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†LITIS, Université de Rouen; Avenue de l’université
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We investigate several generalizations of the Hopf algebra MQSym whose constructions
come from labelings of special diagrams in bijection with packed matrices. Their products
come either from the Hopf algebras WSym or WQSym, respectively built on integer set
partitions and set compositions. Realizations on bi-word are exhibited, and it is shown
how these algebras fit into a commutative diagram. Hopf deformations and dendriform
structures are also considered for some algebras in the picture.
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1. Introduction

The purpose of the present paper is to tighten the links between a body of Hopf
algebras related to physics and the realm of noncommutative symmetric functions.
This paper can be seen as the continuation of [2], new ideas coming from diagram
constructions of a special Field Theory introduced by Bender, Brody and Meister
[1]. These diagrams arise in the expansion of
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and are bipartite finite graphs with no isolated vertex, and edges weighted with
integers. These graphs are in bijective correspondence with packed matrices of inte-
gers up to a permutation of the columns and a permutation of the rows. From the
algebraic point of view, a Hopf algebra named LDIAG(qs, qc, t) has been recently
discovered [4], interpolating between the algebra LDIAG indexed by bipartite
graphs and the algebra MQSym of matrix quasi-symmetric functions, indexed by
packed matrices. The algorithm constructing the matrix from the associated dia-
gram uses as an intermediate structure a particular packed matrix whose entries
are sets. Such set matrices appear when one computes the internal product in
WSym [10] and in WQSym [7, 9], an algebra isomorphic to the sum of Solomon–
Tits. In this context, it becomes natural to investigate Hopf algebras on (set) packed
matrices whose product comes from both WSym and WQSym, two well-known
Hopf algebras respectively built on integer set partitions and set compositions.

The paper is organized as follows. In Sec. 2, the connection between the Quan-
tum Field Theory of partitions and the Hopf algebra LDIAG of labeled diagrams is
recalled. In Sec. 3, we investigate eight Hopf algebras of matrices related to labeled
or unlabeled diagrams. In particular, we exhibit realizations on bi-words and show
how some of these are bidendriform bialgebras, hence proving those algebras are
in particular self-dual, free and cofree. We finally give (Sec. 7) a realization of the
two-parameter deformation of LDIAG.

2. Algebras of Diagrams

Many computations carried out by physicists reduce to the “product formula”, a
bilinear coupling between two Taylor expandable functions, introduced by Bender,
Brody, and Meister in their celebrated Quantum field theory of partitions (hence-
forth referred to as QFTP) [1]. For an example of such a computation derived from
a partition function linked to the Free Boson Gas model, see [12].

The expansion of Formula 1 involves a summation over all diagrams of a cer-
tain type [1], a labeled version of which is described below. These diagrams are
bipartite graphs with multiple edges. Bender, Brody and Meister [1] introduced
QFTP as a toy model to show that every (combinatorial) sequence of integers can
be represented by Feynman diagrams subject to suited rules.

The case where the expansions of the two functions occurring in their product
formula have constant term 1 is of special interest. Indeed, these functions can be
presented as exponentials which can be regarded as “free” through the classical Bell
polynomials expansion [3]. Working out the formal case, one sees that the coupling
results in a summation without multiplicity of a certain kind of labeled bipartite
graphs which are equivalent, as a data structure, to pairs of unordered partitions
of the set {1, 2, . . . , n}. The sum reduces to a sum of topologically inequivalent dia-
grams (a monoidal basis of DIAG), at the cost of introducing multiplicities. These
graphs, which can be considered as the Feynman diagrams of the QFTP, generate
a Hopf algebra. Interpreting DIAG as the Hopf homomorphic image of its planar
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counterpart LDIAG, one gets access to the noncommutative world and to defor-
mations: the product is deformed by taking into account, through two variables,
the number of crossings of edges involved in the superposition or the transposition
of two vertices. This gives the final picture of [12].

Labeled diagrams can be identified with their weight functions which are map-
pings ω : N+ × N+ → N such that the supporting subgraph

Γω = {(i, j) ∈ N
+ × N

+ | ω(i, j) �= 0} (2)

has projections, i.e., pr1(Γω) = [1, p]; pr2(Γω) = [1, q] for some p, q ∈ N.a

Let ldiag denote the set of labeled diagrams. With any element d of ldiag,
one can associate the monomial Lα(d)Vβ(d), called its multiplier, where α(d) (resp.
β(d)) is the “white spot type” (resp. the “black spot type”), i.e., the multi-index
(αi)i∈N+ (resp. (βi)i∈N+) such that αi (resp. βi) is the number of white spots (resp.
black spots) of degree i. For example, the multiplier of the labeled diagram of Fig. 1
is L(0,0,2,0,1)V(1,1,1,0,1).

One can endow ldiag with an algebra structure denoted by LDIAG where the
sum is the formal sum and the product is the shifted concatenation of diagrams,
i.e., consists in juxtaposing the second diagram to the right of the first one and
then adding to the labels of the black spots (resp. of the white spots) of the second
diagram the number of black spots (resp. of white spots) of the first diagram. Then
the application sending a diagram to its multiplier is an algebra homomorphism.

Moreover, the black spots (resp. white spots) of diagram d can be permuted
without changing the monomial Lα(d)Vβ(d). The classes of labeled diagrams up
to this equivalence relation (permutations of white — or black — spots between

Fig. 1. A labeled diagram of shape 3 × 4.

Fig. 2. Equivalent labeled diagrams.

aRemark that if p or q are zero, then both are and Γ = ∅.
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themselves, see Fig. 2) are naturally represented by unlabeled diagrams. The set of
unlabeled diagrams will be henceforth denoted by diag.

The set diag can also be endowed with an algebra structure, denoted by DIAG,
e.g., as the quotient of LDIAG by the equivalence classes of labeled diagrams. In
DIAG, the product of d1 by d2 is basic concatenation, i.e., simply consists in
juxtaposing d2 to the right of d1 [3].

3. Packed Matrices and Related HOPF Algebras

3.1. The combinatorial objects

In the sequel, we represent different kinds of diagrams using matrices to emphasize
the parallel between this construction and the construction of MQSym ([5]).

3.1.1. Set packed matrices

Since the computations are similar in many cases, let us begin with the most gen-
eral case and explain how one recovers the other cases by algebraic means. Let us
consider the set lldiag of bipartite graphs with white and black vertices, and edges,
all three labeled by initial intervals [1, p] of N+. The diagrams ldiag are obtained
by erasing the labels of the edges of such an element.

The set lldiag is in direct bijection with set packed matrices, that are two-row
matrices containing disjoint subsets of [1, n] for some n ∈ N with no line or column
filled with empty sets, and such that the union of all subsets is [1, n] itself. The
bijection consists in putting k in the (i, j) entry of the matrix if the edge labeled
k connects the white dot labeled i with the black dot labeled j. Figure 3 shows an
example of such a matrix.

Note that set packed matrices are in bijection with pairs of set compositions,
or, ordered set partitions of [1, n]: given a set packed matrix, compute the ordered
sequence of the union of the elements in the same row (resp. column). For example,
the set packed matrix of Fig. 3 gives rise to the set compositions [{2, 3, 6}, {1, 4, 5}]
and [{3}, {1, 5, 6}, {2, 4}]. Given two set compositions Π and Π′, define Mij :=
Πi ∩Π′

j .
Hence the generating series counting set packed matrices by their maximum

entry n is given by the square of the ordered Bell numbers, that is sequence A122725
in [11].

3.1.2. Integer packed matrices

As already said, if one forgets the labels of the edges of an element of lldiag, one
recovers an element of ldiag. Its matrix representation is an integer packed matrix,( {3} {6} {2}

∅ {1, 5} {4}
)

Fig. 3. A set packed matrix.



August 26, 2011 16:38 WSPC/S0218-1967 132-IJAC 00641

Hopf Algebras of Diagrams 893

(
1 1 1
0 2 1

)

Fig. 4. An integer packed matrix.

that is, a matrix with no line or column filled with zeros. The encoding is as follows:
it consists in replacing the subsets by their cardinality. Figure 4 shows an example
of such a matrix.

The generating series counting integer packed matrices by the sum of their
entries is given by sequence A120733 of [11].

3.1.3. Other packed matrices

In the sequel, we shall also consider diagrams where one forgets about the labels of
the white spots, or about the labels of the black spots, or about all labels. Those
three classes of diagrams are respectively in bijection with matrices up to a permu-
tation of the rows, a permutation of the columns, and simultaneous permutations
of both.

3.2. Word quasi-symmetric and symmetric functions

Let us recall briefly the definition of two combinatorial Hopf algebras that will be
useful in the sequel.

3.2.1. The Hopf algebra WQSym

We use the notations of [9]. The word quasi-symmetric functions are the noncom-
mutative polynomial invariants of Hivert’s quasi-symmetrizing action [7]

WQSym(A) := C〈A〉S(A)QS . (3)

When A is an infinite alphabet, WQSym(A) is a graded Hopf algebra whose basis
is indexed by set compositions, or, equivalently, packed words. Recall that packed
words are words w on the alphabet [1, k] such that if i �= 1 appears in w, then i− 1
also appears in w. The bijection between both sets is that wi = j iff i is in the jth
part of the set composition (see Fig. 5 for an example).

By definition, WQSym is generated by the polynomials

WQu :=
∑

pack(w)=u

w, (4)

where u = pack(w) is the packed word having the same comparison relations
between all elements as w.

32214132 ←→ [{4, 6}, {2, 3, 8}, {1, 7}, {5}]
Fig. 5. A packed word and its corresponding set composition.
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The product in WQSym is given by

WQuWQv =
∑

w∈u�W v

WQw, (5)

where the convolution u �W v of two packed words is defined by

u �W v :=
∑

w1,w2;w=w1w2 packed
pack(w1)=u, pack(w2)=v

w. (6)

The coproduct is given by

∆WQw(A) =
∑

u,v;w∈u�W v

WQu ⊗WQv (7)

where u �W v denotes the packed shifted shuffle that is the shuffle of u and v′ =
v[max(u)], that is the word such that v′i = vi + max(u).

The dual algebra WQSym∗ of WQSym is a subalgebra of the Parking quasi-
symmetric functions PQSym [8]. This algebra has a multiplicative basis denoted
by Fw, where the product is the shifted concatenation, that is u.v[max(u)].

3.2.2. WSym

The algebra of word symmetric functions WSym, first defined by Rosas and Sagan
in [10], where it is called the algebra of symmetric functions in noncommuting
variables, is the Hopf subalgebra of WQSym generated by

Wπ :=
∑

sp(u)=π

WQu, (8)

where sp(u) is the (unordered) set partition obtained by forgetting the order of the
parts of its corresponding set composition.

Its dual WSym∗ is the quotient of WQSym∗

WSym∗ = WQSym∗/J (9)

where J is the ideal generated by the polynomials Fu − Fv with u and v corre-
sponding to the same set partition. We denote by Fsp(u) the image of Fu by the
canonical surjection.

4. Hopf Algebras of Set Packed Matrices

4.1. Set matrix quasi-symmetric functions

The construction of the Hopf algebra SMQSym over set packed matrices is a direct
adaptation of the construction of MQSym ([5, 7]). Consider the linear subspace
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spanned by the elements SMQM , where M runs over the set of set packed matrices.
We denote by h(M) the number of rows of M . Then define

SMQPSMQQ :=
∑

R∈ (P,Q)

SMQR (10)

where the augmented shuffle of P and Q, (P, Q) is defined as follows: let Q′ be
obtained from Q by adding the greatest number inside P to all elements inside Q.
Let r be an integer between max(p, q) and p + q, where p = h(P ) and q = h(Q).
Insert rows of zeros in the matrices P and Q′ so as to form matrices P̃ and Q̃′ of
height r. Let R be the matrix obtained by gluing Q̃′ to the right of P̃ . The set

(P, Q) is formed by all matrices with no row of 0’s obtained this way.
For example,

SMQ0
@{3,4} {1}

{2} ∅

1
A
SMQ“

{2,3,4} {1}
” = SMQ0

BBB@
{3,4} {1} ∅ ∅
{2} ∅ ∅ ∅
∅ ∅ {6,7,8} {5}

1
CCCA

+SMQ0
@{3,4} {1} ∅ ∅

{2} ∅ {6,7,8} {5}

1
A

+ SMQ0
BBB@
{3,4} {1} ∅ ∅

∅ ∅ {6,7,8} {5}
{2} ∅ ∅ ∅

1
CCCA

+SMQ0
@{3,4} {1} {6,7,8} {5}

{2} ∅ ∅ ∅

1
A

+ SMQ0
BBB@

∅ ∅ {6,7,8} {5}
{3,4} {1} ∅ ∅
{2} ∅ ∅ ∅

1
CCCA

. (11)

The coproduct ∆SMQM is defined by

∆SMQA =
∑

A=(A1
A2

)
SMQstd(A1) ⊗ SMQstd(A2), (12)

where std(A) denotes the standardized of the matrix A, that is the matrix obtained
by the substitution ai 
→ i, where a1 < · · · < an are the integers appearing in A.
For example,

∆SMQ0
@{2,4} {1}

{6} {3,5}

1
A

= SMQ0
@{2,4} {1}

{6} {3,5}

1
A
⊗ 1 + SMQ“

{2,3} {1}
”

⊗SMQ“
{3} {1,2}

” + 1⊗ SMQ0
@{2,4} {1}

{6} {3,5}

1
A

.
(13)

Rather than checking the compatibility between the product and the coproduct,
one can look for a realization of SMQSym in terms of noncommutative bi-words,
that will later give useful guidelines to understand homomorphisms between the
different algebras.
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4.2. Realization of SMQSym

A noncommutative bi-word is a word over an alphabet of bi-letters
〈ai

bj

〉
with i, j ∈

N+ where ai and bj are letters of two distinct ordered alphabets A and B. We
will denote by C

〈A
B

〉
the algebra of the polynomials over the bi-letters

〈a
b

〉
for the

product � defined by〈
u1

v1

〉
�

〈
u2

v2

〉
=
〈

u1 · u2

v1 · v2[max(v1)]

〉
, (14)

where v1 ·v2[k] denotes the concatenation of v1 with the word v2 whose letters are
shifted by k and max(v1) denotes the maximum letter of v1.

In the sequel, we shall forget the letters a and b when there is no ambiguity
about the alphabets A and B, so that, for example,〈

1 4 2
2 3 6

〉
�

〈
2 4
3 1

〉
=
〈

1 4 2 2 4
2 3 6 9 7

〉
. (15)

Lemma 4.1. The product � is associative.

Proof. Straightforward from its definition.

With each set packed matrix, one associates the bi-word whose ith bi-letter is
the coordinate in which the letter i appears in the matrix. For example,

bi-word


{2, 7} ∅ ∅ {3, 5}
{8} ∅ ∅ ∅
∅ {1} {4, 6} ∅


 =

〈
3 1 1 3 1 3 1 2
2 1 4 3 4 3 1 1

〉
. (16)

A bi-word is said bi-packed if its two words are packed. The bi-packed of a bi-word
is the bi-word obtained by packing its two words. The set packed matrices are
obviously in bijection with the bi-packed bi-words.

Theorem 4.2. Let
〈u
v

〉
be a bi-packed bi-word. Then

• The algebra SMQSym can be realized on bi-words by

SMQfi
u
v

fl :=
∑

bi-packed

fi
u′

v′
fl

=

fi
u
v

fl

〈
u′

v′

〉
. (17)

• SMQSym is a Hopf algebra.
• SMQSym is isomorphic as a Hopf algebra to the graded endomorphisms of

WQSym:

EndgrWQSym =
⊕

n

WQSymn ⊗WQSym∗
n (18)

through the Hopf homomorphism

φ

(
SMQfi

u
v

fl
)

= WQu ⊗ Fv. (19)
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Proof. Since the map sending each set packed matrix to a bi-packed bi-word is
a bijection, the first part of the theorem amounts to checking the compatibility of
the product,

SMQbiword(P )SMQbiword(Q) =
∑

R∈ (P,Q)

SMQbiword(R), (20)

which is straightforward from the definition.
SMQSym being a connected graded algebra, it suffices to show that the coprod-

uct ∆ is a homomorphism of algebras. If one uses the representation of the basis
elements by pairs of set compositions, the coproduct reads

∆SMQΠ1,Π2
=

∑
Π1=[Π′

1,Π′′
1 ]

SMQstd(Π′
1),std(Π2|Π′

1
)

⊗SMQstd(Π′′
1 ),std(Π2|Π′′

1
), (21)

where Π1|Π2 is the list of sets [(Π1)i ∩
⋃

j(Π2)j ]i from which one erases the empty
sets. The proof then amounts to imitating the proof that WQSym is a Hopf algebra
(see [7]).

One endows EndgrWQSym with the coproduct ∆ defined by

∆WQΠ1
⊗ FΠ2 =

∑
Π1=[Π′

1,Π′′
1 ]

(WQΠ′
1
⊗ FΠ2|Π′

1 )⊗ (WQΠ′′
1
⊗ FΠ2|Π′′

1 ). (22)

One then easily checks that φ is a surjective Hopf homomorphism and since the
two spaces have same series of dimensions, we get the result.

For example,

SMQ0
BBB@
{3,4} {1} ∅ ∅

∅ ∅ {6} ∅
{2} ∅ ∅ {5,7}

1
CCCA

= SMQfi
1 3 1 1 3 2 3
2 1 1 1 4 3 4

fl

=
∑

j1<j2<j3
k1<k2<k3<k4

〈
j1 j3 j1 j1 j3 j2 j3

k2 k1 k1 k1 k4 k3 k4

〉
. (23)

Note that, from the point of view of the realization, the coproduct of SMQSym
is given by the usual trick of noncommutative symmetric functions, considering
an alphabet A of bi-letters ordered lexicographically as an ordered sum of two
mutually commuting alphabets A′+̂A′′ of bi-letters such that if (x, y) is in A′ then
so is any bi-letter of the form (x, z). Then the coproduct is a homomorphism for the
product.
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4.3. Set matrix half-symmetric functions

4.3.1. The Hopf algebra SMRSym

Let SMRSym be the subalgebra of SMQSym generated by the polynomials
SMRπ1,Π2 indexed by a set partition π1 and a set composition Π2 and defined
by

SMR(π1,Π2) :=
∑

sp(Π1)=π1

SMQΠ1,Π2
. (24)

For example,

SMR{{14},{2},{3}},[{134},{2}] = SMQ0
BBB@
{1,4} ∅

∅ {2}
{3} ∅

1
CCCA

+ SMQ0
BBB@
{1,4} ∅
{3} ∅
∅ {2}

1
CCCA

+SMQ0
BBB@

∅ {2}
{1,4} ∅
{3} ∅

1
CCCA

+ SMQ0
BBB@

∅ {2}
{3} ∅
{1,4} ∅

1
CCCA

+SMQ0
BBB@

{3} ∅
∅ {2}

{1,4} ∅

1
CCCA

+ SMQ0
BBB@

{3} ∅
{1,4} ∅

∅ {2}

1
CCCA

. (25)

Note that a pair constituted by a set partition and a set composition is equivalent
to a set packed matrix up to a permutation of its rows. Hence, the realization on
bi-words follows: for example,

SMR{{14},{2},{3}},[{134},{2}] =
∑

j1,j2,j3 distinct
k1<k2

〈
j1 j2 j3 j1
k1 k2 k1 k1

〉
. (26)

Proposition 4.3.

• SMRSym is isomorphic to ⊕n(WSymn ⊗WQSym∗
n).

• SMRSym is a co-commutative Hopf subalgebra of SMQSym.

Proof. The first part of the proposition is a direct consequence of the following
sequence of equalities:

φ(SMRπ1,Π2) =
∑

sp(Π1)=π1

φ(SMQΠ1,Π2
)

=
∑

sp(Π1)=π1

WQΠ1
⊗ FΠ2

= Wπ1 ⊗ FΠ2 . (27)
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From its definition, SMRSym is stable for the product and ∆ maps SMRSym
to SMRSym ⊗ SMRSym. It follows that SMRSym is a Hopf subalgebra of
SMQSym. One checks easily the co-commutativity by restricting ∆ to SMRSym.

4.3.2. The Hopf algebra SMCSym

Forgetting about the order of the columns instead of the rows leads to another
Hopf algebra, SMCSym, a basis of which is indexed by pairs (Π1, π2) where Π1 is
a set composition and π2 is a set partition. It is naturally the quotient (and not a
subalgebra) of SMQSym by the ideal generated by the polynomials

SMQΠ1,Π2
− SMQΠ1,Π′

2
(28)

where sp(Π2) = sp(Π′
2). Note that this quotient can be brought down to the

bi-words. We denote by α the canonical surjection:

α(SMQΠ1,Π2
) =: SMCΠ1,sp(Π2). (29)

Proposition 4.4.

• SMCSym is isomorphic to ⊕nWQSymn ⊗WSym∗
n,

• SMCSym is a Hopf algebra.

Proof. The first property follows from the fact that the following diagram is
commutative:

SMQSym
φ→ ⊕nWQSymn ⊗WQSym∗

n

↓ α Id⊗ α′ ↓
SMCSym

φC

→ ⊕nWQSymn ⊗WSym∗
n,

(30)

where α′ denotes the canonical surjection α′ : WQSym∗
n → WSym∗

n, and φC is
the map sending SMCΠ1,π2 to WΠ1 ⊗ Fπ2 . Indeed, the image by φ of the ideal
generated by the polynomials SMQΠ1,Π2

− SMQΠ1,Π′
2

for sp(Π2) = sp(Π′
2) is the

ideal J̃ of WQSymn⊗WQSym∗
n generated by the polynomials WΠ1⊗(FΠ2−FΠ′

2).
Since

(WQSymn ⊗WQSym∗
n)/J̃ = WQSymn ⊗WQSym∗

n/J

= WQSymn ⊗WSym∗
n, (31)

the result follows.
Using the representation of basis elements as pairs of set compositions, one

obtains for two set compositions Π2 and Π′
2 satisfying sp(Π2) = sp(Π′

2):

∆(SMQΠ1,Π2
− SMQΠ1,Π′

2
)

=
∑

Π1=[Π′
1,Π′′

1 ]

(SMQstd(Π′
1),std(Π2|Π′

1
) ⊗ SMQstd(Π′′

1 ),std(Π2|Π′′
1
)

−SMQstd(Π′
1),std(Π′

2|Π′
1
) ⊗ SMQstd(Π′′

1 ),std(Π′
2|Π′′

1
)). (32)
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Since sp(std(Π2|Π′′
1
)) = sp(std(Π′

2|Π′′
1
)), we have

(α⊗ α) ◦∆(SMQΠ1,Π2
− SMQΠ1,Π′

2
) = 0. (33)

Hence, one defines the coproduct ∆ in SMCSym by making the following
diagram commute

SMQSym ∆→ ⊕nSMQSymn ⊗WQSym∗
n

↓ α α⊗ α′ ↓
SMCSym ∆→ ⊕nSMCSymn ⊗WSym∗

n.

(34)

More precisely, one has

∆SMCΠ1,π2 =
∑

Π1=[Π′
1,Π′′

1 ]

SMCstd(Π′
1),std(π2|Π′

1
) ⊗ SMCstd(Π′′

1 ),std(π2|Π′′
1

),

where π2|Π1 is the set of sets {(π2)i ∩
⋃

j(Π1)j}i from which one erases the empty
sets.

Since SMQSym is a Hopf algebra, we immediately deduce that ∆ is an algebra
homomorphism from SMCSym to SMCSym⊗ SMCSym.

Note that SMRSym and SMCSym have the same Hilbert series, given by
the product of ordered Bell numbers by unordered Bell numbers. This gives one
new example of two different Hopf structures on the same combinatorial set since
SMCSym is neither commutative nor cocommutative.

Note that the realization of SMCSym is obtained from the realization of
SMQSym by quotienting bi-words by the ideal J generated by〈

u

v

〉
−
〈

u

w

〉
(35)

where w is obtained from v by permuting its values.

4.4. Set matrix symmetric functions

The algebra SMSym of set matrix symmetric functions is the subalgebra of
SMCSym generated by the polynomials

SMπ1,π2 =
∑

sp(Π1)=π1

SMCΠ1,π2 . (36)

For example,

SM{{1,4},{2},{3}},{{1,3,4},{2}} =
∑

j1, j2, j3 distinct
k1<k2

〈
j1 j2 j3 j1
k1 k2 k1 k1

〉
J

. (37)
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Theorem 4.5.

• SMSym is a co-commutative Hopf subalgebra of SMCSym.
• SMSym is isomorphic as an algebra to EndgrWSym =

⊕
n WSymn ⊗

WSym∗
n.

• SMSym is isomorphic to the quotient of SMRSym by the ideal generated by
the polynomials SMRπ1,Π2 − SMRπ1,Π′

2
with sp(Π2) = sp(Π′

2).

Proof. The space SMSym is stable for the product in SMCSym, as it can be
checked from the realization. Furthermore, one has

∆SMπ1,π2 =
∑

sp(Π1)=π1

∆SMCΠ1,π2

=
∑

sp(Π1)=π1

∑
Π1=[Π′

1,Π′′
1 ]

SMCstd(Π′
1),std(π2|Π′

1
) ⊗ SMCstd(Π′′

1 ),std(π2|Π′′
1
)

=
∑

π1={π′
1,π′′

1 }
SMstd(π′

1),std(π2|π′
1
) ⊗ SMstd(π′′

1 ),std(π2|π′′
1

), (38)

where π2|π1 is the set of sets {(π2)i ∩
⋃

j(π1)j}i from which one erases the empty
sets. The co-commutativity of ∆ is obvious from (38), thus proving the first part
of the theorem.

The second part of the theorem is a consequence of the following fact:
φC(SMπ1,π2) = Wπ1 ⊗ Fπ2 .

The proof of the third part is the same as in Proposition 4.4.

5. Hopf Algebras of Packed Integer Matrices

5.1. Matrix quasi-symmetric functions

Let SAn be the set of set packed matrices such that if one reads the entries by
columns from top to bottom and from left to right, then one obtains the numbers
1 to n in the usual order (see Fig. 6).


 {1,2} ∅

∅ {4}
{3} ∅





 {1,3} ∅

∅ {4}
{2} ∅


 (39)

Fig. 6. An element of SA and an element not in SA.

Denote by SA the set SA :=
⋃

n≥0 SAn. One easily sees that SA is in bijection
with the packed integer matrices. Indeed, the bijection ג consists in substituting
each set of a matrix by its cardinality. The reverse bijection exists since each integer
is the cardinality of a set, fixed by the reading order of the matrix. For example,

ג

0
@{1, 2} ∅ {6}
∅ {3, 4, 5} {7, 8, 9, 10}

1
A =

0
@2 0 1
0 3 4

1
A. (40)
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Let us consider the subspace MQSym′ of SMQSym spanned by the elements
of SA. For example,

MQ„
2 0 1
0 3 4

« := SMQ„{1, 2} ∅ {6}
∅ {3, 4, 5} {7, 8, 9, 10}

«

=
∑

j1<j2
k1<k2<k3

〈
j1 j1 j2 j2 j2 j1 j2 j2 j2 j2

k1 k1 k2 k2 k2 k3 k3 k3 k3 k3

〉
. (41)

By definition of the reading order, the product of two elements of SA is a linear
combination of elements of SA and the coproduct of an element of SA is a linear
combination of tensor products of two elements of SA. So

Theorem 5.1. MQSym′ is a Hopf subalgebra of SMQSym and it is isomorphic
as a Hopf algebra to MQSym.

Proof. As MQSym′ is generated by a set indexed by packed integer matrices, it is
sufficient to check that the product and the coproduct have the same decompositions
as in MQSym. This can be obtained by a straightforward computation.

Note that this last theorem gives a realization on bi-words different from the
realization given in [7].

5.2. Matrix half-symmetric functions

We reproduce the same construction as for set packed matrices. We define three
algebras MRSym (resp. MCSym, MSym) of packed matrices up to permutation
of rows (resp. of columns, resp. of rows and columns).

5.2.1. The Hopf algebra MRSym

Let MRSym be the subalgebra of MQSym generated by the polynomials

MRA :=
∑
B

MQB (42)

where B is obtained from A by any permutation of its rows. As for SMRSym, the
realization of MRSym on bi-words is automatic. For example,

MR„
2 1 0
0 3 4

« = MQ„
2 1 0
0 3 4

« + MQ„
0 3 4
2 1 0

«

=
∑

j1 �=j2
k1<k2<k3

〈
j1 j1 j2 j2 j2 j1 j2 j2 j2 j2

k1 k1 k2 k2 k2 k2 k3 k3 k3 k3

〉
. (43)
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Theorem 5.2.

(1) MRSym is a co-commutative Hopf subalgebra of MQSym,

(2) MRSym is also the subalgebra of SMRSym generated by the elements SMRA

where A is any matrix such that each element of the set composition of its
columns is an interval of [1, n].

Proof. From its definition, MRSym is stable for the product and ∆ maps
MRSym to MRSym ⊗MRSym. It follows that MRSym is a Hopf subalge-
bra of MQSym. One easily checks the co-commutativity of the restriction of ∆ to
MRSym.

The second part of the theorem amounts to observing that MRA = SMR1−גA.

5.2.2. The Hopf algebra MCSym

We construct the algebra MCSym as the quotient of MQSym by the ideal gen-
erated by the polynomials MQA −MQB where B can be obtained from A by a
permutation of its columns.

Theorem 5.3.

(1) MCSym is a commutative Hopf algebra,
(2) MCSym is isomorphic as a Hopf algebra to the subalgebra of SMCSym gen-

erated by the elements SMCA, such that each element of the set partition of
its columns is an interval of [1, n].

Proof. The proof of the first part of the theorem is almost the same as
Proposition 4.4(1).

The dimensions are the same, so it is sufficient to check that the product and
the coproduct have the same decomposition in both algebras.

5.2.3. Dimensions of MRSym and MCSym

The dimension of the homogeneous component of degree n of MRSym or MCSym
is equal to the number of packed matrices with sum of entries equal to n, up to a
permutation of their rows.

Let us denote by PMuR(p, q, n) the number of such p × q matrices. One has
obviously

dimMRSymn =
∑

1≤p,q≤n

PMuR(p, q, n). (44)

The integers PMuR(p, q, n) can be computed through the induction

PMuR(p, q, n) = MuR(p, q, n)−
∑

1≤k,l≤p,q

(
q

l

)
PMuR(k, l, n), (45)
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where MuR(p, q, n) is the number of p× q possibly unpacked matrices with sum of
entries equal to n, up to a permutation of their rows.

Solving this induction and substituting it in Eq. (44), one gets

dimMRSymn =
n+1∑
i=1

(−1)n−iTn+1,i+1MuR(n, i, n), (46)

where

Tn,k =
n−k∑
j=0

(−1)n−k−j

(
j + k − 1

j

)
, (47)

that is the number of minimum covers of an unlabeled n-set that cover k points of
that set uniquely (sequence A056885 of [11]). The generating series of the Tn,k is∑

i,j

Ti,jx
iyj =

1− x

(1 + x)(1 − x− xy)
. (48)

The integer MuR(n, i, n), computed via the Pólya enumeration theorem, is the
coefficient of xn in the cycle index Z(Gn,i), evaluated over the alphabet 1 + x +
· · ·+ xn + · · ·, of the subgroup Gn,i of §in generated by the permutations σ · σ[n] ·
σ[2n]. · · · .σ[in] for σ ∈ §n (here · denotes the concatenation).

This coefficient is also the number of partitions Nn,i of n objects with i colors
whose generating series is

∑
n

Nn,ix
n =

∏
k

(
1

1− xk

)„
i + k

i

«

. (49)

Hence

Proposition 5.4.

dimMRSymn =
n+1∑
i=1

(−1)n−iTn+1,i+1Nn,i. (50)

The first values are

Hilb(MRSym) = Hilb(MCSym)

= 1 + t + 4 t2 + 16 t3 + 76 t4 + 400 t5 + 2356 t6 + 15200 t7

+ 106644 t8 + 806320 t9 + 6526580 t10 + · · · (51)

5.3. Matrix symmetric functions

The algebra MSym of matrix symmetric functions is the subalgebra of MCSym
generated by

MA :=
∑
B

MRB, (52)

where B is obtained from A by any permutation of its rows.
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Theorem 5.5.

(1) MSym is a commutative and co-commutative Hopf subalgebra of MCSym.
(2) MSym is isomorphic as a Hopf algebra to the subalgebra of SMSym generated

by the elements SMA, such that each element of the set partition of its columns
is an interval of [1, n].

(3) MSym is isomorphic to the quotient of MRSym by the ideal generated by the
polynomials MRA −MRB where B can be obtained from A by a permutation
of its columns.

Proof. The proof follows the same lines as the proof of Theorem 4.5.

From all the previous results, we deduce that the following figure commutes.

SMQSym MQSym

SMRSym MRSym

SMCSym MCSym

SMSym MSym

6. Dendriform Structures Over SMQSym

6.1. Tridendriform structure

A tridendriform algebra is an associative algebra whose multiplication can be split
into three operations

x · y = x ≺ y + x ◦ y + x � y , (53)

where ◦ is associative, and such that

(x ≺ y) ≺ z = x ≺ (y · z), (x � y) ≺ z = x � (y ≺ z), (x · y) � z = x � (y � z),

(54)

(x � y) ◦ z = x � (y ◦ z), (x ≺ y) ◦ z = x ◦ (y � z), (x ◦ y) ≺ z = x ◦ (y ≺ z).

(55)

6.2. Tridendriform structure on bi-words

One defines three product rules over bi-words as follows:

(1)
〈

u1
v1

〉
≺
〈

u2
v2

〉
=
〈

u1
v1

〉
�
〈

u2
v2

〉
if max(u1) > max(u2), and 0 otherwise.

(2)
〈

u1
v1

〉
◦
〈

u2
v2

〉
=
〈

u1
v1

〉
�
〈

u2
v2

〉
if max(u1) = max(u2), and 0 otherwise.

(3)
〈

u1
v1

〉
�
〈

u2
v2

〉
=
〈

u1
v1

〉
�
〈

u2
v2

〉
if max(u1) < max(u2), and 0 otherwise.
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Proposition 6.1. The algebra of bi-words endowed with the three product rules
≺, ◦, and � is a tridendriform algebra.

Moreover, SMQSym is stable by those three rules. More precisely, one has:

SMQfi
u
v

fl ≺ SMQfi
u′

v′
fl =

∑
w=x.y∈u�W u′

|x|=|u|; max(y)<max(x)

SMQfi
w

vv′[max(v)]

fl, (56)

SMQfi
u
v

fl ◦ SMQfi
u′

v′
fl =

∑
w=x.y∈u�W u′

|x|=|u|; max(y)=max(x)

SMQfi
w

vv′[max(v)]

fl, (57)

SMQfi
u
v

fl � SMQfi
u′

v′
fl =

∑
w=x.y∈u�W u′

|x|=|u|; max(y)>max(x)

SMQfi
w

vv′[max(v)]

fl. (58)

So SMQSym is a tridendriform algebra.

Proof. The first part of the proposition amounts to checking the compatibility
relations between the three rules. It is immediate.

The stability of SMQSym by any of the three rules and the product rela-
tions are also immediate: the bottom row can be any word whose packed word is
vv′[max(v)], so that the formula reduces to a formula on the top row which is equiv-
alent to the same computation in WQSym (see [9]). The compatibility relations
automatically follow from their compatibility at the level of bi-words.

Corollary 6.2. SMCSym, MQSym and MCSym are tridendriform.

Proof. As in the case of SMQSym, one only has to check that the algebras are
stable by the three product rules since the compatibility relations automatically
follow.

The case of SMCSym is direct since Formulas (56)–(58) have only the word
vv′[max(v)] in the bottom row of their basis elements. For the same reason, the
case of MCSym directly follows from the case of MQSym. The case of MQSym
is the same as the case of SMQSym itself.

6.3. Bidendriform structures

Let us define two product rules �=≺ and �= ◦+ � on bi-words. We now split
the nontrivial parts of the coproduct of the SMQ of SMQSym, as

∆�(SMQA) =
∑

A=

„
B
C

«
, A �= B, C

max(B)= max(A)

SMQstd(B) ⊗ SMQstd(C), (59)

∆	(SMQA) =
∑

A=

„
B
C

«
, A �= B, C

max(C)=max(A)

SMQstd(B) ⊗ SMQstd(C). (60)
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Let us recall that under certain compatibility relations between the two parts of the
coproduct and other compatibility relations between the two product rules �:=≺
and �:= ◦+ � defined by Foissy [6], we get bidendriform bialgebras.

Theorem 6.3. SMQSym is a bidendriform bialgebra.

Proof. The co-dendriform relations, the one concerning the two parts of the
coproduct, are easy to check since they only amount to knowing which part of
a matrix cut in three contains its maximum letter.

The bi-dendriform relations are more complicated but reduce to a careful check
that any part of the coproduct applied to any part of the product only brings a
limited amount of mutually disjoint cases. Let us for example check the relation

∆	(a� b) = a′b′	 ⊗ a′′ � b′′	 + a′ ⊗ a′′ � b + b′	 ⊗ a� b′′	, (61)

where the pairs (x′, x′′) (resp. (x′
�, x′′

�) and (x′
	, x′′

	)) correspond to all possible
elements occurring in ∆x (resp. ∆�x and ∆	x), summation signs being understood
(Sweedler’s notation).

First, the last row of all elements in (a � b) only contain elements of a.
Since by application of ∆	, the maximum of b has to go in the right part of
the tensor product, this means that there has to be also elements coming from
a in this part of the tensor product. Now, the elements of ∆	(a � b) where
all elements of b are in the right part of the tensor product, are obtained, for
the left part by elements coming from the top rows of a and for the right part
by elements coming from the other rows of a multiplied by b in such a way
that the last row only contains elements of a, hence justifying the middle term
a′⊗a′′�b.

If both components of ∆	(a � b) contain elements coming from b, then the
left part cannot contain the maximum element of b (hence justifying the b′	 and
b′′	, the left part being multiplied by elements coming from a if any (this is the
difference between the first and the third term of the expansion of ∆	(a � b)),
the right part being multiplied by � with elements coming from a since the last
row must contain elements coming from a.

Recall that SMCSym is the quotient of SMQSym by the ideal generated by
SMQA–SMQB where A and B are the same matrices up to a permutation of their
columns, the row containing the maximum element is the same for any element of a
given class, so that the left coproduct and the right coproduct are compatible with
the quotient. Moreover, the left and right coproduct are internal within MQSym,
so that

Corollary 6.4. SMCSym and MQSym are bidendriform sub-bialgebras of
SMQSym.
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Proof. We already know that SMCSym and MQSym are dendriform subalge-
bras of SMQSym since they are tridendriform subalgebras of this algebra. The
compatibility relations come from the compatibility relations on SMQSym, so
that there only remains to check that the coproduct goes from X to X ⊗X , where
X is either SMCSym or MQSym. This is an easy computation.

Corollary 6.5. SMQSym, SMCSym, and MQSym are free, cofree, self-dual
Hopf algebras and their primitive Lie algebras are free.

Proof. This follows from the characterization of bidendriform bialgebras given by
Foissy [6].

7. A Realization of LDiag(qc, qs) on Bi-Words

Let us define a two-parameter generalization of the algebra MQSym. For this
purpose, consider bi-words with parameter-commuting bi-letters depending on the
bi-letters as follows: 〈

yx

zt

〉
= qc

〈
xy

tz

〉
if y > x,

〈
xx

zt

〉
= qs

〈
xx

tz

〉
if z < t.

(62)

Let us now define the realization as a sum of bi-words of a packed integer matrix
with p rows and q columns:

LDM :=
∑

j1 < · · · < jp

k1 < · · · < kq

p∏
a=1

1∏
b=q

〈
ja

kb

〉Mab

. (63)

For example,

LD„
3 5
1 3

« =
∑

j1<j2
k1<k2

〈
j5
1 j3

1 j3
2 j2

k5
2 k3

1 k3
2 k1

〉
. (64)

We then have

Theorem 7.1.

• The subspace spanned by the LD has a structure of associative algebra. Moreover,
the matrices indexing the product LDALDB are equal to the matrices appearing
in MAMB in MQSym, and the coefficient of LDC in this product is a monomial
q

x(A,B,C)
s q

y(A,B,C)
c computed as follows: let us call left the part of C coming from



August 26, 2011 16:38 WSPC/S0218-1967 132-IJAC 00641

Hopf Algebras of Diagrams 909

A and right the part of C coming from B. Then

x(A, B, C) =
∑

r row of C


 ∑

i∈ left (r)

i




 ∑

j ∈ right (r)

j


. (65)

y(A, B, C) =
∑

r<r′rows of C


 ∑

i∈ left (r)

i




 ∑

j ∈ right (r’)

j


. (66)

• The specialization qs = qc = 1 gives back MQSym.

Proof. Since each partially commuting bi-word has only one expression such that
the top row is weakly increasing and the bottom row is weakly decreasing at the
spots where the top row is constant, we can define without ambiguity the canonical
element of a bi-word. The set of canonical elements is in bijection with integer
matrices.

Now, if two bi-words appearing in a product of two LD have canonical elements
whose corresponding matrices have the same packed matrix, they follow exactly the
same rewriting steps to get to their canonical element. So in particular, the product
of two LD decomposes as a linear combination of LD. Moreover, since the product
on bi-words is associative and compatible with the partial commutations, then so
is the product of the LD, hence proving that they span an algebra.

By definition of the realization of MQSym on bi-words, MQSym is obtained
from this algebra by specifying qc = qs = 1, that is, replacing partially parameter-
commuting bi-letters by partially commuting bi-letters, so that the matrices appear-
ing in a product of two LD are the same as the matrices appearing in the product
of the same packed matrices in MQSym. Finally, the coefficient of a given matrix
is obviously a monomial in qs and qc and the powers of qs and qc are straightforward
from the definition of the commutations: a bi-letter of the right has to exchange
with any bi-letter of the left whose top value is greater than or equal to its top
value. Each exchange amounts either to multiplying by qc if those values differ, or
to multiplying by qs if they are equal. This is equivalent to the formulas of the
statement.

For example, one has:

LD„
2 0
1 4

« � LD(1) = LD0
@2 0 0

1 4 0
0 0 1

1
A

+ q5
s LD„

2 0 0
1 4 1

« + q5
c LD0

@2 0 0
0 0 1
1 4 0

1
A

+ q5
cq

2
s LD„

2 0 1
1 4 0

« + q7
c LD0

@0 0 1
2 0 0
1 4 0

1
A

(67)
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since

∑
j1<j2
k1<k2

〈
j1 j1 j2 j2 j2 j2 j2

k1k1k2k2k2k2k1

〉
�
∑〈

j

k

〉

=
∑

j1<j2<j3
k1<k2<k3

〈
j2
1 j4

2 j2 j3

k2
1 k4

2 k1 k3

〉
+

∑
j1<j2(=j3)
k1<k2<k3

q5
s

〈
j2
1 j2 j4

2j2

k2
1 k3 k4

2 k1

〉

+
∑

j1<j3<j2
k1<k2<k3

q5
c

〈
j2
1 j3 j4

2 j2

k2
1 k3 k4

2 k1

〉
+

∑
j1(=j3)<j2
k1<k2<k3

q2
sq5

c

〈
j1 j2

1 j4
2 j2

k3 k2
1 k4

2 k1

〉

+
∑

j3<j1<j2
k1<k2<k3

q7
c

〈
j3 j2

1 j4
2 j2

k3 k2
1 k4

2 k1

〉
. (68)
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