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Feynman Integrals: parametric representation

Any Feynman integrals has the parametric representation in projective
space v=vqy+---+Vp

v—(L+1)2 n
LD U 2 ax;
h=rv=)| st = 0]

The Symanzik polynomials /- and © are homogeneous in the

> 1 is of degree L in "'

> O =Ur Y Ly mix;— Y, pi - pjwj of degree L+ 1in P
> w; are homogeneous polynomials of degree L + 1 in Pt
> degree(x;) < 2for1 </ <n.
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Feynman Integrals: motivic periods

In 2015 Francis Brown proved that when the integral converges one
can construct a canonical family of motivic period that evaluates to the
numerical period defined by the Feynman integral /i

One can write the integral as a period of a variation of cohomology
(variation of mixed Hodge structure) of a family of smooth varieties
relative to a normal crossing divisor with a canonical local resolution of
singularities

The motivic approach allows to pin down nice classes of functions:

» Multiple-polylogarithms for the mixed Tate case
» Elliptic polyogarithm non-mixed Tate

What kind of functions are generic Feynman integrals?
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Feynman integral and Riemann-Hilbert problem

The central questions about amplitudes in QFT can be reformulated as
Riemann-Hilbert problem for periods

» Compute period explicitly

:( Numerically or by series expansion in the physical region

> Derive the local monodromy

17 unitarity of the S-matrix
» Construct a complete system of differential equations

I Relate this to the integration-by-part method used in QCD
> Understand the new class of special functions that are needed

1. What is needed beyond beyond elliptic multiple polylogarithm?
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The geometry of a Feynman graph

The homogeneous polynomial of n variables and degree L + 1
completely characterises the Feynman graph and its integral

n
(Dr = Ur X (Z m,-2x,-) . Zp, . ijij
i=1 ij

» We can recover both Symanzik polynomials
» Determines the graph topology

e the number of propagators is the number of variables n
e the loop order is the degree minus one L = deg(®) — 1
o Number of vertices v = 1 + n— L from Euler characteristic
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From parametric representation to graph

The most general quadratic polynomial in P2

i
Wa3(xy, X2, X3) Z Wi ip, iz X )(22’(33

iq+ip+ig=2
0<irg2

The graph has n = 3 propagators, L = 1 loop, v = 3 vertices
This can only be a triangle graph

14!

P2

pi + P2+ p3 = 0; p? #0

P3

Dy = (X1 + Xo + X3) (MEXq + M3 Xp + Maxz) — (P2 XoX3 + P3X1 X3 + P3X1 X2)

» This is the most general quadric

Pierre Vanhove (IPhT & HSE) Mirror symmetry & Feynman integrals 25/10/2018 6/43



From parametric representation to graph

The most general cubic in IP? with deg(x;) < 2

_ Lyl i3
W3'3 - z Wiy ip,is X1 Xo X3
iq +ip+ig=3
0<ir<e

The graph has n = 3 propagators, L = 2 loops, v = 2 vertices
This can only be a sunset graph

P/ my N\ P
N

mi

) 2 2 p)
Og = (X1X2 + X1 X3 + X2X3) (M7 X1 + M5X2 + M3X3) — P=X1X2X3

» Important restriction on the parameters of cubic /s 5 from 7
parameters to 4 parameters
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From parametric representation to graph

A quartic in P2 with deg(x;) < 2

_ R (V-
Wa s = z Wi ip,i5,is X1 X5 X3' X4
iy +iptig+ig—4
o<ir<2

The graph has n = 4 propagators, L = 3 loops, v = 2 vertices This
can only be a three-loop sunset graph

Do = (X1 X2X3 + X1 X3Xa + XpXaXa + X4 XoXa) (M2 X1 + M3Xo + M3X3 +
M3 X4) — P"X1X2X3X4

» Important restriction on the parameters of cubic W, , from 19
parameters to 5 parameters
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From parametric representation to graph

The most general polynomial of degree nin P"~' with deg(x;) < 2

i +--+in=n
0<ir<2

The graph has n propagators, L = n— 1 loops, v = 2 vertices
This can only be a n-loop sunset graphs

—

n n n n
©,=]]x (Zx,1> (Z m,-2x,-> -]
i1 s i i—1

Notice that the kinematics parameters always enter linearly
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The sunset graphs Newton polytopes

The graph polynomial @, is given by the Laurent polynomial

n
Op=0= )Y xx'&=p*—) &
1<i<j<n i=1
It's Newton polytope A is reflexive with p> — 5~/ , £2 for single interior

points
For n = 3 we have the hexagon (2 dim’l polyhedron in Z° with 6

vertices)
For n = 4 we have the polytope 1529 in Sagemath classification

25/10/2018
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The toric approach

Consider the homogeneous polynomial of degree [+ 1 in P

n—1

a

Plziz)= Y Zaa ][4
i=1

ay,....ap_4
aq+-+ap_q=L+1

with {z;} = {za, ... 5, ,Janda = (ay, .. ., a, 1)and A= (aq,---,a,)
finite subset of Z*

For every vector { < I such that

L:={({,..., L)ez' by +---+4=04Lta; + -+ La, =0}
then there are the following differential operators
oe=JJo%—J]o2"
>0 li<0
and a system of n differential operator (including the Euler operator)

d d ,
Ea’c.—a1z1a+"‘+ar2ra—c (CEC)
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The Gel’fand-Zelevinsky-Kapranov approach

GZK have shown that the functions

n—1

0| [TPz... 2" [T x#r
IX1]="=|Xp—1|=1

satisfy 0, =0 forall ¢ = (¢4,.. ., l)elland E5c® =0

» The generic solution of GZK system are the hypergeometric series
Y+
Z;

Puylzr - z) = Z H v/+2+1

(Lq,..., eL j=1

with (vq, ..., vr) € Cr

» In general for a well choosen { < I the differential operator
factorizes a piece giving the Picard-Fuchs operator
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The toric approach: consequences

» The following period integral

; J 1 21 dx;
P = _— R
Ix1]="-=[Xp_1|=1 P(Z1 """ Zr) i—1 X
is the maximal cut integral
v n n L
. O 2 Dy.
Max-Cut(Ir(1,...,1)) = LRMMHMZ €jiq) Hé((q,) )Hd {;
=1 j= i=1 i=1
is actually
v—(L+1)2 n
LD u 2 ax;
== 50 = 1) [ [ 2L
2 IX/‘71 (D]\—‘/_Lg H X/1 i

» One can derive the Picard-Fuchs operator from the graph
polynomials
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The differential operator: from the period

The analytic period of the elliptic curve around p? ~ oo has the same
integrand as the Feynman integral but we have just changed the
domain of integration

5 J 1 dxady
xi=lyl=1 @3 Xy

mo(p°) =

This is the imaginary part or the maximal cut of the amplitude

YN o Ime(e?) =
NE %Cné(f?—m?wﬁeﬁp)d2e1d2e2

The other period is 71 (s) = log(s) mg(S) + @1(8) with @4(s) analytic is
obtained by looking at different unitarity cut cutting less lines
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Sunset graphs and generalised Apéry numbers

The imaginary part (the maximal cut) of the multiple loop sunset
integral is the following period integral

J | 1%
al==lal =t p? — (14 %E5) <27:1 Xi71) it X
which has the nice series expansion near p° — oo

2 n
mo(Ep7) =) (P Y (H,k'r,) (£3)"
I

k>0 M+ +rm= i=1

0(&, P°)

The case n = 3 with £; = 1 is a particular case of the random walk
discussed by Alin Bostan yesterday x; = x, xo = y, x3 = 1

1 1
cD3:p23<x+ +y+y+y+§)
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The differential operator: from the period

From the fundamental analytic period

2 n

T 5 () e

k>0 rn+-+rm=k i=1

one can derive the Picard-Fuchs differential operator (the system has
maximal unipotent monodromy around p° = o)

k
Lomol?) = X aul#f) (# o ) moli?) =0
k>0

> With this method one easily derives the PF at all loop order for the
all equal mass sunset ¢; = 1 and show the order(PF)=loop and
the degree Of the pOlynomIal |S (g—‘ [Verrill; Vanhove]
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The differential operator: from the period

From the fundamental analytic period

2 n
(&, p°) = Z(p‘z)_’M Z <I’1|k|rn'> H(i,‘z)rf

k>0 ry+-+rm=k i=1

one can derive the Picard-Fuchs differential operator (the system has
maximal unipotent monodromy around p° = o)

K
Lomo(p?) = ) _ ck(p?) <p2d;d32> mo(p?) =0
k>0

» Gives for the 3-loop sunset the PF has order
2 + #(i Hl'dSS@S) = 3, 4, 5, 6 [Doran, Novoseltsev, Vanhove; to appear]

» Coefficients are polynomials of degree 25 in the generic case with
apparent singularities

Pierre Vanhove (IPhT & HSE) Mirror symmetry & Feynman integrals 25/10/2018 16/43



Geometry of the sunset graph polynomial

The graph polynomial defines a geometry in P’

1 1
(x1a$+~~+xna?,) <X1+---+)=p2

» For n = 3 we have a family of elliptic curve

> For n = 4 we have a family of K3 surfaces with Picard rank
20 — #(i masses) = 19, 17, 18, 16 [Doran, Novoseltsev, Vanhove; to appear]

» For n =5 and all equal mass this is a Barth-Nieto surface

> more Calabi-Yau varieties in Feynman graphs (train tracks, etc cf
[Bourjaily et al. })
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Calabi-Yau and sunset graph

The sunset graph polynomial has a reflexive Newton polytope and they
define Fano toric varieties.

The Feynman integral is the integral of the natural holomorphic (n, 0)
of the Calabi-Yau defined by the graph polynomial

One can use maximal projective crepant partial resolution to define
Calabi-Yau variety from the anticanonical surface —Kp, with

PA = X5 (a-) is the toric manifold constructed from the complete fan
Z(A°) where A° is the dual polytope.

(verrill] had already remarked that and the fibers
2 1<izi<n X,-Xj*1 = A are smooth Calabi-Yau varieties
As she understood that the fan Z(A°) is the ones of the A, root system
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local mirror symmetry conjecture

For any reflexive polytope A € R" the family of non-compact n + 1-fold
Calabi-Yau

Yo :={U?+ v? + ®, =0} € (C*)" x C?

is the mirror dual of Kp, The holomorphic form

N_ydlog x; A\ du A\ dv
uw+v2+ @,

Ne = 2iResg, (

can be interpreted in terms of the (regulator) period of X5 = {®, = 0}
and then the Feynman integral

The main conjecture by [poran, kerr] is that the local genus zero
Gromov-Witten prepotential 5, determines the Feynman integral
This is proven for the elliptic curve case by (eioch, kerr, vanhove]
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Feynman integral and periods

2
A, Op(x)¥ L2 H1 X
Qr algebraic differential form on the complement of the graph
hypersurface

v—(L+1) 3 =1 gy
/rr(V—)J Qr; Qr: t o

Qr e H™ ' (P""\Xp)  Xp={®r(x) =0,x P}

Pierre Vanhove (IPhT & HSE) Mirror symmetry & Feynman integrals 25/10/2018 20/43



Sunset as an elliptic dilogarithm
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Feynman integral and periods

I, and X are separated by performing a series of iterated blowups of
the complement of the graph hypersurface (2ioch, Esnault, Kreimer]

The Feynman integral are periods of the relative cohomology after
performing the appropriate blow-ups

H=1 (P \ X T\ 0 Xr)
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Picard-Fuchs equation

M(sj, my) = H*(PP=1\ X T\ I, 0 Xr)

Since ()1 varies when one changes the kinematic variables s; one
needs to study a variation of (mixed) Hodge structure

Consequently the Feynman integral will satisfy a differential equation

Lpr Ir = Sr

The Picard-Fuchs operator will arise from the study of the variation of
the differential in the cohomology when kinematic variables change

Generically there is an inhomogeneous term Sr # 0
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The differential equation

By general consideration we know that since the integrand is a top
form we have

LFIF:J dBrZJ Br=8r+#0
An A,

Writing the differential equation as 6 := s% with s = 1/p?

3
(82 + uls1sa+ ap(s)) (§ ls)) =Y + Y tog(mPlai(s)
i—1

Pierre Vanhove (IPhT & HSE) Mirror symmetry & Feynman integrals 25/10/2018 24/43



The differential equation

Using works from (el angel mier-stach) @nd [poran, ker] W€ know that when rank of
the D-module system of differential equations that Y is the Yukawa
coupling

ES .:J Q@/\SEQ@ = 2s° H?:1 i—4sy ;m; +6
& (p?) ds 171 (u2s—1)

The Yukawa coupling is the Wronskian of the Picard-Fuchs operator
and only depends on the form of the Picard-Fuchs operator

Yo — s det(;To(S) 4 (S) )

Imo(s) Lmi(s)

So far all we got can be deduced from the graph polynomial, and the
associated Picard-Fuchs operator.
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The differential equation

The mass dependent log-terms come from derivative of partial elliptic
integrals on globally well-defined algebraic 0-cycles arising from the
punctures on the elliptic curve (siocn, kerr,vanhove)

They are rational function by construction.
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The two-loop sunset integral

We consider the sunset integral in two Euclidean dimensions

Jé:JA Qo; Ag:={lx:y:zZ]eP?x>0,y>0z>0}
3
» The sunset integral is the integration of the 2-form

zdx A\ dy + xdy /\ dz + ydz N dx
Qo= — VY 2 —— € H(P? — &)
(mx +mgy + msz)(xz + Xy + yz) — p°xyz

> The sunset family of open elliptic curve
€ ={(MEx + m5y + m3z)(xz + Xy + yz) — p°xyz = 0}

> For my = m, = m3 we have a modular curve € ~ X (6)
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The 2-loop sunset integral as elliptic dilogarithm

The integral divided by a period of the elliptic curve is a function
deflned on the pUnCtured tOfUS [Bloch, Kerr,Vanhove]

oy XY ZY X Z .
j@7t<L2{Z,Z}+L2{X,X}+L2{Y,Y}) mod period

» @, is the elliptic curve period which is real on the line
0 < p? < (my + mp+mg)?

» The sunset integral is the regulator period (with tame Milnor

symbol) in the K> of the elliptic curve (B1och, vanhove]
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The 2-loop sunset integral as elliptic dilogarithm

Py =[1,0,05; Q =[0,—m8, ml;  x(Pyx(Q)=—1
Py =10,1,05; Q=[-m20,mel; x(Pp)x(Q)=—1
(Pl
! P3=1[0,0,1;  Qg=[-m3,m30;;  x(P3)x(Qg) =—1

Representmg the ratlo of the coordinates on the sunset cubic curve as
functions on £, ~ C* /g7

X GO/X(@0 /X (Ps) Y
Z7 T B /X (PO (x/X(Q) 2

0+ (x) is the Jacobi theta function
x1/2 _ y—1/2

01(x)=qp [0 — g1 —g")(1 — q"/x).

n>1
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The 2-loop sunset integral as elliptic dilogarithm

Since

Jlog(61 (x))dlogx = Z J(Li1 (@"x) +Liy(q"/x) + cste) d log(x)

n>1

= (Lip(q"x) — Lin(q"/x)) + cste log(x)

n>1
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The 2-loop sunset integral as elliptic dilogarithm

We find

i = 2 (& (G ) + & (e ) 75 (e ) o

where

Ex(x) =) (Li, (q"x) —Li, (—q"x)) — > (Li, (q"/x) — Li, (—q"/x)) .
n=0 n>1

C|Ose tO the fOI’m given by [Brown, Levin]. See as We” [Adams, Bogner, Weinzeirl]
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The sunset integral and the motive

» The integral is given by

R2(t) = ro r’ dxdy
0 Jo X+y+1)(x+y+xy)—txy

» The 2-form has only log-pole on ¢; and there is a residue 1-form

Jé(l‘):per/'ods+@,<€1T+€2,JdT Z 11)2(17)(€1T+e2)>

8
(m,n)#(0,0) (m T nT)

» Character 1 : Lattice(&;) — S'. Pairing (eq, e2) = —(e2, €1) = 2im

» The amplitude integral is not the regulator map which involves a
real projection r : Kx (&) — H'(&4, R)

» The amplitude is multivalued in { whereas the regulator is
single-valued
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The sunset integral and the motive

» The integral is given by

go-[ [
0 Jo X+y+1)(x+y+xy)—txy

» The 2-form has only log-pole on ¢; and there is a residue 1-form

jé(t) peri0d3+®f<€1T+€2,JdT Z 'l.|)2( )(€1T+ €2)>

- (m+ nt)3

» The regulator is an Eichler integral
oo

Jé(z‘):periods+a>,JT ; Z lb(,;jr(nx) wamt—X) 4
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The sunset integral and the motive

» The integral is given by

7 (1 Jm Jm dxdy
0 Jo X+y+1)(x+y+xy)—txy

» The 2-form has only log-pole on ¢; and there is a residue 1-form

L’Jé(l‘):periods+a>,<€1T+€2,JG,T Z ll)z(n)(em+62)>

8
(m,n)#(0,0) (m T f‘IT)

» The regulator is an Eichler integral

. a2(n)
(m,n)#(0,0)
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The three-loop sunset as an elliptic trilogarithm

2==¥
my

Pierre Vanhove (IPhT & HSE) Mirror symmetry & Feynman integrals 25/10/2018 33/43



The three-loop sunset graph: integral

S

We look at the 3-loop sunset graph in D = 2 dimensions

» The Feynman parametrisation is given by

3

1 ax
/2 (m,; K2) :J bt}
o =0 (M + 3 0 m2x)(1+ 3% x7") — K2 ,H Xi

Pierre Vanhove (IPhT & HSE) Mirror symmetry & Feynman integrals 25/10/2018 34/43



three-loop sunset graph: differential equation

For the all equal mass case the geometry of the 3-loop sunset graph is
a K3 surface (Shioda-Inose family for ' (6)*2) with Picard number 19
and discriminant of Picard lattice is 6

3
(m?+ )Y mx)1+) x ] [x—pP][x=0
s '

The t = p?/m? Picard-Fuchs equation

2

RE d
(tZ(t—4)(t— 16) 5 +6t( — 15 +32)

A 4) 2 (1) = —4

+ (712 — 68t + 64)— i

» One miracle is that this picard-fuchs operator is the symmetric
square of the picard-fuchs operator for the sunset graph (verrii1]
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three-loop sunset graph: solution

> |t is immediate to use the Wronskian method to solve the
differential equation [Bloch, Kerr, Vanhove]

m? 2 (t) = 40 log(q) @+ ()
_ 484 (1) (24Li3(T, Ge) + 21 Lig(t, (B) + 8Lis(t, (8) + 7Lis(, 1 ))

with Lig(T,Z) [Zagier; Beilinson, Levin]

Lig(,2) = Lig (2) + ) _(Lia(q"2) +Lis (q"z"))

n>1

1 1 1
- <12 |Og(Z)3 + >4 log(q) |Og(Z)2 - 72()“0%((7))3) -

» The 3-loop sunset integral is a regulator period of a motivic class
of the K3 of the the K3 surface [Bloch, Kerr, Vanhove]
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Mirror Symmetry

sunset sunrise
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The sunset Gromov-Witten invariants

Around 1/s = p® = co the sunset Feynman has the expansion

3
Jo(s) = —mp | 3RS + > 01— Ro)Ney e, [ [ QF

0y +lp+l3=>0 i=1
(€4.,85.,03)€N3\(0,0,0)

where the Kahler parameters are O, = m?e™ and Ay is the logarithmic
Mahler measure defined by

. dlog xd log y
F:’:m—J log(Dg(X, XY)) ——————.
0 o OBl )/ 0 ==
This is related to the holomorphic 7o (s) period near s = 1/p° = 0
dRo(s)

Ty = S§————
0 ds
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The sunset Gromov-Witten invariants

The numbers Ny, ¢, ¢, are local Gromov-Witten expressed in terms of
the virtual integer number of degree ( rational curves by

A&11213::

2

dley,82,03

2 13
vdd

la .

‘ { H (100) ‘ (;600) ‘ (110) ‘ (210) ‘ (111) ‘ (310) ‘ (220) ‘ (211) ‘ (221) ‘

[N 2 [2/K] -2 0 6 0 [ —1/4] —4 | 10 |
n || 2 0 —2 0 6 0 0 —4 | 10 |
[¢ [ (410) [ (320) | (311) | (510) | (420) | (411) | (330) | (321) | (222) |
[N O 0 0 0 0 0 | —2/27] —1 | —189/4 |
n, || 0 0 0 0 0 0 0 — —48 |
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The sunset Gromov-Witten invariants

For the all equal masses case m; = m, = ms = 1, the mirror map is

Q= =—q (1 —q)™™;  §(n):= (1) <—3> |

n
n>1
where (2) = 0,1, ~1forn=0,1,2 mod 3.

The local Gromov-Witten numbers

Ne _, 728 135 626 751 14407 69767 339013 827191 8096474
6 '8'27' 64’125 54' 343 ' 512 ' 729 ' 500 ' 1331
367837 195328680 137447647 4746482528 23447146631 115962310342

16 ' 2197 ' 392 ' 3375 ' 409 ' 4913

574107546859 2844914597656 1410921149451 10003681368433
B 5832 ’ 6859 o 800 ’ 1323
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The sunset mirror symmetry

» The sunset elliptic curve is embedded into a singular
compactification X of the local Hori-Vafa 3-fold

Y = {1—s(mex+may+mi)(1+x"'+y ") +uv =0} c (C*)?>xC?,

limit of a family of elliptically-fibered CY 3-folds X,
» The base given by @ is a toric del Pezzo surface of degree 6
» We have an isomorphism of A- and B-model Z-variation of Hodge
structure
HS(XZO) ~ Heven( 2}0) '
and taking (the invariant part of) limiting mixed Hodge structure on
both sides yields

the sunset Feynman integral given by the second regulator period of
the motivic cohomology class is identified to the local Gromov-Witten
prepotential for the 3-fold X
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Mirror symmetry for elliptically fibered CY 3-fold

> In the degeneration limit the Yukawa coupling CY 3-fold X leads to
the local Yukawa of the sunset elliptic curve

Yijk :JXQ/\V(SiéjékQ: (l)(l}c X Y@ :JQO/\V;;QO

The hOIOmOfphiC prepotential of [Huang, Klemm, Poretschkin]
cit't'th ¢ . .
F(Q1, Qo, Q3, () = //3! +2—'{t’tf+c,-t’+c+ > ng Liz(QP)
BEH(M,Z)
is mapped to the sunset integral with the identification of the Kéhler
parameter Q, — exp(27it,) = m?Qforr = 1,2, 3 [Klemnnm private

communication]
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Mirror symmetry for higher sunset integrals

3% The same construction applies to the 3-loop sunset graph where
@4 = 0 defines a family of K3

¥ The same is conjectured to be true for the 4-loop sunset graph
where @5 = 0 defines a family of CY 3-fold. oran, ker
o Not modular in general [Hulek, verill].
e Therefore (elliptic) polylogarithm not enough from 4-loop
At higher-loop loop the geometry is more intricate
&% Need to go beyond the smoothness hypothesis for Kp, usedin

[Lian, Todorov, Yau]

& Need to extend the construction of the motivic conomology
classes and the regulator period of (pDoran, xerr)
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