if $r_j \ge 0$ we put $x_j = y_{j,0} + y_{j,1} \cdot t + \cdots + y_{j,r_j} \cdot t^{r_j}$ with the indeterminates $y_{j,0}, \ldots, y_{j,r_j}$ over $\overline{\mathbb{Q}}$.

Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_i = 0, 1 \le i \le m$ (cf. Lemma).

For $1 \le i \le m$ denote $s_i = \min_{m < j \le n} \{ Trop(a_{i,j}), Trop(b_i) \}$. The *i*-th equation of system $A \cdot X = b$ one can rewrite as

 $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i.$

For every $s_j \le k \le 0$ one can express the coefficient of $\sum_{m < j \le n} a_{i,j} \cdot x_j - b_j$ at the power t^k as a linear function $L_{i,k}$ over $\overline{\mathbb{Q}}$ in the indeterminates $Y := \{y_{j,l}, m < j \le n, 0 \le l \le r_j\}$.

Then by elementary transformations with the rows of matrix *A* over the quotient-ring $\mathbb{Q}(t)[Z]/h$ and an appropriate permutation of columns, the algorithm brings *A* to the form $a_{i,i} = 1$, $a_{i,j} = 0$, $1 \le i \ne j \le m$ (one can assume w.l.o.g. that rk(A) = m).

For $m < j \le n$ denote $r_j := -\min_{1 \le i \le m} \{ \operatorname{Trop}(a_{i,j}) \}$. If $r_j < 0$ we put the coordinate $x_j = 1$. Else if $r_j \ge 0$ we put $x_j = y_{j,0} + y_{j,1} \cdot t + \cdots + y_{j,r_j} \cdot t^{r_j}$ with the indeterminates $y_{j,0}, \ldots, y_{j,r_j}$ over $\overline{\mathbb{Q}}$.

Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_i = 0, 1 \le i \le m$ (cf. Lemma).

For $1 \le i \le m$ denote $s_i = \min_{m < j \le n} \{ Trop(a_{i,j}), Trop(b_i) \}$. The *i*-th equation of system $A \cdot X = b$ one can rewrite as

 $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i.$

For every $s_j \le k \le 0$ one can express the coefficient of $\sum_{m < j \le n} a_{i,j} \cdot x_j - b_j$ at the power t^k as a linear function $L_{i,k}$ over $\overline{\mathbb{Q}}$ in the indeterminates $Y := \{y_{j,l}, m < j \le n, 0 \le l \le r_j\}$.

Then by elementary transformations with the rows of matrix *A* over the quotient-ring $\mathbb{Q}(t)[Z]/h$ and an appropriate permutation of columns, the algorithm brings *A* to the form $a_{i,i} = 1$, $a_{i,j} = 0$, $1 \le i \ne j \le m$ (one can assume w.l.o.g. that rk(A) = m).

For $m < j \le n$ denote $r_j := -\min_{1 \le i \le m} \{ \operatorname{Trop}(a_{i,j}) \}$. If $r_j < 0$ we put the coordinate $x_j = 1$. Else if $r_j \ge 0$ we put $x_j = y_{j,0} + y_{j,1} \cdot t + \cdots + y_{j,r_j} \cdot t^{r_j}$ with the indeterminates $y_{j,0}, \ldots, y_{j,r_j}$ over $\overline{\mathbb{Q}}$.

Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_i = 0, 1 \le i \le m$ (cf. Lemma).

For $1 \le i \le m$ denote $s_i = \min_{m < j \le n} \{ Trop(a_{i,j}), Trop(b_i) \}$. The *i*-th equation of system $A \cdot X = b$ one can rewrite as

 $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i.$

For every $s_i \le k \le 0$ one can express the coefficient of $\sum_{m < j \le n} a_{i,j} \cdot x_j - b_i$ at the power t^k as a linear function $L_{i,k}$ over $\overline{\mathbb{Q}}$ in the indeterminates $Y := \{y_{j,l}, m < j \le n, 0 \le l \le r_j\}$.

Then by elementary transformations with the rows of matrix *A* over the quotient-ring $\mathbb{Q}(t)[Z]/h$ and an appropriate permutation of columns, the algorithm brings *A* to the form $a_{i,i} = 1$, $a_{i,j} = 0$, $1 \le i \ne j \le m$ (one can assume w.l.o.g. that rk(A) = m).

For $m < j \le n$ denote $r_j := -\min_{1 \le i \le m} \{ \operatorname{Trop}(a_{i,j}) \}$. If $r_j < 0$ we put the coordinate $x_j = 1$. Else if $r_j \ge 0$ we put $x_j = y_{j,0} + y_{j,1} \cdot t + \cdots + y_{j,r_j} \cdot t^{r_j}$ with the indeterminates $y_{j,0}, \ldots, y_{j,r_j}$ over $\overline{\mathbb{Q}}$.

Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_i = 0, 1 \le i \le m$ (cf. Lemma).

For $1 \le i \le m$ denote $s_i = \min_{m < j \le n} \{ Trop(a_{i,j}), Trop(b_i) \}$. The *i*-th equation of system $A \cdot X = b$ one can rewrite as

 $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i.$

For every $s_i \le k \le 0$ one can express the coefficient of $\sum_{i=1}^{k} a_{i} \cdot a_{i} \cdot x_{i} = b_{i}$ at the power t^{k} as a linear function $L \cdot a_{i}$

the indeterminates $Y := \{y_{j,l}, m < j \le n, 0 \le l \le r_j\}$.

Then by elementary transformations with the rows of matrix *A* over the quotient-ring $\mathbb{Q}(t)[Z]/h$ and an appropriate permutation of columns, the algorithm brings *A* to the form $a_{i,i} = 1$, $a_{i,j} = 0$, $1 \le i \ne j \le m$ (one can assume w.l.o.g. that rk(A) = m).

For $m < j \le n$ denote $r_j := -\min_{1 \le i \le m} \{ \operatorname{Trop}(a_{i,j}) \}$. If $r_j < 0$ we put the coordinate $x_j = 1$. Else if $r_j \ge 0$ we put $x_j = y_{j,0} + y_{j,1} \cdot t + \cdots + y_{j,r_j} \cdot t^{r_j}$ with the indeterminates $y_{j,0}, \ldots, y_{j,r_j}$ over $\overline{\mathbb{Q}}$.

Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_i = 0, 1 \le i \le m$ (cf. Lemma).

For $1 \le i \le m$ denote $s_i = \min_{m < j \le n} \{ Trop(a_{i,j}), Trop(b_i) \}$. The *i*-th equation of system $A \cdot X = b$ one can rewrite as $x_i + \sum_{m < i \le n} a_{i,j} \cdot x_j = b_i$.

For every $s_i \le k \le 0$ one can express the coefficient of $\sum_{m < j \le n} a_{i,j} \cdot x_j - b_i$ at the power t^k as a linear function $L_{i,k}$ over $\overline{\mathbb{Q}}$ in the indeterminates $Y := \{y_{j,l}, m < j \le n, 0 \le l \le r_j\}$.

Then by elementary transformations with the rows of matrix *A* over the quotient-ring $\mathbb{Q}(t)[Z]/h$ and an appropriate permutation of columns, the algorithm brings *A* to the form $a_{i,i} = 1$, $a_{i,j} = 0$, $1 \le i \ne j \le m$ (one can assume w.l.o.g. that rk(A) = m).

For $m < j \le n$ denote $r_j := -\min_{1 \le i \le m} \{ \operatorname{Trop}(a_{i,j}) \}$. If $r_j < 0$ we put the coordinate $x_j = 1$. Else if $r_j \ge 0$ we put $x_j = y_{j,0} + y_{j,1} \cdot t + \cdots + y_{j,r_j} \cdot t^{r_j}$ with the indeterminates $y_{j,0}, \ldots, y_{j,r_j}$ over $\overline{\mathbb{Q}}$.

Below w.l.o.g. we carry out the calculations for the case of the congruence class of integers $\alpha \in \mathbb{Z}$. When $\alpha \notin \mathbb{Z}$ one should put below $b_i = 0, 1 \le i \le m$ (cf. Lemma).

For $1 \le i \le m$ denote $s_i = \min_{m < j \le n} \{ Trop(a_{i,j}), Trop(b_i) \}$. The *i*-th equation of system $A \cdot X = b$ one can rewrite as

$$x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i.$$

For every $s_i \le k \le 0$ one can express the coefficient of $\sum_{m < j \le n} a_{i,j} \cdot x_j - b_i$ at the power t^k as a linear function $L_{i,k}$ over $\overline{\mathbb{Q}}$ in the indeterminates $Y := \{y_{j,l}, m < j \le n, 0 \le l \le r_j\}$.

Consider the linear system

 $L_{i,k} = 0, \ 1 \le i \le m, \ s_i \le k < 0$

in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family

$$L := \{L_{i,0}, i \in J, 1 \le i \le m; y_{j,0}, j \in J, m < j \le n\}$$

does not vanish identically on the space of solutions of the system.

If all of them do not vanish identically then take any values of *Y* which fulfil the system with non-zero values of all the linear functions from the family *L*. Then equation $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i$ determines uniquely x_i with $Trop(x_i) = 0$ when $i \in J$ and $Trop(x_i) \ge 0$ when $i \notin J$. This provides a solution *x* of the input system $A \cdot X = b$ satisfying $Trop(x_j) = 0$ when $j \in J$ and $Trop(x_j) \ge 0$ when $j \notin J$ (cf. Lemma). Otherwise, if some of the linear functions from the family *L* vanishes identically on the space of solutions of the system then the input system $A \cdot X = b$ has no solutions satisfying the conditions of the system

Consider the linear system

 $L_{i,k}=0,\,1\leq i\leq m,\,s_i\leq k<0$

in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family

 $L := \{L_{i,0}, i \in J, 1 \le i \le m; y_{j,0}, j \in J, m < j \le n\}$

does not vanish identically on the space of solutions of the system.

If all of them do not vanish identically then take any values of *Y* which fulfil the system with non-zero values of all the linear functions from the family *L*. Then equation $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i$ determines uniquely x_i with $Trop(x_i) = 0$ when $i \in J$ and $Trop(x_i) \ge 0$ when $i \notin J$. This provides a solution *x* of the input system $A \cdot X = b$ satisfying $Trop(x_j) = 0$ when $j \in J$ and $Trop(x_j) \ge 0$ when $j \notin J$ (cf. Lemma). Otherwise, if some of the linear functions from the family *L* vanishes identically on the space of solutions of the system then the input system $A \cdot X = b$ has no solutions satisfying the conditions of the system

Consider the linear system

 $L_{i,k}=0,\ 1\leq i\leq m,\ s_i\leq k<0$

in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family

$$L := \{L_{i,0}, i \in J, 1 \le i \le m; y_{j,0}, j \in J, m < j \le n\}$$

does not vanish identically on the space of solutions of the system.

If all of them do not vanish identically then take any values of *Y* which fulfil the system with non-zero values of all the linear functions from the family *L*. Then equation $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i$ determines uniquely x_i with $Trop(x_i) = 0$ when $i \in J$ and $Trop(x_i) \ge 0$ when $i \notin J$. This provides a solution *x* of the input system $A \cdot X = b$ satisfying $Trop(x_j) = 0$ when $j \in J$ and $Trop(x_j) \ge 0$ when $j \notin J$ (cf. Lemma). Otherwise, if some of the linear functions from the family *L* vanishes identically on the space of solutions of the system then the input system $A \cdot X = b$ has no solutions satisfying the conditions of Lemma.

Consider the linear system

 $L_{i,k}=0,\,1\leq i\leq m,\,s_i\leq k<0$

in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family

$$L := \{L_{i,0}, i \in J, 1 \le i \le m; y_{j,0}, j \in J, m < j \le n\}$$

does not vanish identically on the space of solutions of the system.

If all of them do not vanish identically then take any values of *Y* which fulfil the system with non-zero values of all the linear functions from the family *L*. Then equation $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i$ determines uniquely x_i with $Trop(x_i) = 0$ when $i \in J$ and $Trop(x_i) \ge 0$ when $i \notin J$. This provides a solution *x* of the input system $A \cdot X = b$ satisfying $Trop(x_j) = 0$ when $j \in J$ and $Trop(x_j) \ge 0$ when $j \notin J$ (cf. Lemma). Otherwise, if some of the linear functions from the family *L* vanishes identically on the space of solutions of the system then the input system $A \cdot X = b$ has no solutions satisfying the conditions of a lemma $a < \infty$

Consider the linear system

 $L_{i,k}=0,\,1\leq i\leq m,\,s_i\leq k<0$

in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family

$$L := \{L_{i,0}, i \in J, 1 \le i \le m; y_{j,0}, j \in J, m < j \le n\}$$

does not vanish identically on the space of solutions of the system.

If all of them do not vanish identically then take any values of *Y* which fulfil the system with non-zero values of all the linear functions from the family *L*. Then equation $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i$ determines uniquely x_i with $Trop(x_i) = 0$ when $i \in J$ and $Trop(x_i) \ge 0$ when $i \notin J$. This provides a solution *x* of the input system $A \cdot X = b$ satisfying $Trop(x_j) = 0$ when $j \in J$ and $Trop(x_j) \ge 0$ when $j \notin J$ (cf. Lemma). Otherwise, if some of the linear functions from the family *L* vanishes identically on the space of solutions of the system then the input system $A \cdot X = b$ has no solutions satisfying the conditions of Lemmas.

Consider the linear system

 $L_{i,k}=0,\,1\leq i\leq m,\,s_i\leq k<0$

in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family

$$L := \{L_{i,0}, i \in J, 1 \le i \le m; y_{j,0}, j \in J, m < j \le n\}$$

does not vanish identically on the space of solutions of the system.

If all of them do not vanish identically then take any values of *Y* which fulfil the system with non-zero values of all the linear functions from the family *L*. Then equation $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i$ determines uniquely x_i with $Trop(x_i) = 0$ when $i \in J$ and $Trop(x_i) \ge 0$ when $i \notin J$. This provides a solution *x* of the input system $A \cdot X = b$ satisfying $Trop(x_j) = 0$ when $j \in J$ and $Trop(x_j) \ge 0$ when $j \notin J$ (cf. Lemma).

Otherwise, if some of the linear functions from the family *L* vanishes identically on the space of solutions of the system then the input system $A \cdot X = b$ has no solutions satisfying the conditions of the mass of the system.

Consider the linear system

 $L_{i,k}=0,\ 1\leq i\leq m,\ s_i\leq k<0$

in the indeterminates Y. The algorithm solves this system and tests whether each of n linear functions from the family

$$L := \{L_{i,0}, i \in J, 1 \le i \le m; y_{j,0}, j \in J, m < j \le n\}$$

does not vanish identically on the space of solutions of the system.

If all of them do not vanish identically then take any values of *Y* which fulfil the system with non-zero values of all the linear functions from the family *L*. Then equation $x_i + \sum_{m < j \le n} a_{i,j} \cdot x_j = b_i$ determines uniquely x_i with $Trop(x_i) = 0$ when $i \in J$ and $Trop(x_i) \ge 0$ when $i \notin J$. This provides a solution *x* of the input system $A \cdot X = b$ satisfying $Trop(x_j) = 0$ when $j \in J$ and $Trop(x_j) \ge 0$ when $j \notin J$ (cf. Lemma). Otherwise, if some of the linear functions from the family *L* vanishes identically on the space of solutions of the system then the input system $A \cdot X = b$ has no solutions satisfying the conditions of Lemma.

Dima Grigoriev (CNRS)

24.10.18 18 / 1

To test the above requirement of identically non-vanishing of the linear functions from the family *L* the algorithm finds a basis $w_1, \ldots, w_r \in (\overline{\mathbb{Q}})^N$ and a vector $w \in (\overline{\mathbb{Q}})^N$ where N = |Y| such that the *r*-dimensional space of solutions of the linear system is the linear hull of the vectors w_1, \ldots, w_r shifted by the vector *w*.

If each linear function from the family L does not vanish identically on this space then all of them do not vanish on at least one of the vectors from the family

$$F := \{ w + \sum_{1 \le l \le r} p^l \cdot w_l, \ 1 \le p \le |J|r + 1 \le nr + 1 \}$$

because any linear function can vanish on at most of *r* vectors from *F* due to the non-singularity of the Vandermonde matrices.

To test the above requirement of identically non-vanishing of the linear functions from the family *L* the algorithm finds a basis $w_1, \ldots, w_r \in (\overline{\mathbb{Q}})^N$ and a vector $w \in (\overline{\mathbb{Q}})^N$ where N = |Y| such that the *r*-dimensional space of solutions of the linear system is the linear hull of the vectors w_1, \ldots, w_r shifted by the vector *w*.

If each linear function from the family *L* does not vanish identically on this space then all of them do not vanish on at least one of the vectors from the family

$$F := \{ w + \sum_{1 \le l \le r} p^l \cdot w_l, \ 1 \le p \le |J|r + 1 \le nr + 1 \}$$

because any linear function can vanish on at most of *r* vectors from *F* due to the non-singularity of the Vandermonde matrices.

To test the above requirement of identically non-vanishing of the linear functions from the family *L* the algorithm finds a basis $w_1, \ldots, w_r \in (\overline{\mathbb{Q}})^N$ and a vector $w \in (\overline{\mathbb{Q}})^N$ where N = |Y| such that the *r*-dimensional space of solutions of the linear system is the linear hull of the vectors w_1, \ldots, w_r shifted by the vector *w*.

If each linear function from the family L does not vanish identically on this space then all of them do not vanish on at least one of the vectors from the family

$$F := \{w + \sum_{1 \le l \le r} p^l \cdot w_l, \ 1 \le p \le |J|r + 1 \le nr + 1\}$$

because any linear function can vanish on at most of *r* vectors from *F* due to the non-singularity of the Vandermonde matrices.

To test the above requirement of identically non-vanishing of the linear functions from the family *L* the algorithm finds a basis $w_1, \ldots, w_r \in (\overline{\mathbb{Q}})^N$ and a vector $w \in (\overline{\mathbb{Q}})^N$ where N = |Y| such that the *r*-dimensional space of solutions of the linear system is the linear hull of the vectors w_1, \ldots, w_r shifted by the vector *w*.

If each linear function from the family L does not vanish identically on this space then all of them do not vanish on at least one of the vectors from the family

$$F := \{w + \sum_{1 \le l \le r} p^l \cdot w_l, \ 1 \le p \le |J|r + 1 \le nr + 1\}$$

because any linear function can vanish on at most of *r* vectors from *F* due to the non-singularity of the Vandermonde matrices.

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V := \overline{\text{Trop}(P)}$ defined by a linear system $A \cdot X = b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in ((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup \{\infty\})^n$ belongs to V. If yes then the algorithm yields a solution $x \in K^n$ of $A \cdot X = b$ with Trop(x) = v. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X = b$ and of the vector v.

For a given real vector $v = (v_1, ..., v_n) \in \mathbb{R}^n$ one can test whether it belongs to *V* following the described above algorithm, provided that one is able to test whether $v_i - v_j$ is an integer and find it in this case, as

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V := \overline{\text{Trop}(P)}$ defined by a linear system $A \cdot X = b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in ((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup \{\infty\})^n$ belongs to V. If yes then the algorithm yields a solution $x \in K^n$ of $A \cdot X = b$ with Trop(x) = v. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X = b$ and of the vector v.

For a given real vector $v = (v_1, ..., v_n) \in \mathbb{R}^n$ one can test whether it belongs to *V* following the described above algorithm, provided that one is able to test whether $v_i - v_j$ is an integer and find it in this case, and

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V := \overline{\text{Trop}(P)}$ defined by a linear system $A \cdot X = b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in ((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup \{\infty\})^n$ belongs to V. If yes then the algorithm yields a solution $x \in K^n$ of $A \cdot X = b$ with Trop(x) = v. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X = b$ and of the vector v.

For a given real vector $v = (v_1, ..., v_n) \in \mathbb{R}^n$ one can test whether it belongs to *V* following the described above algorithm, provided that one is able to test whether $v_i - v_j$ is an integer and find it in this case, we

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V := \overline{\text{Trop}(P)}$ defined by a linear system $A \cdot X = b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in ((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup \{\infty\})^n$ belongs to V. If yes then the algorithm yields a solution $x \in K^n$ of $A \cdot X = b$ with Trop(x) = v. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X = b$ and of the vector v

For a given real vector $v = (v_1, ..., v_n) \in \mathbb{R}^n$ one can test whether it belongs to *V* following the described above algorithm, provided that one is able to test whether $v_i - v_i$ is an integer and find it in this case, we

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V := \overline{\text{Trop}(P)}$ defined by a linear system $A \cdot X = b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in ((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup \{\infty\})^n$ belongs to V. If yes then the algorithm yields a solution $x \in K^n$ of $A \cdot X = b$ with Trop(x) = v. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X = b$ and of the vector v.

For a given real vector $v = (v_1, ..., v_n) \in \mathbb{R}^n$ one can test whether it belongs to *V* following the described above algorithm, provided that one is able to test whether $v_i - v_j$ is an integer and find it in this case, and

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V := \overline{\text{Trop}(P)}$ defined by a linear system $A \cdot X = b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in ((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup \{\infty\})^n$ belongs to V. If yes then the algorithm yields a solution $x \in K^n$ of $A \cdot X = b$ with Trop(x) = v. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X = b$ and of the vector v.

For a given real vector $v = (v_1, ..., v_n) \in \mathbb{R}^n$ one can test whether it belongs to *V* following the described above algorithm, provided that one is able to test whether $v_i - v_j$ is an integer and find it in this case, we

To estimate the complexity of the designed algorithm observe that it solves the linear system of the size bounded by a polynomial in n, d with the coefficients from a finite extension of \mathbb{Q} having the bit-size less than linear in M and polynomial in n, d. Thus, the algorithm solves this system within the complexity polynomial in M, n, d, by a similar magnitude one can bound the complexity of the executed substitutions

Theorem

There is an algorithm which for a tropical linear variety $V := \overline{\text{Trop}(P)}$ defined by a linear system $A \cdot X = b$ over the field K of Puiseux series, recognizes whether a given real algebraic vector $v \in ((\mathbb{R} \cap \overline{\mathbb{Q}}) \cup \{\infty\})^n$ belongs to V. If yes then the algorithm yields a solution $x \in K^n$ of $A \cdot X = b$ with Trop(x) = v. The complexity of the algorithm is polynomial in the bit-sizes of the system $A \cdot X = b$ and of the vector v.

For a given real vector $v = (v_1, ..., v_n) \in \mathbb{R}^n$ one can test whether it belongs to *V* following the described above algorithm, provided that one is able to test whether $v_i - v_j$ is an integer and find it in this case.