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I. Noncommutative identities

Conjecture. (M.Kontsevich) (around 1996)

(arXiv1109.2469, Section 3, Conjecture 1 )

Let (Mij)1⩽i,j⩽3 be a matrix, whose entries
are 9 independent noncommutative variables.

Consider the following three birational trans-
formations on this 9 variables:
I1 ∶ M →M−1

I2 ∶ Mij →M−1
ij , ∀i, j

I3 ∶ M →M t
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Let Φ = I1 ○ I2 ○ I3, then Φ3 is equal to the
identity,

modulo DiagL×DiagR action by multiplication
on diagonal matrices from the left and and
from the right.
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In other words, there exist two diagonal 3 ×
3 matrices DL(M) and DR(M), whose en-
tries are noncommutative rational functions in
9 variables Mij, such that

(I1 ○ I2 ○ I3)3(M) =DL(M)MDR(M).
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It was formulated in the Kontsevich 2011 Ar-
beitstagung talk ’Noncommutative identities’.

It was noticed at an early stage that Φ com-
mutes with diagonal matrices.

Thus we can factorise our space by DiagL(M)×
DiagR(M) action, and consider an induced trans-
formation, which acts on orbits, and hence
depends on 4 independent variables. We can
set Mij = 1, i, j = 1, by appropriate choice of
representatives in the orbits.
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Actually one of the keys to the solution of
this problem was a decision to work on the
level of 4-parameter transformations (to re-
duce to 4-parameter representatives of orbits)

However it was not clear at the beginning
which way is better to follow: to work with 3×3
or 2 × 2 matrices.
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At the point of the Arbeitstagung talk there
was an expression of Φ3(a), which took 20
pages...

Other facts which was clear at that point:
1. The conjecture is true for commuting vari-

ables.
2. Φ commutes with right/left multiplication

by diagonal or permutation matrices.
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The transformation Φ in terms of 4-parameter
matrices of the shape

⎛
⎜
⎝

1 1 1
1 a b
1 c d

⎞
⎟
⎠

encoded by the vector

ξ =

⎛
⎜⎜⎜⎜
⎝

a
b
c
d

⎞
⎟⎟⎟⎟
⎠

.
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Closed formula for Φ.

Φ

⎛
⎜⎜⎜⎜
⎝

a
b
c
d

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

(d − 1)−1(c − d)(b(d − b)−1(c − a) − a)−1
(c − 1)−1(d − c)(c(c − a)−1(d − b) − d)−1
(b − 1)−1(a − b)(b(d − b)−1(c − a) − a)−1
(a − 1)−1(b − a)(c(c − a)−1(d − b) − d)−1

⎞
⎟⎟⎟⎟
⎠
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Lemma 1. (Symmetry).

For any permutation σ from the Klein four-
group

Φ(σ(ξ)) = σ(Φ(ξ)).
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It reminds the fact that Φ commutes with any
permutation of rows and columns of a 3 × 3
matrix, but it does not follow from that. More-
over it is true only for that particular formula
for Φ, and there are other formulas (on the
level of representatives of orbits for which this
symmetry does not hold.
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Since we always working up to representa-
tive in the orbit, it is necessary to know how
elements of one orbit are related:

Lemma (Conjugacy)

M1 =
⎛
⎜
⎝

1 1 1
1 a b
1 c d

⎞
⎟
⎠
and M2 =

⎛
⎜
⎝

1 1 1
1 α β
1 γ δ

⎞
⎟
⎠

are in the same orbit w.r.t. to the DiagL×DiagR
action if and only if there exists an element
v, such that α = av, β = bv, γ = cv, δ = dv, (av
denotes conjugation by v: vav−1).
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The main source of (’intrinsic’) non-uniqueness
of the presentation of the transformation Φ,
which makes the problem difficult is that the
transformation is presented by elements of
the (skew)field of rational expressions on free
variables. There is nothing like canonical form
of these expressions.
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The axiomatic construction of this object is
developed by P.Cohn and C.Reutenauer in

[P.M. Cohn, C.Reutenauer On the construc-
tion of free field, Int. J. Alg. Comput., v.9,
N3,4 (1999), 307-323]

but it does not provide a constructive way of
working with these expressions.

The construction of such an object also dis-
cussed in [I.Gelfand, S.Gelfand, V.Retakh, R.
Lee Wilson Quasideterminants,

arXiv math.QA0208146 (2004)]
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We actually work with smaller object: we
need only some elements to be invertible.

Lemma The certain set of elements in the
ring of free polynomials need to be invertible,
in order operators Φ and Φ−1 to be defined.
The invertibility of the same set is sufficient in
order to define any operator Φn.
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Anyway, after we choose a presentation of
Φ, we face the problem of comparing elements
in R. And this still remains a pure art.

The same element in R can look very differ-
ently. To derive ones from anothers, identities
like the following two are used:

Id 1:

y − x = x(x−1 − y−1)y = y(x−1 − y−1)x
Id 2:

(x−1 − y−1)−1 = y(y − x)−1x = x(y − x)−1y
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Hadamar product formulae
On the way we noticed a new identity which

holds for the transformation Φ, and prowed it
at least at some particular cases, including
commutative case.

This identities is written in terms of Hadamard
(componentwise) product of matrices ⋆:

Theorem In the commutative case

Φ0(ξ)⋆Φ1(ξ)⋆Φ2(ξ) = Φ0(ξ)⋆Φ1(ξ)⋆Φ−1(ξ) = 1,
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Another particular case, apart from matri-
ces on commuting elements, could be con-
sidered. Namely, due to the symmetry lemma
the subset of matricesM of the shape

⎛
⎜
⎝

1 1 1
1 a b
1 b a

⎞
⎟
⎠

is closed under the operation Φ.
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Thus on this subset we can derive the fol-
lowing identity.

Theorem On the subset

M = {
⎛
⎜
⎝

1 1 1
1 a b
1 b a

⎞
⎟
⎠
}

the following identity holds:

Φ0(ξ) ⋆Φ−1(ξ) ⋆Φ1(ξ) = 1.
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II. Gröbner bases for Sklyanin and other
quadratic algebras

Over the last few years we found the way to
use Gröbner bases techniques as the combi-
natorial tool to

● calculate Hilbert series, homologies,

● prove things like finiteness conditions,

● prove homological properties like Koszulity
and Calabi-Yau; PBW, etc.

for various classes of quadratic algebras (al-
gebras presented by generators and relations).
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Examples

● Sklyanin algebras - algebras appearing
in the inverse problem method for integrable
models of quantum mechanics and statistical
physics
● homology of moduli spaces of pointed

curves given by Keel relations
● contraction algebras invariants associ-

ated to a curve contraction by Wemyss in frame
of his work on minimal model program
● potential algebras (= vacualgebras, Ja-

cobi algebras, etc.)
● W -Witt algebra: A = U(W )/id(g),
g ∈ U(W ) has a polynomial growth.
(joint with S.Sierra, answer to conjecture in

[Sierra, Petukhov, 2017]
● versions of A∞− structures which model

the TQFT for open strings
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Gröbner bases and Hilbert series meth-
ods for quadratic potential algebras

I outline methods which we use for 3-dimensional
Sklyanin algebras, for homology of moduli space
of stable n-pointed curves of genus zero M 0,n, n =
6, for proving finiteness results for potential al-
gebras,

where the main ingredient is Gröbner bases
technique.

It is usually a combination of arguments of
various nature (like knowledge of the generic
Hilbert series, passing to a finite field, etc.),
with the Gröbner bases theory arguments per
se.
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First, we prove that the relations come from
a potential.

Def Potential algebra (Jacobi, vacualgebra)
given by cyclic invariant polynomial F is an
algebra

AF = k⟨x, y⟩/id(
∂F

∂x
,
∂F

∂y
)
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where noncommutative derivations
∂
∂x,

∂
∂y ∶ k⟨x, y⟩ → k⟨x, y⟩ are defined via ac-

tion on monomials as:

∂w

∂x
= { u if w = xu,

0 otherwise,
∂w

∂y
= { u if w = yu,

0 otherwise.

Polynomial F is cyclic invariant means
F = F ⟲
where u ⟲ is a sum of all cyclic permuta-

tions of the monomial u ∈K⟨X⟩.
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Sometimes it is not an easy task.
For example, A = H●M 0,6 is given by the

Keel relations.
Let ∣M ∣ = n,
Generators:
correspond to the partitions PA of M :
M = A ⊔C = PA, such that ∣A∣, ∣C ∣ ⩾ 2.

Relations:
PAPB = PBPA

PAPB = 0 if A ∩B,A ∩Bc,Ac ∩B,Ac ∩Bc ≠ ∅
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Plus linear relations:
for any distinct i, j, k,m ∈M, ∑

ijAkm
PA = ∑

ikAjm
PA

We show that its dual A! is a potential alge-
bra.

It becomes visible after a suitable change of
variables:
PA, with ∣A∣ = 3 stay the same
Vp = ∑

∣A∣=2,p∈A
PA.
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We use symmetries of the potential (which
are preserved after the change of variables),
this allows to actually calculate the potential.

1. not only cyclic, but any permutation of
entries of the monomial contained in the poly-
nomial with the same coefficient,

2. invariant under S6 group action on vari-
ables, corresponding to permutations of points.
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Then we consider the standard (potential)
complex

0→ A
δÐ→An γÐ→An βÐ→A

αÐ→K→ 0,

where α is the augmentation map,

β(a1, ..., an) =∑xiai, δ(a) = (x1a, ..., xna)
and

γ(a1, ..., an) =
⎛
⎜
⎝

.. .. ..

.. ∂xi∂xjF ..

.. .. ..

⎞
⎟
⎠

⎛
⎜
⎝

a1
..
an

⎞
⎟
⎠
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As it is shown in [M.Wemyss, R.Bocklandt,
T.Schedler, Superpotentials and higher order
derivations] it is a subcomplex of the Koszul
complex.

Since Koszul complex have meaning only for quadratic
algebras, it is necessary to assume that potential have
degree three.

. . .
dk+1Ð→(A!

k)∗⊗A
dkÐ→(A!

k−1)∗⊗A
dk−1Ð→ . . .

d1Ð→(A!
0)∗⊗A = AÐ→ K→ 0,

each tensor product carries the natural struc-
ture of a free right A-module and
dk are given by dk(φ⊗u) =

n

∑
j=1

φj⊗xju, where

φj ∈ (A!
k−1)∗, φj(v) = φ(vxj).
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For a degree three potential, potential com-
plex frequently coincides with the Koszul com-
plex.

More precisely, it turns out that they coin-
cide if and only if ∑

x
[∂xF,x] = 0 is (up to a

scalar multiple) the only degree 3 syzygy.
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The next step is to prove that this complex is
exact at all its entries except for perhaps one.

Due to the following lemma.

Lemma 2. Numeric Koszulity together with ex-
actness of the Koszul complex at all terms ex-
cept for perhaps one implies Koszulity.

Def. Numeric Koszulity
HA(t)HA!(−t) = 1
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To prove numeric Koszulity, we calculate the
Hilbert series using Gröbner basis technique.

More precisely: 1) get a lower bound for
the Hilbert series (lower bound is attained for
generic algebras);

Prop. (Analogue of the Drinfeld dichotomy
for Koszul algebras).

For any complex C defined in the variety
V, and for an open set U ⊂ V, where cer-
tain number of Hilbert series components are
constant, the complex is either never exact in
U , or it is exact generically in U .
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So, we show first that there exist an exam-
ple of algebra (corresponding to a point in the
variety), for which the complex is exact.

Then it is generically exact due to Prop., and
exactness gives a recurrence relation, which
allows to calculate the series. This series is
minimal.

2) Compute Gröbner basis and therefore show
that the Hilbert series coincides with the lower
bound, considering only some ambiguities.
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To give a taste of how it works, I will show
calculations of Hilbert series in the case of
Sklyanin algebra, as it is done in:

[Iyudu, Shkarin, J.Algebra 2017],
[Iyudu, Shkarin, MPIM preprint 49.17].

Sklyanin algebra Sp,q,r is given by quadratic
relations on three variables:

pyz + qzy + rxx = 0,
pzx + qxz + ryy = 0,
pxy + qyx + rzz = 0.
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Proof of: HA = (1 − t)−3.
The problem of calculating Gröbner basis a

priori is indeed highly non-trivial.
If we take just ordering x > y > z (and De-

gLex on it) for initial Sklyanin relations, we can
not understand the whole Gröbner basis.

We can calculate HA till degree 3 (if we are
very stubborn we can go till degree 4, but not
further):

a0 a1 a2 a3 a4
1 3 6 10 15
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However, we can look for a change of vari-
ables, which would make the calculation of
the Gröbner basis more convenient.

Empirical fact: for A with 3 quadratic rela-
tions on 3 generators, the Gröbner basis is
simpler if the highest terms of the relations
are xx, xy and yz (not xx, xy and xz as for
the initial Sklyanin relations (w.r.t. x > y > z).

We look for a linear change of variables,
which will ensure this.
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and get the relations:

xx = −(a+b)
2+a2b

a2−b2 xz − (a+b)
2+a3

a2−b2 zx − yx − a
a−byy;

xy = (a+b)
2+ab2

a2−b2 xz + (a+b)
2+a2b

a2−b2 zx + b
a−byy;

yz = (a−b)a zx − b
azy +

a+b
a zz.
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What we do to find a change of variables.
The initial presentation of Sklyanin is a po-

tential algebra with the potential

W = pxyz⟲ + q xzy⟲ + r(x3 + y3 + z3).
↓

W = axyz⟲ + bxzy⟲ + (x + y + z)3.
It is more convenient to get the shape of re-

lations we require.
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Now construct Gröbner basis in the ideal of
relations.

Theorem If for some k, Fk ⊂ G, where

{ xz
kx = akxzk+1

xzky = bkxzk+1
} = Fk

(all mod J = zA + yA),
then either Fk+1 ⊂ G or Hk+1 ⊂ G, where

Hk+1 = xzk+1ymx = b
a−bxz

k+1ym+1, m = 0, 1, . . .
xzk+2 = 0.
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Look at overlapping of Fk with initial defining
relations.

These are obtained from the overlaps (xzky)z =
xzk(yz), (xzkx)y = xzk(xy) and (xzkx)x = xzk(xx)
respectively.

Gk+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(a − b)xzk+1x + bxzk+1y + (abk − a − b)xzk+2 = 0,
−((a + b)2 + a2b)xzk+1x + (a + b)((a − b)ak − bbk)xzk+1y + ((a + b)2 + ab2)akxzk+2 = 0,
((a − b)2(ak + bk) + (a + b)2 + a3)xzk+1x + a(a + b)bkxzk+1y + ((a + b)2 + a2b)akxzk+2 = 0.
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If the 3 × 2 matrix of the xzk+1x and xzk+1y
coefficients above has rank 2, these relations
yield

{ xz
k+1x = ak+1xzk+2

xzk+1y = bk+1xzk+2
} = Fk+1
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If this matrix has rank 1 (it can not be of rank
0 since b − a ≠ 0), then the three relations in
Gk+1 simplify to the relations (mod J)

xzk+1x = b
a−bxz

k+1y, xzk+2 = 0.
Using induction and resolving the overlaps
(xzk+1ymx)y = xzk+1ym(xy), we get
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xzk+1ymx = b

a − b
xzk+1ym+1, m = 0, 1, . . .

Normal words, generic case: zpym, zpymxzn
with p,m,n = 0, 1, . . .

Normal words, branching off at k: zpym, zpymxzr,
zpymxzk+1yq+1 with p,m, q = 0, 1, . . . , 0 ⩽ r ⩽
k + 1.

In both cases the number of normal words
of degree n is (n+1)(n+2)2 .
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Def We say that a quadratic algebra A =
A(V,R) is PBW-algebra if there are linear bases
x1, . . . , xn and g1, . . . , gm in V and R respec-
tively such that with respect to some com-
patible with multiplication well-ordering on the
monomials in x1, . . . , xn, g1, . . . , gm is a Gröbner
basis of the ideal IA generated by R.

In this case, x1, . . . , xn is called a PBW-basis
of A, while g1, . . . , gm are called the PBW-generators
of IA.

Note, that this is the the definition used in
[Polishchuk, Positselsky] book Quadratic al-

gebras
For example, Odesski call A PBW if HA =
(1−t)−n, and there are other versions of using
the term PBW.
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Theorem 3. The algebra A = Sp,q,r is PBW if
and only if at least one of the following condi-
tions is satisfied∶
(1) pr = qr = 0;
(2) p3 = q3 = r3;
(3) (p+q)3+r3 = 0 and the equation t2+ t+1 = 0

is solvable in K.
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III. Finiteness conditions for potential al-
gebras

We consider finiteness conditions and ques-
tions of growth of noncommutative algebras,
known as Acons.

They appear in M.Wemyss work on minimal
model program and noncommutative resolu-
tion of singularities. Namely, they serve as
noncommutative invariants attached to a bi-
rational flopping contraction:
f ∶X → Y
which contracts rational curve C ≃ Pr1 ⊂ X

to a point. X is a smooth quasi-projective 3-
fold.
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It is known due to [Van den Bergh], that Acons
are potential.

Finiteness questions are essential, because
algebras with geometrical origin are finite di-
mensional or have a linear growth.
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In [Iyudu, Smoktunowicz, IMRN 2017;
IHES/M/16/19] we prove the following theo-

rems on the finiteness conditions for 2-generated
potential algebras.

It was shown by Michael Wemyss that the
completion of a potential algebra can have di-
mension 8 and he conjectured that this is the
minimal possible dimension. We show that
his conjecture is true.
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Theorem 4. Let AF be a potential algebra given
by a potential F having only terms of degree
3 or higher. The minimal dimension of AF is
at least 8. Moreover, the minimal dimension
of the completion of AF is 8.

Proof We use Golod-Shafarewich theorem,
Gröbner bases arguments plus relation, which
holds in any potential algebra:

[x, ∂F
∂x
] + [y, ∂F

∂y
] = 0
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Non-Homogeneous case
Using the improved version of the Golod–

Shafarevich theorem and involving the fact of
potentiality we derive the following fact.

Theorem 5. Let AF be a potential algebra given
by a not necessarily homogeneous potential
F having only terms of degree 5 or higher.
Then AF is infinite dimensional.
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Homogeneous case

Theorem 6. For the case of homogeneous
potential of degree ⩾ 3, AF is always infinite
dimensional.

Namely, we prove the following two theo-
rems.

First, we deal with the case of homogeneous
potentials of degree 3.

We classify all of them up to isomorphism.
From this we see that the corresponding al-

gebras are infinite dimensional. We also com-
pute the Hilbert series for each of them.
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Classification of potential algebras, with
homogeneous potential of degree 3.

Theorem 7. There are three non isomorphic
potential algebras with homogeneous poten-
tial of degree 3.

1. F = x3, A = K⟨x, y⟩/Id(x2).
2. F = x2y + xyx + yx2, A = K⟨x, y⟩/Id(xy +

yx, x2).
3. F = x2y + xyx + yx2 + xy2 + yxy + y2x,

A = K⟨x, y⟩/Id(xy + yx + y2, x2 + xy + yx) =
K⟨x, y⟩/Id(xy + yx + y2, x2 − y2).

In each case:
*These relations form a Gröbner basis (w.r.t.

degLex and x > y).
*AF is infinite dimensional.
It has exponential growth for F = x3 and the

Hilbert series is HA = 1 + 2t + 2t2 + 2t3 + . . . in
the other two cases (the normal words are yn

and ynx).

52



Next, we consider the main case, when F is
of degree ⩾ 4.
Theorem 8. If F ∈ K⟨x, y⟩ is a homogeneous
potential of degree ⩾ 4, then the potential al-
gebra = K⟨x, y⟩/Id(∂F∂x ,

∂F
∂y ) is infinite dimen-

sional.
Moreover, the minimal Hilbert series in the

class Pn of potential algebras with homoge-
neous potential of degree n + 1 ⩾ 4 is Hn =

1
1−2t+2tn−tn+1.

Corollary 9. Growth of a potential algebra with
homogeneous potential of degree 4 can be
polynomial (non-linear), but starting from de-
gree 5 it is always exponential.
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Conjecture formulated in [Wemyss and Dono-
van, Duke 2015]

The conjecture says that the difference be-
tween the dimension of a potential algebra
and its abelianization is a linear combination
of squares of natural numbers starting from
2, with non-negative integer coefficients.

In [Toda, 2014] it is shown, that these inte-
ger coefficients do coincide with Gopakumar
- Vafa invariants.
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We give an example of solution of the con-
jecture using Gröbner bases arguments, for
one particular type of potential, namely for the
potential F = x2y+xyx+yx2+xy2+yxy+y2+a(y),
where a = ∑n

j=3 ajy
j ∈ K[y] is of degree n > 3

and has only terms of degree ⩾ 3.
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