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Preface

This Springer Proceedings in Mathematics and Statistics (PROMS) volume is based
on a fully refereed selection of full papers submitted after the end of the very
successful Applications of Computer Algebra (ACA) conference that took place on
July 20–23, 2015 in Kalamata, Greece. This ACAmeeting continued a long tradition
(the first one started in 1995 and it has continued in yearly based series) and was
organized as a series of Special Sessions. There were 16 Special Sessions plus a
Poster Session organized at ACA 2015. The ACAWorking Group is responsible for
approving the Special Sessions via proposals submitted from potential organizers.
These 16 sessions covered a wide range of topics within the conference scope:
(a) Computer algebra in quantum computing and quantum information theory
(b) Human–Computer Algebra Interaction (c) Computer Algebra in Education
(d) Computer Algebra in Coding Theory and Cryptography (e) Computational dif-
ferential and difference algebra (f) Algebraic and Algorithmic Differential and
Integral Operator (g) Symbolic summation and integration: algorithms, complexity,
and applications (h) Algebraic Graph Theory and its Applications (i) Applied and
Computational Algebraic Topology (j) Non-standard Applications of Computer
Algebra (k) Polynomial System Solving, Gröbner Basis, and Applications
(l) Computational aspects and mathematical methods for finite fields and their
applications in information theory (m) Polytopes in Algebra and Computation
(n) Gröbner Bases, Resultants and Linear Algebra (o) Computer Algebra Methods
for Matrices over Rings and (p) Open Source Software and Computer Algebra.

The papers in this PROMS volume cover all the sessions and they showcase the
kind of quality papers presented at the meeting.

The ACA Working Group and the ACA 2015 session organizers did a
tremendous work for selecting and scheduling the 162 contributions presented at
ACA 2015. Our particular thanks are due to the members of the Local Organizing
Committee for handling the local arrangements. The conference’s Advisory
Committee, Stanly Steinberg, Michael Wester, and Eugenio Roanes-Lozano, and
the Scientific Committee (the ACA working group) also deserve special thanks.
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The process of deciding the accepted papers to accept was not easy due to the
high quality of submissions, thus we are especially grateful to the expert referees.
Finally, we would like to express our most sincere thanks to the PROMS staff at
Springer for their tireless efforts and continuous support in helping us publish this
volume.

January 2017 Ilias S. Kotsireas
General Chair

Waterloo, ON, Canada

Edgar Martínez-Moro
Program Committee Chair

Valladolid, Spain
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An Algebraic Method to Compute
the Mobility of Closed-Loop
Overconstrained Mechanisms

Anissa Ali, Mireille Moinet and Philippe Serre

Abstract In mechanical engineering, the degree of freedom or mobility is a
fundamental property of solid assemblies. To compute it, classical formulas fail when
closed-loop overconstrained mechanisms are concerned. Another way to define the
mobility is to consider the dimension of the algebraic variety representing the closure
of the loop. The approach described here, consists in computing the conditions that
ensure that an overconstrained mechanism is mobile.

Keywords Computer-aided design · Mobility · Groebner basis

1 Introduction

The mobility or degree of freedom (DOF) is a fundamental property in mechanical
engineering. In mechanics, the degree of freedom of a mechanism is the number
of independent parameters that define its spatial configuration. There exists a lot of
formulas for the computation of the DOF. However, these formulas only permit to
know if a mechanism is mobile or not and are not accurate for some mechanisms. As
a result, during the process of design or redesign of a mechanism, the modification of
parameters will lead to the lost of the mobility. To our knowledge, no computer-aided
design softwares are able to help the designer in this specific situation.

To overcome these problems, our approach consists in finding relationships
between parameters that will ensure that the mechanism is mobile. These relation-
ships will be called “mobility condition” and will be obtained using the theory of
Groebner basis. In the following, we will describe briefly this approach.
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2 A. Ali et al.

First of all, Sect. 2 gives a definition and an algebraic representation of a closed-
loop mechanism. Section 3, shows how the theory of Groebner basis is helpful to
compute the mobility condition. Then, Sect. 4 describes a case study presented in
[5]. To conclude, some challenges that our approach raises are outlined.

2 Algebraic Representation of a Closed-Loop
Overconstrained Mechanism

A closed-loop mechanism is a set of rigid bodies connected by mechanical joints
that forms a loop. Here, joints are supposed to be ideal. The most familiar joints are
the revolute joint (or hinged joint) and the prismatic joint (or sliding joint). The other
joints are modelled as combinations of revolute and prismatic joints. A classic way
to represent a mechanism is to use a graph.

Figure 1 shows a closed-loop mechanism with n rigid bodies. The vertices Bi

represent the rigid body i and the edges represent the joint i .
Tomodel the closure of themechanism, a set of polynomial equationswith rational

coefficients is generated. First, two types of parameters are defined: dimensional
parameters (D) and positional ones (P). Dimensional parameters give a geometric
description of the rigid bodies. Positional parameters represent the relative position
between two rigid bodies.

Frames are then constructed in each side of the rigid bodies. In Fig. 2, each Ri

denotes a frame.

Fig. 1 A closed-loop
mechanism with n rigid
bodies
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Fig. 2 Frames construction
in a closed-loop mechanism
with n rigid bodies

Then two types of displacements are defined : dimensional displacements (Ddisp)
and positional ones (Pdisp). Dimensional displacements represent the displacements
in the rigid body and are function of D. Positional displacements are the displace-
ments in the joints and are function of P. The displacements are expressed using
homogeneous matrices or dual quaternions.

Assuming that n is the number of rigid bodies in the loop, the closure equations
are given by

n∏

i=1

Ddispi Pdispi = I (1)

where I denotes the identity displacement.
A polynomial transformation is then done (and a rational conversion of the coef-

ficient if necessary). The polynomial closure equations will be noted

F(D, P) = 0 (2)

When dealing with overconstrained mechanisms, F(D,P) represents an overcon-
strained algebraic systemwith respect to D and an underconstrained onewith respect
to P .
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3 Mobility Using Groebner Basis

The mobility condition problem arises when overconstrained mechanisms, often
designed in industrial applications, are concerned. Indeed, well-known formulas
that compute the DOF of a mechanism fail when dealing with overconstrained
mechanisms. In fact, an overconstrained mechanism is mobile only when its dimen-
sional parameters are linked by a special set of equations.Wewill call these equations:
“mobility condition”.

Up to our knowledge, “mobility condition” is out of reach of the classical mathe-
matical tools used in mechanical engineering, that is to say, rigid body motion theory
and differential calculus. Hence, we have focused ourmind on the theory of Groebner
basis which has been used to analyse multivariate polynomial mechanical problems
(see [3, 4]).

Let the closure equations be a set of m multivariable polynomials.

F(D, P) = ( f1(D, P), . . . , fm(D, P)) (3)

During the design of a mechanism, the dimensional parameters are given by the
designer and the positional parameters are then computed so that the mechanism can
be displayed. As a result, the unknowns of the closure equations are the positional
parameters P = (p1, . . . , pr ). The coefficients are polynomials which unknowns are
the dimensional parameters D = (d1, . . . , ds). Hence, each component of the closure
equations is written as

fi (D, p1, ..., pr ) =
∑

( j1,.., jn)

ci,( j1,.., jn)(D)p j1
1 ...p jn

r (4)

Looking for the mobility condition is tantamount to solving the following problem:

(Pb)

{
Let F(D, P) be a set of polynomial equations.
Find the relationships such that the system has infinitely many solutions.

In an algebraic point of view, a definition of the mobility of a mechanism is then

Definition 1 Let I be the ideal generated by < f1(D, P), .., fm(D, P) >.
A mechanism is mobile when the algebraic variety VQ[d1,...,ds ](I ) is infinite.

In the theory of Groebner basis, there exists a criterion (see [1, 2]) that determines
whether a system of polynomial equations has only finitely many solutions. This
criterion will help us to solve the mobility condition problem.

Let f be a polynomial and < be an admissible ordering. LM( f ) and LC( f ) will
represent the leading monomial and leading coefficient of f with respect to (wrt) <.
Then the leading term of f will be noted LT( f ) = LM( f ) × LC( f ).

Theorem 1 Let I be an ideal generated by < f1, .. fm > in K[x1, . . . , xn], G a
Groebner basis of I wrt <. The algebraic variety V (I ) is finite if and only if
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Fig. 3 Mobility computation algorithm

∀i ∈ {1, . . . , n}, ∃ gi ∈ G such that LT(gi ) = xkii

According to this theorem, one can easily understand that tomake an algebraic variety
infinite, it is sufficient to eliminate a pure power in an unknown. As a result, here is
another definition of the mobility that derives directly from Theorem 1.

Definition 2 Let I be the ideal generated by < f1, .. fm >, G a Groebner basis of I
wrt <. The mechanism modelled by I is mobile if and only if

∃ i ∈ {1, . . . , n}, ∀ gi ∈ G such that LC(gi ) = C(d1, ...ds) = 0

where C(d1, . . . , ds) is a polynomial which unknowns are the dimensional
parameters.

In our analysis, a block ordering is used and the Degree Reverse Lexicographi-
cal (DRL) monomial ordering is applied in each block (Fig. 3 details the mobility
computation algorithm). Not only does this ordering allow to make the analysis of
polynomials that have polynomials as coefficients but it is also known to be the most
efficient monomial ordering.

We assume that [p1, . . . , pr ]DRL >> [d1, . . . , ds]DRL. The algorithm that com-
putes the mobility condition is as follows:

Our approach is implemented in Maple 18 and Groebner bases computation are
done using the FGb package (version 1.61) written by Jean-Charles FAUGERE.
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The output returned by the previous algorithm gives us the conditions to have a
infinite algebraic variety. Nevertheless, some of the solutions given do not have any
mechanical meaning. So it is necessary to compute a primary decomposition of the
ideal obtained to remove the spurious solutions.

4 Case Study

The approach presented in the previous section has been applied on several simple
overconstrained mechanisms presented in [5]. These mechanisms have those partic-
ularities: all axes of revolute joints are parallel and all axes of prismatic joints are
perpendicular to axes of revolute joints.

In this section, we describe precisely the computation of the “mobility condition”
of the mechanism in Fig. 4, that we called Selvi1 ((RRRR)E in [5]). This mechanism
is, for instance, used to manufacture mechanical artificial knee (see Fig. 5).

To model this mechanism, the algebraic representation described in Sect. 1 is
used. However, to understand the results, the definition of the parameters will be
given. We should keep in mind that, the parametrization chosen takes into account
the requirements given by the mechanical engineers in charge of manufacturing the
mechanism. Indeed, one of the main requirement is to ensure that the rigid bodies
do not overlap.

Fig. 4 Selvi1 (figure
extracted from [5])

Fig. 5 Mechanical knee
joint
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Fig. 6 Parametrization of
rigid body i

Selvi1 mechanism is made of four rigid bodies. Each of them are connected
together by a revolute joint. As a result, dimensional parameters are the same for all
rigid bodies. Figure 6 gives an illustration of the dimensional parameters chosen.

Assuming that a revolute joint is modelled by a line and a point and that the
number of the rigid body is i , we have

1. αi is the angle between Axis i − 1 and Axis i .
2. Li is the length of the common perpendicular between Axis i − 1 and Axis i .
3. L1i (resp. L2i ) is the signed distance between point i − 1 (resp. i) and the foot

of the common perpendicular that belongs to Axis i − 1 (resp. Axis i). These
distances will be called offsets.

Hence the displacement in a rigid body i is given by this following homogeneous
matrix:

Ddispi =

⎛

⎜⎜⎝

1 0 0 0
Li 1 0 0

−sin(αi )L2i 0 cos(αi ) −sin(αi )

L1i + cos(αi )L2i 0 sin(αi ) cos(αi )

⎞

⎟⎟⎠

Positional parameters correspond to the angle between the common perpendicular
i and i + 1. This angle is noted ti . The displacement in a joint i is then given by this
following homogeneous matrix:
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Pdispi =

⎛

⎜⎜⎝

1 0 0 0
0 cos(ti ) −sin(ti ) 0
0 sin(ti ) cos(ti ) 0
0 0 0 1

⎞

⎟⎟⎠

As mentioned before, axes are parallel, so all αi equal zero. Hence, the polynomial
closure equations modelling Selvi1 mechanism is a set of 10 equations with 20
variables (12 dimensional parameters and 8 positional parameters).

Applying the algorithm presented in Sect. 4, it takes approximatively 9.5 s1 to
compute the “mobility condition” of Selvi1mechanism. Selvi1mechanism ismobile
if and only if the offsets follow condition (5).

L11 + L21 + L12 + L22 + L13 + L14 + L23 + L24 = 0 (5)

5 Conclusion

Wehave briefly presented an approach to computemobility condition for the study of
overconstrained mechanisms. A pedagogical case study has been used to enable the
readers to understand the parametrization chosen to describe the mechanism. The
“mobility condition” computation has been successful for two other mechanisms
presented in [5]. Nevertheless, we pointed out two major problems.

First, it is necessary to compute a primary decomposition of the result obtained to
select the components with mechanical meaning. However the algorithm provided
in Maple 18, which uses a former version of FGb, fails for some examples. For
the future, it would be interesting to find a more efficient primary decomposition
algorithm. Then, the computation of a Groebner basis is necessary to apply our
method. Indeed, it may fail because of unreasonable computing time for industrial
applications. To overcome these difficulties, a lot of promisingmethods are proposed
for the future.

A first try will be to do a semi-numerical study. Indeed, in mechanical engineering
it is usual to study a mechanism with some dimensional parameters that are fixed.
By doing this, the closed-loop equations will be simpler and it will speed up the
computation of the Groebner basis. However, we should keep in mind that the main
difficulty is the choice of the dimensions that become numeric. Indeed, if the dimen-
sional parameters chosen are linked, there is a high chance that the study will lead
to no solution.

1CPU computational time given by Maple 18
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Simplicial Topological Coding and Homology
of Spin Networks

Vesna Berec

Abstract We study the commutation of the stabilizer generators embedded in the
q-representation of higher dimensional simplicial complex. The specific geometric
structure and topological characteristics of 1-simplex connectivity are generalized to
higher dimensional structure of spin networks encoded in ordered complex via com-
binatorial optimization of a closed compact space. Obtained results of a consistent
homology-chain basis are used to define connectivity and dynamical self organization
of spin network system via continuous sequences of simplicial maps.

Keywords Spin network · Simplicial complex · Graph state · Combinatorial
optimization · Quantum code

1 Introduction

Spin networks [1–6] can be presented by purely combinatorial structures: one-
dimensional simplicial complexes with edges labeled by numbers j = 0, 1/2, 1,
3/2, etc. These numbers stand for total angular momentum or “spin”. The imposed
condition is that three edges meet at each vertex, with the corresponding spins:
j1, j2, j3, adding up to an even integer and satisfying the triangle inequality. These
rules are motivated by the quantum properties of angular momentum: if we combine
a component with spin j1 and a component with spin j2, the spin j3 of the unit system
satisfies exactly latter constraint. In such setting, given that F is a general field, a spin
network represents quantum states of F-geometry on d = 3 + 1 dimensional space
defined by tensor product states

Hj1 j2 j3 j4 ≡ 4⊗
i=1

Hji , H⊥ ≡ ⊕
{J }

H 0
{J }. (1)
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where {J } runs over the set of ordered 4-tuples of integers or half-integers such that
H 0

{J } is nonempty complex obtained from the n-skeleton Hn , constructed from Hn−1

by attaching n-simplexes viamapsφ : Kn−1 → Hn−1. In the PRmodel [1] a partition
function is defined for a given three-dimensional simplicial complex [by deforming
SU(2) to a quantum group [4], where the partition function depends only on the
topology of the manifold which is triangulated by the simplicial complex] by means
of the following: to each edge of the complex is associated a spin [i.e., an irreducible
unitary SU(2) representation, determined only by its dimension d ≡ 2 j + 1].

In particular case, we are interested in the homomorphisms of the simplicial q-th
homology group which represents the free abelian group generated by the q-cycles,
and their inducedmappingon the stabilizer group (SG)basis.Assuming thatΓ and SG
are free abelian groupswith basesg1, . . . , gn andg′

1, . . . , g
′
m , respectively, if f : Γ →

SG is a homomorphism, then f
(
g j

) = ∑m
i=1 (−1)iλi jg

′
i for unique integers λi j ,

where the parity of any transposition is−1.More general, giving that K is a simplicial
complex, and SG is an abelian group, then for non-negative integer q, to each (q + 1)-
tuple (x0, x1, . . . , xq) of vertices spanning a simplex σq(K ), there corresponds an
elementα(x0, x1, . . . , xq) of SG defining a homomorphismα : Cq(K ) → SG , where
Cq(K ) denotes the corresponding chain group, i.e., finitely generated abelian group
on the oriented simplices.

This paper is organized as follows. After introducing basic concepts, in Sect. 3 we
present a realization of the spin networks in terms of simplicial manifolds, associated
with the properties of the fundamental groups. A distinctive feature of these groups
is that they are topological invariant, i.e., topological spaces of the same homotopy
description have the same fundamental group, and a loop differentiable property [7].
Details of the stabilizer formalism with the implementation to spin network unit on
graph state are discussed in Sect. 4.

2 Preliminaries

2.1 Simplicial Complexes

Let x0, . . . , xq be points geometrically independent in R
m where m � q. The q-

simplex σq = 〈
x0, . . . , xq

〉
is a compact (bounded and closed) subset of Rm , given

by

σq =
{
v ∈ R

m |v =
q∑

i=0
ci xi , ci � 0,

q∑

i=0
ci = 1

}
. (2)

For an integer n such that 0 � n � q, n + 1 points define a n-simplex σn =〈
xi0 , . . . , xin

〉
denoted as n-face of σq . In particular,K represent a set of finite number

of simplexes in Rm called simplicial complex [8, 9] if

• σ ∈ K and σ′ � σ , then σ′ ∈ K.
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• σ,σ′ ∈ K, then the intersection σ ∩ σ′ is either empty set or a common face of σ
and σ′, i.e., either σ ∩ σ′ = ∅ or σ ∩ σ′ � σ, and σ ∩ σ′ � σ′.

Letσq = [
x0, . . . , xq

]
(q > 0) denote an oriented q-simplex, then the boundary∂qσq

of σq is an (q − 1)-chain where ∂q , called boundary operator, defines a homomor-
phism map ∂q : Cq (K ) → Cq−1 (K ). For K representing the n-dimensional simpli-
cial complex, there exists a sequence of free Abelian groups and homomorphisms,
called chain complex [10, 11]:

0
i−→ Cn (K )

∂n−→ Cn−1 (K )
∂n−1−−→ · · · ∂2−→ C1 (K )

∂1−→ C0 (K )
∂0−→ 0, where i :

0 → Cn (K ) .

Let K be a finite simplicial complex, where |K| represents the union of all the
simplices σ ∈ K. A topological space X which is homemeomorphic to |K| repre-
sents a polyhedron where K is a triangulation of X . If X and Kq ⊆ K are simplicial
complexes, a morphism φ : K → Kq is a function φ : K(σ0) → Kq(σ0), where σ0

denotes 0-simplexes or vertices, such that if σq ∈ K is a q-simplex spanned by the
affinely independent set x0, . . . , xq of (q + 1) points, then the elements of the set
φ(x0), . . . ,φ(xq) form an affinely independent set of points spanning a simplex
φσ ∈ Kq , where dim φσ ≤ dim σ. In particular, a morphism φ : K → Kq of simpli-
cial complexes for distinct elements xi → φ (xi ) determines a unique map of the
simplex σ to φσ, by generating a piecewise-affine map of spaces |φ| : |K| → ∣∣Kq

∣∣,
where |·| is a functor from the category K of simplicial complexes to the categoryTOP
of topological spaces.Considering X as a topological space and assigning a base point
[12]∗p ∈ X , a loop established at p is a pathα : [0, 1] → X withα (0) = α (1) = p.
Then a map: P : [0, 1]2 → X with P (t, 0) = α (t) , P (t, 1) = β (t) and P (0, τ ) =
P (1, τ ) = p, ∀(t, τ ) ∈ [0, 1] determines two homotopic loops α,β which can be
deformed one from other via other loops on the set of common paths, defining an
equivalence relation. The homotopy class of α loop is denoted as [α]. In particular,
two loops α,β are denoted with the homotopy classes [α] [β] = α ∗ β for the path

Fig. 1 Spin network represented via subgraph X ∈ G, is a maximal tree which is homotopy equiv-
alent to a wedge of circles
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that goes twice around α, then around β, such that α ∗ β (t) = α (2t) , t � 1
/
2 and

β (2t − 1) , t � 1
/
2, see Fig. 1. right, which illustrates the wedge of six circles gen-

erated by gluing together a collection of spaces at a base point twice around loops
α,β.

3 Homotopy of Spin Networks Embeded in Simplicial
Complex

Let V be the vertex set and e1, e2, . . . , en be the sequence of edges on V × V , con-
nected along a path from a point a to a point b on the surface S, given by: ei = Pi Pi+1,
P1 = a, Pn+1 = b, where distinct edges possess orientation which coincides with the
path direction. Then the path can be associated to the 1-chain: e1 + e1 · · · + en . A lin-
ear transformation of the 1-chain module is associated by each group element action
g ∈ Γ which permutes the edges in either the successive mirror or the dual tiling,
defining:α1e1 + α2e2 + · · ·αnen → α1ge1 + α2ge2 + · · · αngen . In general, theΓ -
action commutes with the boundary operator, i.e., ∂gn = g∂n for every chain, where

gZn (S;R) = Zn (S;R) = ker∂n : Cn (S;R) → Cn−1 (S;R) ,

gBn (S;R) = Bn (S;R) = im∂n : Cn+1 (S;R) → Cn (S;R) ,

resulting that distinct elements of Γ map homology classes to homology classes,
yielding a linear action ofΓ on Hn (S;R) = Zn(S;R)

Bn(S;R)
. Then, a corresponding vertex set

V represents a submodule for V ⊆ Hn (S;R)which isΓ -invariant or aΓ -submodule
if gV = V, ∀g ∈ Γ . Such action of group Γ on the homology chain is known as the
homology representation.

LetΓ be a group, where S ⊆ Γ is a generator subset. Let S̄ be a set of inverses of S
with A = S � S̄. Then, an underlying graph [12, 13] of spin networkG = G(Γ, S) is

Fig. 2 Construction of a spin network by the union of the set of flat connections which can be
defined over the multiply connected manifolds [14], given by unit intervals of a finite set of curves
crosshatching only at their endpoints of the metric space [15]
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established by connecting vertices g, h ∈ VG , where the set VG ⊂ Γ , by establishing
edge in A under condition

(g, h ∈ VG) =
{
1, i f g−1h ∈ A
0, otherwise.

(3)

That is, for distinct g ∈ Γ and a ∈ A there is an edge relating g to ga. In particular,
the directed edge from g to ga is defined as the element a.

Given any g, h ⊆ Γ , let α ⊆ VG be a geodesic connecting ga to a point hb, by
selecting a sequence of points, ga = x0, x1, . . . , xn = hb, see Fig. 2, along α, such
that d (xi , xi+1) � 1,∀i . For each i , gi ∈ VG are selected so that α : [a, b] → [0, 1] .

Definition 1 Given a metric space (M, d), let I ⊆ R be an interval. A path which
denotes unit interval (geodesic) is
γ : I → {M | d (γ (t) , γ (τ )) = |t − τ | ,∀(t, τ ) ∈ I } .

Assuming γ : [a, b] → M is an arbitrary path, its length is represented as

sup

{
n∑

i=1
d (γ (ti−1) , γ (ti ))| a = t0 < t1 < · · · < tn = b

}
. (4)

Theorem 1 Let Xσ and Xσ′ be subspaces of X such that the covering dimension
of simplexes σ,σ′ is maximal covering of X. Let γi : Xσσ′ → Xγ and γ j : Xγ →
X be the inclusions, resulting that hγ : �

(
Xγ

) → � are functors into a groupoid
defining commutativity relation hσ′�(iσ′) = hσ�(iσ), i.e., a different path γ gives
the same result, where a unique functor λ : �(X) → � is defined such that hσ′ =
λ�( jσ′) , hσ = λ�( jσ) as

�(Xσσ′)
�(iσ)−−−→ �(Xσ)

� (iσ′)
⏐⏐�

⏐⏐��( jσ)

� (Xσ′) �
(
j
σ′

)

−−−−→ �(X)

(5)

is a pushout in groupoid of the inclusions Xσ ⊃ Xσσ′ ⊂ Xσ′ .

Proof In particular, a path γ : [a, b] → X represents a morphism [γ] in �
(
Xγ

)

from γ (a) to γ (b) if we arrange it with an increasing homeomorphism α : [a, b] →
[0, 1]. If a = t0 < t1 < · · · < tn = b then γ establishes the composition of the mor-
phisms

[
γ

∣∣[ti , ti+1
] ]
. Let γ : I → X be a path and let σ : {0, . . . , n} → {0, 1}

|γ ([
ti , ti+1

]) ⊂ X (σi ), then there exists a decomposition in affine space: 0 = t0 <

t1 < · · · < tn+1 = 1 such that:
[
γ

∣
∣[ti , ti+1

] ] ⊂ X (σi ), i = 0, . . . , n. The construc-
tion

[
γ

∣∣[ti , ti+1
] ]

as path γi in Xγi , produces composition
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[γ] = �
(
σγ(n)

)
[γn] ◦ · · · ◦ �

(
σγ(0)

)
[γ0] . (6)

If subdivision λ exists, then λ [γ] = hγ(n) [γn] ◦ · · · ◦ hγ(0) [γ0] is inclined by the
homotopy composition of the path.
Let h : K → X be a homotopy of paths from a to b. We consider edge-paths in the
subsets of 3-simplex (K3)which path-connect coordinates a = (000) and b = (111),
see Fig. 3. These paths differ from hγ(0) and hγ(1) by composition with a constant
interval. h generates two paths in K, which give the same result since they differ by
a homotopy on subinterval which belongs to the subsets σi ∈ K3, i = 1, . . . , 4. �

Given a topological space X representing the union of subsets Xσ, Xσ′ , general
properties of X encompassed from those of Xσ, Xσ′ , and Xσσ′ = Xσ ∩ Xσ′ can be
inferred from the Theorem2.

Theorem 2 [15, 16]. Let K0 and K1 be subspaces of simplicial complexK such that
the maximal dimension simplexes σ0 ∈ K0, σ1 ∈ K1, represent covering of X. Con-
sidering γi : K01 = K0 ∩ K1 → Kγ and γ j : Kγ → X as inclusions, in particular,
let K0, K1, K01 be path connected with base ∗ ∈ K01. Then Eq. (7)

Fig. 3 Two different paths along arrows (marked by thin and thick black lines) induce the following
stabilizer generator sets on a base (a face) which belongs to incident simplexes (see Theorem2 and

Sect. 4):

σ1 ∩ σ2 = {{a, b}} → {|000〉 , |001〉 , |110〉 ,− |111〉} ,

σ4 ∩ σ1 = {{c, a}} → {|000〉 , |101〉 , |010〉 ,− |111〉} ,

σ3 ∩ σ4 = {{
a, b′}} → {|000〉 , |110〉 , |001〉 ,− |111〉} ,

σ2 ∩ σ3 = {{
c′, a

}} → {|000〉 , |010〉 , |101〉 ,− |111〉} .
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π1 (K01, ∗)
π(i1∗)−−−→ π1 (K1, ∗)

π1 (i0∗)
⏐⏐�

⏐⏐�π1 ( j1∗)

π1 (K0, ∗)
π1( j0∗)−−−→ π1 (X, ∗)

(7)

is a pushout in topological space of the inclusions K0 ⊃ K01 ⊂ K1, representing a
fundamental group.

Proof Assuming that simplicial complexK is path connected and z ∈ K, where z =
∗, then r : �(K) → π1 (K, z) induces morphism compositions over the full subset
z. For each z ∈ K exists a morphism such that uz = id, uyαu−1

x where α: x → y,
represented by:

�(K0) ←− �(K01) −→ �(K1)

⏐⏐�r1
⏐⏐�r01

⏐⏐�r0

π1 (K0, ∗) ←− π1 (K01, ∗) −→ π1 (K1, ∗).

(8)

Precisely, restriction of K to subcomplexes: K01, K0, K1, and X with a base point
z = ∗, yields a commutative relation where morphisms in �(X) are respectively
assigned by the composition of morphisms in �(K0) and �(K1), likewise, the
group π1 (X, ∗) is formed by the images of j0∗ and j1∗. �

4 Application to Graph State and Spin Network

Graph state is represented in scope of the stabilizer formalism [17, 18] via tensor
products of Pauli operators σX and σZ , whose composition and structure are based on
the complexity of the underlying graph which can be seen as one-dimensional sim-
plicial complex. The stabilizers establish a group (SG) under multiplication, formed
from n generators gi , associated to a number of vertices xi of the graph [19]. In
particular, stabilizer generators are induced on the vertex set VG of a graph G by
the bijective mapping (Γ (VG) , A) → (SG, ·), see Sect. 3, Eq. (3). Graph state is
obtained by relating each vertex xi ∈ VG with a stabilizer generator gi = σi

Xσ
i j
Z ,

where gi |G〉 = |G〉 , ∀i = 1, . . . , n.The stabilizer generators [20–22] gi for n graph
state generate the complete Abelian stabilizer group SG of |G〉 with multiplication.
The group SG consists of 2n elements which uniquely represent a graph state

|G〉 =
{

2n∑

i=1
αi |xi 〉 = ∑

i
αi SiG |xi 〉,∑

i
|αi |2 =1

}
. (9)
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The stabilizer group SG is formed from a set of n − k generators g1, . . . , gn−k ,
which: (a) commute; (b) are unitary and Hermitian; and (c) g2i = I . Each ele-
ment of the stabilizer group SG can be expressed as a product of the generators
as Sk = gα1

1 · · · gαn−k

n−k , Sk ∈ SG, αi ∈ {0, 1} , i = 1, . . . , n − k, where S ⊆ Gn with
Gn denoting a corresponding Pauli group for n qubit state.

Definition 2 Stabilizer code of length n is represented by the fixed point set [23]
Sk = {I, X,Y, Z} of Pauli operators:

I =
(
0 1
1 0

)
, X ≡ σX =

(
0 1
1 0

)
, Y ≡ σY =

(
0 -i
i 0

)
, Z ≡ σZ =

(
1 0
0 -1

)
,

k = 1 . . . , n such that S1, S2, . . . , Sk are acting over n qubits (i.e., over
(
C

2
)⊗n

).

When stabilizers S are composed of elements {σi }i=X,Y,Z of {I, X}⊗n and {σi }i=X,Y,Z

of {I, Z}⊗n , it can be seen that
[
σiσ j

] = 2iεi jkσk and
{
σiσ j

} = 2δi j . Precisely, I rep-
resents the identity matrix of size 2, X denotes the Pauli matrix encoding the bit flip
error and Z denotes the Pauli matrix describing the phase error. The isomorphisms
between {I, X} , {I, Z} and the vector space F2 makes possible establishing a con-
nection between classical and quantum codes. On the basis of these isomorphisms,
the stabilizers relate to binary vectors and the commutation relation corresponds to
the orthogonality relation in F

n
2.

Fig. 4 Stabilizer generators
for three-partite graph states
representing elementary
segment of spin network, see
Eqs. (10, 11)
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In particular, stabilizers of the graph state, given in Fig. 4, are represented by each
row of the binary matrix [24, 25]

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣

0 0 0
0 0 1
0 0 1
1 1 0
0 0 0
1 1 1
1 1 1
1 1 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

(10)

where nodes of element of the spin network {a, b, c}, where: a + b � c = 2k, a +
c � b = 2k, b + c � a = 2k are encoded in the graph state (n = 3) establishing
incidence relations via following generators:

(1) {{a} , {b} , {c}} → {|000〉} ,

(2) {{a}} → {|000〉 , |001〉 , |010〉 ,− |011〉} ,

(3) {{b}} → {|000〉 , |100〉 , |001〉 ,− |101〉} ,

(4) {{c}} → {|000〉 , |010〉 , |100〉 ,− |110〉} ,

(5) {{a, c}} → {|000〉 , |010〉 , |101〉 , |111〉} ,

(6) {{b, c}} → {|000〉 , |100〉 , |011〉 , |111〉} ,

(7) {{a, b}} → {|000〉 , |001〉 , |110〉 , |111〉} ,

(8) {{a, b, c}} → {|100〉 , |010〉 , |001〉 ,− |111〉} ,

(11)

where (5–7) represent standard three-qubit flip code on the code subspace: VS =
{|000〉 , |111〉} for stabilizer set S = {I, Z1Z2, Z2Z3, Z1Z3} , I = (Z1Z2)

2.

5 Conclusion

We have analyzed and demonstrated implementation of graph states in composing
the spin networks architectures. The characterization of graph states is utilized via
the underlying graph construction defined in terms of affine simplexes with respect to
path-connection induced homeomorphisms and polytope construction herein. Future
outlook is implementation of higher dimensional homologies in order to establish a
self-correctingmemorywhich allows secure data processingwithout continual active
error correction via stabilizer measurement.

Acknowledgements Author acknowledges the sponsorship provided through FP7 EU
Commission framework.
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Trial Set and Gröbner Bases
for Binary Codes

Mijail Borges-Quintana, Miguel A. Borges-Trenard
and Edgar Martínez-Moro

Abstract In this work, we show the connections between trial sets and Gröbner
bases for binary codes, which give characterizations of trial sets in the context of
Gröbner bases and algorithmic ways for computing them. In this sense, minimal trial
sets will be characterized as trial sets associated with minimal Gröbner bases of the
ideal associated to a code.

Keywords Binary linear codes · Test set · Groebner basis

1 Introduction

The concept of trial set for linear codes was introduced in [6]. This set of codewords
can be used to derive and algorithm for complete decoding in a similar way that a gra-
dient decoding algorithm uses a test set (see [2]). A trial set allows to characterize the
so-called correctable errors and to investigate the monotone structure of correctable
and uncorrectable errors. Also important bounds on the error–correction capability
of binary codes beyond half of minimum distance using trial sets are presented in [6].
One problem posted in the conclusion of [6] was the importance of characterizing
minimal trial sets for families of binary codes.
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The ideal associated with any linear code (code ideal for simplicity) was intro-
duced in [3] together with some applications of Gröbner bases theory in this context,
such as the reduction process by Gröbner bases of code ideals with respect to (w.r.t.)
specific orders that corresponds to the decoding process of the code.

The outline of this contribution is as follows, in Sect. 2 we state the main concepts
and results related with binary codes, trial sets, the code ideals, and Gröbner bases
which are needed for an understanding of this work. The connection between trial
sets for binary codes and Gröbner bases for the corresponding code ideal is presented
in Sect. 3.

2 Preliminaries

2.1 Binary Codes

By Z, K, X, K[X], and F2, we denote the ring of integers, an arbitrary field, the set
of n variables {x1, . . . , xn}, the polynomial ring in the n variables of X over the field
K and the finite field with 2 elements.

A binary linear code C over F2 of length n and dimension k, or an [n, k] binary
code for short, is a k-dimensional subspace of Fn

2. We will call the vectors v in F
n
2

words and in the particular case where v ∈ C , codewords. For every word v ∈ F
n
2 its

support is defined as supp(v) = {i | vi �= 0} and its Hamming weight, wH (v) is the
cardinality of supp(v).

TheHamming distance, between two vectors x, y ∈ F
n
2 is dH (x, y) = wH (x − y).

The minimum distance d(C ) of a linear code C is defined as the minimum weight
among all nonzero codewords. In addition, we have x ⊂ y provided that supp(x) ⊂
supp(y).

For the rest of this section, we will follow [6]. We will consider ≺ a so-called
α-ordering on Fn

2, a weight compatible total ordering on Fn
2 which is monotone, that

is:

for any y1, y2 s.t. 2 ≤ wH (y1) = wH (y2) < n and supp(y1) ∩ supp(y2) �= ∅
and for any i ∈ supp(y1) ∩ supp(y2) and vectors x1 and x2 defined by
supp(x1) = supp(y1) \ {i} and supp(x2) = supp(y2) \ {i} then y1 ≺ y2 if
x1 ≺ x2.

⎫
⎪⎪⎬

⎪⎪⎭

(1)

E0(C )will denote the set of correctable errors of a binary code C which is the set of
the minimal elements w.r.t. ≺ in each coset of Fn

2/C , and the elements of E1(C ) =
F
n
2 \ E0(C ) are called uncorrectable errors. A trial set T ⊂ C \ 0 of the code C is

a set which has the property y ∈ E0(C ) if and only if y 	 y + c, for all c ∈ T . A
trial set provides an algorithmic way of computing a correctable error nearest to a
given vector y.
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Since we choose a monotone α-ordering on Fn
2, the set of correctable and uncor-

rectable errors form a monotone structure, namely, that if x ⊂ y, then x ∈ E1(C )

implies y ∈ E1(C ) and y ∈ E0(C ) implies x ∈ E0(C ).
By M1(C ) we will denote the set of minimal uncorrectable errors, i.e., the set of

y ∈ E1(C ) such that, if x ⊆ y and x ∈ E1(C ), then x = y. In a similar way, the set
of maximal correctable errors is the set M0(C ) of elements x ∈ E0(C ) such that, if
x ⊆ y and y ∈ E0(C ), then x = y.

For c ∈ C \ {0}, a larger half is defined as a minimal word u in the ordering 	
such that u + c ≺ u. The set of larger halves for a codeword c is denoted by L(c),
and for U ⊆ C \ {0} the set of larger halves for elements of U is denoted by L(U ).
Note that L(C ) ⊆ E1(C ).

For any y ∈ F
n
2, let the set H(y) = {c ∈ C : y + c ≺ y}. Then y ∈ E0(C ) if and

only if H(y) = ∅, and that y ∈ E1(C ) if and only if H(y) �= ∅. Theorem 1 in [6]
provides a characterization of the set M1(C ) in terms of H(·) and larger halves of
the set of minimal codewords M(C ).

Proposition 1 (Corollary 3, [6]) Let C be a binary code and T ⊆ C \ {0}. The
following statements are equivalent

1. T is a trial set for C .
2. If y ∈ M1(C ), then T ∩ H(y) �= ∅.
3. M1(C ) ⊆ L(T ).

Gröbner Bases and Binary Codes

We define the following characteristic crossing function: � : F2 → Zwhich replace
the class of 0, 1 by the same symbols regarded as integers. This map will be used
with matrices and vectors acting coordinate wise. Also, for the reciprocal case, we
defined ∇:Z → F2. Let a = (a1, . . . , an) be an n-tuple of elements of the field F2.
We will adopt the following notation:

xa = x�a1
1 · · · x�an

n ∈ [X]. (2)

The code ideal can be given by the two equivalent formulas in (3) and (4) below,
the equivalence between (3) and (4) was proved in [5]. Let W be a generator matrix
of an [n, k] binary code C (the row space of the matrix generates C ) and wi denotes
its rows for i = 1, . . . k.

I (C ) = 〈
xa − xb | a − b ∈ C

〉 ⊆ K[X]. (3)

I (C ) = 〈{xwi − 1: i = 1, . . . k} ∪ {x2i − 1: i = 1, . . . , n}〉 ⊆ K[X]. (4)

Note that I (C ) is a zero-dimensional ideal since the quotient ring R = K[X]/I (C )

is a finite dimensional vector space and its dimension is equal to the number of cosets
in Fn

2/C .
For every element xa in the monoid [X], with a ∈ N

n , we have a corresponding
vector ∇(a) ∈ F

n
2, and viceversa, any vector w ∈ F

n
2 has a unique standard represen-
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tation xw (the exponents of the variables are 0 or 1) as an element of [X]. A term order
on [X] (see [1]) is a total order < on [X] satisfying the following two conditions:

1. 1 < xa for all xa ∈ [X], xa �= 1.
2. If xa < xb, then xaxγ < xbxγ , for all xγ ∈ [X].

A total degree term order is a term order such that xa < xb provided that∑n
i=1 ai <

∑n
i=1 bi . Examples of such orders are the Degree and Degree Reverse

Lexicographical orders (see [1]).
Let < be a term order, let us T ( f ) denotes the maximal term of a polynomial

f with respect to the order <. The set of maximal terms of the set F ⊆ K[X ] is
denoted T {F} and T (F) denotes the semigroup ideal generated by T {F}. Finally,
〈F〉 is the polynomial ideal inK[X] generated by F . In particular, for the code ideal
I (C ), T (I (C )) is the set of maximal terms and N (I (C )) = [X] \ T (I (C )) the set
of words in canonical forms.We emphasize that there is a one to one correspondence
between N (I (C )) and the cosets in Fn

2/C . One characterization of Gröbner bases is
that G is a Gröbner basis of the ideal 〈G〉 if and only if T (〈G〉) = T (G) (see [1]).

3 Gröbner Bases and Trial Set for Binary Codes

Any total degree compatible order induces an α-ordering monotone ≺ on F
n
2 such

that v ≺ w if xv < xw for any v, w ∈ F
n
2. On the other hand, given an α-ordering

monotone on Fn
2 we could define a total order on [X] which may not be a term order,

a class of these orders on [X] were called in [3] error-vector orderings.
In this work, we will focus in the first situation, the α-ordering monotone which

is defined in [6] it is derived from the Degree Lexicographical order. In general, let
< be a total degree term order on [X], and let ≺ be the corresponding α-ordering
monotone on F

n
2.

Proposition 2 (Correctable and uncorrectable errors and canonical forms and max-
imal terms) Let xw ∈ [X], w ∈ N

n then

1. If xw is not the standard representation of theword∇(w) inFn
2 , then it is amaximal

term, i.e., xw ∈ T (I (C )).
2. If ∇(w) ∈ E1(C ), then xw ∈ T (I (C )).
3. If xw is the standard representation of the word ∇(w) and ∇(w) ∈ E0(C ), then

xw is a canonical form, i.e., xw ∈ N (I (C )).
4. If xw is the standard representation of the word ∇(w) and ∇(w) ∈ M1(C ), then

xw is an irredundant maximal term, i.e., xw /∈ T (I (C )) \ {xw} and is a maximal
term of any Gröbner basis of I (C ) w.r.t. <.

The set of irredundant maximal terms are the maximal terms of any minimal
Gröbner basis, for example, of the reduced Gröbner basis. For simplicity, we will
assume that the coefficients of the maximal terms in a Gröbner basis are positive.
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Proof (1): If xw is not the standard representation of the word ∇(w) in F
n
2, then xw

is a multiple of some x2i , for i = 1, . . . , n, and x2i ∈ T (I (C )) (see (4)).
(2): Let w ∈ N

n s.t. ∇(w) ∈ E1(C ) then, H(∇(w)) �= ∅, so there exists c ∈ C such
that a = ∇(w) + c ≺ ∇(w), which means also xa < xw. By (3), xw − xa ∈ I (C );
therefore, xw ∈ T (I (C )).
(3): Since ∇(w) ∈ E0(C ) it is clear that xw, the standard representation of the word
∇(w), is the minimal element on [X] according to < among the elements xv ∈ [X]
such that ∇(v) − ∇(w) ∈ C . Then, xw ∈ N (I (C )).
(4): ∇(w) ∈ M1(C ) ⊂ E1(C ) implies by Proposition2 that xw is a maximal term
and xw /∈ T (I (C )) \ {xw}, by definition of M1(C ).

Definition 1 (Gröbner codewords [4]) Let G be a Gröbner basis for I (C ) w.r.t. <,
the set of Gröbner codewords CG corresponding to G are the codewords associated
with G by CG = {c ∈ C : c = w + v, s.t. xw − xv ∈ G, w, v ∈ F

n
2, v ≺ w}.

Theorem 1 Let G be a Gröbner basis for I (C ) w.r.t. <, then CG is a trial set.

Proof We will prove the statement 2 of Proposition 1. Let w ∈ M1(C ), then xw ∈
T {G} (see Proposition 2) and by Definition 1 there exists c ∈ CG s.t. c = w + v s.t.
v ≺ w. Thus c + w = v ≺ w and c ∈ H(w).

Theorem 2 Let T be a trial set, the set GT = {xw − xv : w ∈ L(c) for some c ∈
T and v = c − w} ∪ {x2i − 1 : i = 1, . . . , n} is a Gröbner basis for I (C ) w.r.t. <.

Proof If xu is a maximal term which is not the standard representation of ∇(u),
then it can be reduced to the standard representation of ∇(u) by means of the set
{x2i − 1 : i = 1, . . . , n}. Thus, let us assume that xu ∈ T (I (C )) andu ∈ E1(C ). It is
clear that there exists w ⊆ u s.t. w ∈ M1(C ), w ∈ M1(C ) implies there exists c ∈ T
s.t. w ∈ L(c) (by Proposition 1.3). Let v = c − w, then we have xw − xv ∈ GT and
xw | xu (remember w ⊆ u). Consequently, GT is a Gröbner basis for I (C ).

3.1 An Example

Let G be a generator matrix of the [7, 3] binary code C over F6
2 given by

G =
⎛

⎝
1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 0 0 1 1

⎞

⎠ .

From this matrix we obtain a set of generating polynomials for I (C ) as in Eq. (4)
and then we compute the reduced Gröbner basis of I (C ) with respect to the Degree
Reverse Lexicographical order (see [5]), that is
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Gb = {x21 − 1, x22 − 1, x23 − 1, x24 − 1, x25 − 1, x26 − 1, x27 − 1,
x6x7 − x3, x3x7 − x6, x5x6 − x2, x3x6 − x7, x2x6 − x5, x4x5 − x1,
x3x5 − x2x7, x2x5 − x6, x1x5 − x4, x2x4 − x1x6, x1x4 − x5, x2x3 − x5x7,
x1x2 − x4x6}.

Applying Definition 1 we have

CGb = {(0, 0, 1, 0, 0, 1, 1), (0, 1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0, 0),
(0, 1, 1, 0, 1, 0, 1), (1, 1, 0, 1, 0, 1, 0)}

which is a trial set (see Theorem 1). Now starting from CGb, if we compute the set
of larger halves of these codewords and apply Theorem 2, we get a set of binomials
which contains Gb; therefore, a Gröbner basis is obtained and it may be reduced to
the reduced Gröbner basis Gb. In more details, let Gt be the set of binomials obtained
fromCGb by applyingTheorem2.Note that (1, 1, 0, 0, 0, 0, 0) and (0, 1, 0, 1, 0, 0, 0)
are larger halves of (1, 1, 0, 1, 0, 1, 0), then {x1x2 − x4x6, x2x4 − x1x6} ∈ Gt . In the
same way, it can be seen that Gb ⊂ Gt . On the other hand, (0, 1, 0, 0, 1, 0, 0) is a
larger half of (0, 1, 1, 0, 1, 0, 1), then x2x5 − x3x7 ∈ Gt , but x2x5 − x3x7 /∈ Gb. Note
that this binomial can be reduced to zero w.r.t. Gb. Thus applying Theorem 2 we get
a Gröbner basis Gt which contains the reduced Gröbner basis Gb.

3.1.1 Decoding

Let y = (1, 0, 0, 1, 1, 1, 0), the corresponding word in [X] is w = x1x4x5x6. Now
we will use the Gröbner basis Gb to reduce w to its canonical form.

w − x1x4(x5x6 − x2) = x1x2x4 = w1, w1 − x4(x1x2 − x4x6) = x24 x6 = w2,
w2 − x6(x24 − 1) = x6.

Therefore, the error vector corresponding to y is (0, 0, 0, 0, 0, 1, 0) and the code-
word is (1, 0, 0, 1, 1, 0, 0) (see [3] for more details).

Now, we will show the decoding process with the trial set CGb and, at the same
time, we will show the analogy with the previous use of the Gröbner basis Gb.

y − (0, 1, 0, 0, 1, 1, 0) = (1, 1, 0, 1, 0, 0, 0) = y1,
y1 − (1, 1, 0, 1, 0, 1, 0) = (0, 0, 0, 0, 0, 1, 0) = y2.
Note how in the previous sequence of steps the weight is decreasing from y to

y2. Also y2 cannot be reduced by the trial set, which means that y2 is a correctable
error and the corresponding codeword to y is y − y2 = (1, 0, 0, 1, 1, 0, 0), as it is
expected.

Remark 1 It is clear that the trial set associated to a Gröbner basis is a smaller
structure and, as it is showed above, the reduction process for decoding can be done
in a similar way as the Gröbner basis does. This could be interesting to take it into
account while studying some properties of the code ideal; i.e, to analyze the use of
the trial set instead of the Gröbner basis.
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3.2 Minimal Trial Sets and Minimal Gröbner Bases

A minimal trial set is a trial set such that any proper subset is not a trial set. Having
an smaller trial set would be an smaller set that could be used for gradient decoding,
although smaller trial sets do not necessarily ensuremore efficiency. In [6] the authors
shows an advantage of having a minimal trial set, since the size of trial sets are used
to derive some important bounds on the error correction beyond half the minimum
distance.

By Proposition 1.3, the set of larger halves of a trial set T should contain at least
the set M1(C ), by Theorem 2 and Proposition 2 this means that the corresponding
Gröbner basis GT should contain at least the irredundant maximal terms (this is the
case for any Gröbner basis); therefore, there is a direct connection between minimal
trial sets and minimal Gröbner bases. In particular, a distinguished minimal trial set
would be the set of Gröbner codewords corresponding to the reduced Gröbner basis.
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Automated Study of Envelopes
of One-Parameter Families of Surfaces

Thierry Dana-Picard and Nurit Zehavi

Abstract Learning mathematics in a technology-rich environment enables to revive
classical topics which have been removed from the curriculum a long time ago. The-
oretical issues and their applications can be studied within an experimental process,
using automated proofs. We present how envelopes of one-parameter families of
surfaces in 3D space and some of their properties can be presented using technology.
This approach may be useful for students in an engineering curriculum and for in-
service/pre-service teachers. Working with technology and taking advantage of both
algebraic symbolic features, such as algorithms computing Gröbner bases, and visu-
alization tools, educational and professional profit is obtained such as reviving clas-
sical topics from differential geometry, broadening horizons, introducing new topics.
The purpose is also to enhance the learners experimental skills. In such a framework,
conversion between various registers of representation is an important issue.

Keywords Parametric families of surfaces · Envelopes · Gröbner bases ·
Implicitization

1 Introduction

Computer algebra systems (CAS) are all purpose software packages that facilitate
speedy symbol manipulations and symbolic computations. They provide also rich
graphical tools. As such they can be used to solve problems and prove theorems.
As educators, we must identify pedagogical advantages of the technology for broad-
ening horizons and introducing topics from the classical mathematics as recom-
mended in [6]. Topics that students considered either too technical or too theoretical
become reachable by using the technology for visualization, experimentation, and
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automatic proving. The technology includes CAS, but also dynamical geometry
software (DGS). The illustration of classical concepts and methods in differential
geometry using technology provides examples of the new educational possibilities
(see [7, 15]).

In this chapter, we present a study of envelopes of families of surfaces in 3D
space, relying strongly on automated methods. The reason for this was primarily
that envelopes are a beautiful classical topic. We quote Hilbert in his 1900 address
(available in [13]) drawing students and teachers attention to the importance of this
topic

who would give up the picture of a family of curves or surfaces with its envelope which
plays so important a part in differential geometry, in the theory of differential equations, in
the foundation of the calculus of variations and in other purely mathematical sciences?

Envelopes have numerous concrete applications

• They are related to the theory of caustics and wave fronts, i.e., to geometrical
optics and to the theory of singularities ([2, 19], quoted in [3].

• Envelopes have applications in robotics and kinematics: rigid body motion in the
plane, in three-space, collision avoidance of robot motion, construction of gears,
etc. (see [17]).

• A connection can be made to realistic mathematics for mechanical design, where
envelopes are used extensively for designing complex objects as in [4].

• Cavities concealed in the soil are explored by sending waves and modeling the
shape of closed surfaces defined by the reflection points of the wave on the cavity
walls, then looking for an envelope of the modelized surfaces.

• Envelopes have frequent applications in advanced domains of science and tech-
nology, such as cosmology.

More than 50years ago, Thom claimed in [19] that a reason for the disappearance
of envelopes from the syllabus is that the theory is not enough developed, with not so
many theorems, too many special cases, etc. We may add the visualization problems
encountered by students.

Topics in differential geometry integrate methods from algebra, geometry, and
calculus, and thus invite making mathematical connections, which is a key goal for
learning and teaching. When one method provides better insight (to certain learners)
it could help the study of amore challengingmethod or of amore challenging topic. In
Sect. 3.2 we show that sometimes an algebraic method is more efficient than a purely
analytic one. The converse may occur also. Identifying such processes and analyzing
them is a key goal for learning and teaching. Every CAS works in different registers,
algebraic, numerical and graphical, two different CAS presenting different levels of
implementation for each register. In each register, the implemented algorithms are a
consequence of theoretical developments in Mathematics.

A central tool we use in this chapter is the automatic solution of nonlinear systems
of polynomial equations, based on algorithms for the computation of Gröbner bases.
The algorithms are described in [1, 5]. This method helps transforming classical
topics into more modern ones. For example, Pech proves in [16] a large set of results
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in Geometry using both classical methods and Gröbner bases computations. These
methods are used in [8] for the study of closed paths of light in various billiards
(Fermat curves, astroids). In [11], Gröbner bases computations have been used for
the study of bisoptic curves. In every occurrence, the first step consists in translating
the given data into polynomial equations. The results are obtained in polynomial
form. Sometimes a mixed treatment is useful, algebraic, and analytic. The CAS
dynamical features (slider bar, move a point, a figure, etc.) have a central role in the
experimental work.

Different approaches to envelopes appear in the literature.We recall here the three
approaches described by Kock in [14]; we refer also to his discussion of the problems
inherent to each approach.

Let {St }t∈R be a one-parameter family of surfaces in 3D space.

• Synthetic: The characteristic Ct is the limit surface of the family of intersections
St ∩ St+h as h → 0. If it exists, the envelope E is the union of the characteristics;
This point of view has been exploited in [9], for families of plane curves.

• Impredicative: If it exists, the envelope E is a surface with the following property:
for each point M ∈ E , there exists a unique value tM ∈ R of the parameter such
that E is tangent to StM at M . The locus of points where E touches a surface St is
called the E-characteristic Ct .

• Analytic: There are two descriptions, according to whether the family is given by
an implicit or a parametric presentation.

– Implicit: The envelope of a one-parameter family of surfaces given by an implicit
equation F(x, y, z, t) = 0 is determined by the solution set of the following
system of equations {

F(x, y, z, t) = 0
∂F
∂t F(x, y, z, t) = 0

– Parametric:The envelope of a one-parameter family of surfaces given by a para-
metrization (M(u, v, t))u,v is determined by the solution of the following equa-
tion:

det

(
∂M

∂u
,
∂M

∂v
,
∂M

∂t
,

)
= 0.

In this chapter, we focus on families of surfaces with implicit presentation. Among
the problems mentioned in [14], saying the envelope is mostly improper in many
cases, and should be replaced by an envelope: when the envelope found is the union
of disjoint components, each component alone may be an envelope according to
the “impredicative” definition. Another problem is the imprecision of a definition of
the “limit curve” mentioned above (which space? how is the topology defined?). As
CAS-based methods provide both graphical experimentation and automatic solution
of equations, all the components of a possible envelope are discovered together.

In the next section, we recall briefly two important examples of envelopes of
families of curves in the plane. Noting their specific features has an importance
when performing the transition towards families of surfaces in the 3D space.
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Fig. 1 The envelope of a
family of lines in the plane

2 Envelopes of One-Parameter Families of Plane Curves

A family of plane curves is given by an equation of the form F(x, y, t) = 0, with
parameter t ∈ R. An envelope of the family, if it exists, is a curve tangent to every
curve in the family. It can be shown that this envelope is the solution set of the system
of equations {

F(x, y, t) = 0
∂F
∂t (x, y, t) = 0

(1)

Figure1 shows the envelope of the family of lines given by the equation x + t y =
t2, where t ∈ R; this envelope is the parabola with equation y = −x2/4, and Fig. 2
shows the envelope of the family of circleswith radius 1 centered on the ellipsewhose
equation is x2/4 + y2 = 1. Here the envelope has two components, each component
is an envelope of the family of circles.

Figures1 and 2 have been obtained with GeoGebra1, in which a slider bar is
implemented. The usage of the slider bar provides a dynamical environment and
enables to build envelopes experimentally. Figure2 shows how this is performed. On
the left side, a partial construction is shown, and a global construction is displayed
on the right side. This one has been obtained using the slider bar, which yields a
uniform spacing between circles. Another possibility exists, less clear, using the
Move command. In this case, spacing between neighboring circles is not uniform,
the appearance of the envelopes being thus slightly different.

1Freely downloadable for www.geogebra.org.

www.geogebra.org
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Fig. 2 Dynamical exploration of the envelope of a family of circles

3 Envelopes of One-Parameter Families of Surfaces
in 3D Space

The transition to parameterized families of surfaces in 3D space rely on the same
analytic and algebraic techniques, but with different graphical features of the CAS.
GeoGebra has a slider bar for direct manipulation of plots in 2D, but for such dynam-
ical features in 3D, we had to use another software.2 This makes transition from 2D
to 3D somehow critical (see [20]).

A one-parameter family of surfaces is defined by an equation of the form
F(x, y, z, t) = 0, where t is real parameter. We recall the fundamental theorem
for an analytic determination of an envelope, with a short proof.

Theorem 1 If it exists, the envelope of the given family of surfaces is determined by
the system of equations {

F(x, y, z, t) = 0
∂F
∂t (x, y, z, t) = 0

. (2)

Proof We increase the parameter by a small h and apply Taylor’s theorem; we obtain

F(x, y, z, t + h)︸ ︷︷ ︸
=0

= F(x, y, z, t)︸ ︷︷ ︸
=0

+h
∂F

∂t
(x, y, z, t + θh),

whence:
∂F

∂t
(x, y, z, t + θh) = 0.

If h → 0, then this equation reduces to ∂F
∂t (x, y, z, t) = 0. Thus, the desired envelope

is the solution set of System (2).

2It is called MathStudio; a web version is at http://mathstud.io/welcome/. The original software
runs under a different operating system. Here it may provide a dynamical display, but without a
Trace option. Another problem relies in that it is disconnected from the symbolic computations we
need. Therefore we do not comment its usage here.

http://mathstud.io/welcome/
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In the two next subsections, we show examples of canal surfaces, i.e., envelopes
of families of spheres with constant radius, already studied by Monge; see [18],
p. 166. Section3.3 is devoted to envelopes of a family of planes. Singular points
appear, whose set is a space curve called the edge of regression of the envelope.

3.1 A One-Parameter Family of Spheres with Aligned Centers

We consider the family of spheres of radius 2 centered on the x-axis. The following
rows of Maple code provide a plot of a couple of spheres of this family, displayed
on Fig. 3(a). The coordinate axes are emphasized and labeled. Note the usage of
the specific command sphere from the package plottools, avoiding the usage of the
plot3d and implicitplot3d commands, which require as input a analytic description
of the one-parameter family of spheres. Another advantage is the high accuracy of
the plot. The plots package is used for the sake of the display command.

> restart; with(plottools); with(plots):
> n := 4:
> coordaxes := plot3d({[t, 0, 0],[0,t,0],[0,0,t]},

t = -10 .. 10, s = -8 .. 8, scaling = constrained):
> p := proc (k) -> sphere([k, 0, 0], 2) end proc:
> familyspheres:=seq([p(1.5*k)], k = -n .. n):
> display(familyspheres, coordaxes, scaling = constrained,

transparency = .5, axes = normal);

Figure3a leads to conjecture that an envelope exists and it is a cylinder wrap-
ping the spheres; see Fig. 3b. In order to prove this, we need to solve the system of
Eq. (2).

The centers of the given spheres are the points of the x-axis, thus the general
equation for the spheres is

(x − t)2 + y2 + z2 = 4. (3)

Let F(x, y, z, t) = (x − t)2 + y2 + z2 − 4 = x2 + y2 + z2 − 2t x + t2 − 4. Now,
System (2) reads {

x2 + y2 + z2 − 2t x − 4 = 0

2x = 0

By substitution, we obtain the following equation:

y2 + z2 = 4, (4)

which defines a cylinder whose axis is the x − axis and whose base has radius 2;
see Fig. 3(b).



Automated Study of Envelopes of One-Parameter Families of Surfaces 35

(a) visualization of the family of spheres (b) visualization of the envelope

Fig. 3 Envelope of a family of spheres

Note that the commands used for creating Fig. 3 induce the choice of a mesh
well-suited for the spheres: the lines defining the mesh are parallels and meridians
of the spheres. For the cylinder, the defining lines of the mesh are generating lines
of the cylinder and circles. Therefore the plots are very accurate.The choice of the
implicitplot3d command would have implied an ordinary triangular mesh, whence
a less accurate plot. In [14], Kock calls this a coarsemesh. This issue is addressed in
[21]. We recall only the fact that the mesh divides the domain into cells. The values
of the given function are computed for interior points of a cell by interpolation
of values of the functions on the border of the cell. Different choices of the mesh
may lead to more or less accurate plots, sometimes the plot may look very strange;
see [10].

3.2 Unit Spheres Centered on a Circle

Denote by C the circle in the xy-plane whose center is the origin and radius equal
to 2. We consider the one-parameter family of unit spheres St centered on C ; see
Fig. 4. A general equation for the spheres is

(
x − 2

1 − t2

1 + t2

)2

+
(
y − 2

2t

1 + t2

)2

+ z2 − 1 = 0. (5)

We denote by F(x, y, z, t) the left-hand side in Eq.5. The goal of first rows is
to perform an algebraic process. We consider the numerators of left-hand sides of



36 T. Dana-Picard and N. Zehavi

Eq. (1) and denote them respectively by F1 and F2. They generate an ideal J in the
polynomial ring R[x, y, z, t]. By elimination of the variable t , we obtain an ideal
generated by a polynomial denoted by envpoly. The Maple code follows:

> restart; with(plots): with(PolynomialIdeals): with(plottools):
> F := (x-2*(1-tˆ2)/(1+tˆ2))ˆ2+(y-2*(2*t/(1+tˆ2)))ˆ2+zˆ2-1;
> simplify(%); F1 := numer(%):
> derF := diff(F, t); simplify(%); F2 := numer(derF):
> J := <F1, F2>:
> JE:=EliminationIdeal(J, {x, y, z}):
> centercircle := plot3d([2*(1-tˆ2)/(1+tˆ2), 2*(2*t/(1+tˆ2)), 0],

t = -5 .. 5, s = -10 .. 10, axes = normal, scaling = constrained,
numpoints = 3000, thickness = 3):

> n:=15:p:=k->sphere([2*cos(2*k*Pi/n),2sin(2k*Pi/n),0],1):
> boules := seq([p(k)], k = 0 .. n-1);
> display(centercircle, boules, scaling = constrained,

transparency = .4, axes = boxed);

The first display command produces a plot for some spheres and the circleC , visible
because of the transparency option. The circle and the sphere have been plotted using
a well-fitted command for this purpose, which ensures a high accuracy of the plot.

We assigned the name envpoly to the generator of the ideal J E which has been
computed with the command EliminationIdeal; we have

envpoly =9x4 + 18y2x2 + 9y4 − 10x6 − 30y2x4 + 6z2x4 − 30y4x2 + 12z2y2x2 − 10y6

+ 6z2y4 + x8 + 4y2x6 + 2z2x6 + 6y4x4 + 6z2y2x4 + z4x4 + 4y6x2 + 6z2y4x2

+ 2z4y2x2 + y8 + 2z2y6 + z4y4.

The equation envpoly = 0 is an implicit equation for the desired envelope. Now we
can plot the surfaces; the implicitplot3d command is the standard one for that.

> envlp := implicitplot3d(envpoly = 0, x = -3 .. 3, y = -3 .. 3,
z = -2 .. 2,transparency = .5, axes = normal, numpoints = 3000,
axes = boxed, scaling = constrained, color = yellow);

> display(boules, envlp, centercircle, scaling = constrained,
axes = boxed);

This display command produces the same plot as before with the envelope added.
Regarding the envelope, it was necessary to use implicitplot3d which produces a
coarse plot, with a triangular mesh. Nevertheless the plot is good enough to show
the envelope and the family of spheres in Fig. 4(b).

Actually a parametric representation of the envelope is available, using the solve
command. A couple of problems arise to produce a plot which could be good enough.
We discuss this point in Sect. 4.
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(a) The family and the circle (b) The family within the envelope

Fig. 4 Envelope of a family of unit spheres centered on a circle

3.3 A One-Parameter Family of Planes

In [9], we studied a geometric-progression family of lines in the plane, namely the
family given by the equation x + t y = t2, where t is a real parameter. By different
ways, either synthetic or analytic, we discovered that this family has an envelope,
namely the parabola whose equation is x = −y2/4. This is displayed in Fig. 1. The
example of a geometric-progression family of planes will show that the transition
from 2D to 3D introduces new properties and a need for other tools, both theoretical
and technological.

We consider now the family of planes in 3D space given by the following equation:

x + t y + t2z = t3, t ∈ R. (6)

Displaying a couple of planes of the family is unilluminating and does not con-
tribute to intuition whether an envelope exist or not (see Fig. 5, obtained with the
DPGraph software3).

For every one-parameter family of planes, the following holds (see [12]):

Theorem 2 Let {St } be a 1-parameter family of planes in the 3-dimensional space.
If the family has an envelope, then

1. The envelope has an edge of regression (cuspidal edge).
2. The envelope is a ruled surface, whose generators are the tangents to the edge of

regression.

The edge of regression is a space curve on the surface whose points are the singular
points of the envelope.

3www.dpgraph.org.

www.dpgraph.org
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Fig. 5 Geometric-
progression family of
planes

Proof Suppose that the planes St are given by the equation u1(t)x + u2(t)y +
u3(t)z + u4(t) = 0, where u1, u2, u3 and u4 are real functions of the real
parameter t . Then an envelope is given by intersecting the planes St with the first
derivative planes, whose equations are u′

1(t)x + u2(t)y + u′
3(t)z + u′

4(t) = 0. If the
following condition holds:

∀i, j,∈ {1, 2, 3},
∣∣∣∣ui (t) u j (t)
u′
i (t) u

′
j (t)

∣∣∣∣ = 0, (7)

there is no envelope. Otherwise, the characteristic curve exists and for each value of
t , it is a line. Therefore the envelope exists and is a ruled surface.

As an example, consider the geometric-progression family of planes, given by the
following equation:

x + t y + t2z = t3, t ∈ (R). (8)

If it exists, an envelope of this family is determined by the solutions of the systems
of Eq. (2), namely here {

x + t y + t2z − t3 = 0

y + 2t z − 3t2 = 0
. (9)

The solutions of this system of equations are given by

⎧⎪⎨
⎪⎩
x = t2(s − 2t)

y = t (3t − 2s)

z = s

, s, t,∈ (R). (10)

Equations (10) determine a surface in the 3D space (displayed in Fig. 6). Here an
implicit equation may be obtained, either by hand or (as equations are polynomial)
using the elimination implemented in the Gröbner bases package of the software.
Both processes yield the following implicit equation:
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Fig. 6 Exploration of the envelope of a family of planes

27x2 + 18xyz + 4xz3 − 4y3 − y2z2 = 0. (11)

Figure6 shows two views of the envelope, plotted using DPGraph. In order to
determine the mesh, the software chose two kinds of lines, one of them is precisely
the tangents to the edge of regression. Note that the edge of regression does not look
so smooth. This is common situation close to singular points. We could improve this
by choosing a finer mesh (DPGraph allows that), the cost of this change being that
the surface could be covered with black lines. Figure8 shows a better plot, obtained
with Maple’s parametric plot.

Using standard methods from Calculus (here it can be hand-made, in general the
CAS has the necessary commands), we find the following parametric presentation
for the edge of regression: ⎧⎪⎨

⎪⎩
x = r3

27

y = − r2

3

z = r

, r ∈ R, (12)

and a general parametric presentation for characteristic lines is as follows:

⎧⎪⎨
⎪⎩
x = t2s − 2t3

y = −2ts + 3t2 = 0

z = s

, s, t ∈ R. (13)

The curve alone is displayed in Fig. 7, from a point of view enabling to see that it is
a nonplanar curve.

It can be proven that characteristic lines are tangent to the edge of regression
of the envelope of the family of planes. This is clear on Fig. 8. In fact, the edge of
regression is an envelope of the family of generators of the envelope of the family of
planes (see [12]).
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Fig. 7 The edge of
regression of the envelope of
a family of planes

Fig. 8 The envelope as a
rules surface
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4 Discussion

As other classical topics in differential geometry, the study of envelopes of surfaces
in 3D space provides an opportunity to discover new topics beyond the scope of
the regular curriculum, sometimes together with applications to practical situations.
For example, not every student knows what a ruled surface is: the problem studied
in Sect. 3.3 is a good motivation for the student to acquire this new mathematical
knowledge. Moreover new computation skills with technology may be developed,
in particular for the experimental aspect of the work (e.g., exploring the existence
of cusps, as in Fig. 1b). For this, the availability in the software of a slider bar is
a central issue. Among these skills, ability to switch between different registers
of representation may be improved, within mathematics themselves (parametric vs
implicit) and with the computer (algebraic, graphical, etc.).

The algebraic engine we used in different CAS was computations of Gröbner
bases for two purposes (see [1]).

1. to solve the given system of equations, which yields a parametric representation
of the envelopes; the choice of a suitable ordering on the variables is generally
made by the CAS itself, but sometimes the freedom of choice may lead to shorter
solution process.

2. to look for an implicitization of this parametric representation.Here an elimination
order is the core of the process.

These algorithms come from abstract algebra, a domain that not every student learn-
ing differential geometry masters. This can be a motivation to acquire new knowl-
edge. Finally this new knowledge will be composed of both mathematical theory and
computational skills.

Both for the parametric presentation and for the implicit equation, plotting may
be not so easy, despite the availability of specific commands of the software with
a lot of options. An implicitplot command exists in every software among those
mentioned in Sect. 1. As it uses standard choices for the mesh (see [21]), the plot
may be quite coarse, as mentioned in [14]. Parametric plotting should be better, as
we can see in previous sections. Nevertheless, here too problems may appear.

Consider the example in Sect. 3.2 and add the following command row into the
code:

> solve(F1 = 0 and F2 = 0, {x, y, z});

The output reads as follows:

x = −1

2

y(−1 + t2)

t
, y = y, z = 1

2

√
−y2t4 + 8yt3 − 2y2t2 − 12t2 + 8yt − y2

t
,

x = −1

2

y(−1 + t2)

t
, y = y, z = 1

2

−
√

−y2t4 + 8yt3 − 2y2t2 − 12t2 + 8yt − y2

t
.
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Fig. 9 Looking for suitable
parameter range

The envelope is symmetric about the xy-plane and is given here decomposed into
two parts: one for positive z (the first formulas) and one for negative z (the second
formulas). Plotting will require substitution of a parameter s instead of y, then will
be performed using the following structure of commands:

> p1:=P( "first parametrization", s= ..., t= ..., options):
> p2:=P( "second parametrization", s= ..., t= ..., options):
> display(p1,p2,scaling= ..., other options);

Finding a suitable range for the parameters s, t for the sake of plotting may be non-
trivial. In our example, this requires the solution of a two-variable inequality, namely
−s2t4 + 8st3 − 2s2t2 − 12t2 + 8st − s2 ≥ 0. A graphical solution of the inequality
is provided by the CAS. Figure9 shows the surface defined by the polynomial in
variables s, t which must be nonnegative for the parametrization to be well defined.
The surface is intersected by the zero plane, so the areas above correspond to. Or
maybe not. In this second case, we are left with only the implicit plot possibility for
the envelope, but even in the first case, the plot may be inaccurate because of the con-
straints of the software. When such an implicitization is not to be found, algorithms
exist for an approximate implicitization (see [17]).

The transition from 2D to 3D is nontrivial. Automated deduction of the existence
of an envelope uses the same methods in both cases, but visualization in 3D may
require more abstraction skills. The animation tools implemented in many CAS
for working with planar objects may exist also for a 3D setting, but they may not
be at the same development level. Another feature is the Trace option; we saw in
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Sect. 2 the efficiency of working with the slider bar together with Trace on (Fig. 2).
This is a motivating constraint for more profound work with new commands in
order to develop new mathematical knowledge, new mathematical skills and new
computational-graphical tools.
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Complex Roots of Quaternion Polynomials

Petroula Dospra and Dimitrios Poulakis

Abstract In this paper, using hybrid Bézout matrices, we give necessary and suf-
ficient conditions, for a quaternion polynomial to have a complex root, a spherical
root, and a complex isolated root. These conditions can be easily checked since
these matrices are implemented in the computational systemMAPLE. Moreover, we
compute upper bounds for the norm of the roots of a quaternion polynomial.

Keywords Quaternion polynomial · Bézout Matrices · Spherical Root · Isolated
Root

1 Introduction

Let R and C be the fields of real and complex numbers, respectively. We consider
the division ring of real quaternions,

H = {x0 + x1i + x2j + x3k : x0, x1, x2, x3 ∈ R},

where the elements i, j, k satisfy the following multiplication rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Let q = x0 + x1i + x2j + x3k be an element of H. The real and the imaginary part
of q are the elements Re q = x0 and Im q = x1i + x2j + x3k, respectively. The con-
jugate of q is defined to be the quaternion q̄ = x0 − x1i − x2j − x3k and its norm
the quantity

|q| = √
qq̄ =

√
x20 + x21 + x22 + x23 .
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Let q, q ′ ∈ H. We say that the quaternions q and q ′ are congruent or equivalent,
and we write q ∼ q ′, if there is w ∈ H \ {0} such that q ′ = wqw−1. The congruence
relation is an equivalence relation in H. By [27], we have q ∼ q ′ if and only if
Re q = Re q ′ and |q| = |q ′|. The congruence class of q is the set

[q] = {q ′ ∈ H/ q ′ ∼ q} = {q ′ ∈ H/ Re q = Re q ′, |q| = |q ′|}.

In every class [q] there is exactly one complex number z and its conjugate z̄, which

are x0 ± i
√
x21 + x22 + x23 . The quaternions are implemented in the computational

package MAGMA and so, we can easily perform basic operations with them.
A polynomial with coefficients in H is an expression of the form

f (t) = a0t
n + a1t

n−l + · · · + an,

where a0, . . . , an ∈ H. Equality of two such polynomials is defined in the usual way.
If a0 �= 0, then n is called the degree of f (x). The addition and the multiplication of
quaternion polynomials are defined in the same way as the commutative case, where
the variable t is assumed to commute with quaternion coefficients [17, Chap. 5,
Sect. 16]. The evaluation of f (t) at q ∈ H is the element

f (q) = a0q
n + a1q

n−l + · · · + an.

Note that the evaluation at q is not in general a ring homomorphism fromH[t] toH.
A quaternion q is said to be a zero or a root of f (t) if f (q) = 0. The polynomial

B(t) ∈ H[t] is called a right factor of Q(t) if there exists C(t) ∈ H[t] such that
Q(t) = C(t)B(t). By [17, Proposition 16.2], q is a root of f (t) if and only if t − q
is a right factor of Q(t).

Let q be a root of f (t). If q is not real and has the property that f (z) = 0 for all
z ∈ [q], then we will say that q generates a spherical root. For short, we will also
say that q is, rather than generates, a spherical root. If q is real or does not generate a
spherical zero, it is called an isolated root. By [11, Theorem 4], we have that if two
elements of a class are zeros of f (t), then all elements of this class are also zeros
of f (t). On the other hand, every congruence class contains exactly one complex
number z and its conjugate z̄. It follows that the pairs of complex numbers {z, z̄}
which are roots of f (t) determine all spherical roots of f (t).

The roots of a quaternion polynomial and its expression as a product of linear
factors have been investigated in several papers [5, 8–11, 13, 16, 19, 21–24, 26].
Furthermore, quaternion polynomials are used for the presentation of a particular
class of space curves, namely the Pythagorean hodograph curves [4]. Such a curve
can be generated by another of lower degree if and only if its associated quaternion
polynomial has a complex root [4, Chap. 6].

In this paper, we deal with the conditions under which a quaternion polynomial
has a complex root. Our study contains the case of spherical roots since such roots
correspond to pairs of complex numbers {z, z̄}which are roots of f (t).We use hybrid
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Bézout matrices and we give necessary and sufficient conditions for a quaternion
polynomial to have a complex root. Furthermore, we present necessary and sufficient
conditions for a such polynomial to have a spherical root and a complex isolated root.
We have chosen the approach of hybrid Bézout matrices since these matrices have
better computational behavior than others [3]. Thus, we provide a practical way to
check easily the existence of this kind of roots by using a tool which is already
implemented in the computational package MAPLE. Moreover, using some results
from complex polynomials, we give upper bounds for the norm of the roots of a
quaternion polynomial which are comparable with previous ones [20].

The paper is organized as follows. Section 2 is devoted to the presentation of
Barnett’s theorem with hybrid Bézout matrices. In Sect. 3, necessary and sufficient
conditions are given for a quaternion polynomial to have a complex root. Further,
we apply this condition in quadratic polynomials and we compute the roots in the
case where one of them is complex. In Sect. 4, we give two necessary and sufficient
conditions for a quaternion polynomial to have a spherical and a complex isolated
root, respectively. Using some results for the roots of complex polynomials, we
compute, in Sect. 5, upper bounds for the norm of spherical roots and complex
isolated roots of a quaternion polynomial. Furthermore, we give an upper bound for
the norm of an arbitrary root. The last section concludes the paper.

2 Barnett’s Theorems

In 1971, Barnett computed the degree (resp. coefficients) of the greatest common
divisor of several univariate polynomials with coefficients in an integral domain by
means of the rank (resp. linear dependencies of the columns) of several matrices
involving theirs coefficients [1, 2]. In [3], a formulation of Barnett’s results is given
using Bézout matrices, Henkel matrices and hybrid Bézout matrices. As it is men-
tioned in [3], the hybrid Bézout matrices have the best computational behavior.

In this section, we recall the formulation of Barnett’s theorem for hybrid Bézout
matrices [3] which we shall use for the presentation of our results. We could equally
use another formulation of Barnett’s results given in [3] or to use another approach
[7, 15, 25], but we have chosen the above one as more efficient in computations [3,
Sect. 6.3]. Note also that these matrices are implemented in the Computer Algebra
System MAPLE (see LinearAlgebra[BezoutMatrix] or linalg[bezout]).

Let F be a field of characteristic zero and F[t] the ring of polynomials with
coefficients in F. Consider polynomials

P(t) = p0t
n + p1t

n−1 + · · · + pn and Q(t) = q0t
m + q1t

m−1 + · · · + qm,

in F[t] with n ≥ m. The hybrid Bézout matrix, denoted by Hbez(P, Q), is a square
matrix of size n whose entries are defined by
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• for 1 ≤ i ≤ m, 1 ≤ j ≤ n, the (i, j)-entry is the coefficient of tn− j in the polyno-
mial

Km−i+1 = (p0t
m−i + · · · + pm−i )(qm−i+1t

n−m+i−1 + · · · + qmt
n−m) −

(pm−i+1t
n−m+i−1 + · · · + pn)(q0t

m−i + · · · + qm−i )

• for m + 1 ≤ i ≤ n, 1 ≤ j ≤ n, the (i, j)-entry is the coefficient of tn− j in the
polynomial tn−i Q(t).

Let R(P, Q)be thewell-knownSylvester resultant of P(t) andQ(t). By [3,Corollary
5.2], we have

det(Hbez(P, Q)) = R(P, Q).

It follows that det(Hbez(P, Q)) = 0 if and only if deg(gcd(P, Q)) ≥ 1.
Now, let P(t), Q1(t), . . . , Qk(t) be a family of polynomials in F[t] with n =

deg P and deg Q j ≤ n − 1 for every j ∈ {1, . . . , k}. Set

BHP(Q1, . . . , Qk) =
⎛

⎜
⎝

Hbez(P, Q1)
...

Hbez(P, Qk)

⎞

⎟
⎠ .

Let D(t) be the greatest common divisor of P(t), Q1(t), . . . , Qk(t) overF. Barnett’s
result that we shall use is given in the following lemma:

Lemma 1 Let C1, . . . ,Cn be the columns and r the rank of BHP(Q1, . . . , Qk).
Then, we have

deg D = n − r.

Proof See [3, Theorem 5.1]. �

By [3, Sect. 6], the computation of hybrid Bézout matrices and their rank require
O(n2) arithmetic operations.

Remark 1 Let A1(t), . . . , Ak(t) be polynomials ofF[t] \ F.We compute the remain-
der Ã j (t) of the division of A j (t) by A1(t) ( j = 2, . . . , k) and we have that
deg A1 > deg Ai (i = 2, . . . , k) and

gcd(A1, . . . , Ak) = gcd(A1, Ã2, . . . , Ãk).

Thus, we can also apply the above lemma even if the condition on the degrees of
polynomials is not fulfilled.
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3 Complex Roots

In this section, we give necessary and sufficient conditions for a quaternion polyno-
mial to have a complex root and we apply this result for computing the roots of a
quadratic polynomial in this case.

Theorem 1 Let Q(t) ∈ H[t] \ C[t] be amonic polynomial with deg Q = n ≥ 1 and
f (t), g(t) ∈ C[t] with f (t)g(t) �= 0 such that Q(t) = f (t) + kg(t). Set E(t) =
gcd( f (t), g(t)). Then the roots of E(t) are precisely the complex roots of Q(t).
Furthermore, the following are equivalent:
(a) Q(t) has a complex root.
(b) deg E(t) > 0.
(c) det(Hbez( f, g)) = 0.
(d) R( f, g) = 0.

Proof Let z ∈ C. Then z is a root of Q(t) if and only if there exists A(t) ∈ H[t] \ C[t]
such that Q(t) = A(t)(t − z). Write A(t) = a(t) + kb(t), where a(t), b(t) ∈ C[t].
Thus, z is a root of Q(t) if and only if we have

f (t) = a(t)(t − z) and g(t) = b(t)(t − z).

Therefore, the complex roots of Q(t) are exactly the roots of E(t). Hence Q(t) has
a complex root if and only if the greatest common divisor E(t) is not 1. Thus, we
get the equivalence of (a) and (b).

By Lemma 1, we have

deg E = n − rankHbez( f, g).

It follows that deg E > 0 if and only if we have

n > rankHbez( f, g)

which is equivalent to det(Hbez( f, g)) = 0. Thus, we obtain the equivalence of (b)
and (c). Finally, since det(Hbez( f, g)) = R( f, g), the equivalence of (c) and (d)
follows. �

Example 1 Consider the polynomial

Q(t) = t4 − (2 + k)t3 + (3 + j + 2k)t2 − 2(1 + j + k)t + 2(1 + j).

We shall examine, using Theorem 1, whether or not Q(t) has a complex root. We
have Q(t) = f (t) + kg(t), where

f (t) = t4 − 2t3 + 3t2 − 2t + 2, g(t) = −t3 + (2 + i)t2 − 2(1 + i)t + 2i.

Using MAPLE we obtain the hybrid Bézout matrix of f (t) and g(t)
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Hbez( f, g) =

⎛

⎜
⎜
⎝

−2 + 2i 6 − 2i −8 4 + 4i
1 − 2i −4 + 3i 6 − 2i −4 − 2i

i 1 − 2i −2 + 2i 2
−1 2 + i −2 − 2i 2i

⎞

⎟
⎟
⎠ .

Furthermore, we get rank Hbez( f, g) = 1 and hence we have det Hbez( f, g) = 0.
By Theorem 1, the polynomial Q(t) has a complex root.

The case of quadratic quaternion equations has been studied in [6, 12, 14, 19].
The next theorem uses the previous result and provides their solutions in the special
case where one of them is complex.

Theorem 2 Let Q(t) = t2 + q1t + q0 be a quadratic polynomial ofH[t] \ C[t]with
no real factor. Set q1 = b1 + kc1 and q0 = b0 + kc0, where b0, b1, c0, c1 ∈ C. Then
Q(t) has a complex root if and only if

c20 − c0b1c1 + b0c
2
1 = 0.

In this case, we have c0c1 �= 0, and the roots of Q(t) are

q = −c0
c1

, σ = (q − p̄)−1 p(q − p̄),

where p = −(b0c1/c0 + kc1).

Proof Set Q(t) = f (t) + kg(t), where f (t) = t2 + b1t + b0 and g(t) = c1t + c0.
We have

det(Hbez( f, g)) = c20 − c0b1c1 + b0c
2
1

and by Theorem 1, Q(t) has a complex root if and only if the above quantity is zero.
Suppose now that Q(t) has a complex root q. If c1 = 0, then the above equality

implies c0 = 0 and hence Q(t) ∈ C[t] which is a contradiction. Thus c1 �= 0. If
c0 = 0, then we deduce b0 = 0, and so t is a factor of Q(t) which is a contradiction.
Therefore c0 �= 0.

Since Q(q) = 0, we have g(q) = 0 and f (q) = 0. It follows that q = −c0/c1
and f (t) = (t − b0/q)(t − q). Thus, we have the factorization

Q(t) = (t − p)(t − q),

where p = −(b0c1/c0 + kc1). If p = q̄ , then we have b0c1/c0 + kc1 = c̄0/c̄1. It
follows that c1 = 0 which is a contradiction. Thus, we have p �= q̄ , and so, [22,
Lemma 1] yields

Q(t) = (t − (p − q̄)q(p − q̄)−1)(t − (q − p̄)−1 p(q − p̄)).

Hence, the other root of Q(t) is σ = (q − p̄)−1 p(q − p̄). �
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Example 2 We consider the polynomial

Q(t) = t2 + (1 − i + j + k)t + 1 − (1/2)i + j.

First, we shall examine whether or not this polynomial has a complex root. We write

1 − i + j + k = 1 − i + k(1 + i), 1 − (1/2)i + j = 1 − (1/2)i + ki.

Following the notations of Theorem 2, we set

b1 = 1 − i, c1 = 1 + i, b0 = 1 − (1/2)i, c0 = i

and we get:
c20 − c0b1c1 + b0c

2
1 = 0.

Then, Theorem 2 implies that Q(t) has a complex root. Furthermore, this root is

q = −c0
c1

= − i
1 + i

= −1 + i
2

.

Next, we compute

p = −(b0c1/c0 + kc1) = −1 + 3i
2

− j − k.

Thus, the other root is

σ = (q − p̄)−1 p(q − p̄) = −1

2
+ 5

6
i − 4

3
j − 4

3
k.

4 Spherical and Complex Isolated Roots

In this section, we give two necessary and sufficient conditions for a quaternion
polynomial to have a spherical root and an isolated complex root, respectively.

Let Q(t) be a monic polynomial in H[t] \ C[t]. Suppose that f1(t), f2(t), f3(t),
f4(t) are polynomials of R[t] such that

Q(t) = f1(t) + f2(t)i + f3(t)j + f4(t)k.

Denote by D(t) its greatest common divisor. The polynomial Q(t) has a real root if
and only if the polynomials f1(t), f2(t), f3(t), f4(t) have a common real root. Thus,
we have that Q(t) has a real root if and only if D(t) has a real root.

Write D(t) = D1(t)D2(t), where D1(t) and D2(t) are polynomials of R[t]. If
D1(t) /∈ R, then it has only real roots, and if D2(t) /∈ R, then it has only non real
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roots. Then, the polynomial Q(t) has a spherical (respectively complex isolated) root
if and only if the polynomial Q(t)/D1(t) does. Thus, in order to study the existence
of spherical roots and complex isolated roots of Q(t) is enough to study the case
where Q(t) has no real root.

Theorem 3 Suppose that the quaternion polynomial Q(t) has no real root. Then
the pairs of complex conjugate roots of D(t) define all the spherical roots of Q(t).
Furthermore, Q(t) has a spherical root if and only if the following inequality holds:

n > rankBH f1( f2, f3, f4).

Proof If D(t) has a real root, then Q(t) has a real root which is a contradiction.
Hence, D(t) has no real root. Suppose now that z ∈ C \ R is a root of D(t). Thus, its
conjugate z̄ is also a root of D(t). It follows that z and z̄ are roots of Q(t). Therefore,
z is a spherical root of Q(t).

Setting f (t) = f1(t) + f2(t)i and g(t) = f4(t) + f3(t)i, we have:

Q(t) = f (t) + kg(t).

Suppose that Q(t) has a spherical root q. Let z and z̄ be the only complex numbers
of the class of q. Then we have that Q(z) = Q(z̄) = 0, whence we get

f (z) = f (z̄) = 0 and g(z) = g(z̄) = 0.

It follows that the real polynomial (t − z)(t − z̄) divides f (z) and g(z) and hence
f1(t), f2(t), f3(t), f4(t). Thus, (t − z)(t − z̄) divides D(t). Therefore, the pairs of
complex conjugate roots of D(t) define all the spherical roots of Q(t). It follows
that Q(t) has a spherical root if and only if deg D(t) > 0. On the other hand side,
Lemma 1 yields

deg D(t) = n − rankBH f1( f2, f3, f4).

Thus, Q(t) has a spherical root if and only if we have

n > rankBH f1( f2, f3, f4).

�

Corollary 1 If D(t) = 1, then the polynomial Q(t) has no spherical or real root.

Example 3 In [23, Example 2], the roots of the following polynomial have been
computed:

P(t) = t6 + (i + 3k)t5 + (3 + j)t4 + (5i + 15k)t3 + (−4 + 5j)t2 + (6i + 18k)t − 12 + 6j.

We shall see if P(t) has a spherical root. We have
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f1(t) = t6 + 3t4 − 4t2 − 12,

f2(t) = t5 + 5t3 + 6t,

f3(t) = t4 + 5t2 + 6,

f4(t) = 3t5 + 15t3 + 18t.

We easily see that f3(t) has no real root. It follows that P(t) has no real root. Using
MAPLE, we get

Hbez( f1, f2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 12 0 60 0 72
10 0 50 0 60 0
0 10 0 50 0 60
2 0 10 0 12 0
0 2 0 10 0 12
1 0 5 0 6 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Hbez( f1, f3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

10 0 50 0 60 0
0 10 0 50 0 60
2 0 10 0 12 0
0 2 0 10 0 12
1 0 5 0 6 0
0 1 0 5 0 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

Hbez( f1, f4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 36 0 180 0 216
30 0 150 0 180 0
0 30 0 150 0 180
6 0 30 0 36 0
0 6 0 30 0 36
3 0 15 0 18 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Next, we consider the matrix

BH f1( f2, f3, f4) =
⎛

⎝
Hbez( f1, f2)
Hbez( f1, f3)
Hbez( f1, f4)

⎞

⎠ .

UsingMAPLE, we get rankBH f1( f2, f3, f4) = 2. Since we have deg P(t) = 6 and
P(t) has no real root, Theorem 3 implies that P(t) has a spherical root.

Let f (t) = f1(t) + f2(t)i and g(t) = f4(t) + f3(t)i. Then Q(t) = f (t) + kg(t).
We denote by E(t) the greatest common divisor of f (t) and g(t). Since D(t) divides
f1(t), f2(t), f3(t), f4(t), we deduce that D(t) divides f (t) and g(t). It follows that
D(t) divides E(t), and so we have E(t) = D(t)Ẽ(t), where Ẽ(t) ∈ C[t].
Theorem 4 Suppose that the quaternion polynomial Q(t) has no real root. Then
the roots of Ẽ(t) are exactly the complex isolated roots of Q(t). Furthermore, Q(t)
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has an isolated complex root if and only if the following inequality holds:

rank Hbez( f, g) < rankBH f1( f2, f3, f4).

Proof By Theorem 3, we have Q(t) = D(t)P(t), and P(t) is a quaternion polyno-
mial with only isolated non real roots. Then Q(t) has an isolated complex root if and
only if P(t) has a complex root. Setting

α(t) = f (t)/D(t) and β(t) = g(t)/D(t),

we get:
P(t) = α(t) + kβ(t).

Furthermore, we have
gcd(α(t), β(t)) = Ẽ(t).

Theorem1 implies that P(t) has a complex root if and only if deg Ẽ(t) > 0. Lemma 1
yields:

deg E(t) = n − rank Hbez( f, g) and deg D(t) = n − rankBH f1( f2, f3, f4).

Thus, since deg Ẽ = deg E − deg D, we deduce that Q(t) has a complex root if and
only if we have

rank Hbez( f, g) < rankBH f1( f2, f3, f4).

�

Corollary 2 If E(t) = D(t), then the polynomial Q(t) has no complex isolated root.

Example 4 Consider the polynomial

R(t) = t4 − (2 + k)t3 + (3 + j + 2k)t2 − 2(1 + j + k)t + 2(1 + j).

We shall apply Theorem 4 to check if R(t) possess an isolated complex root. We
write

f1(t) = t4 − 2t3 + 3t2 − 2t + 2,

f2(t) = 0,

f3(t) = t2 − 2t + 2,

f4(t) = −t3 + 2t2 − 2t.

The polynomial f3(t) has no real root, and so, R(t) has no real root. Further, we have

f (t) = t4 − 2t3 + 3t2 − 2t + 2, g(t) = −t3 + 2t2 − 2t + (t2 − 2t + 2)i.
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Using MAPLE, we get

Hbez( f, g) =

⎛

⎜
⎜
⎝

−2 + 2i 6 − 2i −8 4 + 4i
1 − 2i −4 + 3i 6 − 2i −4 − 2i

i 1 − 2i −2 + 2i 2
−1 2 + i −2 − 2i 2i

⎞

⎟
⎟
⎠ .

Furthermore, we compute rank Hbez( f, g) = 1. On the other hand, we have

Hbez( f1, f2) = 0,

Hbez( f1, f3) =

⎛

⎜
⎜
⎝

−1 4 −6 4
0 −1 2 −2
1 −2 2 0
0 1 −2 2

⎞

⎟
⎟
⎠

and

Hbez( f1, f4) =

⎛

⎜
⎜
⎝

−2 6 −8 4
1 −4 6 −4
0 1 −2 2

−1 2 −2 0

⎞

⎟
⎟
⎠ .

Next, we built the matrix

BH f1( f2, f3, f4) =
⎛

⎝
Hbez( f1, f2)
Hbez( f1, f3)
Hbez( f1, f4)

⎞

⎠

and using MAPLE we get rankBH f1( f2, f3, f4) = 2. Thus, we have

rank Hbez( f, g) = 1 < 2 = rankBH f1( f2, f3, f4).

Hence, Theorem 4 implies that R(t) has a complex isolated root.

5 Bounds for the Size of the Roots

In [20, Sect. 4] some upper bounds for the size of roots of quaternion polynomials
are given. In this section we compute new bounds which are comparable with the
bound given in [20, Theorem 4.2], and better in some cases (see Remark 2 below).
Furthermore, we give upper bounds for the size of spherical and complex isolated
roots.
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Let
Q(t) = a0t

n + a1t
n−1 + · · · + an.

be a quaternion polynomial. We define the height of Q(t) to be the quantity

H(Q) = max{1, |a1/a0|, . . . , |an/a0|}.

We write Q(t) = f (t) + kg(t), where f (t), g(t) ∈ C[t], and

f (t) = f1(t) + f2(t)i, g(t) = g1(t) + g2(t)i,

where f1(t), f2(t), g1(t), g2(t) ∈ R[t]. We set

H1 = min{H( f ), H(g)} and H2 = min{H( f1), H( f2), H(g1), H(g2)}.

Theorem 5 Suppose that the polynomial Q(t) is monic and ρ is a root of Q(t). If
ρ is a spherical root, then we have

|ρ| < 1 + H 1/2
2 .

If ρ is an isolated complex root, then we have

|ρ| < 1 + H1.

In the general case, the following inequality holds:

|ρ| < 1 + H(Q).

Proof Suppose that ρ is a spherical root of Q(t). Then there is z ∈ C \ R in the class
of ρ which is also a root of Q(t). By Theorem 2, z is a common complex root of
f1(t), f2(t), g1(t), g2(t). Thus, [18, Corollary 3] implies that |z| < 1 + H 1/2

2 . Since
|ρ| = |z|, we obtain |ρ| < 1 + H 1/2

2 .
Suppose that ρ is an isolated root. If ρ ∈ C, then Theorem 1 implies that ρ is a

common root of f (t) and g(t). Hence [18, Corollary 2] yields |ρ| < 1 + H1.
Suppose next that ρ is an isolated noncomplex root. If |ρ| ≤ 1, then the result is

true. Suppose that |ρ| > 1. Since ρ is a root of Q(t), there is G(t) ∈ H[t] such that
Q(t) = G(t)(t − ρ). Write

G(t) = tn−1 + b1t
n−2 + · · · + bn−1.

Then

Q(t) = G(t)(t − ρ) = tn + (b1 − ρ)tn−1 + (b2 − b1ρ)tn−2 + · · · + bn−1ρ.
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It follows that

a1 = b1 − ρ, a2 = b2 − b1ρ, a3 = b3 − b2ρ, . . . , an = bn−1ρ.

Let i be the smallest index such that H(G) = |bi |. Then we have

H(Q) ≥ |bi − bi−1ρ| ≥ ||bi | − |bi−1ρ|| ≥ |H(G) − |bi−1ρ|| > H(G)|1 − |ρ||,

whence we deduce the result. �

Remark 2 In case where a0 = 1, [20, Theorem 4.2] yields that the roots ρ of Q(t)
satisfy

|ρ| ≤ max{1,
n∑

i=1

|ai |}.

If we have
n∑

i=1

|ai | > 1 + H(Q),

then Theorem 5 gives a better upper bound.

Corollary 3 Let Q(t) ∈ H[t] \ H be a monic polynomial. Then Q(t) has at most a
finite number of roots x of the form x = x1 + x2i + x3j + x4k, where x1, x2, x3, x4
are integers.

6 Conclusion

In this paper, we have used hybrid Bézout matrices to formulate necessary and suffi-
cient conditions for a quaternion polynomial to have a complex root, a spherical root
and an isolated complex root. The Bézout matrices are implemented in the computa-
tional systemMAPLE and so, they give us an efficient practical tool for checking the
existence of the above kind of roots. We have also computed upper bounds for the
norm of spherical and complex isolated roots of a quaternion polynomial. Finally,
such a bound is given for an arbitrary root.
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Mathematical Renormalization in Quantum
Electrodynamics via Noncommutative
Generating Series

G.H.E. Duchamp, V. Hoang Ngoc Minh, Ngo Quoc Hoan, K. Penson
and P. Simonnet

Abstract In order to push the study of solutions of nonlinear differential equations
involved in quantum electrodynamics (The present work is part of a series of papers
devoted to the study of the renormalization of divergent polyzetas (at positive and at
negative indices) via the factorization of the non commutative generating series of
polylogarithms and of harmonic sums and via the effective construction of pairs of
bases in duality in ϕ-deformed shuffle algebras. It is a sequel of [6] and its content
was presented in several seminars and meetings, including the 66th and 74th Sémi-
naire Lotharingien de Combinatoire.), we focus on combinatorial aspects of their
renormalization at {0, 1,+∞}.

Keywords Nonlinear differential equations · Divergent polyzetas · Bases in dual-
ity · Lyndon words ·Monoidal factorization

1 Introduction

During the last century, the functional expansions were common in physics as well as
in engineering and have been developed by Tomonaga, Schwinger and Feynman [19]
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to represent the dynamical systems in quantum electrodynamics. The main difficulty
of this approach is the divergence of these expansions at the singularity 0 or at +∞
(see [2]) and leads to problems of regularization and renormalization which can be
solved by combinatorial technics: Feynman diagrams [21] and their siblings [16,
48], noncommutative formal power series [23], trees [11].

Recently, in the same vein, and based on the one hand on the shuffle and quasi-
shuffle bialgebras [6], the combinatorics of noncommutative formal power series was
intensively amplified for the asymptotic analysis of dynamical systems with three
regular singularities in1 {0, 1,+∞}; and, on the other hand with the monodromy and
theGalois differential group of theKnizhnik–Zamolodchikov equation K Z3 [41, 43]
i.e., the following noncommutative evolution equation2

dG(z)

dz
=

(
x0
z
+ x1

1− z

)
G(z),

themonoidal factorization facilitatesmainly the renormalization and the computation
of the associators3 via the universal one, i.e. ΦK Z of Drinfel’d [43].

In fact, these associators are noncommutative formal power series on two vari-
ables and regularize the Chen generating series of the differential forms admitting
singularities at 0 or at 1 along the integration paths on the universal covering of

C without points 0 and 1 (i.e. ˜C \ {0, 1}). Their coefficients are, up to a multi-
ple of powers of 2iπ , polynomial on polyzetas, i.e. the following real numbers4

[4, 45, 48, 56]

ζ(s1, . . . , sr ) =
∑

n1>···>nr>0

1

ns11 . . . nsrr
, for r ≥ 1, s1 ≥ 2, s2, . . . , sr ≥ 1,

and these numbers admit a natural structure of algebra over the rational numbers
deduced from the combinatorial aspects of the shuffle andquasi-shuffleHopf algebras
[33, 37, 55]. It is conjectured that this algebra is N-graded.5 More precisely, for
s1 ≥ 2, s2, . . . , sr ≥ 1, the polyzeta ζ(s1, . . . , sr ) can be obtained as the limit of the
polylogarithm [26, 33] Lis1,...,sr (z), for z → 1, and of the harmonic sum Hs1,...,sr (N ),
for N →+∞:

1Any differential equation with singularities in {a, b, c} can be changed into a differential equation
with singularities in {0, 1,+∞} via an homographic transformation.
2x0 := t1,2/2iπ and x1 := −t2,3/2iπ are noncommutative variables and t1,2, t2,3 belong to T3 =
{t1,2, t1,3, t2,3} satisfying the infinitesimal 3-braid relations, i.e. [t1,3, t1,2 + t2,3] = [t2,3, t1,2 +
t1,3] = 0.
3 They were introduced in QFT by Drinfel’d and it plays an important role for the still open problem
of the effective determination of the polynomial invariants of knots and links via Kontsevich’s
integral (see [7, 48]) and ΦK Z , was obtained firstly, in [48], with explicit coefficients which are
polyzetas and regularized polyzetas (see [43, 44] for the computation of the other involving only
convergent polyzetas as local coordinates, and for algorithms regularizing divergent polyzetas).
4s1 + · · · + sr is the weight of ζ(s1, . . . , sr ), i.e. the weight of the composition (s1, . . . , sr ).
5One of us wrote a tentative proof of this claim in [43, 44].
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Lis1,...,sr (z) =
∑

n1>···>nr>0

zn1

ns11 . . . nsrr
and Hs1,...,sr (N ) =

N∑
n1>···>nr>0

1

ns11 . . . nsrr
.

Then, by a theorem of Abel, one has

ζ(s1, . . . , sr ) = lim
z→1

Lis1,...,sr (z) = lim
N→+∞Hs1,...,sr (N ).

Since the algebras of polylogarithms and of harmonic sums are isomorphic to the
shuffle algebra (Q〈X〉, �� , 1X∗) and quasi-shuffle algebra (Q〈Y 〉, , 1Y ∗) respec-
tively both admitting the Lyndon words L ynX over X = {x0, x1} and L ynY over
Y = {yi }i≥1, as (pure) transcendence bases (recalled in Sect. 2.1) one can use

• The (one-to-one) correspondence between the combinatorial compositions, the
words6 in Y ∗ and the words in X∗x1 + 1X∗ , i.e.7

({1}k, sk+1, . . . , sr )↔ yk1 ysk+1 . . . ysr
πX�
πY

xk1 x
sk+1−1
0 x1 . . . xsr−10 x1. (1)

• The ordering x1 
 x0 and y1 
 y2 
 . . . over X and Y respectively.
• The transcendence basis {Sl}l∈L ynX (resp. {Σl}l∈L ynY ) of (Q〈X〉, �� , 1X∗) (resp.

(Q〈Y 〉, , 1Y ∗)) in duality8 with {Pl}l∈L ynX (resp. {Πl}l∈L ynY ), a basis of the Lie
algebra of primitive elements of the bialgebra9 H�� = (Q〈X〉,conc, 1X∗ ,Δ�� , ε)

(resp.H = (Q〈Y 〉,conc, 1Y ∗ ,Δ , ε)) to factorize the following noncommu-
tative generating series of polylogarithms, hormanic sums and polyzetas

L =
∏

l∈L ynX

exp(LiSl Pl) and H =
∏

l∈L ynY

exp(HΣlΠl),

Z�� =
∏

l∈L ynX
l �=x0,x1

exp(ζ(Sl)Pl) and Z =
∏

l∈L ynY
l �=y1

exp(ζ(Σl)Πl),

we then obtain two formal power series over Y , Z1 and Z2, such that

lim
z→1

exp

[
y1 log

1

1− z

]
πYL(z) = Z1, lim

N→∞ exp

[∑
k≥1

Hyk (N )
(−y1)k

k

]
H(N ) = Z2.

6Here, X∗ (resp. Y ∗) is the monoid generated by X (resp. Y ) and its neutral element of is denoted
by 1X∗ (resp. 1Y ∗ ).
7Here, πY is the adjoint of πX for the canonical scalar products where πX is the morphism of AAU
k〈Y 〉 → k〈X〉 defined by πX (yk) = xk−10 x1.
8In a more precise way the S and Σ are the “Lyndon part” of the dual bases of the PBW expansions
of the P and the Π respectively.
9ε is the “constant term” character.
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Moreover, Z1, Z2 are equal and stand for the noncommutative generating series
of {ζ(w)}w∈Y ∗−y1Y ∗ , or {ζ(w)}w∈x0X∗x1 , as one has Z1 = Z2 = πY Z�� [42–44]. This
allows, by extracting the coefficients of the noncommutative generating series,
to explicit the counter-terms eliminating the divergence of {Liw}w∈x1X∗ and of
{Hw}w∈y1Y ∗ and leads naturally to an equation connecting algebraic structures

↘∏
l∈L ynY
l �=y1

exp(ζ(Σl)Πl) = exp

[∑
k≥2
−ζ(k)

(−y1)k

k

]
πY

↘∏
l∈L ynX
l �=x0 ,x1

exp(ζ(Sl)Pl). (2)

Identity (2) allows to compute the Euler–MacLaurin constants and the Hadamard
finite parts associated to divergent polyzetas {ζ(w)}w∈y1Y ∗ and, by identifying local
coordinates, to describe the graded core of ker ζ by its algebraic generators.

In this paper, we will focus on the approach by noncommutative formal power
series, adapted from [22, 23], and explain how some of the results of [42–44],
allow to study the combinatorial aspects of the renormalization at the singulari-
ties in {0, 1,+∞} of the solutions of linear differential equations (see Example 1
below) as well as the solutions of nonlinear differential equations (see Examples 2
and 3 below) described in Sect. 3.2 and involved in quantum electrodynamics.

Example 1 (Hypergeometric equation) Let t0, t1, t2 be parameters and

z(1− z)ÿ(z)+ [t2 − (t0 + t1 + 1)z]ẏ(z)− t0t1y(z) = 0.

Let q1(z) = −y(z) and q2(z) = (1− z)ẏ(z). One has

(
q̇1
q̇2

)
=

(
M0

z
+ M1

1− z

)(
q1
q2

)
,

where M0 and M1 are the following matrices

M0 = −
(

0 0
t0t1 t2

)
and M1 = −

(
0 1
0 t2 − t0 − t1

)
.

Or equivalently, q̇(z) = A0(q)
1

z
+ A1(q)

1

1− z
and y(z) = −q1(z) where A0 and

A1 are the following parametrized linear vector fields

A0 = −(t0t1q1 + t2q2)
∂

∂q2
and A1 = −q1 ∂

∂q1
− (t2 − t0 − t1)q2

∂

∂q2
.

acting by
∂

∂q1
(q) = ∂

∂q1

(
q1
q2

)
=

(
1
0

)
and

∂

∂q2
(q) = ∂

∂q2

(
q1
q2

)
=

(
0
1

)
.
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Example 2 (Harmonic oscillator) Let k1, k2 be parameters and

ẏ(z)+ k1y(z)+ k2y
2(z) = u1(z).

which can be represented, with the same formalism as above, by the following state
equations

q̇(z) = A0(q)+ A1(q)u1(z) and y(z) = q(z),

where A0 and A1 are the following vector fields A0 = −(k1q + k2q2)
∂

∂q
and

A1 = ∂

∂q
.

Example 3 (Duffing’s equation) Let a, b, c be parameters and

ÿ(z)+ a ẏ(z)+ by(z)+ cy3(z) = u1(z).

which can be represented by the following state equations

q̇(z) = A0(q)+ A1(q)u1(z) and y(z) = q1(z),

where A0 and A1 are the following vector fields

A0 = −(aq2 + b2q1 + cq3
1 )

∂

∂q2
+ q2

∂

∂q1
and A1 = ∂

∂q2
.

Example 4 (Van der Pol oscillator) Let γ, g be parameters and

∂2
z x(z)− γ [1+ x(z)2]∂z x(z)+ x(z) = g cos(ωz)

which can be transformed into (where C is some constant of integration)

∂z x(z) = γ [1+ x(z)2/3]x(z)−
∫ z

z0

x(s)ds + g

ω
sin(ωz)+ C.

Setting y = ∫ z
z0
x(s)ds and u1(z) = g sin(ωz)/ω + C , it leads then to

∂2
z y(z) = γ [∂z y(z)+ (∂z y(z))

3/3] − y(z)+ u1(z)

which can be represented by the following state equations (with n = 2)

∂zq(z) = [A0u0(z)+ A1u1(z)](q) and y(z) = q1(z)

where A0 and A1 are the following vector fields
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A1 = ∂

∂q2
and A0 = [γ (q2 + q3

2/3)− q1] ∂

∂q2
+ q2

∂

∂q1
.

This approach by noncommutative formal power series is adequate for studying
the algebraic combinatorial aspects of the asymptotic analysis at the singularities in
{0, 1,+∞} for the nonlinear dynamical systems described in Sect. 3.2 because

• The polylogarithms form a basis of an infinite dimensional universal Picard–
Vessiot extension by means of these differential equations [13, 41] and their
algebra, isomorphic to the shuffle algebra, admits {Lil}l∈L ynX as a transcendence
basis,

• The harmonic sums generate the coefficients of the ordinary Taylor expansions of
their solutions (when these expansions exist) [42] and their algebra is isomorphic
to the quasi-shuffle algebra admitting {Hl}l∈L ynY as a transcendence basis,

• The polyzetas do appear as the fundamental arithmetical constants involved in the
computations of themonodromies [33, 37], the Kummer type functional equations
[34, 37], the asymptotic expansions of solutions [42, 43] and their algebra is freely
generated by the polyzetas encoded by irreducible Lyndon words [43].

Hence, a lot of algorithms can be deduced from these facts and more general
studies will be completed in [6, 13]. The organisation of this paper is the following

• In Sect. 2, we will give algebraic and analytic foundations, i.e. the combinatorial
Hopf algebra of shuffles and the indiscernability respectively, for polyzetas.

• These will be exploited, in Sect. 3, to expand solutions, of nonlinear dynamical
systems with singular inputs and their ordinary and functional differentiations.

2 Foundations of the Present Framework

2.1 Background about Combinatorics of Shuffle
and Stuffle Bialgebras

2.1.1 Schützenberger’s Monoidal Factorization

Let Q〈X〉 be equipped by the concatenation and the shuffle defined by

∀w ∈ X∗, w �� 1X∗ = 1X∗ �� w = w,

∀x, y ∈ X,∀u, v ∈ X∗, xu �� yv = x(u �� yv)+ y(xu �� v),

or by their dual co-products, Δconc and Δ�� , defined by, for w ∈ X∗ and x ∈ X ,

Δconc(w) =
∑

u,v∈X∗,uv=w
u ⊗ v and Δ�� (x) = x ⊗ 1+ 1⊗ x,
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Δ�� is then extended to a conc-morphismQ〈X〉 → Q〈X〉 ⊗Q〈X〉. These two comul-
tiplications satisfy, for any u, v,w ∈ X∗,

〈Δconc(w) | u ⊗ v〉 = 〈w | uv〉 and 〈Δ�� (w) | u ⊗ v〉 = 〈w | u �� v〉.

One gets two mutually dual bialgebras

H�� = (Q〈X〉,conc, 1X∗ ,Δ�� , ε), H ∨
�� = (Q〈X〉, �� , 1X∗ ,Δconc, ε).

After a theorem by Radford [49], the elements of L ynX form a transcendence
basis of (Q〈X〉, �� , 1X∗) and it can be completed then to the linear basis {w}w∈X∗
which is auto-dual:

∀v, v ∈ X∗, 〈u | v〉 = δu,v. (3)

But the elements l ∈ L ynX − X are not primitive, for Δ�� , and then L ynX does
not constitute a basis for L ieQ〈X〉. Chen et al. [9] constructed {Pw}w∈X∗ , so-called
the Poincaré–Birkhoff–Witt–Lyndon basis, for U (L ieQ〈X〉) as follows

Px = x for x ∈ X,

Pl = [Ps, Pr ] for l ∈ L ynX, with standard factorization of l = (s, r),
Pw = Pi1

l1
. . . Pik

lk
for w = li11 . . . likk , l1 
 · · · 
 lk, l1 . . . , lk ∈ L ynX.

(4)

where here 
 stands for the lexicographic (strict) ordering defined10 by x0 ≺ x1.
Schützenberger constructed bases for (Q〈X〉, ��) defined by duality as follows:

∀u, v ∈ X∗, 〈Su | Pv〉 = δu,v

and obtained the transcendence and linear bases, {Sl}l∈∈L ynX , {Sw}w∈X∗ , as follows

Sl = xSu, for l = xu ∈ L ynX,

Sw =
S�� i1l1

�� . . . �� S�� iklk

i1! . . . ik ! for w = li11 . . . likk , l1 
 . . . 
 lk .

After that, Mélançon and Reutenauer [52] proved that, for any w ∈ X∗,

Pw = w+
∑

v
w,|v|X=|w|X
cvv and Sw = w+

∑
v≺w,|v|X=|w|X

dvv. (5)

where |w|X = (|w|x )x∈X is the family of all partial degrees (number of times a letter
occurs in a word). In other words, the elements of the bases {Sw}w∈X∗ and {Pw}w∈X∗

10In here, the (lexicographic) order relation
 on X∗ is defined by, for any u, v ∈ X∗, u 
 v iff u =
vw with w ∈ X+ else there are w,w1,w2 ∈ X∗ and a 
 b ∈ X such that u = waw1 and v = wbw2.
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are lower and upper triangular respectively and they are of multihomogeneous (all
the monomials have the same partial degrees).

Example 5 (of {Pw}w∈X∗ and {Sw}w∈X∗ , [30]) Let X = {x0, x1} with x0 ≺ x1.

l Pl Sl
x0 x0 x0
x1 x1 x1
x0x1 [x0, x1] x0x1
x20 x1 [x0, [x0, x1]] x20 x1
x0x21 [[x0, x1], x1] x0x21
x30 x1 [x0, [x0, [x0, x1]]] x30 x1
x20 x

2
1 [x0, [[x0, x1], x1]] x20 x

2
1

x0x31 [[[x0, x1], x1], x1] x0x31
x40 x1 [x0, [x0, [x0, [x0, x1]]]] x40 x1
x30 x

2
1 [x0, [x0, [[x0, x1], x1]]] x30 x

2
1

x20 x1x0x1 [[x0, [x0, x1]], [x0, x1]] 2x30 x
2
1 + x20 x1x0x1

x20 x
3
1 [x0, [[[x0, x1], x1], x1]] x20 x

3
1

x0x1x0x21 [[x0, x1], [[x0, x1], x1]] 3x20 x
3
1 + x0x1x0x21

x0x41 [[[[x0, x1], x1], x1], x1] x0x41
x50 x1 [x0, [x0, [x0, [x0, [x0, x1]]]]] x50 x1
x40 x

2
1 [x0, [x0, [x0, [[x0, x1], x1]]]] x40 x

2
1

x30 x1x0x1 [x0, [[x0, [x0, x1]], [x0, x1]]] 2x40 x
2
1 + x30 x1x0x1

x30 x
3
1 [x0, [x0, [[[x0, x1], x1], x1]]] x30 x

3
1

x20 x1x0x
2
1 [x0, [[x0, x1], [[x0, x1], x1]]] 3x30 x

3
1 + x20 x1x0x

2
1

x20 x
2
1 x0x1 [[x0, [[x0, x1], x1]], [x0, x1]] 6x30 x31 + 3x20 x1x0x

2
1 + x20 x

2
1 x0x1

x20 x
4
1 [x0, [[[[x0, x1], x1], x1], x1]] x20 x

4
1

x0x1x0x31 [[x0, x1], [[[x0, x1], x1], x1]] 4x20 x
4
1 + x0x1x0x31

x0x51 [[[[[x0, x1], x1], x1], x1], x1] x0x51

Then, Schützenberger’s factorization of the diagonal series DX follows [52]

DX :=
∑
w∈X∗

w⊗ w =
∑
w∈X∗

Sw ⊗ Pw =
↘∏

l∈L ynX

exp(Sl ⊗ Pl). (6)

2.1.2 Extended Schützenberger’s Monoidal Factorization

Let us define the commutative product over Q〈Y 〉, denoted by μ, as follows

∀yn, ym ∈ Y, μ(yn, ym) = yn+m,

or by its associated coproduct, Δμ, defined by
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∀yn ∈ Y, Δμ(yn) =
n−1∑
i=1

yi ⊗ yn−i

and satisfying, ∀x, y, z ∈ Y, 〈Δμ | y ⊗ z〉 = 〈x | μ(y, z)〉. Let Q〈Y 〉 be equipped
by

1. The concatenation (or by its associated coproduct, Δconc).
2. The shuffle product, i.e. the commutative product defined by [23]

∀w ∈ Y ∗, w �� 1Y ∗ = 1Y ∗ �� w = w,

∀x, y ∈ Y, u, v ∈ Y ∗, xu �� yv = x(u �� yv)+ y(xu �� v)

or with its associated coproduct, Δ�� , defined, on the letters, by

∀yk ∈ Y, Δ�� yk = yk ⊗ 1+ 1⊗ yk

and extended by morphism. It satisfies ∀u, v,w ∈ Y ∗, 〈Δ��w | u ⊗ v〉 = 〈w |
u �� v〉.

3. The quasi-shuffle product, i.e. the commutative product defined by [46]

yiu y j v = yi (u y j v)+ y j (yiu v)+ μ(yi , y j )(u v)

or with its associated coproduct, Δ , defined, on the letters, by

∀yk ∈ Y, Δ yk = Δ�� yk +Δμyk

and extended by morphism. It satisfies ∀u, v,w ∈ Y ∗, 〈Δ w | u ⊗ v〉 = 〈w |
u v〉.

Hence, with the counit e defined by, for any P ∈ Q〈Y 〉, e(P) = 〈P | 1Y ∗ 〉, one gets
two pairs of mutually dual bialgebras

H�� = (Q〈Y 〉,conc, 1Y ∗ ,Δ�� ,e) and H ∨
�� = (Q〈Y 〉, �� , 1Y ∗ ,Δconc,e),

H = (Q〈Y 〉,conc, 1Y ∗ ,Δ ,e) and H ∨ = (Q〈Y 〉, , 1Y ∗ ,Δconc,e).

By the CQMM theorem (see [6]), the connected N-graded, co-commutative Hopf
algebraH�� is isomorphic to the enveloping algebra of the Lie algebra of its primitive
elements which is equal toL ieQ〈Y 〉:

H�� ∼= U (L ieQ〈Y 〉) and H ∨
��
∼= U (L ieQ〈Y 〉)∨.

Hence, let us consider [9]

1. The PBW–Lyndon basis {pw}w∈Y ∗ for U (L ieQ〈Y 〉) constructed recursively
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⎧⎨
⎩

py = y for y ∈ Y,

pl = [ps, pr ] for l ∈ L ynY, with the standard factorization l = (s, r),
pw = pi1l1 . . . piklk for w = li11 . . . likk , l1 
 . . . 
 lk, l1 . . . , lk ∈ L ynY,

2. And, by duality,11 the linear basis {sw}w∈Y ∗ for (Q〈Y 〉, �� , 1Y ∗), i.e.

∀u, v ∈ Y ∗, 〈pu | sv〉 = δu,v.

This basis can be computed recursively as follows [52]

⎧⎪⎪⎨
⎪⎪⎩

sy = y, for y ∈ Y,

sl = ysu, for l = yu ∈ L ynY,

sw =
s�� i1l1

�� . . . �� s�� iklk

i1! . . . ik ! for w = li11 . . . likk , l1 
 . . . 
 lk ∈ L ynY.

As in (6), one also has Schützenberger’s factorization for the diagonal series DY

DY :=
∑
w∈Y ∗

w⊗ w =
∑
w∈Y ∗

sw ⊗ pw =
↘∏

l∈L ynY

exp(sl ⊗ pl).

Similarly, by the CQMM theorem, the connected N-graded, co-commutative Hopf
algebra H is isomorphic to the enveloping algebra of

Prim(H ) = Im(π1) = spanQ{π1(w)|w ∈ Y ∗},

where, for any w ∈ Y ∗, π1(w) is obtained as follows [6, 43]

π1(w) = w+
∑
k≥2

(−1)k−1
k

∑
u1,...,uk∈Y+

〈w | u1 . . . uk〉 u1 . . . uk . (7)

Note that Equation (7) is equivalent to the following identity [6, 43, 44]

w =
∑
k≥0

1

k!
∑

u1,...,uk∈Y ∗
〈w | u1 . . . uk〉 π1(u1) . . . π1(uk). (8)

In particular, for any yk ∈ Y , we have successively [6, 43, 44]

11The dual family of a basis lies in the algebraic dual which is here the space of noncommutative
series, but as the enveloping algebra under consideration is graded in finite dimensions (here by the
multidegree), these series are in fact (multihomogeneous) polynomials.
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π1(yk) = yk +
∑
l≥2

(−1)l−1
l

∑
j1 ,..., jl≥1
j1+···+ jl=k

y j1 . . . y jl , (9)

yn =
∑
k≥1

1

k!
∑

s ′1+···+s ′k=n
π1(ys ′1) . . . π1(ys ′k ) (10)

Hence, by introducing the new alphabet Ȳ = {ȳ}y∈Y = {π1(y)}y∈Y , one has

(Q〈Ȳ 〉,conc, 1Ȳ ∗ ,Δ�� ) ∼= (Q〈Y 〉,conc, 1Y ∗ ,Δ )

as one can prove through (10) that the endomorphism y �→ ȳ is, in fact, an isomor-
phism

H ∼= U (L ieQ〈Ȳ 〉) ∼= U (Prim(H )),

H ∨ ∼= U (L ieQ〈Ȳ 〉)∨ ∼= U (Prim(H ))∨.

By considering

1. The PBW–Lyndon basis {Πw}w∈Y ∗ for U (Prim(H )) constructed recursively
as follows [43]

⎧⎪⎨
⎪⎩

Πy = π1(y) for y ∈ Y,

Πl = [Πs , Πr ] for l ∈ L ynY, with the standard factorization l = (s, r),

Πw = Π
i1
l1

. . . Π
ik
lk

for w = li11 . . . likk , l1 
 . . . 
 lk , l1 . . . , lk ∈ L ynY,

2. And, by duality, the linear basis {Σw}w∈Y ∗ for (Q〈Y 〉, , 1Y ∗), i.e.

∀u, v ∈ Y ∗, 〈Πu | Σv〉 = δu,v.

This basis can be computed recursively as follows [5, 43]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Σy = y, for y ∈ Y,

Σl =
∑
(!)

ysk1+···+ski
i ! Σl1···ln , for l = ys1 . . . ysw ∈ L ynY,

Σw =
Σ

i1
l1

. . . Σ
ik

lk

i1! . . . ik ! ,
for w = li11 . . . likk , with
l1 
 . . . 
 lk ∈ L ynY.

In (!), the sum is taken over all subsequences {k1, . . . , ki } ⊂ {1, . . . , k} and all
Lyndon words l1 � · · · � ln such that (ys1 , . . . , ysk )

∗⇐ (ysk1 , . . . , yski , l1, . . . , ln),

where
∗⇐ denotes the transitive closure of the relation on standard sequences,

denoted by⇐ (see [5]).

We also proved that, for any w ∈ Y ∗, [6, 43, 44]
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Πw = w+
∑

v
w,(v)=(w)

evv and Σw = w+
∑

v≺w,(v)=(w)

fvv. (11)

In other words, the elements of the bases {Σw}w∈Y ∗ and {Πw}w∈Y ∗ are lower and
upper triangular respectively and they are of homogeneous in weight.

We also get the extended Schützenberger’s factorization of DY [6, 43, 44]

DY =
∑
w∈Y ∗

Σw ⊗Πw =
↘∏

l∈L ynY

exp(Σl ⊗Πl).

Example 6 (of {Πw}w∈Y ∗ and {Σw}w∈Y ∗ , [5])

l Πl Σl

y2 y2 − 1
2 y

2
1 y2

y21 y21
1
2 y2 + y21

y3 y3 − 1
2 y1y2 − 1

2 y2y1 + 1
3 y

3
1 y3

y2y1 y2y1 − y2y1
1
2 y3 + y2y1

y1y2 y2y1 − 1
2 y

3
1 y1y2

y31 y31
1
6 y3 + 1

2 y2y1 + 1
2 y1y2 + y31

y4 y4 − 1
2 y1y3 − 1

2 y
2
2 − 1

2 y3y1 y4
+ 1

3 y
2
1 y2 + 1

3 y1y2y1 + 1
3 y2y

2
1 − 1

4 y
4
1

y3y1 y3y1 − 1
2 y2y

2
1 − y1y3 + 1

2 y
2
1 y2

1
2 y4 + y3y1

y22 y22 − 1
2 y2y

2
1 − 1

2 y
2
1 y2 + 1

4 y
4
1

1
2 y4 + y22

y2y21 y2y21 − 2 y1y2y1 + y21 y2
1
6 y4 + 1

2 y3y1 + 1
2 y

2
2 + y2y21

y1y3 y1y3 − 1
2 y

2
1 y2 − 1

2 y1y2y1 + 1
3 y

4
1 y4 + y3y1 + y1y3

y1y2y1 y1y2y1 − y21 y2
1
2 y4 + 1

2 y3y1 + y22
+y2y21 + 1

2 y1y3 + y1y2y1
y21 y2 y21 y2 − 1

2 y
4
1

1
2 y4 + y3y1 + y22 + y2y21+y1y3 + y1y2y1 + y21 y2

y41 y41
1
24 y4 + 1

6 y3y1 + 1
4 y

2
2 + 1

2 y2y
2
1

+ 1
6 y1y3 + 1

2 y1y2y1 + 1
2 y

2
1 y2 + y41

2.2 Indiscernability over a Class of Formal Power Series

2.2.1 Residual Calculus and Representative Series

Definition 1 Let S ∈ Q〈〈X〉〉 (resp. Q〈X〉) and let P ∈ Q〈X〉 (resp. Q〈〈X〉〉). The
left and right residual of S by P are respectively the formal power series P � S and
S � P in Q〈〈X〉〉 defined by 〈P � S | w〉 = 〈S | wP〉 (resp. 〈S � P | w〉 = 〈S | Pw〉).
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For any S ∈ Q〈〈X〉〉 (resp. Q〈X〉) and P, Q ∈ Q〈X〉 (resp. Q〈〈X〉〉), we straight-
forwardly get P � (Q � S) = PQ � S, (S � P) � Q = S � PQ and (P � S) � Q =
P � (S � Q).

In case x, y ∈ X and w ∈ X∗, we get12 x � (wy) = δ
y
x w and xw � y = δ

y
x w.

Lemma 1 (Reconstruction lemma) Let S ∈ Q〈〈X〉〉. Then

S = 〈S | 1X∗ 〉 +
∑
x∈X

x(S � x) = 〈S | 1X∗ 〉 +
∑
x∈X

(x � S)x .

Theorem 1 Let δ ∈ Der(Q〈X〉, �� , 1X∗) and t ∈ Q. Moreover, we suppose that δ

is locally nilpotent.13 Then the family (tδ)n/n! is summable and its sum, denoted
exp(tδ), is a one-parameter group of automorphisms of (Q〈X〉, �� , 1X∗).
Theorem 2 Let L be a Lie series, i.e. Δ�� (L) = L⊗̂1+ 1⊗̂L. Let δrL , δ

l
L be defined

respectively by δrL(P) := P � L , δlL(P) := L � P. Then δrL , δ
l
L are locally nilpotent

derivations of (Q〈X〉, �� , 1X∗). Hence, exp(tδrL), exp(tδlL) are one-parameter groups
of Aut (Q〈X〉, �� , 1X∗) and exp(tδrL)P = P � exp(t L), exp(tδlL)P = exp(t L) � P.

Example 7 Since x1� and �x0 are derivations and the polynomials {Sl}l∈∈L ynX−X

belong to x0Q〈X〉x1 then x1 � l = l � x0 = 0 and x1 � Šl = Šl � x0 = 0.

Theorem 3 Let S ∈ Q〈〈X〉〉. The following properties are equivalent:

1. The left C-module Resg(S) = span{w � S | w ∈ X∗} is finite dimensional.
2. The right C-module Resd(S) = span{S � w | w ∈ X∗} is finite dimensional.
3. There are matrices λ ∈M1,n(Q), η ∈Mn,1(Q) andμ : X∗ −→Mn,n, such that

S =
∑
w∈X∗

[λμ(w)η] w = λ

⎛
⎝ ↘∏

l∈L ynX

eμ(Sl ) Pl

⎞
⎠ η.

A series that satisfies the items of Theorem 3 will be called representative (or
rational) series. This concept can be found in [1, 15, 18, 47]. The two first items
are in [22, 27]. The third can be deduced from [8, 15] for example and it was
used to factorize, for the first time, by Lyndon words, the output of bilinear and
analytical dynamical systems respectively in [29, 30] and to study polylogarithms,
hypergeometric functions and associated functions in [32, 36, 41]. The dimension
of the orbit Resg(S) is equal to that of Resd(S), and to the minimal dimension of
a representation satisfying the third point of Theorem 3. This rank is then equal to

12For any words u, v ∈ X∗, if u = v then δvu = 1 else 0.
13 φ ∈ End(V ) is said to be locally nilpotent iff, for any v ∈ V , there exists N ∈ N s.t. φN (v) = 0.
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the rank of the Hankel matrix of S, i.e. the infinite matrix (〈S | uv〉)u,v∈X indexed by
X∗ × X∗ so calledHankel rank14 of S [22, 27]. The triplet (λ, μ, η) is called a linear
representation of S.15 S is called rational if it belongs to the closure by scaling and by
+, conc and star operation of proper elements.16 Any noncommutative power series
is representative if and only if it is rational [3, 54]. These rationality properties can
be expressed in terms of differential operators in noncommutative geometry [15].

2.2.2 Background on continuity and indistinguishability

Definition 2 [28, 43] Let H be a class of series i.e. a subset of C〈〈X〉〉 and
S ∈ C〈〈X〉〉.
a. The power series S is said to be continuous overH if for any Φ ∈H , the sum∑

w∈X∗ 〈S | w〉〈Φ | w〉 is absolutely convergent, i.e.
∑

w∈X∗ |〈S | w〉〈Φ | w〉| <
+∞. This sum will be denoted by 〈S || Φ〉.
The set of continuous power series overH will be denoted by C

cont〈〈X〉〉H (or
simply C

cont〈〈X〉〉 if the context is clear).
b. S is said to be indistinguishable over H if and only if, for any Φ ∈H ,
〈S || Φ〉 = 0.

Each series S ∈ C〈〈X〉〉 then defines a (complex) measure μS over X∗ determined by
the charges 〈S | w〉. Here, X∗ is considered as a discrete space and compactly sup-
ported continuous functions are exactly polynomials. The measure μS is a complex
linear form over C〈X〉. It satisfies

μS(P) = 〈S | P〉 . (12)

Proposition 1 [43] LetH ⊂H1 ⊂ C〈〈X〉〉 be two monoids (for the concatenation
product), such that {etx }t∈C

x∈X ⊂H (x ∈ X is given), we suppose thatH1 is closed17

by T → |T |. Let S ∈ C〈〈X〉〉 be such that H1 ⊂ L 1(μS) et S ∈H ⊥. Then for all
x ∈ X, S � x, x � S ∈H ⊥.
Proof In this context, one has

L 1(μS) = L 1(|μS|) = L 1(μ|S|) = {T ∈ C〈〈X〉〉|
∑
w∈X∗

|〈S | w〉〈T | w〉| < +∞} .

(14)

14 I.e. the dimension of span{S �Π | Π ∈ C〈X〉} (resp. span{Π � S | Π ∈ C〈X〉}).
15 The minimal representation of S as being a representation of S of minimal dimension. It can be
shown that all minimal representations are isomorphic (see [3]).
16 For any proper series S, i.e. 〈S | 1X∗ 〉 = 0, the series S∗ = 1+ S + S2 + . . . is called “star of S”.
17For all S =

∑
w∈X∗

〈S | w〉w ∈ C〈〈X〉〉, we set

|S| :=
∑
w∈X∗

|〈S | w〉|w|. (13)
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We have to prove that, for all x ∈ X , S � x is indistinguishable overH (i.e. orthog-
onal toH ).

For convenience, we will note 〈. ||| .〉 the scalar product,18 which indicates the
absolute convergence within (14) i.e.

〈S ||| T 〉 :=
∑
w∈X∗

|〈S | w〉〈T | w〉| . (18)

For all Φ ∈H , one has etx |Φ|, |Φ| ∈H1, hence

〈S ||| (ex − 1)|Φ|〉 ≤ 〈S ||| ex |Φ|〉 + 〈S ||| |Φ|〉 < +∞ . (19)

On remarks at once that, for the pointwise convergence topology,

lim
t→0+

exp(t x)− 1X∗

t
Φ = x Φ (20)

and for all t ∈ C, |t | ≤ 1 et w ∈ X∗,

|〈exp(t x)− 1X∗

t
Φ | w〉| = |〈[

∑
n≥1

tn−1xn

n! ]Φ | w〉| ≤ 〈(ex − 1)|Φ| | w〉 . (21)

Then we can use the Dominated Convergence Theorem of Lebesgues [53] with E =
X∗ (B, being the σ -algebra generated by the finite subsets) andμ = μS on one side,

the family of functions w �→ 〈exp(tnx)− 1X∗

tn
Φ | w〉 (using a sequence {tn ∈]0, 1] |

n ∈ N+} which converges to 0 and the dominating function w �→ 〈(ex − 1)|Φ| | w〉
(21) on the other side. One then has

〈S � x ||| Φ〉 = 〈S ||| x Φ〉 = μS(x Φ) =
∫
X∗

( lim
n→+∞

exp(tnx)− 1X∗

tn
Φ)dμS

= lim
n→+∞

∫
X∗

(
exp(tnx)− 1X∗

tn
Φ)dμS = 0 . (22)

18Let X = {x}, consider S :=
∑
n≥1

xn

n
and T :=

∑
n≥0

(1− t)nxn . then

〈S ||| T 〉 :=
∑
w∈X∗

|〈S | w〉〈T | w〉| =
∑
n≥1
|〈S | xn〉〈T | xn〉| (15)

=
∑
n≥1
| (1− t)n

n
| =

∑
n≥1

|1− t |n
n

= − log(1− |1− t |), t ∈]0, 2[ . (16)

=
{
− log(t) = | log(t)|, t ∈] 0, 1]
− log(2− t) = | log(2− t)|, t ∈ [1, 2[ (17)
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2.3 Polylogarithms and Harmonic Sums

2.3.1 Structure of Polylogarithms and of Harmonic Sums

Let Ω := C− (] −∞, 0] ∪ [1,+∞[) and let C := C[z, 1/z, 1/1− z]. Note that
the unit of C is denoted ,for the pointwise product, by 1Ω : Ω −→ C such that
z �−→ 1.

One can check that Lis1,...,sr is obtained as the iterated integral over the differential
forms ω0(z) = dz/z and ω1(z) = dz/(1− z) and along the path 0 � z [31]:

Lis1,...,sr (z) = αz
0(x

s1−1
0 x1 . . . xsr−10 x1) =

∑
n1>···>nr>0

zn1

ns11 . . . nsrr
. (23)

By (1), Lis1,...,sr is then denoted also by Lixs1−10 x1...x
sr−1
0 x1

or Liys1 ...ysr−1 [32, 36, 37].

Example 8 (of Li2 = Lix0x1 )

αz
0(x0x1) =

∫ z

0

ds

s

∫ s

0

dt

1− t
=

∫ z

0

ds

s

∫ s

0
dt

∑
k≥0

t k =
∑
k≥1

∫ z

0
ds

sk−1

k
=

∑
k≥1

zk

k2
.

The definition of polylogarithms is extended over the words w ∈ X∗ by putting
Lix0(z) := log(z). The {Liw}w∈X∗ are C -linearly independent [13, 33, 37] and then
the following functions, for v = ys1 . . . ysr ∈ Y ∗, are also C-linearly independent
[13, 40]

Pv(z) := Liv(z)

1− z
=

∑
N≥0

Hv(N ) zN , where Hv(N ) :=
∑

N≥n1>···>nr>0

1

ns11 . . . nsrr
.

Proposition 2 ([40])By linearity, the following maps are isomorphisms of algebras

P• : (C〈Y 〉, ) −→ (C{Pw}w∈Y ∗, ) , u �−→ Pu,

H• : (C〈Y 〉, ) −→ (C{Hw}w∈Y ∗, .) , u �−→ Hu = {Hu(N )}N≥0.

Theorem 4 ([40]) The Hadamard C -algebra of {Pw}w∈Y ∗ can be identified with
that of {Pl}l∈L ynY . In the same way, the algebra of harmonic sums {Hw}w∈Y ∗ with
polynomial coefficients can be identified with that of {Hl}l∈L ynY .

LetL,P andHbe the noncommutative generating series of respectively {Liw}w∈X∗ ,
{Pw}w∈X∗ and {Hw(N )}w∈Y ∗ , for |z| < 1 and N > 1 [33, 40]:

L(z) =
∑
w∈X∗

Liw(z)w; P(z) = L(z)

1− z
; H(N ) =

∑
w∈Y ∗

Hw(N ) w. (24)
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Definition 3 (Polylogarithms and harmonic sums at negative multi-indices) For any
s1, . . . , sr ∈ (N)r , let us define [17], for |z| < 1 and N > 0,

Li−s1,...,−sr (z) :=
∑

n1>···>nr>0

n
s1
1 . . . nsrr zn1 and H−s1,...,−sr (N ) :=

∑
N≥n1>···>nr>0

n
s1
1 . . . nsrr .

The ordinary generating series, P−s1,...,−sr (z), of {H−s1,...,−sr (N )}N≥0 is

P−s1,...,−sr (z) :=
∑
N≥0

H−s1,...,−sr (N ) zN = 1

1− z
Li−s1,...,−sr (z).

Now, let19 Y0 = Y ∪ {y0} and let Y ∗0 denotes the free monoid generated by Y0
admitting 1Y ∗0 as neutral element. As in (1), let us introduce another correspondence

(s1, . . . , sr ) ∈ N
r ↔ ys1 . . . ysr ∈ Y ∗0 .

In all the sequel, for some convenience, we will also adopt the following notations,
for any w = ys1 . . . ysr ∈ Y ∗0 ,

Li−w = Li−s1,...,−sr ; P−w = P−s1,...,−sr and H−w = H−s1,...,−sr .

Example 9 (Li−yr0 and H−yr0 ) By Proposition (5), we have Li−yr0 = λr . Hence,

Li−yr0 (z)

1− z
= zr

(1− z)r+1
=

∑
N≥0

(
N

r

)
zN and then H−yr0 (N ) =

(
N

r

)
.

Definition 4 With the convention H−1Y∗0
= 1, we put

L−(z) :=
∑
w∈Y ∗0

Li−w (z)w; P−(z) := L−(z)

1− z
; H−(N ) :=

∑
w∈Y ∗0

H−w (N )w.

Since, for yk ∈ Y, u ∈ Y ∗ (resp. yk ∈ Y0, u ∈ Y ∗0 ) and N ≥ 1, one has Hyku(N )−
Hyku(N − 1) = N−kHu(N − 1) (resp. H−yku(N )− H−yku(N − 1) = NkH−u (N − 1)).
Then

Proposition 3 H and H− satisfy the following difference equations

H(N ) =
(
1Y ∗ +

∑
k≥1

yk
Nk

)
H(N − 1) =

N∏
n=1

(
1Y ∗ +

∑
k≥1

yk
nk

)
= 1Y ∗ +

∑
w∈Y ∗,|w|≥N

Hw(N ) w,

H−(N ) =
(
1Y ∗0 +

∑
k≥0

yk N
k
)
H−(N − 1) =

N∏
n=1

(
1Y ∗0 +

∑
k≥0

ykn
k
)
= 1Y ∗0 +

∑
w∈Y ∗0 ,|w|≥N

H−w (N ) w.

19with y0 
 y1.
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Hence, for any w ∈ Y ∗ (resp. w ∈ Y ∗0 ), Hw(N ) (resp. H−w (N )) is of valuation N.

In all the sequel, the length and the weight of u = yi1 . . . yik ∈ Y ∗ are defined
respectively as the numbers |u| = k and (u) = i1 + · · · + ik .

Definition 5 Let g, h ∈ Q 〈〈Y0〉〉 [[t]]bedefined as follows (here, |1Y ∗0 | = (1Y ∗0 ) = 0)

h(t) :=
∑
w∈Y ∗0

((w)+ |w|)!t (w)+|w|w and g(t) :=
∑
w∈Y ∗0

t (w)+|w|w =
⎛
⎝∑

y∈Y0
t (y)+1y

⎞
⎠
∗

.

Remark 1 1. The generating series h is an extension of the Euler series
∑

n≥0 n!tn
and it can be obtained as Borel–Laplace transform of g.

2. The ordinary generating seriesY (t) := 1+∑
r≥0 yr tr and its inverse are group-

like. The generating seriesΛ(t) =∑
w∈Y ∗0 t

(w)+|w|w can be obtained from 1/Y (t)
by use the following change of alphabet yr ← t yr it can be expressed as

g(t) =
(
1−

∑
r≥0

(−t yr ) tr
)−1

=
(∑

r≥0
(−t yr ) tr

)∗
.

Now, let us consider the following differential and integration operators acting on
C{Liw}w∈X∗ which can be extended over C {Liw}w∈X∗ [41]:

∂z = d/dz, θ0 = zd/dz, θ1 = (1− z)d/dz, ι0 : Liw �−→ Lix0w, ι1 : Liw �−→ Lix1w

Let Θ and # be monoid morphisms such that Θ(1X∗) = #(1X∗) = Id and, for
xi ∈ X, v ∈ X∗, Θ(vxi ) = Θ(v)θi and #(vxi ) = #(v)ιi . Hence,

Proposition 4 1. The operators {θ0, θ1, ι0, ι1} satisfy in particular,

θ1 + θ0 = [θ1, θ0] = ∂z and ∀k = 0, 1, θk ιk = Id,
[θ0ι1, θ1ι0] = 0 and (θ0ι1)(θ1ι0) = (θ1ι0)(θ0ι1) = Id.

2. For any w = ys1 . . . ysr ∈ Y ∗ (πX (w) = xs1−10 x1 . . . xsr−10 x1) and u = yt1 . . . ytr ∈
Y ∗0 , we can rephrase Liw,Li−u as follows

Liw = (ι
s1−1
0 ι1 . . . ι

sr−1
0 ι1)1Ω and Li−u = (θ

t1+1
0 ι1 . . . θ

tr+1
0 ι1)1Ω,

θ0 Lix0πX (w) = LiπX (w) and θ1 Lix1πX (w) = LiπX (w),

ι0 LiπX (w) = Lix0πX (w) and ι1 Liw = Lix1πX (w) .

3. C {Liw}w∈X∗ ∼= C ⊗C C{Liw}w∈X∗ is closed under of ι0, ι1, θ0, θ1.
4. Let λ(z) := z/(1− z) ∈ C . Then λ and 1/λ are the eigenvalues of θ0ι1 and θ1ι0

within C {Liw}w∈X∗ respectively:

∀ f ∈ C {Liw}w∈X∗ , (θ0ι1) f = λ f and (θ1ι0) f = f/λ.
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5. For any n ≥ 0 and w ∈ X∗, one has20

Θ(w̃)Liw = 1Ω and ∂n
z =

∑
w∈Xn

(Θ ⊗Θ)Δ�� (w).

Proof The proofs are immediate.

Proposition 5 ([17])

1. For any w ∈ Y ∗0 , one has Li−w (z) = λ|w|(z)A−w (z)(1− z)−(w), where A−w is the
extended Eulerian polynomial defined recursively as follows

A−w (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n−1∑
k=0

An,k z
k if w = yk ∈ Y0,

s1∑
i=0

(
s1
i

)
Ayi A

−
y(s1+s2−i) ys3 ...ysr

if w = yku ∈ Y0Y ∗0 ,

and An,k are Eulerian numbers satisfying An,k =∑k
j=0(−1) j

(n+1
j

)
(k + 1− j)n.

2. For any w ∈ Y ∗, let us define {G−w (n)}n∈N by the following generating series

∑
n≥|w|

(n + 1)!
(n − |w|)!G

−
w (n)zn = Li−w (z)

1− z
.

Then H−w (N ) = (N + 1)N (N − 1) . . . (N − |w| + 1)G−w (N ).
3. Li−w (z) ∈ Q[(1− z)−1] � C and H−w (N ) ∈ Q[N ] of degree |w| + (w).

Example 10 [17](Case of r = 1 by Maple)

1. Since An(z)/(1− z)n+1 =∑
j≥0 z j ( j + 1)n then Li−yn (z) = zAn(z)/(1− z)n+1

(see [20] for example). For example,

Li−y1 (z) = z(1− z)−2 = −(1− z)−1 + (1− z)−2.
Li−y2 (z) = z(z + 1)(1− z)−3 = (1− z)−1 − 3(1− z)−2 + 2(1− z)−3.
Li−y3 (z) = z(z2 + 4z + 1)(1− z)−4 = −(1− z)−1 + 7(1− z)−2 − 12(1− z)−3 + 6(1− z)−4.

2. For any positive integer m, one has

H−ym (N ) = 1

m + 1

m∑
k=0

(
m + 1

k

)
Bk(N + 1)m+1−k

= 1

m + 1

m+1∑
k=1

[
m+1−k∑
l=0

(
m + 1

l

)(
m + 1− l

k

)
Bl

]
Nl ,

20For any w = xi1 . . . xir ∈ X∗, we denote w̃ = xir . . . xi1 .
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where Bk is the kth Bernoulli’s number given by its exponential generating series

t

et − 1
=

∑
k≥0

Bk
tk

k! .

For example, (recall that B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30),

H−y1(N ) = (N + 1)2/2− (N + 1)/2 = N (N + 1)/2,
H−y2(N ) = (N + 1)3/3− (N + 1)2/2+ (N + 1)/6 = N (2N + 1)(N + 1)/6,
H−y3(N ) = (N + 1)4/4− (N + 1)3/2+ (N + 1)2/4 = (N (N + 1)/2)2.

Example 11 (Case of r = 2 by Maple)

1. From what precedes, Li−ym yn = (θm+1
0 ι1)Li−yn = θm

0 (θ0ι1)Li−yn . Since, by Example
9, we have (θ0ι1)Li−yn = Li−y0 Li

−
yn then Li−ym yn = θm

0 [Li−y0 Li−yn ] =
∑m

l=0
(m
l

)
Li−yl

Li−ym+n−l . For example,

Li−
y21

(z) = Li−y0 (z)Li
−
y2 (z)+ (Li−y1 (z))

2

= −(1− z)−1 + 5(1− z)−2 − 7(1− z)−3 + 3(1− z)−4
Li−y2 y1 (z) = Li−y0 (z)Li

−
y3 (z)+ 3Li−y1 (z)Li

−
y2 (z)

= (1− z)−1 − 11(1− z)−2 + 31(1− z)−3 − 33(1− z)−4 + 12(1− z)−5,
Li−y1 y2 (z) = Li−y0 (z)Li

−
y3 (z)+ Li−y1 (z)Li

−
y2 (z)

= (1− z)−1 − 9(1− z)−2 + 23(1− z)−3 − 23(1− z)−4 + 8(1− z)−5.

2. For any positive integers m, n, one has

H−ym yn (N ) =
n∑

k1=0

m+n+1−k1∑
k2=0

m+n+2−k1−k2∑
k3=0

Bk1Bk2

(n + 1)(m + n + 2− k1)(
n + 1

k1

)(
m + n + 2− k1

k2

)(
m + n + 2− k1 − k2

k3

)
Nk3 .

For example,

H−y2 y1 (N ) = N (N 2 − 1)(12N 2 + 15N + 2)/120,

H−
y22

(N ) = N (N − 1)(2N + 1)(2N − 1)(5N + 6)(N + 1)/360,

H−y2 y3 (N ) = N (N − 1)(N + 1)(30N 4 + 35N 3 − 33N 2 − 35N + 2)/840,

H−y2 y4 (N ) = N (N − 1)(N + 1)(63N 5 + 72N 4 − 133N 3 − 138N 2 + 49N + 30)/2520,

H−y2 y5 (N ) = N (N − 1)(N + 1)(280N 6 + 315N 5 − 920N 4 − 945N 3 + 802N 2 + 630N − 108)/15120,

H−
y33

(N ) = N (N − 1)(N + 1)(21N 5 + 36N 4 − 21N 3 − 48N 2 + 8)/672,

H−5,6(N ) = 1

2,162,160
N (N − 1)(N + 1)(23,760N 10 + 64,350N 9 − 109,620N 8

− 386,100N 7 + 184,960N 6 + 920,205N 5 − 158,240N 4 − 1,036,035N 3

+ 97,444N 2 + 450,450N − 16,956)).
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Example 12 (General case)

1. One has, for any ys1u = ys1 . . . ysr ∈ Y ∗0 ,

Li−ys1u = θ
s1
0 (θ0ι1)Li

−
u = θ

s1
0 (λLi−u ) =

s1∑
k1=0

(
s1
k1

)
(θ

k1
0 λ)(θ

s1−k1
0 Li−u ),

Li−ys1 ...ysr =
s1∑

k1=0

s1+s2−k1∑
k2=0

. . .

(s1+···+sr )−
(k1+···+kr−1)∑

kr=0

(
s1
k1

)(
s1 + s2 − k1

k2

)
. . .

(
s1 + · · · + sr − k1 − . . .− kr−1

kr

)
(θ

kr
0 λ)(θ

k2
0 λ) . . . (θ

kr
0 λ).

Denoting S2(ki , j) Stirling numbers of the second kind, one has

∀i = 1, .., r, θ
ki
0 λ(z) =

⎧⎪⎨
⎪⎩

λ(z), if ki = 0,

1

1− z

ki∑
j=1

S2(ki , j) j !λ j (z), if ki > 0.

In particular, ifω ∈ Y ∗ then (1− z)|w| Li−w (z) is polynomial of degree (w) in λ(z).
2. We define, firstly, the polynomials {Byn1 ...ynr

(z)}n1,...,nr∈N by their commutative
exponential generating series as follows, for z ∈ C,

∑
n1,...,nr∈N

Byn1 ...ynr
(z)

tn11 . . . tnrr
n1! . . . nr ! = t1 . . . tr e

z(t1+...+tr )
r∏

k=1
(etk+...+tr − 1)−1,

or by the difference equation, for n1 ∈ N+,

Byn1 ...ynr
(z + 1) = Byn1 ...ynr

(z)+ n1z
n1−1Byn2 ...ynr

(z).

For any w ∈ ysY ∗0 , s > 1, we have Bw(1) = Bw(0). Then let also, for any
1 ≤ k ≤ r ,

bw := Bw(0) and βw(z) := Bw(z)− bw.

b′yk := byk and b′ynk ...ynr := bynk ...ynr −
r−1−k∑
j=0

bynk+ j+1 ...ynr b
′
ynk ...ynk+ j

Then we have the extended Faulhaber’s identities
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βyn1 ...ynr
(N ) =

r∑
k=1

(
k∏

i=1
ni

)
bynk+1 ...ynr H

−
yn1−1...ynk−1

(N − 1),

H−yn1 ...ynr (N ) =
βyn1+1...ynr+1(N + 1)−∑r−1

k=1 b′ynk+1+1...ynr+1βyn1+1...ynk+1(N + 1)∏r
i=1(ni + 1)

.

Proposition 6 ([17]) The following maps are morphisms of algebras

H− : (C〈Y0〉, ) −→ (C{H−w }w∈Y ∗0 , .) and P− : (C〈Y0〉, ) −→ (C{P−w}w∈Y ∗0 , ).

Proof Recall that the quasi-symmetric functions on the variables t = {ti }N≥i≥1, i.e.

Fs1,...,sr (t) = Fys1 ...ysr
(t) =

∑
n1>···>nr>0

t s1n1 . . . t srnr

satisfy the quasi-shuffle relation [52], i.e. for any u, v ∈ Y ∗0 , Fu v(t) = Fu(t)Fv(t).
Since H−s1,...,sr (N ) can be obtained by specializing, in Fs1,...,sr (t), the variables t at

∀1 ≤ i ≤ N , ti = i and ∀i > N , ti = 0

then H− is a morphism of algebras. Therefore, P− is also a morphism of algebras.

2.3.2 Global Renormalizations via Noncommutative Generating Series

By (2.3.2), L and H are images, by the tensor products Li⊗Id and H⊗ Id, of the
diagonal series DX and DY respectively. Then we get

Theorem 5 (Factorization of L and of H, [33, 37, 43]) Let

Lreg =
↘∏

l∈L ynX−X

eLiSl Pl and Hreg(N ) =
↘∏

l∈L ynY−{y1}
eHΣ̌l

(N ) Σl .

Then L(z) = e−x1 log(1−z)Lreg(z)ex0 log z and H(N ) = eHy1 (N ) y1Hreg(N ).

For any l ∈ L ynX − X (resp. L ynY − {y1}), the polynomial Sl (resp. Σl) is a
finite combination of words in x0X∗x1 (resp. Y ∗ − y1Y ∗). Then we can state

Proposition 7 ([43]) Let Z�� := Lreg(1) and Z := Hreg(∞). Then Z�� and Z
are group-like, for Δ�� and Δ respectively.

Proposition 8 (Successive integrations and differentiations of L, [41, 43])We have,
for any n ∈ N,

1. ιn0L = xn0 � L and ιn1L = xn1 � L.
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2. ∂n
z L = DnL and θn

0 L = EnL, where21 the polynomials Dn and En in C 〈X〉 are

Dn =
∑

wgt(r)=n

∑
w∈Xdeg(r)

deg(r)∏
i=1

(∑i
j=1 ri + j − 1

ri

)
τr(w),

En =
∑

wgt(r)=n

∑
w∈Xdeg(r)

deg(r)∏
i=1

(∑i
j=1 ri + j − 1

ri

)
ρr(w),

and for any w = xi1 · · · xik and r = (r1, . . . , rk) of degree deg(r) = k and of
weight wgt(r) = k + r1 + · · · + rk , the polynomials τr(w) = τr1(xi1) · · · τrk (xik )
and ρr(w) = ρr1(xi1) · · · ρrk (xik ) are defined respectively by, for any r ∈ N,

τr (x0) = ∂r
z

x0
z
= −r !x0

(−z)r+1 and τr (x1) = ∂r
z

x1
1− z

= r !x1
(1− z)r+1

,

ρr (x0) = θ r
0
(−1)−1x0

z
= 0 and ρr (x1) = θ r

0
zx1
1− z

= Li−
πY (xr−10 x1)

(z)x1.

Example 13 (Coefficients of θn
0 L) Since, for any u ∈ X+, θ0 Lix0u = Liu and θ1

Lix0u = Li0 Liu , one obtains for example

• For any n ≥ 1 and w ∈ X∗, one has θn
0 Lixn0w = Liw. Hence,

θ0 Lix1 = Li0, θ
2
0 Lix1 = Li−πY (x1)

, θ3
0 Lix1 = Li−πY (x0x1)

and θ4
0 Lix1 = Li−

πY (x20 x1)
.

• θ0 Lix21 = Li0 Lix1 , θ
2
0 Lix21 = Li−πY (x1)

Lix1 +Li20, θ
3
0 Lix21 = Li−πY (x0x1)

Lix1 +3
Li−πY (x1)

Li0 because

∀k > 1, θ k
0 Lix21 =

k−1∑
j=0

(
k − 1

j

)
Li− j Li2+ j−k .

The noncommutative generating series L satisfies the differential equation

dL = (x0ω0 + x1ω1)L (25)

with boundary condition

L(z) z̃→0 exp(x0 log z) and L(z) z̃→1 exp(−x1 log(1− z)) Z�� . (26)

This implies that L is the exponential of a Lie series [33, 37]. Hence [41],

21Since θ0 + θ1 = ∂z then we also have θn1 L(z) = [Dn(z)− En(z)]L(z). The more general actions
of {Θ(w)}w∈X∗ on L are more complicated to be expressed here.
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log L =
∑
k≥1

(−1)k−1
k

∑
u1,...,uk∈X+

Liu1 �� ... �� uk u1 . . . uk =
∑
w∈X∗

Liw π1(w).

Theorem 6 ([41, 43])

1. Let G, H be exponential solutions of (25). Then there exists a constant Lie series
C such that G = HeC.

2. Let GalC(DE) be the differential Galois group associated to the Drinfel’d
equation. Then GalC(DE) = {eC | C ∈ L ieC〈〈X〉〉}, it contains the monodromy
group defined by M0L = L exp(2iπm0) and M1L = LZ−1�� exp(−2iπx1)Z�� =
L exp(2iπm1), where m0 = x0,m1 =∏↘

l∈L ynX−X exp(−ζ(Sl) adPl )(−x1).
Then let us put22 Λ := πYL and [42, 43]

Mono(z) := e−(x1+1) log(1−z) =
∑
k≥0

Pyk1
(z) yk1 (27)

Const :=
∑
k≥0

Hyk1
yk1 = exp

(
−

∑
k≥1

Hyk
(−y1)k

k

)
, (28)

B(y1) := exp

(∑
k≥1

ζ(yk)
(−y1)k

k

)
, (29)

and finally, B ′(y1) := exp(γ y1)B(y1). Hence, we get πYP(z) z̃→1 Mono(z)πY Z��
and H(N )

Ñ→+∞ Const(N )πY Z�� as a consequence of (27)–(28). Or equivalently,

Theorem 7 (First global renormalizations of divergent polyzetas, [42, 43])

lim
z→1

exp

(
−y1 log

1

1− z

)
Λ(z) = lim

N→+∞ exp

(∑
k≥1

Hyk (N )
(−y1)k

k

)
H(N ) = πY Z�� .

Theorem 8 ([12]) For any g ∈ C {Pw}w∈Y ∗ , there exist algorithmically computable
coefficients c j , bi ∈ C, α j , ηi ∈ Z, β j , κi ∈ N such that, at all orders

g(z) z̃→1

+∞∑
j=0

c j (1− z)α j logβ j (1− z), 〈g(z) | zn〉
Ñ→+∞

+∞∑
i=0

bin
ηi logκi (n).

Theorem 8 means also that the {Pw}w∈Y ∗ admit a full singular expansion, at 1, and
then their ordinary Taylor coefficients, {Hw}w∈Y ∗ admit a full asymptotic expansion,
for +∞. More precisely,

22Here, the coefficient 〈B(y1) | yk1 〉 corresponds to the Euler–Mac Laurin constant associated
to 〈Const(N ) | yk1 〉, i.e. the finite part of its asymptotic expansion in the scale of comparison
{na logb(n)}a∈Z,b∈N.
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Corollary 1 For any w ∈ X∗ and for any k, i, j ∈ N, k ≥ 1, there exists uniquely
determined coefficients ai , bi, j belonging to Z ; γπY (w), αi and βi, j belonging to the
Q[γ ]-algebra generated by convergent polyzetas such that,

Liw(z) =
|w|∑
i=1

ai log
i (1− z)+ 〈Z�� | w〉 +

k∑
j=1

|w|−1∑
i=0

bi, j
logi (1− z)

(1− z)− j
+ o(1)

k ((1− z)k)

(30)
and, likely

HπY (w)(N ) =
|w|∑
i=1

αi log
i (N )+ γπY (w) +

k∑
j=1

|w|−1∑
i=0

βi, j
1

N j
logi (N )+ o(+∞)

k (N−k).

(31)

Remark 2 1. The two expansions (30) and (31) are the asymptotic expansions of
Liw and Hw with respect to, respectively, the scales {(1− z)n log(1− z)m}n,m≥0
and {N−k log(N )m}k,m≥0.

2. In Eq. (30), the error term o(1)
k ((1− z)k) can be put to the form O(1)

k ((1− z)k+ε)

for any ε ∈]0, 1[.
More generally, by Theorem 6, we get

Proposition 9 ([43]) For any commutative Q-algebra A and for any Lie series
C ∈ L ieA〈X〉, we set L = LeC ,Λ = πYL and P(z) = (1− z)−1Λ(z), then

1. Z �� = Z�� eC is group-like, for the co-product Δ�� ,
2. L(z) z̃→1 exp(−x1 log(1− z)) Z �� ,

3. P(z) z̃→1 Mono(z)πY Z �� ,

4. H(N )
Ñ→∞ Const(N )πY Z �� ,

where, for any w ∈ Y ∗ and N ≥ 0, one defines the coefficient 〈H(N ) | w〉 of w in
the power series H(N ) as the coefficient 〈Pw(z) | zN 〉 of zN in the ordinary Taylor
expansion of the polylogarithmic function Pw(z).

By Proposition 9, we get successively

Proposition 10 ([39, 43]) Let ζ �� and ζ be the characters of respectively
(A〈X〉, ��) and (A〈Y 〉, ) satisfying ζ �� (x0) = ζ �� (x1) = 0 and ζ (y1) = 0. Then

∑
w∈Y ∗

ζ �� (w) w = Z �� =
↘∏

l∈L ynX−X

exp(ζ (Sl) Pl),

∑
w∈Y ∗

ζ (w) w = Z =
↘∏

l∈L ynY−{y1}
exp(ζ (Σl) Πl).
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Proposition 11 ([43]) Let {γ w}w∈Y ∗ be the Euler–Mac Laurin constants associated
to {Hw(N )}w∈Y ∗ . Let Zγ be the noncommutative generating series of these constants.
Then,

1. The following map realizes a character:

γ • : (A〈Y 〉, ) −→ (R, .), w �−→ 〈γ • | w〉 = γ w.

2. The noncommutative power series Zγ is group-like, for Δ .
3. There exists a group-like element Z , for the co-product Δ , such that

Zγ =
∑
w∈Y ∗

γ w w = exp(γ y1)Z .

By Theorem 7, Propositions 9 and 11, we also get

Proposition 12 ([43]) For any C ∈ L ieA〈X〉 such that Z �� = Z�� eC . Then

Zγ = B(y1)πY Z �� , or equivalently by cancellation, Z = B ′(y1)πY Z �� ,

where B(y1) and B ′(y1) are given in (29).

By Proposition 9, the noncommutative generating series Z �� and Z are group-
like, for the co-product Δ�� and Δ respectively. We also have

Z �� =
∑

l∈L ynX−X

ζ (Sl) Pl +
∑

w/∈L ynX−X

ζ �� (Sw) Pw,

Z =
∑

l∈L ynY−{y1}
ζ (Σl) Πl +

∑
w/∈L ynY−{y1}

ζ (Σw) Πw.

Hence, by Proposition 12, we deduce in particular,

∑
l∈L ynY−{y1}

ζ (Σl) Πl + . . . = B ′(y1)
( ∑
l∈L ynX−X

ζ (πY Sl) πY Pl + . . .

)
.

The elements of {πY Pl}l∈L ynX are decomposable in the linear basis {Πw}w∈Y ∗ of
U (Prim(H )). Thus, by identification of local coordinates, i.e. the coefficients
of {Πl}l∈L ynY−{y1} in the basis {Σl}l∈L ynY−{y1}, we get homogenous polynomial
relations on polyzetas encoded by {Σl}l∈L ynY−{y1} [43].

Proposition 13 ([17]) There exist A, B and C ∈ Q 〈Y0〉 such that

L−(z)
z̃→1

A  g

(
1

1− z

)
, P−(z)

z̃→1
B  1

1− z
g

(
1

1− z

)
, H−(N )

Ñ→+∞C  g(N ).

where the series g, h were defined in the Definition 5.
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Proof By Propositions 5, for w = ys1 . . . ysr , there exists a, b, c ∈ Q such that

Li−w (z)z̃→1

a

(1− z)|w|+(w)
, P−w (z)z̃→1

b

(1− z)|w|+(w)+1 , H−w (N )
Ñ→+∞cN

|w|+(w).

Putting 〈A | w〉 = (−1)|w|a, 〈B | w〉 = (−1)|w|b, 〈C | w〉 = (−1)|w|c, it follows the
expected results.

Proposition 14 ([17]) For any w ∈ Y ∗0 , there are non-zero constants, namely C−w
and B−w , which only depend on w and r such that

lim
N→∞

H−w (N )

N (w)+|w|C−w
= 1, i.e. H−w (N )

Ñ→+∞ N (w)+|w|C−w ,

lim
z→1−

(1− z)(w)+|w| Li−w (z)

B−w
= 1, i.e. Li−w (z) z̃→1

N (w)+|w|B−w
(1− z)n+1

.

Moreover, C−w and B−w are well determined by

C−w =
∏

w=uv;v �=1Y∗0

1

(v)+ |v| ∈ Q and B−w = ((w)+ |w|)!C−w ∈ N.

Example 14 (of C−w and B−w )

w C−w B−w w C−w B−w
y0 1 1 y1y2 1/15 8
y1 1/2 1 y2y3 1/28 180
y2 1/3 2 y3y4 1/49 8064
yn 1/(n + 1) n! ym yn 1/[(n + 1)(m + n + 2)] n!m!(m+n+1n+1

)
y20 1/2 1 y2y2y3 1/280 12960
yn0 1/(n!) 1 y2y10y21 1/2160 9686476800
y21 1/8 3 y22 y4y3y11 1/2612736 4167611825465088000000

Proposition 15 ([17]) Let u, v ∈ Y ∗0 . We get H−u H−v = H−u v.

Proof Let w ∈ Y ∗0 associated to s = (s1, . . . , sk). The quasi-symmetric monomial
functions on the commutative alphabet t = {ti }i≥1 are defined as follows

M1Y∗0
(t) = 1 and Mw(t) =

∑
n1>···>nk>0

t s1n1 . . . t sknk ,

For any u, v ∈ Y ∗0 , we have Mu(t)Mv(t) = Mu v(t). Then, the harmonic sum
H−s1,...,sk (N ) is obtained by specializing the indeterminates t = {ti }i≥1 from Mw(t)
as follows: ti = i for 1 ≤ i ≤ N and ti = 0 for N < i.
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Theorem 9 (Second global renormalizations of divergent polyzetas, [17])

1. The generating series H− is group-like and logH− is primitive. Moreover,23

lim
N→+∞ g −1(N ) H−(N ) = lim

z→1
h −1((1− z)−1) L−(z) = C−.

2. ker H−• is a prime ideal of (Q 〈Y0〉 , ), i.e. Q〈Y0〉 \ ker H−• is closed by .

Proof The first result is a consequence of the extended Friedrichs criterion [6, 43,
44] and the second is a consequence of Proposition 1.

Definition 6 For any n ∈ N+, letPn := spanR+{w ∈ Y ∗0 |(w)+ |w| = n} \ {0} be the
blunt24 convex cone generated by the set {w ∈ Y ∗0 |(w)+ |w| = n}.

By definition, C−• is linear on the set Pn . For any u, v ∈ Y ∗0 , one has u v =
u �� v+∑

|w|<|u|+|v|
(w)=(u)+(v)

xww and the xw’s are positive. Moreover, for any wwhich belongs

to the support of
∑

|w|<|u|+|v|
(w)=(u)+(v)

xww, one has (w)+ |w| < (u)+ (v)+ |u| + |v|, thus, by
the definition of C−• , one obtains

Corollary 2 1. Let w, v ∈ Y ∗0 . Then C−v C−w = C−v �� w = C−v w.
2. For any P, Q /∈ ker H−• , C

−
PC

−
Q = C−P Q and Q 〈Y0〉 \ ker H−• is a − multi-

plicative monoid containing Y ∗0 .

Now, let us prove that C−• can be extended as a character, for �� , or equivalently,
C− is group-like (see the Freidrichs’ criterion [52]) and then logC− is primitive.

Lemma 2 Let A is a R-associative algebra with unit and let f : ⊔
n≥0

Pn −→ A

such that

1. For any u, v ∈ Y ∗0 , f (u �� v) = f (u) f (v) and f (1Y ∗0 ) = 1A .
2. For any finite set I , one has f (

∑
i∈I αiwi ) =∑

i∈I αi f (wi ) where
∑

i∈I αiwi ∈
Pn, n ∈ N.

Then f can be uniquely extended as a character i.e. S f =∑
w∈Y ∗0 f (w)w is group-like

for Δ�� .

Proof The linear span of Pn is the space of homogeneous polynomials of degree n,
(i.e., Pn − Pn = Rn〈Y0〉), Pn being convex (and non-void), f extends uniquely, as a
linear map, toRn〈Y0〉 and then, as a linear map, on⊕n≥0Rn〈Y0〉 = R〈Y0〉. This linear
extension is a morphism for the shuffle product as it is so on the (linear) generators
Y ∗0 .

By definition of f and S f , it is immediate 〈S f | 1Y ∗0 〉 = 1A . One can check easily
that Δ�� (S f ) = S f ⊗ S f . Hence, S f is group-like, for Δ�� .

23Here, the Hadamard product is denoted by  and its dual law, the diagonal comultiplication is
denoted by Δ . The series g, h are defined in Definition 5.
24I.e. without zero or see Appendix A.
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Corollary 3 The noncommutative generating series C− is group-like, for Δ�� .

Proof It is a consequence of Lemma 2 and Corollary 2.

Example 15 (of C−u �� v and C−u v, [17]) Let Y0 = {yi }i≥0 be an infinite alphabet.

u C−u v C−v u �� v C−u �� v

y0 1 y0 1 2y20 1
y20 1/2
y1 1/2 y2 1/3 y1y2 + y2y1 1/6
y1y2 1/15 y2y1 1/10
ym (m + 1)−1 yn (n + 1)−1 ym yn + yn ym [(m + 1)(n + 1)]−1

ym yn
(n+1)−1
(n+m+2) yn ym

(m+1)−1
(m+n+2)

y1 1/2 y2y5 1/54 y1y2y5 + y2y1y5 + y2y5y1 1/108
y1y2y5 1/594 y2y1y5 1/528
y2y5y1 1/176
y0y1 1/6 y2y3 1/28 y0y1y2y3 + y0y2y1y3 1/168

+y0y2y3y1 + y2y3y0y1
+y2y0y1y3 + y2y0y3y1

y0y1y2y3 1/2520 y0y2y1y3 1/2160
y0y2y3y1 1/1080 y2y3y0y1 1/420
y2y0y1y3 1/1680 y2y0y3y1 1/840

ya yb
(b+1)−1
(a+b+2) yc yd

(d+1)−1
(c+d+2) ya yb yc yd + ya yc yb yd

(b+1)−1(d+1)−1
(a+b+2)(c+d+2)

+ya yc yd yb + yc yd ya yb
+yc ya yb yd + yc ya yd yb

u C−u v C−v u v C−u v
y0 1 y0 1 2y20 + y0 1
y1 1/2 y2 1/3 y1y2 + y2y1 + y3 1/6
ym (m + 1)−1 yn (n + 1)−1 ym yn + yn ym + yn+m [(m + 1)(n + 1)]−1
y1 1/2 y2y5 1/54 y1y2y5 + y2y1y5 + y2y5y1 1/108

+y3y5 + y2y6
y0y1 1/6 y2y3 1/28 y0y1y2y3 + y0y2y1y3 1/168

+y0y2y3y1 + y2y3y0y1
+y2y0y1y3 + y2y0y3y1 + y0y2y4
+y0y

2
3 + y2y3y1 + y2y1y3

+y2y0y4 + y2y3y1 + y2y4

ya yb
(b+1)−1
(a+b+2) yc yd

(d+1)−1
(c+d+2) ya yb yc yd + ya yc yb yd

(b+1)−1(d+1)−1
(a+b+2)(c+d+2)

+ya yc yd yb + yc yd ya yb + yc ya yb yd
+yc ya yd yb + ya yc yb+d + ya yb+c yd

+yc ya yb+d + yc ya+d yb
+ya+c yb yd + ya+c yd yb + ya+c yb+d

In the above tables, it is clearly seen that C−• is linear on Pn . For example, let u = y1
and v = y2y5. Then u �� v = y1y2y5 + y2y1y5 + y2y5y1. Hence, we get C−y1 y2 y5 +
C−y2 y1 y5 + C−y2 y5 y1 = 1

594 + 1
528 + 1

176 = 1
108 = C−y1C

−
y2 y5 = C−y1 �� y2 y5 . Note that y1y2

y5, y2y1y5, y2y5y1 ∈ P11. But we have also u v = y1y2y5 + y2y1y5 + y2y5y1 +
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y3y5 + y2y6. Moreover, C−y1 y2 y5 + C−y2 y1 y5 + C−y2 y5 y1 + C−y3 y5 + C−y2 y6 = 1
108 + 13

420 �=
1
108 = C−y1C

−
y2 y5 . However, from y3y5, y2y6 ∈ P10, we can conclude that

C−y1 y2 y5 = C−y1 y2 y5+y2 y1 y5+y2 y5 y1+y3 y5+y2 y6
= C−y1 y2 y5+y2 y1 y5+y2 y5 y1

= 1/108 = C−y1C
−
y2 y5

.

3 Polysystems and Differential Realization

3.1 Polysystems and Convergence Criterion

3.1.1 Estimates (from above) for Series

Here, (K, ‖.‖) is a normed space.

Definition 7 ([28, 42, 43]) Let ξ, χ be real positive functions over X∗. Let S ∈
K〈〈X〉〉.
1. S will be said ξ -exponentially bounded from above if it satisfies

∃K ∈ R+, ∃n ∈ N,∀w ∈ X≥n, ‖〈S | w〉‖ ≤ K ξ(w)/|w|!.

We denote by K
ξ−em〈〈X〉〉 the set of formal power series in K〈〈X〉〉 which are

ξ -exponentially bounded from above.
2. S satisfies the χ -growth condition if it satisfies

∃K ∈ R+, ∃n ∈ N,∀w ∈ X≥n, ‖〈S | w〉‖ ≤ Kχ(w)|w|!.

We denote by K
χ−gc〈〈X〉〉 the set of formal power series in K〈〈X〉〉 satisfying the

χ -growth condition.

Lemma 3 ([28, 42, 43]) If R =
∑
w∈X∗

|w|! w then 〈R��2 | w〉 =
∑
u,v∈X∗

supp(u �� v)'w

|u|!|v|! ≤

2|w||w|!.
Proof One has

∑
u,v∈X∗

supp(u �� v)'w

|u|!|v|! =
|w|∑
k=0

∑
|u|=k,|v|=|w|−k
supp(u �� v)'w

k!(|w| − k)! =
|w|∑
k=0

(|w|
k

)
k!(|w| − k)! =

|w|∑
k=0

|w|!.

The last sum is equal to (1+ |w|)|w|!. By induction on |w|, one has 1+ |w| ≤ 2|w|.
Then the expected result follows.

Proposition 16 ([28, 42, 43]) If S1, S2 satisfy the growth condition then S1 +
S2, S1 �� S2 do also.
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Proof It is immediate for S1 + S2. Next, since ‖〈Si | w〉‖ ≤ Kiχi (w)|w|! then

〈S1 �� S2 | w〉 =
∑

supp(u �� v)'w
〈S1 | u〉〈S2 | v〉,

⇒ ‖〈S1 �� S2 | w〉‖ ≤ K1K2

∑
u,v∈X∗

supp(u �� v)'w

(χ1(u)|u|!)(χ2(v)|v|!).

Let K = K1K2 and letχ be a real positive function over X∗ such that, for anyw ∈ X∗

χ(w) = max{χ1(u)χ2(v) | u, v ∈ X∗ and supp(u �� v) ' w}.

With the notations in Lemma 3, we get ‖〈S1 �� S2 | w〉‖ ≤ Kχ(w)〈S1R��2 | w〉.
Hence, S1 �� S2 satisfies the χ ′-growth condition with χ ′(w) = 2|w|χ(w).

Definition 8 ([28, 42, 43]) Let ξ be a real positive function defined over X∗, S will
be said ξ -exponentially continuous if it is continuous over K

ξ−em〈〈X〉〉. The set of
formal power series which are ξ -exponentially continuous is denoted by K

ξ−ec〈〈X〉〉.
Lemma 4 ([28, 42, 43]) For any real positive function ξ defined over X∗, we have
K〈X〉 ⊂ K

ξ−ec〈〈X〉〉. Otherwise, for ξ = 0, we get K〈X〉 = K
0−ec〈〈X〉〉. Hence, any

polynomial is 0-exponentially continuous.

Proposition 17 ([28, 42, 43]) Let ξ, χ be real positive functions over X∗ and P ∈
K〈X〉.
1. Let S ∈ K

ξ−em〈〈X〉〉. The right residual of S by P belongs to K
ξ−em〈〈X〉〉.

2. Let R ∈ K
χ−gc〈〈X〉〉. The concatenation SR belongs to K

χ−gc〈〈X〉〉.
3. Moreover, if ξ andχ aremorphisms over X∗ satisfying

∑
x∈X χ(x)ξ(x) < 1 then,

for any F ∈ K
χ−gc〈〈X〉〉, F is continuous over K

ξ−em〈〈X〉〉.
Proof 1. Since S ∈ K

ξ−em〈〈X〉〉 then

∃K ∈ R+, ∃n ∈ N,∀w ∈ X≥n, ‖〈S | w〉‖ ≤ K ξ(w)/|w|!.

If u ∈ supp(P) then, for any w ∈ X∗, one has 〈S � u | w〉 = 〈S | uw〉 and S � u
belongs to K

ξ−em〈〈X〉〉:

∃K ∈ R+, ∃n ∈ N,∀w ∈ X≥n, ‖〈S � u | w〉‖ ≤ [K ξ(u)]ξ(w)/|w|!.

It follows that S � P is K
ξ−em〈〈X〉〉 by taking K1 = K maxu∈supp(P) ξ(u).

2. Since R ∈ K
χ−gc〈〈X〉〉 then

∃K ∈ R+, ∃n ∈ N,∀w ∈ X≥n, ‖〈S | w〉‖ ≤ Kχ(w)|w|!.

Let v ∈ supp(P) such that v �= ε. Since Rv belongs to K
χ−gc〈〈X〉〉 and one has,

for w ∈ X∗, 〈Rv | w〉 = 〈R | v � w〉, i.e. there exists K ∈ R+, n ∈ N such that
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‖〈R | v � w〉‖ ≤ Kχ(v � w)(|w| − |v|)! ≤ K |w|χ(w)/χ(v).

Note if v � w = 0 then 〈Rv | w〉 = 0 and the previous conclusion holds. It follows
that RP is K

χ−gc〈〈X〉〉 by taking K2 = K minv∈supp(P) χ(v)−1.
3. Let ξ, χ be functions which satisfy the upper bound condition. The following

quantity is well defined

∑
w∈X∗

χ(w)ξ(w) =
(∑

x∈X
χ(x)ξ(x)

)∗
.

If F ∈ K
χ−gc〈〈X〉〉,C ∈ K

ξ−em〈〈X〉〉 then there exist Ki ∈ R+, ni ∈ N, i = 1, 2
such that, for w ∈ X≥ni , ‖〈F | w〉‖ ≤ K1χ(w)|w|! and ‖〈C | w〉‖ ≤ K2ξ(w)/

|w|!. Thus,

∀w ∈ X∗, |w| ≥ max{n1, n2}, ‖〈F |w〉〈C |w〉‖ ≤ K1K2χ(w)ξ(w),

⇒
∑
w∈X∗

‖〈F |w〉〈C |w〉‖ ≤ K1K2

∑
w∈X∗

χ(w)ξ(w) = K1K2

(∑
x∈X

χ(x)ξ(x)

)∗
.

3.1.2 Upper Bounds à la Cauchy

The algebra of formal power series on commutative indeterminates {q1, . . . , qn}with
coefficients in C is denoted by C[[q1, . . . , qn]].
Definition 9 ([28, 42, 43]) Let f =∈ C[[q1, . . . , qn]]. We set

E( f ) := {ρ ∈ R
n+ : ∃C f ∈ R+ s.t. ∀i1, . . . , in ≥ 0, | fi1,...,in |ρi1

1 . . . ρin
n ≤ C f }.

Ĕ( f ) : the interior ofE( f )in R
n.

CV( f ) := {q ∈ C
n : (|q1|, . . . , |qn|) ∈ Ĕ( f )} : the convergence domain of f.

f is convergent if CV( f ) �= ∅. Let U ⊂ C
n be an open domain and q ∈ C

n .
f is convergent on q (resp. over U ) if q ∈ CV( f ) (resp. U ⊂ CV( f )). We
set C

cv[[q1, . . . , qn]] := { f ∈ C[[q1, . . . , qn]] : CV( f ) �= ∅}. Let q ∈ CV( f ). There
exist C f ∈ R+, ρ ∈ E( f ), ρ̄ ∈ Ĕ( f ) such that |q1| < ρ̄1 < ρ1, . . . , |qn| < ρ̄n < ρn

and | fi1,...,in |ρi1
1 . . . ρin

n ≤ C f for any i1, . . . , in ≥ 0.
The convergence modulus of f at q is (C f , ρ, ρ̄).

Suppose CV( f ) �= ∅ and let q ∈ CV( f ). If (C f , ρ, ρ̄) is a convergence modu-
lus of f at q then | fi1,...,in qi1

1 . . . qin
n | ≤ C f (ρ̄1/ρ1)

i1 . . . (ρ̄1/ρ1)
in . Hence, at q, f is

majored termwise by C f
∏m

k=0(1− ρ̄k/ρk)
−1 and it is uniformly absolutely conver-

gent in {q ∈ C
n : |q1| < ρ̄, . . . , |qn| < ρ̄}which is open inC

n . Thus, CV( f ) is open
in C

n . Since the partial derivation D j1
1 . . . D jn

n f is estimated by
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‖D j1
1 . . . D jn

n f ‖ ≤ C f
∂ j1+···+ jn

∂ j1 ρ̄1 . . . ∂ jn ρ̄n

m∏
k=0

(
1− ρ̄k

ρk

)−1
.

Proposition 18 ([28, 42, 43])We have CV( f ) ⊂ CV(D j1
1 . . . D jn

n f ).

Let f ∈ C
cv[[q1, . . . , qn]]. Let {Ai }i=0,1 be a polysystem defined as follows

Ai =
n∑
j=1

A j
i (q)

∂

∂q j
, ∀ j = 1, . . . , n, A j

i (q) ∈ C
cv[[q1, . . . , qn]]. (32)

Let (ρ, ρ̄,C f ), {(ρ, ρ̄,Ci )}i=0,1 be convergence modulus at q ∈ CV( f )
∩i=0,1, j=1,...,n CV(A j

i ) of f and {A j
i } j=1,...,n . Let us consider the following monoid

morphisms

A (1X∗) = identity and C(1X∗) = 1, (33)

∀w = vxi , xi ∈ X, v ∈ X∗, A (w) = A (v)Ai and C(w) = C(v)Ci . (34)

Lemma 5 ([24]) For i = 0, 1 and j = 1, . . . , n, one has Ai ◦ q j = A j
i . Hence,

∀i = 0, 1, Ai =
n∑
j=1

(Ai ◦ q j )
∂

∂q j
.

Lemma 6 ([23]) For any word w, A (w) is continuous over C
cv[[q1, . . . , qn]] and,

for any f, g ∈ C
cv[[q1, . . . , qn]], one has

A (w) ◦ ( f g) =
∑

u,v∈X∗
〈u �� v | w〉(A (u) ◦ f )(A (v) ◦ g).

These notations are extended, by linearity, to K〈X〉 and we will denote A (w) ◦ f|q
the evaluation of A (w) ◦ f at q.

Definition 10 ([23]) Let f ∈ C
cv[[q1, . . . , qn]]. The generating series of the polysys-

tem {Ai }i=0,1 and of the observation f is given by

σ f :=
∑
w∈X∗

A (w) ◦ f w ∈ C
cv[[q1, . . . , qn]]〈〈X〉〉.

Then the following generating series is calledFliess generating series of the polysys-
tem {Ai }i=0,1 and of the observation f at q:

σ f|q :=
∑
w∈X∗

A (w) ◦ f|q w ∈ C〈〈X〉〉.
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Lemma 7 ([23]) The map σ : (Ccv[[q1, . . . , qn]], .) −→ (Ccv[[q1, . . . , qn]]〈〈X〉〉, ��)
is an algebra morphism, i.e. for any f, g ∈ C

cv[[q1, . . . , qn]] and μ, ν ∈ C, one has
σ(ν f + μh) = νσ f + μσg and σ( f g) = σ f �� σg.

Lemma 8 ([24]) For any w ∈ X∗, σ(A (w) ◦ f )=w � σ f ∈ C
cv[[q1, . . . , qn]]〈〈X〉〉.

Theorem 10 ([28, 42, 43])

1. Let τ = min1≤k≤n ρk and r = max1≤k≤n ρ̄k/ρk . We have

‖A (w) ◦ f ‖ ≤ C f
(n + 1)

(1− r)n
C(w)|w|!(n+|w|−1

|w|
)
[

n

τ(1− r)n+1

]|w|

≤ C f
(n + 1)

(1− r)n
C(w)

[
n

τ(1− r)n+1

]|w|
|w|!.

2. Let K = C f (n + 1)(1− r)−n and χ be the real positive function defined over
X∗:

∀i = 0, 1, χ(xi ) = Cin(1− r)−(n+1)/τ.

Then25 the generating series σ f of the polysystem {Ai }i=0,1 and of the observation
f satisfies the χ -growth condition.

3.2 Polysystem and Nonlinear Differential Equation

3.2.1 Nonlinear Differential Equation (with Three Singularities)

Let us consider the singular inputs26 u0(z) := z−1 and u1(z) := (1− z)−1, and
⎧⎨
⎩

y(z) = f (q(z)),
q̇(z) = A0(q) u0(z)+ A1(q) u1(z),
q(z0) = q0,

(35)

where the state q = (q1, . . . , qn) belongs to a complex analytic manifold of dimen-
sion n, q0 is the initial state, the observation f belongs to C

cv[[q1, . . . , qn]] and
{Ai }i=0,1 is the polysystem defined on (32).

Definition 11 ([30]) The following power series is called transport operator27 of
the polysystem {Ai }i=0,1 and of the observation f

25It is the same for the Fliess generating series σ f|q of {Ai }i=0,1 and of f at q.
26These singular inputs are not included in the studies of Fliess motivated, in particular, by the
renormalization of y at +∞ [23, 24].
27It plays the rôle of the resolvent in Mathematics and the evolution operator in Physics.
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T :=
∑
w∈X∗

αz
z0(w) A (w).

By the factorization of the monoid by Lyndon words, we have [30]

T = (αz
z0 ⊗A )

( ∑
w∈X∗

w⊗ w

)
=

∏
l∈L ynX

exp[αz
z0(Sl) A (Pl)].

The Chen generating series along the path z0 � z, associated to ω0, ω1 is

Sz0�z :=
∑
w∈X∗

〈S | w〉 w with 〈S | w〉 = αz
z0(w) (36)

which solves the differential equation (25) with the initial condition Sz0�z0 = 1.
Thus, Sz0�z and L(z)L(z0)−1 satisfy the same differential equation taking the same
value at z0 and Sz0�z = L(z)L(z0)−1. Any Chen generating series Sz0�z is group like
[50] and depends only on the homotopy class of z0 � z [10]. The product of Sz1�z2
and Sz0�z1 is Sz0�z2 = Sz1�z2 Sz0�z1 . Let ε ∈]0, 1[ and zi = ε exp(iβi ), for i = 0, 1.
We set β = β1 − β0. Let Γ0(ε, β0) (resp. Γ1(ε, β1)) be the path turning around 0
(resp. 1) in the positive direction from z0 to z1. By induction on the length of w, one
has |〈SΓi (ε,β) | w〉| = (2ε)|w|xi β |w|/|w|!, where |w| denotes the length of w and |w|xi
denotes the number of occurrences of letter xi inw, for i = 0 or 1.When ε tends to 0+,
these estimations yield SΓi (ε,β) = eiβxi + o(ε). In particular, if Γ0(ε) (resp. Γ1(ε)) is
a circular path of radius ε turning around 0 (resp. 1) in the positive direction, starting
at z = ε (resp. 1− ε), then, by the noncommutative residue theorem [33, 37], we
get

SΓ0(ε) = e2iπx0 + o(ε) and SΓ1(ε) = e−2iπx1 + o(ε). (37)

Finally, the asymptotic behaviors of L on (26) give [33, 37]

Sε�1−ε ε̃→0+ e−x1 log εZ�� e−x0 log ε. (38)

In other terms, Z�� is the regularized Chen generating series Sε�1−ε of differential
forms ω0 and ω1: Z�� is the noncommutative generating series of the finite parts of
the coefficients of the Chen generating series ex1 log ε Sε�1−ε ex0 log ε.

3.2.2 Asymptotic Behavior via Extended Fliess Fundamental Formula

Theorem 11 ([42, 43]) y(z) = T ◦ f|q0 = 〈σ f|q0 || Sz0�z〉.
This extends then Fliess fundamental formula [23]. By Theorem 5, the expansions
of the output y of nonlinear dynamical system with singular inputs follow
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Corollary 4 (Combinatorics of Dyson series, [42, 43])

y(z) =
∑
w∈X∗

gw(z) A (w) ◦ f|q0

=
∑
k≥0

∑
n1,...,nk≥0

gxn10 x1...x
nk
0 x1(z) adn1A0

A1 . . . adnkA0
A1e

log zA0 ◦ f|q0

=
∏

l∈L ynX

exp

(
gSl (z) A (Pl) ◦ f|q0

)

= exp

( ∑
w∈X∗

gw(z) A (π1(w)) ◦ f|q0

)
,

where, for any word w in X∗, gw belongs to the polylogarithm algebra.

Since Sz0�z = L(z)L(z0)−1 and σ f|q0 ,L(z0)−1 are invariant by ∂z = d/dz and
θ0 = zd/dz then we get the nth order differentiation of y, with respect to ∂z and θ0:

∂n
z y(z) = 〈σ f|q0 || ∂n Sz0�z〉 = 〈σ f|q0 || ∂n

z L(z)L(z0)
−1〉,

θn
0 y(z) = 〈σ f|q0 || θn

0 Sz0�z〉 = 〈σ f|q0 || θn
0 L(z)L(z0)

−1〉.

With the notations of Proposition 8, we get respectively

∂n
z y(z) = 〈σ f|q0 || [Dn(z)L(z)]L(z0)

−1〉 = 〈σ f|q0 � Dn(z) || L(z)L(z0)
−1〉,

θn
0 y(z) = 〈σ f|q0 || En(z)L(z)]L(z0)

−1〉 = 〈σ f|q0 � En(z) || L(z)L(z0)
−1〉.

For z0 = ε → 0+, the asymptotic behavior and the renormalization at z = 1 of
∂n
z y and θn

0 y (or the asymptotic expansion and the renormalization of its Taylor
coefficients at +∞) are deduced from (38) and extend a little bit results of [42, 43]:

Corollary 5 (Asymptotic behavior of output, [42, 43])

1. The n-order differentiation of the output y of the system (35) is a C -combination
of the elements g belonging to the polylogarithm algebra and,28 for any n ≥ 0,

28Moreover, we get more out of this i.e. θn1 y(z) = 〈σ f|q0 || θn1 Sz0�z〉 = 〈σ f|q0 || θn1 L(z)L(z0)−1〉.
Therefore,

θn1 y(z) = 〈σ f|q0 || [Dn(z)− En(z)]L(z)L(z0)
−1〉 = 〈σ f|q0 � [Dn(z)− En(z)] || L(z)L(z0)

−1〉.
Hence,

θn1 y(1) ε̃→0+
∑
w∈X∗

〈A (w) ◦ f|q0 | w〉〈[Dn(1− ε)− En(1− ε)]e−x1 log ε Z�� e−x0 log ε | w〉.

The actions of θ0 = u0(z)−1d/dz and θ1 = u1(z)−1d/dz over y are equivalent to those of the
residuals of σ f|q0 by respectively x0 and x1. They correspond to functional differentiations [25]
while ∂z = d/dz is the ordinary differentiation and is equivalent to the residual by x0 + x1.
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∂n
z y(1) ε̃→0+

∑
w∈X∗

〈A (w) ◦ f|q0 | w〉〈Dn(1− ε) e−x1 log ε Z�� e−x0 log ε | w〉,

θn
0 y(1) ε̃→0+

∑
w∈X∗

〈A (w) ◦ f|q0 | w〉〈En(1− ε) e−x1 log ε Z�� e−x0 log ε | w〉.

2. If the ordinary Taylor expansions of ∂n
z y and θn

0 y exist then the coefficients of these
expansions belong to the algebra of harmonic sums and there exist algorithmically
computable coefficients ai , a′i ∈ Z, bi , b′i ∈ N, ci , c′i ∈ Z [γ ] such that

∂n
z y(z) =

∑
k≥0

dkz
n and dk k̃→∞

∑
i≥0

ci k
ai logbi k,

θn
0 y(z) =

∑
k≥0

tk z
k and tk k̃→∞

∑
i≥0

c′i k
a′i logb

′
i k.

3.3 Differential Realization

3.3.1 Differential Realization

Definition 12 ([24]) The Lie rank of a formal power series S ∈ K〈〈X〉〉 is the dimen-
sion of the vector space generated by

{S �Π | Π ∈ L ieK〈X〉}, or respectively by {Π � S | Π ∈ L ieK〈X〉}.

Definition 13 ([51]) Let S ∈ K〈〈X〉〉 and let us put Ann(S) := {Π ∈ L ieK〈X〉 |
S �Π = 0}, and Ann⊥(S) := {Q ∈ (K〈〈X〉〉, ��) | Q � Ann(S) = 0}.

It is immediate that Ann⊥(S) ' S. It follows then (see [24, 51] and Lemma 7),

Lemma 9 ([24]) Let S ∈ K〈〈X〉〉. Then
1. If S is of finite Lie rank, d, then the dimension of Ann⊥(S) is d.
2. For any Q1 and Q2 ∈ Ann⊥(S), one has Q1 �� Q2 ∈ Ann⊥(S).
3. For any P ∈ K〈X〉 and Q1 ∈ Ann⊥(S), one has P � Q1 ∈ Ann⊥(S).

Definition 14 The formal power series S ∈ K〈〈X〉〉 is differentially produced if there
exist an integer d, a power series f ∈ K[[q̄1, . . . , q̄d ]], a homomorphismA from X∗
to the algebra of differential operators generated by

A (xi ) =
d∑
j=1

A j
i (q̄1, . . . , q̄d )

∂

∂q̄ j
, where ∀ j = 1, . . . , d, A j

i (q̄1, . . . , q̄d ) ∈ K[[q̄1, . . . , q̄d ]]

such that, for any w ∈ X∗, one has 〈S | w〉 = A (w) ◦ f|0 .
The pair (A , f ) is called the differential representation of S of dimension d.
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Proposition 19 ([51]) Let S ∈ K〈〈X〉〉. If S is differentially produced then it satisfies
the growth condition and its Lie rank is finite.

Proof Let (A , f ) be a differential representation of S of dimension d. Then, by the
notations of Definition 10, we get σ f|0 = S =∑

w∈X∗(A (w) ◦ f )|0 w. We put

∀ j = 1, . . . , d, Tj =
∑
w∈X∗

∂(A (w) ◦ f )

∂ q̄ j
w.

Firstly, by Theorem 10, the generating series σ f satisfies the growth condition.
Secondly, for any Π ∈ L ieK〈X〉 and for any w ∈ X∗, one has

〈σ f �Π | w〉 = 〈σ f | Πw〉 = A (Πw) ◦ f = A (Π) ◦ (A (w) ◦ f ).

Since A (Π) is a derivation over K[[q̄1, . . . , q̄d ]]:

A (Π) =
d∑
j=1

(A (Π) ◦ q̄ j )
∂

∂q̄ j
,

⇒ A (Π) ◦ (A (w) ◦ f ) =
d∑
j=1

(A (Π) ◦ q̄ j )
∂(A (w) ◦ f )

∂ q̄ j

then we deduce that

∀w ∈ X∗, 〈σ f �Π | w〉 =
d∑
j=1

(A (Π) ◦ q̄ j )〈Tj | w〉,

⇐⇒ σ f �Π =
d∑
j=1

(A (Π) ◦ q̄ j ) Tj .

This means that σ f �Π is a K-linear combination of {Tj } j=1,...,d and the dimension
of the vector space span{σ f �Π | Π ∈ L ieK〈X〉} is less than or equal to d.

3.3.2 Fliess’ Local Realization Theorem

Proposition 20 ([51]) Let S ∈ K〈〈X〉〉 with Lie rank d. Then there exists a basis
S1, . . . , Sd ∈ K〈〈X〉〉 of (Ann⊥(S), ��) ∼= (K[[S1, . . . , Sd ]], ��) such that the Si ’s are
proper and for any R ∈ Ann⊥(S), one has

R =
∑

i1,...,id≥0

ri1,...,in
i1! . . . id ! S

�� i1
1 �� . . . �� S�� idd , where r0,...,0 = 〈R | 1X∗ 〉, ri1,...,id ∈ K.
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Proof By Lemma 9, such a basis exists. More precisely, since the Lie rank of S is d
then there exist P1, . . . , Pd ∈ L ieK〈X〉 such that S � P1, . . . , S � Pd ∈ (K〈〈X〉〉, ��)
are K-linearly independent. By duality, there exists S1, . . . , Sd ∈ (K〈〈X〉〉, ��) such
that

∀i, j = 1, . . . , d, 〈Si | Pj 〉 = δi, j , and R =
d∏

i=1
exp(Si Pi ).

Expanding this product, one obtains, via PBW theorem, the expected expression for
the coefficients {ri1,...,id = 〈R | Pi1

1 . . . Pid
d 〉}i1,...,id≥0. Hence, (Ann⊥(S), ��) is gener-

ated by S1, . . . , Sd .

With the notations of Proposition 20, one has

Corollary 6 1. If S ∈ K[S1, . . . , Sd ] then, for any i = 0, 1 and for any j = 1, . . . ,
d, one has xi � S ∈ Ann⊥(S) = K[S1, . . . , Sd ].

2. The power series S satisfies the growth condition if and only if, for any i =
1, . . . , d, Si also satisfies the growth condition.

Proof Assume there exists j ∈ [1, . . . , d] such that Sj does not satisfy the growth
condition. Since S ∈ Ann⊥(S) then using the decomposition of S on S1, . . . , Sd , one
obtains a contradiction with the fact that S satisfies the growth condition.

Conversely, using Proposition 16, we get the expected results.

Theorem 12 ([24]) The formal power series S ∈ K〈〈X〉〉 is differentially produced
if and only if its Lie rank is finite and if it satisfies the χ -growth condition.

Proof By Proposition 19, one gets a direct proof. Conversely, since the Lie rank of
S equals d then by Proposition 20, setting σ f|0 = S and, for j = 1, . . . , d, σ q̄i = Si ,

1. We choose the observation f as follows

f (q̄1, . . . , q̄d) =
∑

i1,...,id≥0

ri1,...,in
i1! . . . id ! q̄

i1
1 . . . q̄ id

d ∈ K[[q̄1, . . . , q̄d ]]

such that

σ f|0(q̄1, . . . , q̄d) =
∑

i1,...,id≥0

ri1,...,in
i1! . . . id ! (σ q̄1)

�� i1 �� . . . ��(σ q̄d)
�� id ,

2. It follows that, for i = 0, 1 and for j = 1, . . . , d, the residual xi � σ q̄ j belongs
to Ann⊥(σ f|0) (see also Lemma 9),

3. Since σ f satisfies the χ -growth condition then, the generating series σ q̄ j and
xi � σ q̄ j (for i = 0, 1 and for j = 1, . . . , d) verify also the growth condition. We
then take (see Lemma 8)

∀i = 0, 1,∀ j = 1, . . . , d, σ Ai
j (q̄1, . . . , q̄d) = xi � σ q̄ j ,
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by expressing σ Ai
j on the basis {σ q̄i }i=1,...,d of Ann⊥(σ f|0),

4. The homomorphism A is then determined as follows

∀i = 0, 1, A (xi ) =
d∑
j=0

Ai
j (q̄1, . . . , q̄d)

∂

∂q̄ j
,

where, by Lemma 5, one has Ai
j (q̄1, . . . , q̄d) = A (xi ) ◦ q̄ j .

Thus, (A , f ) provides a differential representation29 of dimension d of S.

Moreover, one also has the following

Theorem 13 ([24])Let S ∈ K〈〈X〉〉 be a differentially produced formal power series.
Let (A , f ) and (A ′, f ′) be two differential representations of dimension n of S.
There exist a continuous and convergent automorphism h of K such that

∀w ∈ X∗,∀g ∈ K, h(A (w) ◦ g) = A ′(w) ◦ (h(g)) and f ′ = h( f ).

Since any rational power series satisfies the growth condition and its Lie rank is
less than or equal to its Hankel rank which is finite [24] then

Corollary 7 Any rational power series and any polynomial over X with coefficients
in K are differentially produced.
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The Root Lattice A2 in the Construction
of Substitution Tilings and Singular
Hypersurfaces

Juan García Escudero

Abstract The analysis of the critical points of a one-parameter family of poly-
nomials allows us to define sets of pseudolines in the fundamental region of the
affine Weyl group associated with the root lattice A2. The pseudolines are trans-
formed into configurations of lines containing the prototiles of substitution tilings
with n-fold symmetry. The configurations of lines have been used recently to obtain
hypersurfaces with many singularities. Calabi–Yau threefolds can be constructed
from resolutions of some of the singular hypersurfaces.

Keywords Calabi–Yau threefolds · Singular hypersurfaces · Substitution tilings

1 Introduction

In [14, 15] we have shown that special types of simple arrangements of d lines are
related to a class of bivariate polynomials Ĵd,τ (x, y) having many critical points with
few critical values. The polynomials have been used in the construction of algebraic
surfaces with many A and D singularities [13, 14].

Tilings exhibiting non-crystallographic symmetries have been significant in the
past decades in the field of quasicrystals. The root lattice A4 was considered in
[1] to generate planar tilings with tenfold symmetry by projection methods. An
arrangement of pseudolines is a collection of curves topologically equivalent to lines
(pseudolines are also called topological lines) such that any two of them intersect
exactly once. If no three of them meet in a common point then the arrangement is
said to be simple. The analysis of the critical points of Ĵd,τ (x, y) allows us to define
pseudoline arrangements inside the fundamental region of the affineWeyl group asso-
ciated with the root lattice A2, which can be transformed into simple and simplicial
(all the bounded cells are triangles) arrangements of lines containing the triangular
prototiles of substitution tilings with n-fold symmetry [10]. Topological invariants
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of tiling spaces connected with the simplicial arrangements have been studied in
[11, 12], where we have shown that there are fivefold and ninefold symmetry tiling
spaces having minimal first cohomology groups, a property that distinguish them
from others with the same symmetries. Random tilings can be generated from both
the line and the pseudoline configurations [10].

On the other hand, by following Hirzebruch’s methods [20, 21] applied to special
line configurations associatedwith Ĵd,τ (x, y), threefoldswith trivial canonical bundle
and absolute value of the Euler number not large but different from zero can be
obtained. Calabi–Yau threefolds associated with higher dimensional root lattices
like A4 were studied in [23]. In this paper we use Mathematica [33] and Singular
[19] computer algebra systems.

2 On a One-Parameter Family of Bivariate Polynomials

The folding polynomials of degree d, obtained in the study of the generalisation of
Chebyshev polynomials in two variables [22, 24, 25], associated with the affine
Weyl group of the root lattice A2, are defined for (z, w) ∈ C2 as F A2

d (z, w) :=
j1,d(z, w) + j2,d(z, w), where j2,d(z, w) = j1,d(w, z) and j1,d(z, w) satisfies the
recursion relation

j1,d(z, w) = z j1,d−1(z, w) − w j1,d−2(z, w) + j1,d−3(z, w) (1)

with j1,1(z, w) = z, j1,2(z, w) = z2 − 2w, j1,3(z, w) = z3 − 3zw + 3.
We consider, for (x, y) ∈ R2 and τ ∈ R, the one-parameter family of degree d

polynomials with real coefficients

Ĵd,τ (x, y) := ei(τ+ 2π
3 )

˜j1,d(x, y) + e−i(τ+ 2π
3 )

˜j2,d(x, y) + 2cos3τ (2)

where ˜j1,d(x, y) = j1,d(x + iy, x − iy),˜j2,d(x, y) = ˜j∗1,d(x, y) and the superscript
asterisk stands for complex conjugation.

The map ˜h(u, v) : R2 → R2, is defined by ˜h(u, v) := (cos(2π(u + v)) + cos
(2πu) + cos(2πv), sin(2π(u + v)) − sin(2πu) − sin(2πv)) = (x, y). A basis of
simple roots {α1,α2} for the root lattice A2 is α1 = (2, 0),α2 = (−1,

√
3). In [14]

we showed that the critical points with critical value ζ = 0 in the (u, v) plane are
situated in the downscaled root lattice with basis {α1

6d , α1+α2
6d }. They determine a set of

d pseudolines, whose images under˜h are the lines in the (x, y) plane whose union is
used to define Ĵd,0(x, y). The pseudolines represent also periodic billiard trajectories
in the region u − v ≥ 0, u + 2v ≥ 0, 2u + v ≤ 1, which is the fundamental region,
denoted by Δ, of the affine Weyl group W̃ (A2). The images of ∂Δ and the pseudo-
lines under˜h are the deltoid and its tangents respectively. We can extend the results
in [14] by taking into account the positions of the corresponding critical points of
Ĵd,τ (x, y). We get the lines Ld,ν,τ (x, y) = 0, ν = −� d−2

2 	,−� d−2
2 	 + 1, ..., � d+1

2 	
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with Ld,ν,τ (x, y) := y − (x − cos( 2πd ( 6ν−1
6 − τ

π
)))tan( π

d ( 6ν−1
6 − τ

π
)) + sin( 2πd ( 6ν−1

6− τ
π
)). The polynomials are the union of the lines, up to the normalising factor

λd,τ = ei(τ+ 2π
3 + dπ

2 ) + e−i(τ+ 2π
3 + dπ

2 ) corresponding to the term yd for τ + 2π
3 + dπ

2 
=
(2m + 1) π

2 , or λd,τ = (−1)m2d corresponding to xyd−1 when τ = (6m − 3d − 1) π
6

(in this case the line Ld,ν,τ (x, y) = 0 parallel to the y-axis is interpreted as the line
x = −1):

Ĵd,τ (x, y) = λd,τ

∏

ν

Ld,ν,τ (x, y) (3)

The following theorem describes some properties of the critical points of Ĵd,τ (x, y)
[15]:

Theorem 1 The critical points and critical values of Ĵd,τ (x, y) have the following
properties:
(p1) The critical values are

ζ = 0, ζM(τ ) = 6cosτ + 2cos3τ , ζm1(τ ) = ζM(τ − 2π

3
), ζm2(τ ) = ζM(τ + 2π

3
).

(p2) The critical points with critical values ζM(τ ), ζm1(τ ) and ζm2(τ ) have the same
coordinates ∀τ ∈ R.
(p3) At the points τ ∈ ΛΣ := {k π

3 , k ∈ Z, 0 ≤ k ≤ 5}, either Ĵd,τ (x, y) or

− Ĵd,τ (x, y) have all the maxima with critical value 8 and all the minima
with value -1.
(p4) All the maxima have values 3

√
3 and all the minima −3

√
3 at τ ∈ ΛS :=

{(2k + 1) π
6 , k ∈ Z, 0 ≤ k ≤ 5}.

(p5) For each τ ∈ Λ3 := [0, 2π) \ {k π
6 , k ∈ Z, 0 ≤ k ≤ 11}, Ĵd,τ (x, y) has critical

values ζ = 0 and ζm,m = 1, 2, 3, with 0 < |ζ3| < 1 < |ζ2| < 3
√
3 < |ζ1| < 8 and

sgn(ζ1) 
= sgn(ζ2) = sgn(ζ3).

3 Substitution Tilings

The critical points of Ĵd,τ (x, y) are the images under ˜h of the critical points of
Hd,τ (u, v) = 2cos(2πdu − 2π

3 − τ ) + 2cos(2πdv − 2π
3 − τ ) + 2cos(2πd(u + v) +

2π
3 + τ ), with (u, v) ∈ Δ \ ∂Δ (when τ ∈ ΛS , some critical points with criti-
cal value 0 are situated in ∂Δ). A direct computation of the critical values of
Hd,τ (u, v) + 2cos3τ leads to the following cases (k, l ∈ Z) [15]:

(a) ζM(τ ) = 6cosτ + 2cos3τ ; u = 3k+1
3d , v = 3l+1

3d .
(b) ζm1(τ ) = 6cos(τ − 2π

3 ) + 2cos3τ ; u = 3k+2
3d , v = 3l+2

3d .
(c) ζm2(τ ) = 6cos(τ + 2π

3 ) + 2cos3τ ; u = k
d , v = l

d .
(d) ζ = 0;

(d1) u = 6k−1
6d − τ

πd , v = 6l−1
6d − τ

πd ;
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Fig. 1 Pseudolines in the (u, v) plane, represented in color, inside Δ for d = 6 (top, left) and d =
9 (bottom). Lines in the (x, y) plane for d = 6 (top, right) as images of the pseudolines under˜h

(d2) u = 6k−1
6d − τ

πd , v = 3l+1
3d + 2τ

πd ;
(d3) u = 3k+1

3d + 2τ
πd , v = 6l−1

6d − τ
πd .

Critical points of Hd,π/6(u, v) + 2 with critical values 3
√
3, 0,−3

√
3 are repre-

sented by ◦, ∗, • respectively in Fig. 1. The critical points with critical value 0 define
a set of pseudolines represented in color. The lines u = c, c being a constant, denoted
by lu=c, are transformed under ˜h into y = (x − cos(2πc))tan(πc) − sin(2πc) [14].
If two lines l1, l2 are transformed under ˜h into the same line, then we write l1 ∼ l2
and the pseudoline is l1 ∪ l2. We have the following properties:
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lu=c ∼ lv=c, lu+v=c ∼ lu=−c (mod 6d), lu+v=c ∼ lv=−c (mod 6d).

For d = 6, τ = π/6 the critical points are (up to the factor 1/36)

ζM(π/6) = 3
√
3 : {(14,−4), (8, 2), (14, 2)} ⊂ Δ \ ∂Δ,

ζm2(π/6) = −3
√
3 : {(18,−6), (12, 0), (6, 0), (12, 6)} ⊂ Δ \ ∂Δ,

ζm1(π/6) = 0 : {(10,−2), (16,−2), (10, 2)} ⊂ Δ \ ∂Δ,

ζ = 0 : {(22,−8), (16,−8), (4,−2), (4, 4), (16, 4), (10, 10)} ⊂ ∂Δ

Having in mind the coordinates of the critical points with critical value zero, we get
the following 6 pseudolines connecting those points (Fig. 1, top, left):

lu=4 ∪ lv=4, lu=10 ∪ lv=10, lu=16 ∪ lu+v=20,

lu=22 ∪ lu+v=14, lv=−8 ∪ lu+v=8, lv=−2 ∪ lu+v=2

The images of the pseudolines under˜h in the (x, y) plane are simple arrangements
of lines, denoted by Σd

D,Σd
C , when τ ∈ ΛΣ , and simplicial arrangements of lines

SdD, SdC if τ ∈ ΛS (the subindexC denotes cyclic symmetry). The arrangement shown
in Fig. 1 (top, right) is S6C . In Fig. 2 (left) we can seeΣ9

C (discontinuous lines) and S9C
(continuous lines) superimposed, the last one being the image of the configuration

Fig. 2 Simple and simplicial arrangements for d = 9 superimposed (left). Copies of the prototiles
c, f and a mirror image of g with arrows on the edges (right)
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Fig. 3 The deltoid (left). The lines of the simplicial arrangement S9C are tangents of the deltoid
(right)

of pseudolines in Fig. 1 (bottom). The deltoid and S9C are represented in Fig. 3. The
prototiles (minimal set of tiles such that each tile in the tiling is congruent to one
of those in the prototile set) for a wide class of tilings can be obtained from the
simple or the simplicial arrangements. A substitution or inflation rule determines
how to replace each prototile with a patch of tiles. Iteration of the substitution rules
gives, in the limit, a substitution tiling. The possible patches of tiles necessary for
the derivation of the substitution rules are included in the simplicial arrangements.
However, in order to get the inflation rules a decoration by arrows on the prototile
edges is needed. In Fig. 2 (left) we see that when we represent the union of simple
and simplicial arrangements (SdC andΣ9

C in this case), the prototiles are decorated by
their own scaled copies in their interiors. The vertices of the scaled tiles, represented
by discontinuous lines, lying on the edges induce a decoration by arrows (directed
for instance from the shortest to the longest segment) on the edges as indicated in
Fig. 2 (right).

The method studied in [27] concerns the construction of substitutions on the set
T of all triangles with angles mπ/d, d = 2n + 1 
= 3l, l,m, n ∈ Z+. It is based on
particular cases of the arrangements given above, namely S2n+1

D , whichwere obtained
in [17]. Later the method was extended to the cases not studied in [27], first for
d = 2n + 1 = 3l, and then for even symmetries [6–8, 10]. The only example in [27]
of a substitution defined on a proper subset S ⊂ T of all the triangles with angles that
are a multiple of π/d is for d = 7 (see [27], Sect. 6.3 on concluding remarks), which
on the other hand is not obtained from their construction, although it corresponds to d
odd and not divisible by three. For d = 9, 12, 15 examples of substitutions defined in
S can be found in [6, 8]. For d divisible by three one can use the general constructions
of line configurations given in [10] in order to get substitutions on S. They correspond
to special cases of the configurations obtained with Ĵd,τ (x, y). Images of the tilings
with patches showing also local dihedral 2d-fold symmetry for d = 8, 9, 12 can be
seen in [12, 16].
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There are several methods to get non-deterministic structures. The method of
composition of inflation rules, also called multisubstitutions, consists in applying
the same inflation rule to each tile in a given inflation step. Examples with only one
prototile set were treated in [27] and with different prototile sets in [7, 8].

A different type of structures are the random substitution tilings, which are char-
acterised by the fact that one can apply at each inflation step several substitution
rules to each tile. Examples of edge-to-edge random substitutions in the plane were
obtained in [9]. Now, we show how tile rearrangements in the inflation rules with
PV inflation factors give random tilings for d = 5 and d = 9.

Inflation factors that are unit PV numbers for d = 9 are μ2μ4,μ4,μ
2
4, where

μk := sin(kπ/d)

sin(π/d)
, with minimal polynomials 1 + 3x − 6x2 + x3, 1 − 3x2 + x3 and

−1 + 6x − 9x2 + x3 respectively. The inflation rules for the sets with 3 and 7 pro-
totiles are denoted by Φm, Φ ′

m , respectively, if the inflation factor is μm . In Fig. 4a

Fig. 4 a The two sets of prototiles for d = 9 are {a, b, c} and {a, b, c, d, e, f, g}. b Inflation
rules Φ4 with inflation factor μ4 for {a, b, c}. c Inflation rules Φ ′

4 with inflation factor μ4 for
{a, b, c, d, e, f, g}



108 J.G. Escudero

Fig. 5 Inflation rulesΦ2, Φ
′
2 for d = 9 with inflation factor μ2 for a {a, b, c}, b {a, b, c, d, e, f, g}

Fig. 6 a Tile rearrangements for d = 9. b InΦ4Φ2(b) there are two places where the tile rearrange-
ments can be realised

the seven prototiles for d = 9 are represented. The remaining prototiles are their
mirror images. Two examples of edge-to-edge substitution rules are given in Figs. 4
and 5. The rules Φ4, Φ2 shown in Figs. 4b and 5a are defined for a proper subset of
3 prototiles, whereas the rules Φ ′

4, Φ
′
2 are defined for 7 prototiles (Figs. 4c and 5b).

In order to get random tilings we first generate the pattern (Φ4Φ2)
k−1, we apply tile

rearrangements as indicated in Fig. 6a to get a series of patterns and then we end by
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Fig. 7 The substitution rules Φ2− (top) and tile rearrangements in the inflation rules (bottom)

applying to them Φ ′
4Φ

′
2. The tile rearrangements in this case produce the tile g not

belonging to {a, b, c} therefore we can not get random tilings with only 3 prototiles
(only multisubstitutions).

For d = 5 two basic substitution rulesΦ+, Φ−, their compositions and randomisa-
tions havebeen studied in [11]. Theprototiles are twogolden triangles A, B appearing
in the Robinson decomposition of the Penrose tiling. The two successive inflation
steps to get Φ2− are shown in Fig. 7 (top). The tile rearrangements corresponding to
the inflation rules of Φ2− are given in Fig. 7 (bottom). They can be used in this case
to obtain random tilings: we get 12 different rules for the tile A and 2 for B. The
analysis ofΦ2+ shows that no rearrangements are possible in this case. Random tilings
having an inflation factor, that is the golden number squared have been obtained also
recently in [18], where an algorithm for generating inflation rules by computer is
given. Several examples for d = 7 defined on a proper subset of T are given in [18].

Proper subsets of triangular prototiles appear in the simple arrangements forming
Ĵd,τ (x, y) with τ ∈ Λ3. In this cases, the polynomials have three non-zero critical
values: one for the critical points inside the non-triangular cells of the arrangement
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Fig. 8 Other pseudoline arrangements for random tilings: a d = 6, b d = 8

and the other two for the critical points inside two subsets of triangles with different
sizes [15].

In [9] hexagonal and octagonal random substitution tilings were generated. The
prototiles and inflation rules can be obtained fromother types of simplicial pseudoline
arrangements. Nine pseudolines are necessary for the arrangement corresponding to
the hexagonal tilings (Fig. 8a), which has three triangular prototiles (see also a sub-
stitution rule in Fig. 8a). For octagonal tilings, the arrangement has ten pseudolines
containing four prototiles (Fig. 8b). There are two different substitution rules which
may be combined in order to obtain random tilings in the sense explained above.

4 Singular Algebraic Surfaces

The construction of algebraic surfaces with many singularities given in [13, 14], is
based on Ĵd,0(x, y). By varying τ in Ĵd,τ (x, y), which are solutions of a second-order
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Fig. 9 Images of G9,τ (x, y) for τ = kπ/54, k = 0, 13, 17, 30, 40, 47

linear partial differential equation [15], we can get transformations between surfaces
with different number of singularities.

We consider the family of polynomials :

Gd,τ (x, y) := ( Ĵd,τ (ηd,n+1, 0) − Ĵd,τ (ηd,n, 0)) Ĵd,τ (x, y) =

2(cos(τ + 2π/3))(˜j1,d(ηd,n+1, 0) − ˜j1,d(ηd,n, 0)) Ĵd,τ (x, y)

where ηd,m := 2cos d−m
d π + 1. In Fig. 9 we can see the representation of G9,τ (x, y)

for several values of τ .
A picture of one period of Ĵ9,τ (x, 0) = 2˜j1,9(x, 0)cos(τ + 2π/3) + 2cos3τ in

terms of τ and x can be seen in Fig. 10. The polynomial

T̂d(x) := Ĵd,τ (x, 0) − Ĵd,τ (ηd,n+1, 0)

Ĵd,τ (ηd,n+1, 0) − Ĵd,τ (ηd,n, 0)
= ˜j1,d(x, 0) − ˜j1,d(ηd,n+1, 0)

˜j1,d(ηd,n+1, 0) − ˜j1,d(ηd,n, 0)

is a normalised Chebyshev polynomial T̂d(x) = − Td (
x−1
2 )+1
2 , where Td(x) is the

Chebyshev polynomial with critical values −1 and 1.
By varying τ , the family of surfaces with affine equations

Gd,τ (x, y) − Ĵd,τ (z, 0) + Ĵd,τ (ηd,n+1, 0) = 0

describe transformations between the real variants of the Chmutov surfaces [2, 3]
and the surfaces obtained in [14] which have more singularities. In Fig. 11 we have
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Fig. 10 Representation of one period of Ĵ9,τ (x, 0) as a function of τ and x

represented the surfaces corresponding to d = 6 for eight increasing values of τ . The
first surface (top, left) has 59 real nodes and the fifth (third row, left) is equivalent to
the real variant of the Chmutov surface with 57 real nodes. Transformations between
the nodal threefolds constructedwith Ĵd,τ (x, y) can be obtained along the same lines.
The computation of the number of nodes for τ = 0 can be done by using Lemma 1
in [14]:

Lemma 1 The real polynomial Ĵd,0(x, y) has
(d
2

)

real critical points with critical

value 0. The number of real points with critical value 8 is d(d−3)
6 if d = 0 mod 3,

and (d−1)(d−2)
6 otherwise. The number of real critical points with critical value −1

is d2

3 − d + 1 for d = 0 mod 3, and (d−1)(d−2)
3 otherwise.

A direct consequence of this Lemma is the following result for nodal threefolds
(also called conifolds):

Theorem 2 The threefold in P4(C) defined by the homogenization of the equation

Ĵd,0(u, v) − Ĵd,0(z, w) = 0

has the following number of nodal singularities:

1

18
(18 − 36d + 39d2 − 24d3 + 7d4)
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Fig. 11 Transformation between degree six singular surfaces when τ varies
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if d ≡ 0 mod 3, and

1

18
(10 − 30d + 37d2 − 24d3 + 7d4)

otherwise.

5 Calabi–Yau Threefolds

In [20, 21], the author constructed threefolds with trivial canonical bundle and
absolute value of the Euler number not large but different from zero by using singular
threefolds V . A desingularization of V may be obtained by blowing up along the sin-
gular locus, but blowing up gives a smooth threefold with a different canonical class
in general. However, if the desingularization process is based on small resolutions
of the nodes then the canonical class is not changed.

Threefolds described by the affine equations f (x, y, z) + tm·h = 0,m ∈ N, where
f has simple surface singularities Ak(k ≥ 1), Dk(k ≥ 4), Ek(k = 6, 7, 8), were
studied in [21]. The Coxeter numbers are h(Ak) = k + 1, h(Dk) = 2k − 2, h(E6) =
12, h(E7) = 18, h(E8) = 30. If the exponent of t is amultiple of the Coxeter number
h of a singularity occurring in f , then there exist small resolutions of the singularity.
Every singularity enlarges the Euler number by k · m · h. If g(z3, z4, z5) = 0 is a
smooth curve of degree 10 in P2(C) Hirzebruch analyses the threefold

z21 + z52 + g(z3, z4, z5) = 0

in a weighted projective space P4
(w1,w2,w3,w4,w5)

:= C5\{0}
C\{0} , where C \ {0} acts by

λ : (z1, z2, z3, z4, z5) �−→ (λw1 z1,λ
w2 z2,λ

w3 z3,λ
w4 z4,λ

w5 z5),

(w1, w2, w3, w4, w5) = (5, 2, 1, 1, 1)

By choosing the variables u51 = z1, u22 = z2 then {z21 + z52 + g(z3, z4, z5) = 0} =
Y/G, where Y is given by the equation u101 + u102 + g = 0 in P4(C) and G is the
group of order 10 formed by the transformations (u1, u2) → (α.u1,β.u2), with
α5 = 1,β2 = 1. It is shown in [21] that Y/G has trivial canonical bundle and
χ = −288. In n complex dimensions the vanishing of the first Chern class c1 is
equivalent to the existence of an everywhere non-singular and non-zero holomor-
phic (n, 0)-form. This type of manifolds, with g(z3, z4, z5) = z103 + z104 + z105 , were
studied from this point of view in [29].

If g = 0 has nk singularities of types Ak, k = 1, 4, then the Euler number in the
resolution increases by 5n1 + 20n4. In the example analysed in [21], g(z3, z4, z5) =
(z53 + z54 + z55)

2 − 4(z53z
5
4 + z53z

5
5 + z54z

5
5). This is a particular case of the curves stud-

ied in the Lemma in [28], p.311, where it is shown that (zn3 + zn4 + zn5)
2 − 4(zn3z

n
4 +
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zn3z
n
5 + zn4z

n
5) = 0 has 3n An−1 singularities. The degree 10 projective curve g = 0

has then 15 A4 singularities and the Euler number of the small resolutions of the
threefold is −288 + 15 · 20 = 12.

We can get Calabi–Yau threefolds with this method using Ĵ10,τ (x, y). For
τ ∈ ΛΣ ∪ Λ3, the small resolutions of the threefold with g obtained homogenis-
ing Ĵ10,τ (x, y), which has 45 nodes, have Euler number −288 + 5 · 45 = −63 and
c1 = 0.

The coefficients of Ĵd,τ (x, y) are not rational for generic τ . However, we can
get polynomials with integer coefficients for certain values of τ . For instance, if τ =
(6m+1)π

12 ,m ∈ Zwehave
√
2cos (2m+3)π

4 = (−1)� m+2
2 	,

√
2sin (2m+3)π

4 = (−1)� m+1
2 	 and√

2cos (6m+1)π
4 = (−1)� m

2 	. In this case 1√
2
Ĵd,τ (x, y) is a polynomial with integer

coefficients.
Another method for constructing Calabi–Yau threefolds in [21] is based on dou-

ble coverings of P3(C) branched along an octic surface [4], which is allowed to
have singularities. The octic curve we use is − 1√

2
Ĵ8, π

12
(x, y). We add a normalised

Chebyshev polynomial and we get a surface with 133 nodes. We can check that the
Tjurina number is T = 133 with the following Singular code (short input is used,
e.g. 3x2 − x3 is denoted by 3x2 − x3):

LIB “sing.lib”;
ring R= 0, (x,y,z), dp ; //affine ring, 0 is the characteristic of the ground field
poly f= -1-8x+12x2+24x3-30x4-8x5+20x6-8x7+x8+8y+24xy-24x2y

-72x3y+56x4y+40x5y-40x6y+8x7y-12y2+24xy2-12x2y2-112x3y2+20x4y2
+72x5y2-28x6y2-24y3-56xy3-48x2y3+80x3y3+40x4y3-56x5y3+34y4
+24xy4-20x2y4+40x3y4+70x4y4+24y5+40xy5+72x2y5+56x3y5-20y6
-40xy6-28x2y6-8y7-8xy7+y8-(2-32z2+160z4-256z6+128z8);

ideal sl= jacob(f),f; //the singular locus
vdim(std(sl)); //Total Tjurina number
A double covering of P3(C) branched along this octic surface (also called octic

double solid) has Euler number −296 + 2 · 133 = −30.
Quintic threefolds in P4(C) with c1 = 0 were also studied in [21]. If p(x, y) = 0

is the equation of the curve of degree 5 in the real (x, y)-plane given by a simple
configuration of five lines having a regular pentagon in the centre, the threefold in
P4(C) obtained by homogenising the affine equation p(u, v) − p(z, w) = 0 has 126
nodes. The small resolutions of all the nodes of the Hirzebruch quintic threefold have
Euler number −200 + 2 · 126 = 52.

Now, we consider

f (x, y) := 1√
2
Ĵ5, π

12
(x, y) = 1 + 5x − 5x2 − 5x3 + 5x4 − x5 − 5y − 10xy + 5x2y

+10x3y − 5x4y + 5y2 − 5xy2 + 10x3y2 + 5y3 + 10xy3 + 10x2y3 − 5y4 − 5xy4 − y5

Let M be the threefold in P4(C) defined by the homogenization of the equation

f (u, v) − f (z, w) = 0



116 J.G. Escudero

The conifold M has 112 nodal singularities [15]. The small resolution ˜M of all the
nodes of M has Euler characteristic χ = 24.

The method for computing the Hodge numbers hi, j in [26, 31, 32] is based on a
theorem of Weil–Deligne on the eigenvalues of Frobenius and the Lefschetz fixed-
point formula. One way to find h1,1 is to count the points of a small resolution of the
threefold over an appropriate finite field Fp.

In order to count points in finite fields we used Processing, an open-source pro-
gramming language based on Java. The program for this purpose uses only loops and
elementary integer arithmetic. The analysis of #M(Fp), the number of points of M
over Fp, do not give a precise answer to the problem of determining h1,1 for low val-
ues of the primes of good reduction p. We found a unique answer for p = 601 where
#M(F601) = 223, 916, 358. The result was also checked with the C++ programming
language. Having in mind the number of nodes and the rulings of their tangent cones
which are rational over F601, and also the number of independent quintics which do
not vanish in the whole set of nodes, we obtained the Betti number h2( ˜M) = 19. The
Hodge numbers of ˜M are, therefore, h1,1 = 19, h2,1 = 7.

The small resolutions are no longer projective in general. According to [32] there
are projective resolutions if all local divisors of all singularities can be extended to
global smooth divisors. An open question concerns the existence of projective res-
olutions for the examples presented in this section. Even if there are no projective
resolutions, the threefolds might be of interest from the point of view of their appli-
cations in physics. Non-Kähler Calabi–Yau threefolds [30] have been considered in
the past years in the context of string theory.

Another point of interest, which is related to the Langlands program, is the study
of the modularity of the Calabi–Yau threefolds defined over the rationals. The mod-
ularity of non-rigid Calabi–Yau threefolds has been proved only for special cases
[5, 23, 34].

Acknowledgements Thisworkwas partially supported byConsejería de Educación del Principado
de Asturias, Spain (UO-15-INVES-38).
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Finding Eigenvalues of Self-maps
with the Kronecker Canonical Form
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Abstract Recent research has examined how to study the topological features of
a continuous self-map by means of the persistence of the eigenspaces, for given
eigenvalues, of the endomorphism induced in homology over a field. This raised
the question of how to select dynamically significant eigenvalues. The present paper
aims to answer this question, giving an algorithm that computes the persistence of
eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces
as direct sums of “finite” and “singular” subspaces.

Keywords Computational topology · Persistent homology · Self-maps · Matrix
pencils · Kronecker canonical form

1 Introduction

The theory of persistent homology [2, 6] has proved in the past two decades to be a
very useful tool in several branches of applied mathematics and computer science.
In [1], a novel application of persistence to the computational analysis of dynami-
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cal systems is introduced. Building upon the concept of towers in a given category
(a tower in the category of modules or vector spaces is equivalent to a persistence
module as defined in [6]), the authors define the tower of eigenspaces for an endo-
morphism of a tower of (finite dimensional) vector spaces. When these vector spaces
are obtained as the homology over a field F of a filtration representing the underlying
topological space, and the endomorphism is the map induced in homology by a self-
map of said topological space, the eigenvectors are homology classes invariant under
the self-map and provide a first step towards understanding the persistence of this
map.

When the self-map is expanding, there is no guarantee that the image of a homol-
ogy class by the endomorphism is in the filtration at the same step or even at any
step. To overcome this difficulty, the authors of [1] adapted persistent homology to
the study of a self-map by using two towers of vector spaces, which are equivalent
to persistence modules indexed over integer numbers: (Yi , ηi ), a tower of homology
spaces obtained from a filtration of the underlying topological space, and (Xi , ξi ), a
tower of homology spaces obtained by restricting domains such thatmaps induced by
the self-map are simplicial. The morphisms ϕi : Xi → Yi , ψi : Xi → Yi are obtained,
respectively, from the self-map and from the inclusion map. In [1], the eigenspace
for pairs Et (ϕ,ψ) was constructed by defining, for every t ∈ F,

Et (ϕ,ψ) = ker(ϕ − tψ)

and then quotienting out the common kernel of ϕ and ψ, that is,

Et (ϕ,ψ) = Et (ϕ,ψ)/(ker ϕ ∩ ker ψ). (1)

Nevertheless, despite quotienting out the common kernel of ϕ and ψ, it may
happen that Et (ϕ,ψ) is non-trivial for every t ∈ F, a phenomenon that was termed
“abundance of eigenvalues” in [1]. This difficulty in finding the eigenvalues for the
pair (ϕ,ψ), and in identifying them as dynamically significant, leads to the question
whether there exists a way to compute the eigenspace towers for a pair of morphisms,
for all eigenvalues simultaneously. The present article aims to answer this question in
the affirmative, providing an algorithm to extract eigenvectors for every eigenvalue
all at once. In addition, using the theory of the Kronecker canonical form for matrix
pencils (a generalization of the Jordan form to polynomial matrices of the form
t B − A), the eigenspace for every eigenvalue can be expressed as the direct sum
of a “finite” and a “singular” part, the latter of which being associated with the
abundance of eigenvalues phenomenon. We believe that the dynamically significant
eigenvectors are contained in the former, finite part.

In Sect. 2, we reintroduce the concept of the Kronecker canonical form along
with invariant polynomials of polynomial matrices, which while belonging to clas-
sical theories in linear algebra, appear not to be part of the common mathematical
knowledge. Section 3 is dedicated to the algorithm to extract eigenvectors, as well
as generalized eigenvectors, for all eigenvalues simultaneously. Section 4 shows
numerical examples.
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2 Kronecker Canonical Form

By the term linear matrix pencil, or simplymatrix pencil, we refer to the polynomial
matrix t B − A, where A, B ∈ Mm×n(F) and F is a fixed field. Fix a value t̂ ∈ F; if
the equation

(̂t B − A) x = 0

possesses a nonzero solution x ∈ F
n , then x is said to be an eigenvector for the

eigenvalue t̂ . In addition, if there is a finite sequence x1, x2, . . . , xk ∈ F
n of nonzero

vectors such that the system

(̂t B − A) x1 = 0,

(̂t B − A) x2 = Bx1,

...

(̂t B − A) xk = Bxk−1

has a solution, then this sequence is called a sequence of generalized eigenvectors
for the eigenvalue t̂ . Let t B1 − A1 and t B2 − A2 be two m × n pencils; if there exist
invertible matrices Q ∈ Mm×m(F), R ∈ Mn×n(F) such that Q−1(t B1 − A1)R =
t B2 − A2, then the pencils are said to be similar.

In order to study the eigenstructure of the pencil t B − A, that is find its eigen-
values and the dimension of its eigenspaces and generalized eigenspaces, and hence
to extract (generalized) eigenvectors, we recall the classical concepts of invariant
polynomials and of Kronecker indices of matrix pencils.

We first start by considering a particular type of pencil. Call the rank of a pencil,
rank (t B − A), the largest integer k such that there exist non-vanishing k × k minors
of t B − A. If a pencil t B − A is square (B, A ∈ Mn×n(F)) and has rank n, it is said
to be regular. If it is non-square, or if it is n × n square but its rank is strictly lower
than n, it is said to be singular. Wewill additionally say that a pencil has full row rank
(respectively full column rank) if its rank equals its number of rows (respectively its
number of columns).

Let us recall the well-known rational canonical form and primary rational canon-
ical form of a square matrix.

Definition 1 For p(t) = c0 + c1t + c2t2 + . . . + ck−1t k−1 + t k a monic polyno-
mial, the k × k matrix

C(p) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...
...
. . .

...
...

0 0 · · · 1 −ck−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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is called the companion matrix of d.

Theorem 2 [4, Theorem 11.17] Let T be a square matrix, then T is similar to a
unique square matrix

diag {C(d1),C(d2), . . . ,C(ds)} (2)

where C(di ) is the companion matrix of a non-constant monic polynomial di and
d1|d2| . . . |ds.
Theorem 3 [4, Theorem 11.20] Let T be a square matrix, then T is similar to a
square matrix

diag {C(p1),C(p2), . . . ,C(pr )} (3)

where each pi = qsi
i is a power of a monic prime polynomial qi , and C(pi ) its

companion matrix. This matrix is uniquely determined up to the order of the blocks
C(pi ) on the diagonal.

We refer to the form (2) as the rational canonical form of T , and to the form (3) as
the primary rational canonical form of T .

Proposition 4 Every regular pencil t B − A over F is similar to a pencil in the form

diag{t N − Ir1 , t Ir2 − C} (4)

where N is the direct sum of nilpotent companion matrices, C is a square matrix in
rational canonical form, and Ir1 and Ir2 are identity matrices of the given size.

Proof This proof proceeds similarly to the proof of [3, Chapter 12, Theorem 3]. If
t B − A is regular, then there exists t̂ ∈ F such that t̂ B − A has full rank. Call ˜A the
matrix −(̂t B − A), then

t B − A = (t − t̂) B − ˜A

⇒ ˜A−1 (t B − A) = (t − t̂) ˜A−1B − I.

We can write the primary rational canonical form of ˜A−1B by ordering the blocks
such that the block corresponding to tr1 for r1 > 0, if it exists, is in the top left. The
pencil t B − A is thus similar (in the sense for pencils given above) to

(t − t̂) diag {C0,C1} − I = diag
{

t C0 − (Ir1 + t̂ C0), (t C1 − (Ir2 + t̂ C1)
}

whereC0 is the companion matrix of p(t) = tr1 . Since Ir1 + t̂ C0 is invertible, and so
is C1, we can left-multiply the above pencil by diag

{

(Ir1 + t̂ C0)
−1,C−1

1

}

, yielding

diag
{

t (Ir1 + t̂ C0)
−1 C0 − Ir1 , t Ir2 − C−1

1 (Ir2 + t̂ C1)
}

.

The result is obtained by putting the matrices (Ir1 + t̂ C0)
−1 C0 and C

−1
1 (Ir2 + t̂ C1)

into their rational canonical forms, respectively N and C . �



Finding Eigenvalues of Self-maps with the Kronecker Canonical Form 123

Matrix N in (4) is a block diagonal matrix, whose blocks are nilpotent companion
matrices Ni , i = 1, . . . , l. Each such matrix is the companion of the polynomial t ki ,
ki ≥ 1, and so N has only 0 as eigenvalue. We say that t B − A possesses l infinite
elementary divisors, whose orders are k1, k2, . . . , kl .

We also encountered in (4) a matrix C in rational canonical form, that is

C = diag {C(d1),C(d2), . . . ,C(ds)}

with d1|d2| . . . |ds . These polynomials are referred to as the invariant polynomials of
the pencil t B − A. Wewill refer to the eigenstructure ofC as the finite eigenstructure
of the pencil. From Proposition 4 and the fact that t N − Ir1 has no eigenvalue, we
see that t is an eigenvalue of a regular pencil if and only if it is a root of one of its
invariant polynomials, with the dimension of its eigenspace being the number of such
invariant polynomials. In [3, Chapter 6], the classical algorithm to put a polynomial
matrix into Smith normal form is shown to yield a diagonal matrix in canonical form,
whose first diagonal elements are ones followed by the invariant polynomials of the
matrix, with zero rows at the bottom and zero columns at the right. A regular pencil
is of full rank and can, therefore, not have zero rows or columns, so the classical
Smith normal form algorithm provides invertible matrices Q(t), R(t) such that

Q(t)−1 (t B − A) R(t) = diag{1, . . . , 1, d1, . . . , ds}.

We easily see that if R(t) = [y1(t) y2(t) . . . yn−s(t) x1(t) x2(t) . . . xs(t)], and if t̂ is a
root of polynomial di , then

(̂t B − A) xi (̂t) = 0.

Since R(t) is invertible, its columns are linearly independent for every value t .
Therefore, if t̂ is a root of more than one invariant polynomial, we can find the same
number of linearly independent eigenvectors.

Now, consider a general m × n pencil t B − A. We can study solutions of

∀t ∈ F (t B − A) x(t) = 0, (5)

where x : F → F
n is the variable. If there exists a linear dependence over F[t]

between the columns of t B − A, then there exists a polynomial solution of Eq. (5)
which we call a polynomial eigenvector for the pencil. Write such a solution as

x(t) = x0 + t x1 + t2 x2 + · · · + tε xε, ε ≥ 0 (6)

with xi , i = 0, . . . , ε vectors in F
n , and xε �= 0, where ε is the degree of the poly-

nomial eigenvector. Without loss of generality, we can assume that x0 �= 0. Indeed,
suppose that x0 = x1 = · · · = xk−1 = 0 and xk �= 0 for k ≤ ε in Eq. (6). Then we
can factor out t k , leaving

t k (t B − A) (xk + t xk+1 + t2 xk+1 + · · · + tε−k xε) = 0,
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that is, xk + t xk+1 + t2 xk+1 + · · · + tε−k xε is a new polynomial eigenvector with
nonzero constant term. Therefore, if x(t) is a polynomial eigenvector of t B − Awith
nonzero constant term, then for every t̂ ∈ F, x (̂t) is an eigenvector of t B − A for
eigenvalue t̂ .

Theorem 5 [3, Chapter 12, Theorem 4] Suppose that ε is the smallest positive
integer such that the pencil t B − A possesses a polynomial solution (6) of degree
ε > 0. Then the pencil is similar to

[

Lε 0
0 t̂B − ̂A

]

where

Lε =
⎡

⎢

⎣

t −1
. . .

. . .

t −1

⎤

⎥

⎦ (7)

is a bidiagonal pencil of dimension ε × (ε + 1), known as a columnKronecker block
of index ε, and t̂B − ̂A has no polynomial eigenvector analogous to (6) of degree
less than ε.

Theorem 5 is also valid in the case where ε = 0, in which case a “0 × 1” block L0

means a column of zeros to the left of t̂B − ̂A.

Proposition 6 A vector x0 ∈ ker A ∩ ker B if and only if x(t) = x0 is a polynomial
eigenvector of t B − A of degree 0.

Proof If x0 ∈ ker A ∩ ker B, then obviously (t B − A) x0 = 0. Now suppose that
(t B − A) x0 = 0, then for every t ∈ F, A x0 = t B x0. Since A x0 and B x0 are ele-
ments of F, then this can only be true if A x0 = B x0 = 0. �

The last theorem in this section concerns a decomposition of the pencil t B − A:

Theorem 7 Any m × n pencil t B − A over F is similar to the pencil

diag{Lε1 , . . . , Lεp , L
T
η1
, . . . , LT

ηq
, t B − A}

where t B − A is a regular and therefore square pencil.

Proof Repeatedly Applying Theorem 5, we may successively extract from t B −
A Kronecker blocks of nonincreasing index until we end up with the following
decomposition: t B − A is similar to

diag{Lε1 , Lε2 , . . . , Lεp , t̂B − ̂A}

where the columns of t̂B − ̂A are linearly independent and the blocks Lεi may
be ordered in a way that 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp. At this point, t̂B − ̂A may still
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have a linearly dependent set of rows, in which case it would possess left polyno-
mial eigenvectors y(t) such that y(t) (t̂B − ̂A) = 0. This is obviously equivalent to
(t̂BT − ̂AT ) yT (t) = 0, and therefore Theorem 5 can now be applied to this trans-
posed subpencil, yielding row Kronecker blocks LT

η j
, j = 1, . . . , q.

Since we already know the decomposition t B − A of (4), this completes the
presentation of the Kronecker canonical form of a pencil. We will more precisely
call this form the rational Kronecker canonical form since it includes a matrix in
rational canonical form; the classical Kronecker canonical form is a generalization
of the Jordan form and therefore is only guaranteed to exist when working with an
algebraically closed field.

Let us now show an example.

Example 8 Consider the following pencil over Q:

t B − A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−t 0 0 1 0 0 0 0
t − 1 0 t − 1 t − 1 0 −t 1 0
−1 0 0 t 0 0 0 0
0 −t − 1 1 0 0 0 0 0
0 0 1 t + 1 t + 1 0 0 0
0 0 −1 −t − 1 −t − 1 0 0 0
0 0 0 0 0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We can show that this pencil has column Kronecker indices ε1 = ε2 = 1, row Kro-
necker index η1 = 0, one infinite elementary divisor of order 1 and invariant polyno-
mials t + 1 and t2 − 1. Therefore, the rational Kronecker canonical form of t B − A
is

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

t −1
t −1

−1
t + 1

t −1
−1 t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We leave to the reader to verify that the following transition matrices put t B − A
into this canonical form:

Q−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −1 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 −1 1 0 0
0 0 1 0 0 0 0

−1 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

−1 0 0 0 0 1 −1 0
1 1 1 0 0 0 1 1
1 1 0 1 0 0 1 1
0 0 0 0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

3 Algorithm

Van Dooren [5] introduced an algorithm to transform a pencil t B − A into a form
from which its column Kronecker indices can be computed, and the associated poly-
nomial eigenvectors are easily extracted. This is done by successively column- and
row-reducing subpencils of t B − A. In the following algorithm, indices denote step
number except for zero and identity matrices, where they denote dimension.

Algorithm 9

Input: t B − A
j := 1; m1 := m; n1 := n;
A1,1 := A; B1,1 := B; Q−1 := Im; R := In;
while (true)

if Bj, j has n j linearly independent columns
l := j − 1;
return Q−1, R;

[

Bj+1 0m j×s j

] := Bj, j R j ;
Let R j be obtained through column reduction algorithm on Bj, j
[

A j+1 A j
] := A j, j R j ;

for i = 1 to j − 1 do
(* Update other blocks in column j *)
[

Bj+1,i B j,i
] := Bj,i R j ;

[

A j+1,i A j,i
] := A j,i R j ;

(* Update transition matrix R *)

R := R

[

R j 0n j×(n−n j )

0(n−n j )×n j In−n j

]

;
[

0(m j−r j )×s j

A j, j

]

:= Q−1
j A j ;

Let Q−1
j be obtained through row reduction algorithm on A j

and permutation so zero rows are on top
[

A j+1, j+1

A j+1, j

]

:= Q−1
j A j+1;

[

Bj+1, j+1

Bj+1, j

]

:= Q−1
j B j+1;

(* Update transition matrix Q−1 *)
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Q−1 :=
[

Q−1
j 0m j×(m−m j )

0(m−m j )×m j Im−m j

]

Q−1;
m j+1 := m j − r j ; n j+1 := n j − s j ;
j := j + 1;

Theorem 10 Algorithm9 stops when Bl+1,l+1 has full column rank. At this point,
the output are the matrices Q−1 and R such that Q−1 (t B − A) R is the following
block lower triangular matrix:

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

t Bl+1,l+1 − Al+1,l+1 0 · · · 0 0 ml+1

t Bl+1,l − Al+1,l −Al,l · · · 0 0 rl
...

. . .
. . .

...
...

...

t Bl+1,2 − Al+1,2 t Bl,2 − Al,2 · · · −A2,2 0 r2
t Bl+1,1 − Al+1,1 t Bl,1 − Al,1 · · · t B2,1 − A2,1 −A1,1 r1

nl+1 sl · · · s2 s1

(8)

where the A j, j ’s have full row rank r j for j = 1, . . . , l, and the B j, j−1’s have full
column rank s j for j = 2, . . . , l. Some of the r j ’s can equal 0.

Proof Form (8) is a direct consequence of the algorithm. Indeed, the initial form of
the pencil is

t B1,1 − A1,1,

and at step j , the left block of columns,

⎡

⎢

⎢

⎢

⎣

t B j, j − A j, j

t B j, j−1 − A j, j−1
...

t B j,1 − A j,1

⎤

⎥

⎥

⎥

⎦

is the only part of the pencil to change, being transformed by multiplying on the right
by R j and on the left by

[

Q−1
j

Im−m j

]

into
⎡

⎢

⎢

⎢

⎢

⎢

⎣

t B j+1, j+1 − A j+1, j+1 0(m j−r j )×s j

t B j+1, j − A j+1, j −A j, j

t B j+1, j−1 − A j+1, j−1 t B j, j−1 − A j, j−1
...

...

t B j+1,1 − A j+1,1 t B j,1 − A j,1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
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The A j, j blocks, j = 1, . . . , l, have full row rank r j , being obtained from the nonzero
rows of a row-reduced matrix. In addition, at every step j , the block Bj+1 created
has full column rank, being obtained from the nonzero columns of a column-reduced
matrix. Multiplying it on the left by Q−1

j yields

[

Bj+1, j+1

Bj+1, j

]

. (9)

If Bj+1, j+1 has full column rank, then the algorithm stops and this block becomes
the upper left block Bl+1,l+1. Otherwise, the block (9) is multiplied on the right by
R j+1, yielding

[

Bj+2 0
Bj+2, j B j+1, j

]

= Q−1
j B j+1 R j+1.

Since Bj+1 has full column rank, then Bj+1, j also does. This is true for j = 1, . . . , l −
1, proving the theorem. �

From the row and column ranks r j and s j , we then compute (putting sl+1 := 0)

e j := s j − r j ≥ 0 for j = 1, . . . , l;
d j := r j − s j+1 ≥ 0 for j = 1, . . . , l.

As shown in [5, Proposition 4.3], the indices d j and e j fully determine the infinite
elementary divisors and the column Kronecker indices, respectively. More precisely,
they tell us that t B − A has d j infinite elementary divisors of degree j , j = 1, . . . , l,
and e j column Kronecker blocks L j−1 of size ( j − 1) × j , j = 1, . . . , l. The pencil
t Bl+1,l+1 − Al+1,l+1 additionally contains the finite structure of the original pencil.

In [5] a dual algorithm is also described. It extracts the infinite elementary divisors
and rowKronecker indices of t B − A. Here, let us recall that if B is an identitymatrix,
that is for the classical eigenproblem for a square matrix A, there exists a natural
isomorphism between the left and right eigenspaces, and generalized eigenspaces,
of A. Indeed, the left generalized eigenspace of A (equivalently the generalized
eigenspace of AT ) for every given eigenvalue is the dual space of its (right) general-
ized eigenspace. This natural isomorphism breaks down in the case of matrix pencils
since column and row Kronecker indices are completely independent of each other,
but it is possible to retain it by quotienting out vectors from the column (respectively
row) Kronecker structure from the eigenspace (respectively left eigenspace).

When the pencil has been put into form (8), we can further use the fact that
Bl+1,l+1 has full column rank, as do the blocks Bi,i−1 for i = 2, . . . , l, and that Ai,i

has full row rank for i = 1, . . . , l, to zero out the majority of subdiagonal blocks in
the following way.

Algorithm 11

Input: Q−1, R, Q−1 (t B − A) R from Algorithm9
for i = 1 to l



Finding Eigenvalues of Self-maps with the Kronecker Canonical Form 129

(* Zero out block Bl+1,l+1−i *)
Find X such that Bl+1,l+1−i = X Bl+1,l+1;
Bl+1,l+1−i := 0;
Al+1,l+1−i := Al+1,l+1−i − X Al+1,l+1;

Q−1 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Iml+1

. . .

−X Irl+1−i

. . .

Ir1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Q−1;

for j = 1 to i − 2
(* Zero out block Bl+1− j,l+1−i *)
Find Z such that Bl+1− j,l+1−i = Z Bl+1− j,l− j ;
Bl+1− j,l+1−i := 0;
Al− j,l+1−i := Al− j,l+1−i − Z Al− j,l− j ;

Q−1 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Iml+1

. . .

Irl− j

. . .

−Z Irl+1−i

. . .

Ir1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Q−1;

for j = 1 to i
(* Zero out block Al+1−i+ j,l+1−i *)
Find Y such that Al+1−i+ j,l+1−i = Al+1−i,l+1−i Y ;
Al+1−i+ j,l+1−i := 0;

for k = 1 to l − i
Al+1−i+ j,k := Al+1−i+ j,k − Al+1−i,l+1−i−k Y ;
Bl+1−i+ j,k := Bl+1−i+ j,k − Bl+1−i,l+1−i−k Y ;

R := R

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Inl+1

. . .

Isl+1−i+ j

. . .

−Y Isl+1−i

. . .

Is1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

;

At this point, having reused the names of the blocks, Q−1 (t B − A) R equals
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

t Bl+1,l+1 − Al+1,l+1 0 0 · · · 0 0 ml+1

0 −Al,l 0 · · · 0 0 rl
0 t Bl,l−1 −Al−1,l−1 · · · 0 0 rl−1

0 0 t Bl−1,l−2
. . .

...
...

...
...

...
...

. . . −A2,2 0 r2
0 0 0 · · · t B2,1 −A1,1 r1

nl+1 sl sl−1 · · · s2 s1

. (10)

Note that the blocks Ai,i have si − ri = ei zero columns, which is also the number
of Kronecker blocks of index i − 1, each of which corresponds to a polynomial
eigenvector of degree i − 1. Therefore, using the blocks Ai,i to zero out the blocks
t Bi+1,i , i = 1 going up to l − 1 in this order, will expose zero columns in the pencil.

Algorithm 12

Input: R, Q−1 (t B − A) R from Algorithm11
for i = 1 to l − 1

Find Y such that Bi+1,i = Ai,i Y ;
Bi+1,i := 0;

R := R

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Inl+1

. . .

Isi+1

t Y Isi
. . .

Is1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

;

Note that R is now a matrix over F[t], and for every zero column of Q−1 (t B −
A) R, we find a column x(t) ∈ F[t]n of R which is a polynomial eigenvector of
t B − A. In addition, Algorithm12 ensures that the degrees of such columns of R are
equal to the column Kronecker indices of t B − A.

Furthermore, since the block t Bl+1,l+1 − Al+1,l+1 contains the whole finite struc-
ture of the pencil, we can at this point (also updating R) put it into Smith normal form,
whose non-constant diagonal elements will be the invariant polynomials of t B − A.
Here as well, we expose a column in the pencil that is zero except for one entry, an
invariant polynomial of t B − A. When evaluated at a root t0 of this polynomial, the
corresponding column of R is an eigenvector for eigenvalue t0.

When working on Q, the rational roots of a polynomial with integer (or rational)
coefficients can be obtained with the following well-known theorem:

Theorem 13 (Rational Root Theorem) Let

anx
n + an−1x

n−1 + . . . + a1x + a0 = 0 (11)
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be a polynomial equation with integer coefficients, and suppose that an �= 0, a0 �= 0.
Then every rational root p/q of (11), where p, q are relatively prime, has the property
that p|a0 and q|an.

Applying the previous theorem to the invariant polynomials of t B − A over Q
(multiplying by an integer if necessary) allows one to find every rational eigenvalue.

Note that in case left eigenvectors are required, the dual algorithm of [5] can be
used instead of Algorithm 9, followed by a dual “row” version of Algorithms11 and
12, keeping track of the left transition matrix QT .

Example 14 Consider again the pencil of Example 8. Applying Algorithm 9 yields

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

t + 1 0 0 0 0 0 0 0

m3
−t − 1 0 0 0 0 0 0 0

t −t −1 0 0 0 0 0
1 −1 −t 0 0 0 0 0 r2
0 0 t − 1 t − 1 0 −1 1 0

r1−1 −t t − 1 t t + 1 0 1 0
0 0 0 0 0 0 0 −1

n3 s2 s1

,

so we can verify the presence of s2 − r2 = 2 column Kronecker blocks of index 1,
and r1 − s2 = 1 infinite elementary divisor of order 1. Applying Algorithms11, 12
and the Smith normal form algorithm, we obtain

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

t B − A ∼

1 0 0
0 t + 1 0
0 0 t2 − 1
0 0 0

0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

R =

0 0 1 0 0 0 0 0
0 1 −t 0 −1 0 0 0

−1 0 −t − 1 0 −t − 1 1 1 0
1 0 t 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −1 −1 −t − 1 1 1 0

−1 0 −t −t −t − 1 0 1 0
0 0 0 0 0 0 0 1

verifying that t + 1 and t2 − 1 are invariant polynomials of this pencil. We conclude
that

x1(t) = [0, 0, 0, 0, 0,−1,−t, 0]T ; x2(t) = [0,−1,−t − 1, 0, 1,−t − 1,−t − 1, 0]T



132 M. Ethier et al.

are polynomial eigenvectors,

x3 = [0, 1, 0, 0, 0, 0, 0, 0]T

is an eigenvector of t B − A for eigenvalue −1, and

x4(t) = [1,−t,−t − 1, t, 0,−1,−t, 0]T

is a vector that can be evaluated at ±1 to yield an eigenvector for each of these two
eigenvalues.

We note that, as can been seen in Example 14, our algorithm allows us to identify,
for every eigenvector for a given eigenvalue, whether it originates from the singular
structure of the pencil or not. Since we believe that the singular structure is not
associated with topologically significant eigenvectors, this identification is useful in
applications.

Let us now discuss the computation of generalized eigenvectors of a pencil. Algo-
rithm 12 provides polynomial eigenvectors of degree equal to the column Kronecker
indices. A pencil whose Kronecker structure has one index ε possesses a sequence
of ε + 1 generalized eigenvectors. To see this, consider the Kronecker block Lε in
(7). It can easily be checked that for every field value t , the sequence

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
t
t2

...

tε−1

tε

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
−1
−2 t
...

−(ε − 1) tε−2

−ε tε−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, . . . ,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
...

(−1)ε−1

(−1)ε−1 ε t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
...

0
(−1)ε

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

is a sequence of ε + 1 linearly independent generalized eigenvectors of Lε. We also
notice that the above sequence of polynomial vectors has been obtained by formal
differentiation over the ring F[t] of the first vector. This is a ring homomorphism
denoted d

dt (or with prime notation) with the property that

d

dt
t k = k tk−1 for k ∈ N, and

d

dt
c = 0, c ∈ F.

If we denote x(t) = [1, t, t2, . . . , tε−1, tε]T , then the above sequence is

x(t),−x ′(t),
1

2
x ′′(t), . . . ,

(−1)ε−1

(ε − 1)! x
(ε−1)(t),

(−1)ε

ε! xε(t).

This property generalizes to other pencils. Suppose that t B − A possesses a poly-
nomial eigenvector x(t) of degree ε, as obtained for example by Algorithm 12. Then
x(t) satisfies Eq. (5). Formal differentiation verifies the chain rule, and so we can
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apply it repeatedly to both sides of this equation:

(t B − A)x ′(t) = −Bx(t),

(t B − A)x ′′(t) = −2Bx ′(t),
...

(t B − A)x (ε)(t) = −εBx (ε−1)(t).

From this it can easily be seen that ((−1)k/k! x (k)(t)), k = 0, . . . , ε is a sequence
of ε + 1 linearly independent generalized eigenvectors for t B − A. The (ε + 1)st
derivative of x(t) is the zero vector and therefore not linearly independent. The same
procedure can also be applied to the columns of R in the output of Algorithm12, say
x(t), that correspond to invariant polynomials of t B − A in the sense that

Q−1 (t B − A) x(t) = d(t) e

for d an invariant polynomial and e a vector of the canonical basis of Fm . Indeed, if
t0 is a root of d, we can write d(t) = (t − t0)k+1 r0(t) for a certain k ≥ 0, where r
does not have t0 as a root. Then

(t B − A) x(t) = (t − t0)
k+1 r0(t) Q e.

Proposition 15 For i ≤ k, applying formal differentiation i times to both sides
of the previous equation yields

(t B − A)x (i)(t) = −i Bx (i−1)(t) + (t − t0)
k+1−i ri (t)Q e (12)

where ri (t) is another polynomial such that ri (t0) �= 0.

Proof Suppose, for 0 ≤ i ≤ k − 1, that (12) holds. Then, applying formal differen-
tiation on both sides, we obtain

(t B − A) x (i+1)(t) = −(i + 1)B(i)(t) + (t − t0)
k−i ((k − i + 1) ri (t) + (t − t0) r

′
i (t)

)

Q e.

We can fix ri+1 = (k − i + 1) ri (t) + (t − t0) r ′
i (t); it is obvious that t0 is not a root

of this polynomial. �

Evaluating the previous sequence at t0, we find that ((−1)i/ i ! x (i)(t0)), i =
0, . . . , k provides us with a sequence of generalized eigenvectors for eigenvalue t0.

Example 16 In Example 14, the vectors

x1(t) = [0, 0, 0, 0, 0,−1,−t, 0]T ; x2(t) = [0,−1,−t − 1, 0, 1,−t − 1,−t − 1, 0]T
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are eigenvectors of t B − A for every field value, and so they are also generalized
eigenvectors for every field value. The vectors

−x ′
1(t) = [0, 0, 0, 0, 0, 0, 1, 0]T ; −x ′

2(t) = [0, 0, 1, 0, 0, 1, 1, 0]T

are also generalized eigenvectors for every field value.

4 Numerical Results

We studied a map on a cloud of 100 points, taken in S1 ⊂ C and then subjected
to Gaussian noise with standard deviation varying from σ = 0 to 0.30. The image
of each point z is taken to be the closest point to z2, so the map is angle-doubling
with noise. It is expected that we should find in homology H1, computed over the
field Z19, an eigenvector of long persistence for eigenvalue t = 2, but that stronger
noise may make it harder to distinguish. Figure 1 shows the persistence barcodes for
the eigenvector associated with t = 2 along a filtration of complexes indexed with
parameter value ε. Since we can identify, at every step along the filtration, whether
the eigenvector originates from the singular structure of the pencil or not, we can
code the bar with the following colours: red when it does originate from the singular
structure, and blue when it does not. It can be seen that as the noise level is increased,

Fig. 1 Persistence of the longest lasting eigenvector associated with t = 2 in H1 persistence over
Z19 for several noise levels of a cloud of sample points on S1, subject to the map z → z2. Bar is
red for vectors from singular structure, blue otherwise
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the persistence of this eigenvector tends to become shorter, being born later and dying
earlier, and additionally the eigenvector becomes “degenerate” (associated with the
singular structure of the pencil) for a longer term.

Our 3D example uses a map on the torus constructed in the following way. Con-
sider the square [0, 1]2, identifying its left and right edges, as well as its top and
bottom edges. Take a randomly selected sample of 200 points on this square, and
build the map sending each point (x, y) to the closest point to A[x, y]T , for the 2 × 2
matrix

A =
[

0 1
1 0

]

,

which has eigenvalues 1 and −1. In Fig. 2 we show persistence barcodes in H1

homology over the field Q for eigenvalues 0, 1 and −1 for this test case. Here too

Fig. 2 Persistence barcodes for eigenvalues t = −1, t = 1 and t = 0 in H1 persistence over Q for
matrix A on the torus. Numbering is arbitrary. Bar is red for vectors from singular structure, blue
otherwise
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the bars are colour-coded red if the vector comes from the singular structure of the
pencil, and blue if it comes from its finite structure. We notice several long-lasting
vectors, but only two of those, one for eigenvalue 1 and one for eigenvalue −1, have
a long life as non-singular vectors.

5 Conclusion

Algorithms9, 11 and 12 positively answer the question asked in [1], on whether
it is possible to compute the eigenspace towers of a pair of morphisms between
two towers of vector spaces for all eigenvalues simultaneously. This is a necessary
condition in applications, where candidate eigenvalues for long-lasting eigenvectors
are not and cannot be known. It also makes it possible to study towers of eigenspaces
when the spaces are over an infinite field such as Q.

Furthermore, Proposition 15 and the preceding discussion describe a procedure to
compute generalized eigenvectors for pairs of maps that does not have any added cost
with respect to simply computing eigenvectors themselves. The link between gen-
eralized eigenvectors and differentiation is to our knowledge not very well-known,
but it can be inferred for example from discussions in [3, Chap. 6].

Finally, being able to split the eigenspace for a pair of maps between a finite and
a singular part, with the singular part being represented by polynomial eigenvectors,
raises the question whether it is possible to define persistence generally for the
Kronecker structure of a tower of maps between spaces. This is not a trivial problem
and has links with the non-existence of a simple classification for persistence over
modules [6] and with the problem of finding constraints for the persistence diagrams
of two towers joined by a morphism.
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Algorithm for Predicting Mathematical
Formulae from Linear Strings
for Mathematical Inputs

Tetsuo Fukui

Abstract Recently, computer-aided assessment (CAA) systems have been used
for mathematics education, with some CAA systems capable of assessing learn-
ers’ answers using mathematical expressions. However, the standard input method
for mathematics education systems is cumbersome for novice learners. In 2011, we
proposed a new mathematical input method that allowed users to input mathemati-
cal expressions through an interactive conversion of mathematical expressions from
colloquial-style linear strings in WYSIWYG. In this study, we propose a predictive
algorithm to improve the input efficiency of this conversion process by usingmachine
learning to determine the score parameters with a structured perceptron similar to
natural language processing. In our experimental evaluation, with a training dataset
comprising 700 formulae, the prediction accuracy was 96.2% for the top ten ranking
by stable score parameter learning; this accuracy is sufficient for a mathematical
input interface system.

Keywords Mathematical input interface ·Predictive algorithm ·Machine learning ·
Mathematical formula editor

1 Introduction

In recent years, computer-aided assessment (CAA) systems have been used for the
purpose of mathematics education. Some CAA systems enable users to directly enter
mathematical expressions such that their answers can be evaluated automatically by
using a computer algebra system (CAS). These systems have also been used to pro-
vide instructions to students at universities. However, the procedure through which
answers are entered into the system, using a standard input method for mathematics
education, is still cumbersome [10, 11].
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In 2011, we proposed a new mathematical input method through the conversion
of colloquial-style mathematical text (string) [1, 3]. This method is similar to those
used for inputting Japanese characters in many operating systems. In this system, the
list of candidate characters and symbols corresponding to the desired mathematical
expression, as obtained through the user input, is displayed in WYSIWYG format;
once all elements required to be included by the user are selected, the process of
formatting of the expressions is complete. This method enables the user to input
almost anymathematical expressionwithout having to learn a new language or syntax
[12]. However, the disadvantage of the above-mentioned method is that the user has
to convert each element in the colloquial-style mathematical string proceeding from
left to right in order [13].

This study aims to address this shortcoming by improving the input efficiency
of such systems through intelligent predictive conversion of a linear mathematical
string to an entire expression instead of converting each element individually.

2 Related Works

In this section, we describe related works on natural language processing, along with
other predictive inputs for mathematical formulae using an N-gram model.

Input-word prediction has been studied since the 1980s in the field of natural lan-
guage processing. Input characters are usually predicted for a word unit [5]. An
N-gram model is typically used to predict text entries in popular probabilistic
language models. For example, one typical system for word prediction, Reactive
Keyboard, uses an N-gram model for augmentative and alternative communication
(AAC) [7]. In such systems, a tree is built for prediction, where each alphabeti-
cal character corresponds to a node. Priority is assigned to each node based on the
number of occurrences in the N-gram. When a user inputs characters, the system
matches them with tree nodes, and the words in the child nodes of the matched node
are provided as proposed predictions. A structured perceptron in machine learning
for natural language processing has been used to input Japanese characters since the
1990s. As explained in Sect. 4.1, Algorithm 1 is similar to machine learning. It uses
a structured perceptron for natural language processing [9]. However, mathematical
formulae have tree structures, rather than the sentential chain structures of natural
language. Indeed, none of the above-mentioned methods consider the structure of a
sentence; however, our method considers the structure of mathematical formulae.

Structure-based user interfaces for inputting mathematical formulae are popular.
They enable users to format a desired mathematical formula on a PC in WYSIWYG
by selecting an icon corresponding to the structure of the expression. User do so using
a GUI template, e.g., a fraction bar and an exponent form, into which the mathe-
matical elements can be entered. Hijikata et al. from Osaka University improved the
input efficiency of mathematical formulae by proposing an algorithm for predict-
ing mathematical elements using an N-gram model [6]. However, their proposal is
nevertheless a structure-based interface in the sense that users must understand the
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entire structure of a desiredmathematical formula before selecting the corresponding
icons.

By contrast, our predictive conversion method predicts such mathematical struc-
tures from a linear string of the mathematical formulae, rendering it significantly
different from structure-based input methods.

3 Predictive Conversion

In this section, we define the linear string of a mathematical expression to be input
by the user and describe the design of an intelligent predictive conversion system of
such linear strings in Sect. 3.2. In Sect. 3.3, we formulate a predictive algorithm by
using machine learning.

3.1 Linear String Rules

The rules for a linearmathematical string for amathematical expression are described
as follows:

Set the key letters (or words) corresponding to the elements of a mathematical
expression linearly in the order of the colloquial (or reading) style, without
considering two-dimensional placement and delimiters.

In other words, a key letter (or word) consists of the ASCII code(s) corresponding
to the initial or the clipped form (such as the LATEX -form) of the objective mathe-
matical symbol. Therefore, a single key often supports many mathematical symbols.
For example, when a user wants to input α2, the linear string is denoted by “a2”,
where “a” represents the “alpha” symbol and it is unnecessary to include the power
sign (i.e., the caret letter (ˆ)). In the case of 1

α2 + 3 , the linear string is denoted by
“1/a2+3”, where it is not necessary to put the denominator (which is generally the
operand of an operator) in parentheses, because those are never printed.

Other representative category cases are shown in Table 1. For example, the linear
string for eπx is only denoted by “epx”. However, the linear string of the expressions
epx , epx , eπ x are also denoted by “epx”. Hence, there are some ambiguities for
representing linear strings using these rules.

3.2 Design of an Intelligent Predictive Conversion System

In this paper, we propose a predictive algorithm to convert a linear string s into
the most suitable mathematical expression yp. For prediction purposes, we devise a
method through which each candidate to be selected would be ranked in terms of
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Table 1 Examples of mathematical expressions using linear string rules

Category Linear strings Math formulae

Variable a a or α

Polynomial 3x2+4x+1 3x2 + 4x + 1

Fraction 2/3 2
3

Equation (x–1/2)2=x2–x+1/4 (x − 1
2 )2 = x2 − x + 1

4

Square root root3
√
3

Trigonometric sin2x sin2 x

Logarithm log10x log10 x

Exponent epx eπx

Summation sumk=1nk2
n∑

k=1
k2

Integral intabfdx
∫ b
a f dx

its suitability. Our method uses a function Score(y) to assign a score proportional to
the probability of occurrence of the mathematical expression y, which would enable
us to predict the candidate yp by using Eq. (1) as being the most suitable expression
with the maximum score. Here, Y (s) in Eq. (1) represents the totality of all possible
mathematical expressions converted from s.

yp s.t. Score(yp) = max{Score(y)|y ∈ Y (s)} (1)

A mathematical expression consists of mathematical symbols, such as numbers,
variables, and operators,1 together with the operating relations between an operator
and an element. Therefore, we decided to represent a mathematical expression by
a tree structure consisting of nodes and edges corresponding to the symbols and
operating relations, respectively.

First, all node elements of the mathematical expressions are classified into nine
categories, as listed in Table 2 in this mathematical conversion system. Therefore, a
node element is characterized by (k, e, t), where k is the key letter (or word) of the
mathematical symbol e that belongs to type t (= N , V, P, A, BL , BR,C, Q, R, or
T ) in Table 2. For example, the number 2 is characterized as (“2”,2,N) and similarly
a variable x as (“x”, x, V ) and as for the Greek letter α, it can either be characterized
as (“alpha”, α, V ) or (“a”, α, V ). In the case of an operator, the character (“/”, �1

�2
,C)

represents a fractional symbol with input key “/”, where �1,�2 represents arbitrary
operands.

In this study, a total of 510 mathematical symbols and 597 operators in node
element table D are implemented by our prototype system.

1In this article, “operator” is used in the sense of operating on, i.e. performing actions on elements
in terms of their arrangements for two-dimensional mathematical notation.
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Table 2 Nine types of mathematical expressive structures

Math element Codes of type Examples (�1,�2,�3
represent operands)

Number N 2, 128

Variable, symbol V x, α

Prefix unary operator P
√�1, sin�1

Postfix unary operator A �′
1

Bracket BL , BR (�1)

Infix binary operator C �1 + �2,
�1�2

Prefix binary operator Q log�1
�2

Prefix ternary operator R
∫ �2
�1

�3

Infix ternary operator T �1
�2→ �3

The totality Y (s) of the mathematical expressions converted from s is calculated
by using the following procedure Proc. 1–Proc. 3 (cf. [2, 4]) referring to node
element table D .

Proc. 1 A linear string s is separated in the group of keywords defined in
Eq. (2) by using the parser in this system. All possible key separation vectors
(k1, k2, · · · , kK ) are obtained by matching every part of s with a key in D .

s = k1 � k2 � · · · kK where (ki , vi , ti ) ∈ D, i = 1, ..., K (2)

Proc. 2 Predictive expressive structures are fixed by analyzing all key separation
vectors of s and comparing the nine types of structures provided in Table 2.

Proc. 3 From thefixed structures corresponding to the operating relations between
the nodes, we obtain Y (s) by applying all possible combinations of mathematical
elements belonging to each keyword in D .

Complexity of Y (s)

Generally, the number of elements in Y (s), denoted by n(Y (s)), becomes enormous
corresponding to the increase in the length of s. For example, because the key let-
ter “a” corresponds to seven symbols, namely Y (“a”)= {a, α, a, a, a,a,ℵ}, and the
invisible times between a and b corresponds to Y (“ab”)= {ab, ab, ab, ab, ab}, then
n(Y (“abc”))=73 × 52 = 8575. However, for the purpose of a mathematical input
interface, it is enough to calculate the N -best high score candidates in Y (s) as shown
in Eq. (1). Therefore, for improving the efficiency of calculations we obtain the
N -best candidates in Y (s) as follows:

1. In Proc. 1, all the key separation vectors (k1, k2, · · · , kK ) of s are sorted in
ascending order of the number K in Eq. (2), i.e. in an order starting from higher
probability.

2. In Proc. 2, we set upper limit L of the number of loops for breaking down all the
possible calculations of the predictive expressive structures.
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3. In Proc. 3, to obtain the N -best candidates in Y (s), we apply only the N -best
mathematical elements for operand expressions related to an operator instead of
all possible combinations.

3.3 Predictive Algorithm

Let us assume that the probability of occurrence of a certain mathematical element is
proportional to its frequency of use. Then, the probability of occurrence ofmathemat-
ical expression y, which is possibly converted from a given string s, is estimated from
the total score of all the mathematical elements included in y. Given the numbering
of each element from 1 to Ftotal , which is the total number of elements, let θ f be the
score of the f (= 1, · · · , Ftotal)-th element, and let x f (y) be the number of times the
f -th element is included in y. Then, Score(y) in Eq. (1) is estimated by Eq. (3), where
θT = (θ1, · · · , θFtotal ) denotes the score vector and X = (x f (y)), f = 1, · · · , Ftotal

is the Ftotal-dimensional vector.

hθ (X(y)) = θT · X(y) =
Ftotal∑

f =1

θ f x f (y) (3)

Equation (3) is in agreement with the hypothesis function of linear regression, and
X(y) is referred to as the characteristic vector of y. To solve our linear regression
problem and predict the probability of occurrence of a mathematical expression,
we conduct supervised machine learning on the m elements of a training dataset
{(s1, y1), (s2, y2), · · · , (sm, ym)}. Our learning algorithm to obtain the optimized
score vector is performed through the following four-step procedure:

Step 1 Initialization: θ = 0, i = 1
Step 2 Decision regarding a candidate: yp s.t. hθ

(
X(yp)

) = max{hθ (X(y)) |y ∈ Y (si )}
Step 3 Training parameter: if(yp 	= yi ) {

θ f := θ f + 1 for { f ≤ Ftotal |x f (yi ) > 0}
θ f̄ := θ f̄ − 1 for { f̄ ≤ Ftotal |x f̄ (yp) > 0} (4)

}
Step 4 if(i < m){ i=i+1; go to Step 2 for repetition.}

else { Output θ and end.}

This learning algorithm is very simple, and similar to machine learning using a
structured perceptron for natural language processing [9].
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4 Main Algorithm

In this section, we experimentally investigate the prediction accuracy by using the
algorithm described in the previous section. Then, we discuss the results of the
evaluation in Sect. 4.1 and propose the main algorithm of this study in Sect. 4.2.

4.1 Experimental Evaluation

We examine the prediction accuracy using two score learning parameter sets on an
evaluation dataset E = {(si , yi )|i = 0, . . . , 799} containing 800 mathematical for-
mulae from a mathematics textbook [8]. As the scope of the evaluation dataset
E , we adopted the mathematical subjects: “Quadratic-polynomials, -equations,
-inequalities and -functions” that are studied in the tenth grade in Japan. The dataset
E has generated manually with our previous system [3] in the order of appearance
from the textbook by choosing individual expressions yi with length of si , which is
less than 16. Some samples of the dataset E are shown in Table 3.

Two parameter sets of θ for scoring were trained by using the following two
algorithms programmed in Java on a desktop computer (MacOS 10.9, 3.2 GHz Intel
core i3, 8 GB memory):

Algorithm 1 Step 1–Step 4, using Eq. (4).
Algorithm 2 Step 1–Step 4, with Step 3 using

θ f := θ f + 2 for { f ≤ Ftotal |x f (yi ) > 0}
θ f̄ := θ f̄ − 1 for { f̄ ≤ Ftotal |x f̄ (yp) > 0} (5)

in place of Eq. (4).

Table 3 Samples of the evaluation dataset E

Input strings (si ) Length of si Formulae (yi )

a/=0 4 a 	= 0

A (3,–2) 7 A (3,−2)

3 <= y <= 7 7 3 � y � 7

7/9=0.7. 8 7
9 = 0.7̇

root32=[3] 10
√
32 = |3|

y=1/2x2–2x–1 12 y = 1
2 x

2 − 2x − 1

(a4)3=a4*3=a12 14
(
a4

)3 = a4×3 = a12

3x2y4*(–2x4y)3 14 3x2y4 × (−2x4y
)3
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Table 4 Prediction accuracy using Algorithms 1 and 2

Training
number

Best 1 (%) Best 3 (%) Best 10 (%) Correct score

Algo. 1 Algo. 2 Algo. 1 Algo. 2 Algo. 1 Algo. 2 Algo. 1 Algo. 2

0 25.9
(3.8)

25.9
(3.8)

41.3
(4.4)

41.3
(4.4)

52.3
(4.3)

52.3
(4.3)

2.8 (0.1) 2.8 (0.1)

100 62.7
(14.7)

53.3
(14.6)

75.5
(9.2)

82.5
(6.4)

81.5
(6.8)

88.5
(4.3)

15.4
(1.2)

307.0
(58.1)

200 75.6
(6.6)

60.3
(5.0)

82.7
(5.0)

86.1
(4.2)

86.6
(4.3)

91.7
(3.2)

18.0
(1.5)

568.9
(99.4)

300 79.3
(4.1)

64.1
(5.1)

85.2
(4.3)

89.1
(3.2)

88.1
(4.3)

93.8
(2.9)

20.4
(1.9)

964.3
(186.8)

400 79.2
(3.8)

67.7
(5.7)

85.1
(3.8)

90.1
(3.1)

88.2
(3.5)

94.1
(3.1)

21.0
(2.2)

1103.4
(75.2)

500 80.0
(4.4)

67.6
(5.7)

86.7
(4.0)

90.6
(2.9)

89.5
(3.3)

94.5
(2.8)

23.1
(2.2)

1290.6
(99.8)

600 79.5
(3.7)

69.1
(4.6)

85.9
(3.4)

90.8
(2.7)

89.2
(3.8)

94.3
(2.5)

22.4
(2.4)

1492.2
(106.5)

700 79.1
(5.7)

68.5
(6.0)

85.7
(5.3)

91.1
(2.5)

89.2
(4.2)

95.0
(2.5)

22.9
(1.7)

1692.9
(114.7)

Numbers within parentheses denote the SD

Fig. 1 The result by
Algorithm 1 (training
number–prediction accuracy)
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In the experimental evaluation, we measured the proportion of correct predictions
from among 100 test datasets after learning the parameters through Algorithms 1 and
2 using a training dataset consisting of 700 formulae by eightfold cross-validation.

The machine learning results using Algorithms 1 and 2 are given in Table 4 for
each training number. By using Algorithm 1, the prediction accuracy of “Best 1”
is about 79.1% after being trained 700 times. In the top ten ranking (“Best 10”), it
achieves about 89.2%. Figure 1 shows the change in the prediction accuracy as a
result of Algorithm 1 for each training number.

On the other hand, the result obtained by using Algorithm 2 with another learning
weight shows that the prediction accuracy of “Best 1” is approximately 68.5% after
being trained 700 times. It achieves about 95.0% in the top ten ranking. The change
in the prediction accuracy as a result of Algorithm 2 is shown in Fig. 2.
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Fig. 2 The result by
Algorithm 2 (training
number–prediction accuracy)
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4.2 Discussion

The mean scores for the correct expressions (“correct score” in short) in the test
dataset for each training number are shown in the fifth column of Table 4 and illus-
trated in Fig. 3. The prediction accuracy of “Best 1” by using Algorithm 1 becomes
sufficiently high, i.e., approximately 80%,with themean correct score approximately
equal to 23 after being trained 500 times.However, this is disadvantageous for amath-
ematical input interface, because the correct expressions out of the top ten ranking
are more than 10%. One of the causes of this 10% leak is because the priorities of
some correct expressions are not reflected in their occurrence frequency. In the case
when two different candidates belonging to the same key appear from the training
data, e.g., the pair a and α and the pair p and π , their scores change into a positive
value from a negative value or vice versa. This means that even if a candidate with
negative score occurred many times in E , it has lower priority than the one with zero
score because the increase and decrease in the weights of the score in Eq. (4) are
mutually the same. For example, changes in score parameters (a and α) are shown
in Fig. 4.

To avoid such problems, we have modified Algorithm 2 such that the increase
in weight for the correct candidate is greater than the decrease in weight for the
incorrect one as shown in Eq. (5). From the results of experimental evaluation of the

Fig. 3 Change in correct
score given by Algorithm 1
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Fig. 4 Change in score parameters (a and α)

prediction accuracy by using Algorithm 2, the ratio of correct expressions from the
top ten ranking is less than 5%, which is sufficient for a mathematical input interface
system. However, we remark that the score parameter continues to increase while
Algorithm 2 is learning.

In this study, we propose the following algorithm, Algorithm 3, to overcome the
problems encountered in Algorithm 2.

Algorithm 3 Step 1–Step 4, where Step 3 using

if(θ f < Smax){θ f := θ f + 2 for { f ≤ Ftotal |x f (yi ) > 0}}
θ f̄ := θ f̄ − 1 for { f̄ ≤ Ftotal |x f̄ (yp) > 0} (6)

in place of Eq. (5).

Here, Smax in Eq. (6) is a suitable upper bound for any mathematical element score.
Because the result of Algorithm 1 provides good precision with a mean score of
approximately 23, we set the upper bound Smax to 20 for any mathematical element
score θ f .

The machine learning results for Algorithm 3 for the case Smax = 20 are given
in Table 5 for various sizes of the training dataset. It can be seen that the accuracy
of “Best 1” with Algorithm 3 was approximately 68.3% after being trained 700
times. This algorithm achieved an accuracy of 90.5% for the top three ranking, and
96.2% for the top ten ranking. With a training set of size 700, there is no statistically
significant difference (at the 5% level) between the results for Algorithm 2 and
those for Algorithm 3 for the “Best 1,” “Best 3,” or “Best 10” cases. Additionally,
the learning curves for both algorithms change at the same skill rate for each of
these cases. The mean correct scores in the test dataset for each training number are
presented in the fifth column of Table 5 and illustrated in Fig. 5. The correct score
with Algorithm 2 (shown in the fifth column of Table 4) increases proportionally
with training number n (decision coefficient: R2 = 0.98); however, the correct score
with Algorithm 3 increases only at a rate of log n (R2 = 0.96).

Comparing case Smax = 20 with Smax = 50, we conclude that precision properties
of both are almost similar while the mean correct score for the test data when Smax =
20 is 14% lower than that when Smax = 50. However, if we set Smax to less than 20,
the scores of the individual elements belonging to any one key are not much different
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Table 5 Prediction accuracy using Algorithm 3

Training no. Best 1 (%) Best 3 (%) Best 10 (%) Correct score

0 25.9 (3.8) 41.3 (4.4) 52.3 (4.3) 2.8 (0.1)

100 54.2 (13.8) 82.6 (6.4) 88.7 (4.3) 283.0 (74.0)

200 65.7 (6.8) 87.7 (3.4) 93.0 (2.7) 428.6 (110.6)

300 69.5 (6.1) 88.3 (3.1) 94.0 (3.0) 494.1 (134.7)

400 67.9 (6.3) 88.8 (2.4) 94.3 (2.8) 536.7 (148.8)

500 69.2 (5.6) 89.8 (3.0) 95.2 (2.7) 566.2 (162.7)

600 70.6 (5.2) 90.9 (2.7) 95.9 (2.5) 590.0 (169.4)

700 68.3 (6.1) 90.5 (2.8) 96.2 (2.3) 608.0 (180.0)

Numbers within parentheses denote the SD

Fig. 5 Change in correct
score given by Algorithms 2
and 3

in the machine training because the maximum number of elements belonging to any
one key is equal to 20 in our key dictionary D . Therefore, we propose Smax = 20 to
be the most suitable value in this study.

5 Conclusion and Future Work

In this paper, we proposed a predictive algorithm with an accuracy of 96.2% for the
top ten ranking by improving upon a previously proposed algorithm in terms of a
structured perceptron for stable score parameter learning. The mean CPU time for
predicting each mathematical expression with corresponding linear string of length
less than 16 obtained from a mathematics textbook was 0.44 s (SD=0.61).

Because the linear strings formathematical expressions are easily recognized from
both handwritten image data and voice data for such mathematical expressions, it
is possible that the desired mathematical expression is predicted with high accuracy
from such linear strings by using this predictive algorithm. We believe that there
is a possibility to apply this predictive algorithm to not only a mathematical input
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method on a PCwith the keyboard but also for recognizing handwrittenmathematical
expressions and voice for mathematical expressions.

Finally, the most important avenues for future research are to reduce the time for
prediction and develop an intelligent mathematical input interface by implementing
our proposed predictive algorithm.
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Algebraic Modelling of Covering Arrays

Bernhard Garn and Dimitris E. Simos

Abstract We introduce a novel technique to model and compute binary covering
arrays, discrete combinatorial structures, based on a tuple-level modelling and using
methods arising from linear algebra, commutative algebra and symbolic computation.
Concrete instances of covering arrays for given parameters will arise as points in a
generated variety of a system of multivariate polynomial equations with Gröbner
Bases playing an important role.

Keywords Covering arrays · Algebraic modelling · Symbolic computation ·
Algorithms

1 Introduction

Over the last few years, covering arrays have seen a new application in a novel branch
of software testing called combinatorial testing [30]. Traditional applications of espe-
cially orthogonal and covering arrays lie in a field known as Design of Experiments,
however, a change of perspective led to the supremacy usage of covering arrays in
combinatorial testing. A change of focus when moving from classical Design of
Experiments to software testing makes the coverage notion of covering arrays par-
ticularly appealing and has been shown beneficial in software testing practice [29].

The computation of optimal covering arrays is a well-known NP-hard prob-
lem [35], which has been attacked with multiple techniques from various fields (see
Sect. 2.3). For a comprehensive treatment of the different kinds of methodologies
for the construction of covering arrays, we refer the interested reader to the recent
survey of [37].
Contribution. In this paper, we propose a Computational Algebra formalism to pro-
vide an algebraic modelling that leads to the construction of covering arrays. Our
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formalism is based on a translation of the coverage property of covering arrays to
zeros of multivariate polynomials and the subsequent computation of varieties aris-
ing from systems of such polynomials, incorporating the theory of Gröbner bases.
For given binary covering array configuration, our approach is able to generate all
possible solutions, if any exist or show that there are no solutions at all.

This paper is structured as follows. Section2 describes the necessary theoretical
background and related problems for covering arrays. In Sect. 3 we give our algebraic
modelling and present detailed examples illustrating our algorithmic approaches for
the construction of covering arrays in Sect. 4. Finally, in Sect. 5 we compare our
approach to some greedy (algorithmic) approaches and conclude the paper in Sect. 6
with directions for future research.

2 Related Problems and Algorithms for Covering Arrays

In this section, we first review the necessary definitions for covering arrays and some
of their properties. Afterwards, we reformulate various problems related to the com-
putation and construction of covering arrays, referencing past works where needed.
Finally, we describe related algorithmic approaches, for solving the aforementioned
problems, and we make special mention to the most efficient of them.

2.1 Preliminaries for Covering Arrays

We give below the necessary definitions for the notions of covering arrays used in
this paper, taken from [12].

Definition 1 (CA) A covering array CAλ (N ; t, k, v) is an N × k array. In every
N × t subarray, each t-tuple occurs at least λ times. Then t is the strength of the
coverage of interactions, k is the number of components (degree) and v is the number
of symbols for each component (order). Only the case when λ = 1 is treated; the
subscript is then omitted in the notation. The size N is omitted when inessential in
the context.

Definition 2 (MCA) Amixed-level covering arrayMCAλ (N ; t, k, (v1, v2, . . . , vk))
is an N × k array. Let {i1, . . . , it } ⊆ {1, . . . , k}, and consider the subarray of size
N × t obtainedby selecting columns i1, . . . , it of theMCA. There are

∏t
i=1 vi distinct

t-tuples that could appear as rows, and an MCA requires that each appear at least
once. CAN (t, k, (v1, v2, . . . , vk)) denotes the smallest N for which such a mixed
covering array exists.

Definition 3 (MCA and CA configuration) A configuration C for a mixed-level
covering array is a tuple (t, k, (v1, v2, . . . , vk)). When v1 = v2 = . . . = vk = v, then
the specifiedMCA is in fact aCA and we denote its configuration simply by (t, k, v).
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We will, however, denote and use (mixed-level) covering arrays M as their
transpose M� in their matrix notation, following the terminology used in [16].
The later used statement “a matrix M is compatible with a MCA configuration
C = (t, k, (v1, . . . , vk))” is to be understood as that the matrix M has k columns
and that its elements in the i-th column arise either from the set {0, . . . , vi − 1} or
constitute variables which take values exactly in {0, . . . , vi − 1}.

2.2 Problems for Covering Arrays

In this section we present different problems that arise in the generation and com-
putation of covering arrays. We reformulate some of the problems found in [10, 16,
31, 32] to a proper computational or decisional version (in terms of computational
complexity) and introduce some more that will be needed in the course of our work.
Since for any givenMCA configuration it is possible to give immediately at least one
mixed-level covering array—the Cartesian product—the most important challenge
lies in the construction of optimal or near optimal mixed-level covering arrays. In
particular, considerable effort has been put into developing theoretical upper and
lower bounds for the covering array numbers CAN (t, k, (v1, v2, . . . , vk)), as well as
explicit constructions which we list in Sect. 2.3.

Problem 1 (Decisional Existence) For given MCA configuration C and given
N ∈ N, decide whether aMCA for the configuration C with N rows exists.

Problem 2 (Computational Existence (one solution), version 1) For given MCA
configuration C and given N ∈ N, construct oneMCA for the configuration C with
exactly N rows or terminate with an error.

Problem 3 (Computational Existence (one solution), version 2) For given MCA
configuration C and given N ∈ N with CAN(C) ≤ N , construct one MCA for the
configuration C with exactly N rows.

Problem 4 (Computational Existence (all solutions), version 1) For given MCA
configuration C and given N ∈ N, construct allMCAs for the configuration C with
exactly N rows or terminate with an error.

Problem 5 (Computational Existence (all solutions), version 2) For given MCA
configuration C and given N ∈ N with CAN(C) ≤ N , construct all MCAs for the
configuration C with exactly N rows.

Problem 6 (Decisional Parameter Extension) Given a MCA M of strength t and
given an alphabet size v, decide whether it is possible to extend the given matrix M
with one additional column corresponding to a new parameter taking v values such
that the extended matrix constitutes a MCA of strength t without adding additional
rows.
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Problem 7 (Computational Parameter Extension (one solution), version 1) Given
aMCA of strength t , given an alphabet size v, construct one new additional column
such that the extended matrix constitutes a MCA of strength t with the additional
parameter taking v values without adding new rows or terminate with an error.

Problem 8 (Computational Parameter Extension (one solution), version 2) Given
a MCA of strength t , given an alphabet size v and assume an affirmative parameter
extension decision, construct one new additional column such that the extended
matrix constitutes aMCA of strength t with the additional parameter taking v values
without adding new rows.

Problem 9 (Computational Parameter Extension (all solutions), version 1) Given
a MCA of strength t , given an alphabet size v, construct all possible new additional
columns such that the extended matrices constitute MCAs of strength t with the
additional parameter taking v values without adding new rows or terminate with an
error.

Problem 10 (Computational Parameter Extension (all solutions), version 2) Given
a MCA of strength t , given an alphabet size v and assume an affirmative parame-
ter extension decision, construct all possible new additional columns such that the
extendedmatrices constituteMCAs of strength t with the additional parameter taking
v values without adding new rows.

Problem 11 (Decisional Vertical Extension) Given aMCA configuration C , a com-
patible matrix M and an integer r , decide whether it is possible to extend the given
matrixM with exactly r rows, such that after the extension the newmatrix constitutes
aMCA for the given configuration C .

Problem 12 (Computational Vertical Extension (one solution), version 1) Given a
MCA configurationC , a compatiblematrixM and an integer r , construct one vertical
extension for M of exactly r rows such that the extended matrix constitutes a MCA
for the given configuration C or terminate with an error.

Problem 13 (Computational Vertical Extension (one solution), version 2) Given a
MCA configurationC , a compatiblematrixM , an integer r and assume an affirmative
vertical extension decision for r , construct one vertical extension of exactly r rows
such that the extended matrix constitutes aMCA for the given configuration C .

Problem 14 (Computational Vertical Extension (all solutions), version 1) Given a
MCA configurationC , a compatible matrix M and an integer r , construct all possible
vertical extensions for M of exactly r rows such that the extended matrices constitute
MCAs for the given configuration C or terminate with an error.

Problem 15 (Computational Vertical Extension (all solutions), version 2) Given a
MCA configurationC , a compatiblematrixM , an integer r and assume an affirmative
vertical extension decision for r , construct all possible vertical extensions of exactly r
rows such that the extended matrices constituteMCAs for the given configurationC .
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Problem 16 (Decisional Minimal Vertical Extension) Given a MCA configuration
C , compatible matrix M and integer r , decide whether r is the least positive integer
such that an r vertical extension of M for C is possible.

Problem 17 (Computational Minimal Vertical Extension) Given aMCA configura-
tionC and compatible matrix M , construct the least positive integer r such that there
is an affirmative minimal vertical extension decision for r .

Problem 18 (Decisional Coverage Verification) Given aMCA configuration C and
a compatible matrix M , decide whether it constitutes a MCA for the given configu-
ration C .

2.3 Related Algorithms for Covering Arrays

We give some references to works describing algorithms and techniques for con-
structing covering arrays. We do not aim to provide a comprehensive, or by all
means complete, treatment of the subject, as this is not the purpose of the present
paper. We are merely interested in giving a flavour of the many different approaches
used, in order to exhibit that while covering arrays are specialized types of combi-
natorial structures there has been a great interest on applying algorithmic techniques
for their construction.

For binary covering arrays of strength t = 2 the exact value of CAN (2, k, 2) and
an explicit construction for an optimal covering array are known [23]. In general,
exact methods will return a covering array with CAN rows, i.e., they construct the
optimal number of rows [5, 17, 40]. Practically successful greedy constructions
include [6, 8]. A branch and bound approach was presented in [39]. Although
metaheuristic methods do not provide any guarantees regarding the quality of the
generated solution, their application to the generation of covering arrays has been
successful in practice, including simulated annealing [1, 38] and Tabu search [15,
33]. Last but not least, algorithms arising in the field of discrete mathematics include
constructions based on cyclotomy [11] and linear feedback shift registers [34].

Finally, we make special mention to the In-Parameter-Order-General (IPOG) [31,
32] family of algorithms for constructing covering arrays, since it is among the
most popular algorithmic solutions for constructing covering arrays today and is
heavily used by practitioners of combinatorial testing. It is developed jointly at the
University of Texas at Arlington and NIST. These algorithms are implemented in a
software called ACTS, which constructs competitive quality mixed-level covering
arrays. Given a configurationC of aCA, the IPOG strategy for constructing a strength
t = 2 covering array works as follows: it starts by constructing a strength t = 2
covering array for the first two parameters, which can be done easily by constructing
the Cartesian product (i.e., ordered pairs of values from domain of the first parameter
and the domain of the second parameter). Then, this matrix is extended to a matrix
which will be a strength t = 2 covering array for the first three parameters. This
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strategy is continued until all parameters have been considered and as such a covering
array with strength t = 2 for all parameters has been constructed. The extension step
to also cover an additional parameter is performed in two independent steps:

Step 1 In the horizontal extension step, each row of the matrix is extended from
an i-tuple to an i + 1-tuple, and an appropriate value in the domain of the
i + 1-th parameter is chosen.

Step 2 In the vertical extension step, new rows are added to the matrix until the
desired t-wise coverage is achieved.

3 Algebraic Tuple Modelling

In this section, we establish the connection between the notion of t-wise coverage
of covering arrays and algebraic techniques. In particular, we show how to model,
enforce and construct binary strength two covering arrays as defined in Sect. 2.

A brief, informal description of our approach can be given as follows: for given
covering array configuration C = (2, k, 2), and depending on the covering array
problem considered (see Sect. 2.2), we construct a matrix where some entries are
variables xı from a suitable multivariate polynomial ring over the field of rational
numbers Q. The later introduced concept of row-selectors (see Sect. 3.2, Definition
5) with specific entries and transformations of coverage conditions into an algebraic
formulation serve to arrive at a multivariate system of equations over a specific
multivariate polynomial ring. Subsequently, we rely on the theory of Gröbner Bases
to compute the variety. In the case that there are solutions, each point in the computed
variety corresponds to a matrix which constitutes a covering array for the given
initial configuration C . Below we show how to construct an algebraic system that
incorporates all the necessary conditions.

Different discrete structures have been studiedwith the help of (generalized) linear
systems and Gröbner Bases, such as correlated sequences [27, 36], design matrices
[24–26, 28] and linear codes [3]. However, to the best of our knowledge no such
algebraic approach has been devoted thus far to the construction and computation of
covering arrays.

3.1 Binary Conditions

We are interested in binary covering arrays, and therefore we have to ensure that
all entries in the considered matrices are either zero or one. For all variables xı in a
matrix, we enforce the binary condition via an equation of the following form:

xı (xı − 1) (1)



Algebraic Modelling of Covering Arrays 155

3.2 Coverage Equations

Definition 4 Let P be a ring and a, b ∈ P . We say that the triple (P, a, b) has the
pairwise binary tuple distinguishing property, if and only if,

1. P is a unary ring.
2. P is an integral domain.
3. The elements of the set {0, a, b, a + b} are pairwise different.

We start with inferring a “distinguisher” for coverage properties for pairwise
coverage, meaning we are interested in a function defined on pairs (i.e., two tuples)
such that we can infer coverage properties based on the function value. We begin
with a fundamental (trivial) observation.

Remark 1 Assume that P is a ring,a, b ∈ P and that (P, a, b)has thepairwise binary
tuple distinguishing property. Then the following equations involving standard inner
products of vectors x and y of length η defined over P ,

〈x, y〉 := x · y :=
η∑

r=1

xr yr ,

are true statements (we denote by � the transpose of a matrix):

(
a, b

) · (
0, 0

)� = 0 (2a)
(
a, b

) · (
1, 0

)� = a (2b)
(
a, b

) · (
0, 1

)� = b (2c)
(
a, b

) · (
1, 1

)� = a + b (2d)

From the computation results in Eqs. (2a)–(2d) and the pairwise binary tuple dis-
tinguishing property assumption, we conclude that the results are pairwise different,
and therefore we can use the evaluation of the standard inner product of a tuple hav-
ing only zero and one as elements with the vector

(
a, b

)
to determine a tuple from

the set {(0, 0) , (1, 0) , (0, 1) , (1, 1)} uniquely. We formulate this observation in the
following Lemma:

Lemma 1 Assume that P is a ring, a, b ∈ P, and that (P, a, b) has the pairwise
binary tuple distinguishing property. Further assume that

(
t1, t2

)
is a tuple where

each entry is either zero or one. Then, the following statements hold:

(
t1, t2

) = (
0, 0

) ⇐⇒ (
a, b

) · (
t1, t2

)� = 0 (3a)
(
t1, t2

) = (
1, 0

) ⇐⇒ (
a, b

) · (
t1, t2

)� − a = 0 (3b)
(
t1, t2

) = (
0, 1

) ⇐⇒ (
a, b

) · (
t1, t2

)� − b = 0 (3c)
(
t1, t2

) = (
1, 1

) ⇐⇒ (
a, b

) · (
t1, t2

)� − a − b = 0 (3d)
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Proof The computations in Remark 1 yield a bijection ϕ from the set

{(0, 0) , (1, 0) , (0, 1) , (1, 1)} (4)

onto the set {0, a, b, a + b}. For all four cases, the direction “⇒” follows from the
computation in Remark 1, and the direction “⇐” from the fact that each element in
the set {0, a, b, a + b} has exactly one pre-image under the function ϕ. 
�

It is the defining property that given a non-empty finite product of elements of
an integral domain, the product is zero if and only if at least one factor is zero. This
paves the way for making a connection between the notion of coverage in the theory
of covering arrays and zeros of finite non-empty products of elements in certain
multivariate polynomial rings.

To broaden the technique presented so far to be able to reason about matrices, in
Definition 5 below introduced concept of row-selectors established the transforma-
tion of the statement “for any selection of t distinct rows” into our algebraic setting
using linear operations.

Remark 2 The definition ofmixed-level covering arrays in Definition 2 speaks about
the selection of any t distinct parameters, which corresponds to the selection of
columns in a matrix since they correspond to parameters of the system. In this
section, we will almost always work with the transpose of such a matrix and are
therefore interested in the selection of t distinct rows.

Definition 5 For i, j, k ∈ N, k ≥ 2, 1 ≤ i < j ≤ k, let the function

ek,i, j : P × P −→ P1×k (5)

map a pair of elements from a ring P to a row vector of length k over P , where the
first component is mapped to the i-th position, the second component to the j-th
position in the vector, and all other entries in the vector are zero.
We call these functions row-selectors.

Example 1 Following the terminology in Definition 5 and assuming a, b ∈ P , we
will be particularly interested in ek,i, j (a, b), for example

e9,2,5(a, b) = (0, a, 0, 0, b, 0, 0, 0, 0). (6)

Remark 3 Let P be a ring and εi , ε j ∈ P . For any matrix M defined over P with
2 ≤ k rows and given i, j ∈ N such that 1 ≤ i < j ≤ k, let the matrix M̃ consist of
the vertical concatenation of the i-th and j-th row in this order of the matrix M . Then

ek,i, j (εi , ε j ) M = (
εi , ε j

)
M̃ . (7)
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Example 2 Following the terminology in Definition 5 and Example 1, we consider
the matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 1 0
0 1 0 1 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 0 1
0 0 1 1 0 1
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (8)

and the row-selector e9,2,5(a, b) = (0, a, 0, 0, b, 0, 0, 0, 0). Simple computation
yields that

(
0, a, 0, 0, b, 0, 0, 0, 0

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 1 0
0 1 0 1 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 0 1
0 0 1 1 0 1
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (
0, a + b, 0, a + b, a, b

)
, (9a)

(
a, b

)
(
0 1 0 1 1 0
0 1 0 1 0 1

)

= (
0, a + b, 0, a + b, a, b

)
, (9b)

illustrating the observations given in Remark 3.

Theorem 1 Assume that P is a ring, a, b ∈ P, and that (P, a, b) has the pairwise
binary tuple distinguishing property. For any given k × N matrix M defined over P
containing only zero and one as entries, and any 1 ≤ i < j ≤ k, let M̃ denote the
vertical concatenation of the i-th and j-th row in this order of the matrix M. Let sa
denote the 1 × N row vector with all components equal to a, and let

h = ek,i, j (a, b)M − sa . (10)

Then, the following statements are equivalent:

1. The tuple
(
1, 0

)�
appears at least once as a column in the matrix M̃.

2. The vector h contains at least one component equal to zero.
3.

∏N
�=1 h� = 0.

A similar statement holds for the tuples
(
0, 0

)�
,
(
0, 1

)�
, and

(
1, 1

)�
.

Proof The equivalence of 1 and 2 follows from Lemma 1. The equivalence of 2 and
3 follows from the defining property of an integral domain.
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Example 3 The conditions of Theorem 1 and the appearances of tuples can be
observed in Eqs. (9a) and (9b).

Definition 6 We call the equations appearing in Theorem 1, point 3, coverage equa-
tions and, using the notation from Theorem 1, define the following notation for
1 ≤ i < j ≤ k, τ ∈ {(0, 0)�

,
(
1, 0

)�
,
(
0, 1

)�
,
(
1, 1

)�}:

coveq(i, j)
τ (M) =

N∏

�=1

h�. (11)

Remark 4 The coverage equations are modelled after the coverage conditions
appearing in the definition of covering arrays. The coverage equations are formu-
lated in such a way that they are semantically equivalent to the pairwise coverage
conditions for binary covering arrays. This statement is the main result of this section
and will be formulated in Corollary 1.

Corollary 1 Assume that P is a ring, a, b ∈ P, and that (P, a, b) has the pairwise
binary tuple distinguishing property. Let M be a k × N matrix with 2 ≤ k defined
over P, containing only zero and one as entries.

Then, the statements 1, 2 and 3 are equivalent.

1. For every selection of two different rows of M, each possible binary tuple appears
at least once as a column of the selected 2 × N submatrix of M.

2. M� is a covering array for the configuration (2, k, 2) in the sense of Definition 1,
i.e., the strength two coverage conditions of covering arrays hold for M�.

3. For every i and j with the property 1 ≤ i < j ≤ k and for all τ ∈ {(0, 0)�
,

(
1, 0

)�
,
(
0, 1

)�
,
(
1, 1

)�}:

coveq(i, j)
τ (M) = 0. (12)

Proof The equivalence of 1 and 2 follows from Definition 1. The equivalence of 1
and 3 follows from Theorem 1.

Based on the previous algebraic modelling, we can now describe the different
computational and/or decisional problems of covering arrays fromSect. 2.2 as related
problems found inmultilinear algebra. In particular, through our algebraic modelling
the problem(s) of constructing and computing covering arrays can be formulated
as instance(s) of algebraic systems, where each solution of them corresponds to a
covering array.
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3.3 Candidate Matrices

Depending on the problem under consideration (see Sect. 2.2), we obtain a matrix
which in some entries has variables xı appearing. Assume that there are exactly γ

variables appearing in thematrix. In order to apply our distinguisher-based approach,
we will regard this matrix as being defined over the multivariate polynomial ring
Q

[
x1, x2, . . . , xγ , a, b

]
in γ + 2 variables over the rational field Q. A detailed

description of the used polynomial ring is given in Sect. 3.4. In the next lemma,
we prove that the results of Sect. 3.2 do hold for the case of candidate matrices:

Lemma 2 Let P be a multivariate polynomial ring in at least two variables defined
over the rational field and assume that a and b are two different indeterminates, then
(P, a, b) has the pairwise binary tuple distinguishing property.

Proof The requirements for the pairwise binary tuple distinguishing property hold
because of the properties of P .

Using Lemma 2 and candidate matrices, possibly with variables in some entries,
we can now compute all binary conditions and coverage equations according to
the previous two subsections and use them to reason about coverage statements
concerning these matrices. We would like to explicitly point out that there are no
binary conditions computed for a and b.

3.4 Treating the Variables

We speak of those variables appearing in a matrix as X-variables (x1, . . . , xγ ),
whereas we think of a and b as A-variables. So far, all matrices are defined over
the multivariate polynomial ring

Q
[
x1, x2, . . . , xγ , a, b

]

in γ + 2 variables. Concerning the A-variables, they do not appear in the solutions
of the modelled matrices. Note that all X-variables take values in {0, 1}. Since we are
only interested in the solutions w.r.t. X-components, we want to project the variety
in the subspace spanned by X.

Gathering all the polynomials mentioned in this section, we obtain an algebraic
description. This algebraic description is an ideal in Q

[
x1, x2, . . . , xγ , a, b

]
, which

we call the coverage ideal of the candidate matrix. From the theory of Gröbner bases
we know that the Gröbner basis is a full description of an ideal, but has a better
form than a random set of generators (as the ones we obtained by our analysis of the
problem).
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3.5 Solving of the Systems

We rely on the theory of Gröbner bases, we give the reference to their initial proposi-
tion in [7], whereby a comprehensive account can be found in [2]. There exist efficient
algorithms for computing Gröbner bases, such as the F4 [13] and F5 algorithms [14],
among others.

Given a set of equations forming a coverage ideal I in Q
[
x1, x2, . . . , xγ , a, b

]
,

to solve the system, we first choose random values for a and b. We evaluate the
polynomials in this set with the chosen values for a and b and interpret them as
elements of R = Q

[
x1, x2, . . . , xγ

]
. These equations define an ideal IR restricted to

R, whereas we compute a Gröbner Basis (GB) of this ideal in theMAGMAcomputer
algebra system [4]. When GB(IR) �= {1} then the resulting variety will entail all
points (solutions of the algebraic system) that correspond to actual covering arrays
upon replacing the values of X-variables into the entries of the candidate matrices.
Otherwise, when GB(IR) = {1} there is no solution to the specific algebraic system,
even though we cannot exclude the possibility that another random replacement of
A-variables will result in a non-empty variety. However, we have not observed such
a case in our experiments. We would like to note that whenever a nontrivial variety
is obtained, the corresponding matrices are covering arrays by Corollary 1.

4 Algorithmic Approaches to the Covering Array Problems

We would like to point out that most constructions in this section operate on the
transpose of a covering array, i.e. meaning that rows are corresponding to parameters.

4.1 An Algorithmic Approach to the Vertical Extension
Problems

In the first examplewe present how to extend a givenmatrix,which is compatiblewith
but not a covering array for a covering array configuration C , with one additional
column such that all missing tuples will appear in the extended matrix (relates to
Problems 11, 12, 13, 16).

Specifically, we consider the configuration C = (2, 2, 2), i.e. two binary parame-
ters for strength two, and the following matrix:

M =
(
0 1 0
0 0 1

)

. (13)

We extend with one additional column, therefore we will be working in P =
Q [x1, x2, a, b], i.e. in the multivariate polynomial ring in four variables over the
rational field. The extension column consists of the first two indeterminates,

(
x1 x2

)�
,

and is added at the end of the given matrix M :
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Mext =
(
0 1 0 x1
0 0 1 x2

)

. (14)

We select the first and second row of the matrix Mext and create the coverage
equations. We start with deriving the coverage equation for the

(
0, 0

)�
tuple.

v00 = (
a, b

)
(
0 1 0 x1
0 0 1 x2

)

= (15a)

(
0, a, b, x1a + x2b

)
. (15b)

Taking the product of the elements of the vector v00 leads to the first coverage equation
coveq(1,2)

(0,0)� (Mext) = 0. As the tuple
(
0, 0

)�
appears in the matrix M , we expect

the respective coverage equation to hold which it does as can derived from Eq. (15b).
Similarly, the coverage equations for the tuples

(
1, 0

)�
and

(
0, 1

)�
hold as well.

The only nontrivial coverage equation arises for the
(
1, 1

)�
tuple:

− x1a
3b − x1a

2b2 − x2a
2b2 − x2ab

3 + a3b + 2a2b2 + ab3. (16)

Next, we add the binary conditions for the variables x1 and x2:

x21 − x1, x
2
2 − x2. (17)

We now substitute random values for the A-variables

arand = −13400/112, (18a)

brand = 290349/125, (18b)

and denote by alleqnoab the set consisting of the polynomials occurring in the
only nontrivial coverage equation (cf. Eq. (16)) and in the binary conditions (cf.
Eq. (17)). All further computations take place in R = Q [x1, x2]. We compute the
Gröbner Basis of the following ideal in MAGMA:

I_R = ideal < R | alleqnoab >,

where I_R denotes the restricted ideal IR as defined in Sect. 3.5. The following
computation returns theGröbner Basis polynomials (where rank refers to the number
of variables in a multivariate polynomial ring) in MAGMA:

Ideal of Polynomial ring of rank 2 over Rational Field, Lexicographical Order,
Variables x1, x2, Dimension 0, Groebner basis:

(x1 − 1, x2 − 1) (19)

The variety consists of only one point, corresponding to the tuple
(
1, 1

)�
. Substi-

tuting this solution into the extendedmatrixMext leads to the transpose of a covering
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array in the sense of Definition 1 for the configuration (2, 2, 2):

(
0 1 0 1
0 0 1 1

)

. (20)

The pseudocode for the Vertical Extension procedure, that has been used in this
example, is given in Algorithm 1.

Algorithm 1 Vertical Extension
procedure Vert- ext(M)

Require: matrix M � rows corresponding to parameters
k ← NumberOfRows(M)

P ← Q [x1, . . . , xk , a, b]
E ← (x1, . . . , xk)�
Mext ← HorizontalConcatenation(M, E)

eqall ← ∅
for i = 1, 2, . . . , k do

for j = i + 1, . . . , k do
for τ ∈ {(0, 0)�

,
(
1, 0

)�
,
(
0, 1

)�
,
(
1, 1

)�} do
eqall ← eqall ∪ {coveq(i, j)

τ (Mext)}
end for

end for
end for

SetOfBinaryConditions ← Compute binary equations
eqall ← eqall ∪ SetOfBinaryConditions
Randomly replace a and b in eqall
Regard polynomials in eqall as elements of a set s over R = Q [x1, . . . , xk ]
IR ← ideal < R|s >

GB ← GröbnerBasis(IR)

if GB �= {1} then
V ← Variety(GB)

Print "Non-empty set of solutions (CAs) found."
return V

else
Print "No solutions found."
return ∅

end if
end procedure

4.2 An Algorithmic Approach to the Parameter Extension
Problems

In this example we are given a covering array with k parameters and we want to
extend it to a covering array with one additional parameter by extending the given
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matrix with a new row and in particular without adding more columns (relates to
Problems 6, 7, 8). Consider the following matrix M , which is a covering array for
the configuration C = (2, 2, 2):

M� =
(
0 1 0 1
0 0 1 1

)

. (21)

We will add a row vector of length four to the matrix, whose entries are the first
four indeterminates of the multivariate polynomial ring P = Q [x1, x2, x3, x4, a, b],
leading to the matrix

Mext =
⎛

⎝
0 1 0 1
0 0 1 1
x1 x2 x3 x4

⎞

⎠ . (22)

The next step is to derive the coverage equations. We begin by selecting the first and
second row of the matrix Mext , the respective row-selector vector is e3,1,2(a, b) =(
a, b, 0

)
. All resulting coverage equations for this pair of selected rows hold, since

by choice we started with a matrix that is already a covering array of strength two
for two parameters. Therefore, we only have to consider row-selection pairs which
include the newly added row. The four coverage equations for the selection of the
first and third row are as follows:

x1x2x3x4b
4 + x1x2x3ab

3 + x1x3x4ab
3 + x1x3a

2b2 (23a)

x1x2x3x4b
4 + x1x2x3ab

3 − x1x2x3b
4 − x1x2x4b

4 − x1x2ab
3 + x1x2b

4+ (23b)

x1x3x4ab
3 − x1x3x4b

4 + x1x3a
2b2 − 2x1x3ab

3 + x1x3b
4 − x1x4ab

3+
x1x4b

4 − x1a
2b2 + 2x1ab

3 − x1b
4 − x2x3x4b

4 − x2x3ab
3 + x2x3b

4+
x2x4b

4 + x2ab
3 − x2b

4 − x3x4ab
3 + x3x4b

4 − x3a
2b2+

2x3ab
3 − x3b

4 + x4ab
3 − x4b

4 + a2b2 − 2ab3 + b4

x1x2x3x4b
4 − x1x2x4ab

3 − x2x3x4ab
3 + x2x4a

2b2 (23c)

x1x2x3x4b
4 − x1x2x3b

4 − x1x2x4ab
3 − x1x2x4b

4 + x1x2ab
3 + x1x2b

4− (23d)

x1x3x4b
4 + x1x3b

4 + x1x4ab
3 + x1x4b

4 − x1ab
3 − x1b

4−
x2x3x4ab

3 − x2x3x4b
4 + x2x3ab

3 + x2x3b
4 + x2x4a

2b2+
2x2x4ab

3 + x2x4b
4 − x2a

2b2 − 2x2ab
3 − x2b

4 + x3x4ab
3 + x3x4b

4−
x3ab

3 − x3b
4 − x4a

2b2 − 2x4ab
3 − x4b

4 + a2b2 + 2ab3 + b4.

We follow again the random replacement approach for the indeterminates a and b
and substitute the random values into the equations and interpret them as members of
R = Q [x1, x2, x3, x4]. In MAGMA, we compute a Gröbner Basis of the respective
ideal and the following computation is returned (where rank refers to the number of
variables in a multivariate polynomial ring):
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Ideal of Polynomial ring of rank 4 over Rational Field, Lexicographical Order,
Variables: x1, x2, x3, x4, Dimension 0, Groebner basis:

(x1 − x4, x2 + x4 − 1, x3 + x4 − 1, x24 − x4) (24)

The variety consists of the following two points,

(<0, 1, 1, 0> , <1, 0, 0, 1>)

meaning that there are two possible ways to extend to a covering array with three
binary parameters of strength two while using the given matrix M as a “seed”.

The pseudocode for the Parameter Extension procedure, that has been used in this
example, is given in Algorithm 2.

Algorithm 2 Parameter Extension
procedure para- ext(M)

Require: covering array M � rows corresponding to parameters
N ← NumberOfColumns(M)

k ← NumberOfRows(M)

P ← Q [x1, . . . , xN , a, b]
E ← (x1, . . . , xN )

Mext ← VerticalConcatenation(M, E)

j ← k + 1
eqall ← ∅
for i = 1, 2, . . . , k do

for τ ∈ {(0, 0)�
,
(
1, 0

)�
,
(
0, 1

)�
,
(
1, 1

)�} do
eqall ← eqall ∪ {coveq(i, j)

τ (Mext)}
end for

end for

SetOfBinaryConditions ← Compute binary equations
eqall ← eqall ∪ SetOfBinaryConditions
Randomly replace a and b in eqall
Regard polynomials in eqall as elements of a set s over R = Q [x1, . . . , xN ]
IR ← ideal < R|s >

GB ← GröbnerBasis(IR)

if GB �= {1} then
V ← Variety(GB)

Print "Parameter extension successful."
return V

else
Print "Parameter extension not possible."
return ∅

end if
end procedure
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4.3 An Algorithmic Approach to the Computational
Existence of Covering Arrays

Given a configuration C = (t, k, v) of a covering array with a chosen value of k
(i.e., number of parameters), one may “guess” the number of rows N required for
a covering array in the sense of Definition 1 for C (relates to Problems 1, 2, 3,
18). Clearly, in the case CAN(C) ≤ N there is at least one solution, whereas in the
case CAN(C) > N there are no solutions. In the first case, our algebraic modelling
provides the means to actually construct such a matrix. The idea is detailed in an
approach called Guess. There exists a 4 × 2 covering array for the configuration
(2, 2, 2), and assume that we “guess” that there exists a 4 × 3 matrix which forms
a covering array for the configuration (2, 3, 2). In contrast to Sect. 4.2, the Guess
approach constructs the completematrix.While in this example an exhaustive search-
based approach is still feasible, this might no longer be the case for a greater number
of parameters or rows. Continuing the example, we will work in

P = Q [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, a, b] ,

while the initialization of the candidatematrix is described in the followingMAGMA
code:

1 S:= Ra t i ona lF i e l d ( ) ;
P:= PolynomialRing (S , k∗N+2) ;

3 R:= PolynomialRing (S , k∗N) ;
M := ZeroMatrix (P , k ,N) ;

5 f o r i in [ 1 . . k ] do
fo r j in [ 1 . .N] do

7 M[ i ] [ j ] := P . ( ( i−1)∗N+ j ) ; / / Pi variable is P . i in MAGMA
end fo r ;

9 end fo r ;

MAGMA code for Guess candidate matrix generation.

In the next step, we create all coverage equations and all binary conditions. It
follows that in the Guess approach, there arise

(
k

2

)

· 22 + kN (25)

equations in total. In our example, we have 12 coverage equations and 12 binary
conditions, yielding a total of 24 equations. So far, these equations are defined over
the polynomial ring P in 14 variables.

Again, we choose random values for a and b, evaluate the polynomials and inter-
pret the resulting polynomials as elements of

R = Q [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12] .
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We compute a Gröbner Basis of the respective ideal comprised the new 24 equa-
tions in MAGMA and the computation returns that the basis consists in 17 polyno-
mials.

The corresponding variety has 48 points, which means we have computed 48
different 3 × 4 matrices, those transposes constitute covering arrays in the sense of
Definition 1 of strength two for three binary parameters.With an independent exhaus-
tive search and simple tuple counting approach, we have verified that the transposes
of these 48 matrices are in fact all 4 × 3 matrices, which constitute covering arrays
in the sense of Definition 1 of strength two for three binary parameters.

The pseudocode for the Guess procedure, that has been used in this example, is
given in Algorithm 3.

Algorithm 3 Guess
procedure Guess(k, N )

Require: k ∈ N � k is the number of parameters
Require: N ∈ N � N is the number of columns

A ← k × N matrix over Q [x1, . . . , xkN , a, b] with entries xı
eqall ← ∅
for i = 1, 2, . . . , k do

for j = i + 1, . . . , k do
for τ ∈ {(0, 0)�

,
(
1, 0

)�
,
(
0, 1

)�
,
(
1, 1

)�} do
eqall ← eqall ∪ {coveq(i, j)

τ (A)}
end for

end for
end for

SetOfBinaryConditions ← Compute binary equations
eqall ← eqall ∪ SetOfBinaryConditions
Randomly replace a and b in eqall
Regard polynomials in eqall as elements of a set s over R = Q [x1, . . . , xkN ]
IR ← ideal < R|s >

GB ← GröbnerBasis(IR)

if GB �= {1} then
V ← Variety(GB)

Print "Non-empty set of solutions (CAs) found."
return V

else
Print "No solutions found."
return ∅

end if
end procedure
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5 Comparison with Greedy Algorithms

In this section, we give some cases where our method compares favourably to the
IPOG algorithm, one of the most known greedy algorithms. These cases are merely
used for illustration of the method’s potential rather than a benchmark, as this is not
the scope of the current paper.

The NIST tables of covering arrays [22] are a publicly accessible source of
covering arrays for various covering array configurations that have been constructed
using the IPOG-F algorithm. This archive serves also to support practitioners of
combinatorial testing by providing additional resources.

At [21], a covering array with 6 rows for 9 binary parameters is available. We
took this covering array and applied our Parameter Extension procedure. By doing
so, we were able to successfully extend the chosen initial matrix in two ways to a
covering array for 10 binary parameters of strength two, while keeping 6 rows. The
best covering array for the configuration (2, 10, 2) provided at the NIST tables is a
matrix with 8 rows at [18]. The two new matrices (in the sense of Definition 1) are
given below: ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0 1 1 1 0
0 1 0 1 1 0 0 0 1 0
1 0 0 1 0 1 0 1 0 0
1 1 1 0 1 1 0 1 1 1
1 1 0 0 0 0 1 0 0 1
0 0 1 1 1 1 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0 1 1 1 1
0 1 0 1 1 0 0 0 1 1
1 0 0 1 0 1 0 1 0 1
1 1 1 0 1 1 0 1 1 0
1 1 0 0 0 0 1 0 0 0
0 0 1 1 1 1 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Continuing in this direction, we start with a covering array for 16 binary para-
meters of strength two and 8 rows available at [19]. This covering array is given in
a specialized format, where the described matrix contains entries which are unde-
fined so as to indicate that the algorithm determined during its construction that
these entries in the matrix are irrelevant from the standpoint of ensuring the pairwise
coverage property. In a preprocessing step, we replaced these entries with zeros and
denote the resulting matrix as M̂ . Again, we applied our Parameter Extension pro-
cedure to the matrix M̂ , yielding twelve possible extensions while keeping 8 rows.
The best covering array for the configuration (2, 17, 2) provided at the NIST tables
is a matrix with 10 rows available at [20].

Finally, a table listing the best known sizes of binary covering arrays of strength
two is available at [9].
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6 Conclusion and Future Work

In this paper, we provided some ideas on how to model covering arrays from an alge-
braic perspective with a close connection to computer algebra. Since we considered
only binary strength two covering arrays, an immediate future work is the extension
of this approach to higher strengths, parameters with order at least three, and exten-
sions to related structures such as mixed-level and variable-strength covering arrays.
Finally, the structure of the generated system of equations can be studied further.
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Applications of Signatures Curves
to Characterize Melanomas and Moles

Anna Grim and Chehrzad Shakiban

Abstract In this paper, we focus on the application of an Euclidean invariant curve,
called the signature curve, formed by taking curvature and derivative of curvature
with respect to arc length of a closed curve, � = {(κ(t),κs(t))} to analyze the con-
tour of melanomas and moles. We calculate the signature curves of the contours
of the skin lesions to detect asymmetry, boundary irregularity and diameter size
of the skin lesions. By analyzing the signature curves of 60 benign moles and 60
melanomas, we show that the benign and malignant lesions have different global and
local symmetry patterns in their signature curves. We will also demonstrate that the
regular moles show a high degree of global symmetry, whereas melanomas exhibit
multiple types of local symmetry that are embedded within their signature curves.
We then turn our attention to the C aspect of the ABCD method by analyzing the
color of melanomas and moles. Finally, we use ROC Analysis, a key statistical tool,
to analyze the performance of our method.

Keywords Curvature · Derivative · Signature curves

1 Introduction

Noninvasive diagnosis of melanoma persists as a challenge for dermatologists
because of the structural differences between moles and melanomas are often indis-
tinguishable to the human eye. Melanoma, the most serious type of skin cancer,
develops in the cells that produce melanin—the pigment that gives skin its color [1].
The cancerous skin lesion is capable of spreading throughout the body, making it
difficult to treat in advanced cases. In addition, visual similarities betweenmelanoma
andmolemake diagnosis difficult, and often require the use of an invasive skin biopsy.
Dermatologists often use the ABCD method (Fig. 1) to determine the necessity of a
skin biopsy. This research focuses on B and C aspects of the ABCD method.
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Fig. 1 ABCD of melanomas and moles

In this paper, we focus on the application of an Euclidean invariant curve, called
the signature curve, formed by taking curvature and derivative of curvature with
respect to arc length of a closed curve, � = {(κ(t),κs(t))} to analyze the contour
of melanomas and moles. We calculate the signature curves of the contours of the
skin lesions to detect asymmetry, boundary irregularity and diameter size of the skin
lesions. By analyzing the signature curves of 60 benignmoles and 60melanomas, we
show that the benign and malignant lesions have different global and local symmetry
patterns in their signature curves. We will also demonstrate that the regular moles
show a high degree of global symmetry, whereas melanomas exhibit multiple types
of local symmetry that are embedded within their signature curves. We then turn our
attention to the C aspect of the ABCD method by analyzing the color of melanomas
and moles. Finally, we use receiver operating characteristic (ROC) analysis, a key
statistical tool, to analyze the performance of our method.
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Fig. 2 Approximate
curvature at an arbitrary
point

1.1 Signature Curves

Signature curves are the fundamental tool in the methodology, we use in distinguish-
ing melanomas and moles, due to their invariance properties in the Euclidean plane
[8]. In order to calculate the signature curve of a closed curve in the Euclidean space,
first we must parameterize the curve C = (x(t), y(t)). The signature curve � cor-
responding to C is given by � = {(κ(t),κs(t))}, where κ is curvature and κs is the
derivative of curvature with respect to arc length. A reformation of a theorem by Élie
Cartan states that

Theorem 1 Two smooth and nondegenerate curves C and C̄ can be mapped to each
other by a proper Euclidean transformation, g, i.e., C̄ = gC, if and only if their
signature curves are identical: � = �̄, [3, 5, 14].

This indicates that the signature curve can provide an efficient mechanism for recog-
nizing both exact and approximate Euclidean symmetries of objects.

In order to calculate the signature curve of the contours of the images of the lesions,
we can use a numerical method proposed in [2, 3]. Our goal is to approximate the
curvature of C in a Euclidean invariant manner. This requires the approximation to
depend only on the distances d(Pi , Pj ) between mesh points. Because the curvature
is a second order differential function, the simplest approximation will require three
mesh points. With this in mind, we now derive the basic approximation formula for
the curvature (Fig. 2).

The approximate curvature κ̃ at an arbitrary point Pi ∈ C with respect to arc
length we choose the points Pi−1, Pi+1 ∈ C, forming the triangle Pi−1, Pi , Pi+1

illustrated in Fig. 1. Let � represent the signed area of this triangle and let s =
1
2 (a + b + c) denote its semi-perimeter, so that� = ±√

s(s − a)(s − b)(s − c).We
apply Heron’s formula to compute the radius of the circle passing through the points
Pi−1, Pi , Pi+1, leading to the formula of

κ̃ (Pi−1, Pi , Pi+1) = 4
�
abc

= ±4

√
s(s − a)(s − b)(s − c)

abc
. (1)
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Fig. 3 Discrete Euclidean signature curve of an ellipse

The derivative of curvature is calculated in a similar manner by calculating the
approximate curvature at the points Pi−1, Pi+1 ∈ C. Therefore, the approximate deriv-
ative of curvature κ̃s at point Pi can be calculated by

κ̃s (Pi−2, Pi−1, Pi , Pi+1, Pi+2) = κ̃(Pi , Pi+1, Pi+2) − κ̃(Pi−2, Pi−1, Pi )

d(Pi+1, Pi−1)
, (2)

where d (Pi+1, Pi−1) is the Euclidean distance between Pi+1 and Pi−1. Equations (1)
and (2) are used to obtain an approximation for the signature curve. Therefore, �

can be graphed by using

{κ̃ (Pi−1, Pi , Pi+1) , κ̃s (Pi−2, Pi−1, Pi , Pi+1, Pi+2)}.

Figure 3 illustrates the graph of the discrete Euclidean signature for an ellipse with
250 mesh points.

1.2 Calculation of Signature Curves of Melanomas
and Moles

The process for finding signature curves of melanomas andmoles begins with a num-
ber of high resolution images. An active contour segmentation program inMATLAB
processes the image and determines the outermost boundary of the skin lesion.

The output of this program consists of the cartesian coordinates (xi , yi ) of n set of
points {P1, P2, P3, . . . , Pn}. This data set is then exported as a text file toMathematica
where the discrete closed curve obtained by these points is smoothed several times
using a smoothing spline algorithm in order to robustly calculate the signature curve
of the lesion. This process is illustrated in Figs. 4 and 5. As the images we consider
are not uniformly sized, a method of scaling is required to ensure that data we obtain
from the boundary of the images we use are comparable.
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Fig. 4 Image of a melanoma

Fig. 5 Boundary of the melanoma is smoothed and signature curve calculated

1.3 Symmetry of Signature Curves

Signature curves encode the curvature complexity of a contour and accentuate
global and local symmetry patterns. For example, a symmetrical contour such as an
ellipse has a double overlapping signature curve due to its reflective global contour
symmetry.

Definition 1 Acontour possessing a bilateral axis of symmetry is said to have global
contour symmetry.

Although contours could also have rotational, reflectional or translational sym-
metry, in this paper, we only concentrate on reflectional symmetry. Thus, we also
define:
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Fig. 6 Local individual
symmetry

Fig. 7 Local joint symmetry

Definition 2 A signature curve with a bilateral axis of symmetry at the κ- or κs-axis,
is said to have global signature symmetry.

In the images of the lesions, moles display both global contour and signature sym-
metry because their Euclidean contours are generally elliptical. However,melanomas
lack global symmetry due to their irregular shapes, which creates small symmetrical
regions within the contour resulting in local symmetry. Signature curves detect local
symmetry as signature arcs that are symmetrical across either the κ- or κs-axis. We
introduce the following definitions.

Definition 3 A signature arc with a bilateral axis of symmetry is said to have local
individual symmetry.

The axis of symmetry passes perpendicularly through the midpoint of the horizontal
axis connecting the initial and final points of the signature arc, as seen in Fig. 6.

Definition 4 A reflective symmetry between two distinct signature arcs is said to
have local joint symmetry.

The axis of symmetry is equidistant from the arcs and perpendicular to the hori-
zontal axis connecting the initial and final points of both signature arcs, as illustrated
in Fig. 7.
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Fig. 8 Benign tumor
contour

2 Signature Methodology

2.1 Zero Curvature Points

In this study, we say that a point along the contour, where eitherκ(t) = 0 orκs(t) = 0
is a zero curvature point. Zero curvature points are identified by detecting a change
in sign of κ(t) or κs(t) caused by S crossing the κ- or κs-axis. The range R of zero
curvature points on each respective axis is Rκ = max{κs(t)} − min{κs(t)}, where
κ(t) = 0, and Rκs = max{κ(t)} − min{κ(t)}, where κs(t) = 0. The density of zero
curvature points on each axis is calculated as

ρκ = Rκ

ηκs

and ρκs = Rκs

ηκ
,

where η is the number of zero curvature points on the respective axis.

2.2 Global Symmetry

Benign contours tend to be approximately globally symmetrical with several axes
of symmetry as seen in Fig. 8. The contour’s corresponding signature in Fig. 9 has
a nearly double overlapping signature curve due to the global symmetry. Therefore,
we developed two methods referred to as global contour and signature symmetry.
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Fig. 9 Signature curve

2.2.1 Global Contour Symmetry

Each contour, is translated so that its centroid is coincident with the origin. At the
beginning of each symmetry calculation iteration, the contour is rotated �θ = 5π

180
radians. The rotation increment �θ was selected because it is relatively “small” and
computationally efficient. The contourC is then partitioned between the setsC+ and
C− defined to be

C+ = {(x(t), y(t): y(t) ≥ 0} and C− = {(x(t), y(t)) : y(t) < 0} (3)

where the points are denoted by (x+(t), y+(t))when (x(t), y(t)) ∈ C+ and similarly
by (x−(t), y−(t))when (x(t), y(t)) ∈ C− . For them points inC+ andn points inC−,
the cumulative magnitudes ‖v+

i ‖ and ‖v−
i ‖ are calculated. Although we could sum

the distribution by using the first point as our initial point and continuing successively,
this can be problematic if, for example, the first point is an outlier. To circumvent this
possibility, we will reorder the distributions so that the centroid is the initial point
and each successive point alternates between the left and right side of the centroid.
So now, we have distributions with nontrivial ordering and will proceed to sum the
distributions by calculating the cumulative distance magnitude of each point. The
cumulative magnitude is recursively defined, where themagnitude of a point is added
to the summation of all preceding point’smagnitudes, with ‖v+

0 ‖ being themagnitude
of the first point
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‖v+
i ‖ =

√
(x+

i (t))2 + (y+
i (t))2 +

i−1∑
m=0

‖v+
m‖.

The magnitudes are compiled into a vector v̂, where the magnitudes from ‖v+‖ are
negated and so

v̂ = {−‖v+
0 ‖, . . . ,−‖v+

m‖, ‖v−
0 ‖, . . . , ‖v−

n ‖}.

The symmetry of the distribution v̂ is quantified by calculating skewness δ [7], using
the formula,

δ =
1

m + n

∑m+n

p=1
v3
p

(
1

m + n

∑m+n

p=1
v2
p

)3/2 . (4)

The symmetry algorithm is repeated for 37 iterations for each of the �θ = 5π
180

rotations of the contour through θ ∈ [0,π].

2.3 Local Symmetry

The signature curve of a melanoma tends to be symmetrical across both the κ-and
κs-axis as illustrated in Fig. 11. The local symmetry is due an irregular contour such
as in Fig. 10. Consequently, local joint and individual symmetry were quantified with
respect to each axis using the following symmetry algorithm.

Fig. 10 Melanoma contour
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2.3.1 Local Individual Symmetry

For individual symmetry, S is divided by the κ-axis so that κs(t) = 0 only at the
initial and final points of an arc L . First, we let the point (xc, yc) be the midpoint of
our signature arc, so that it lies on the bilateral axis dividing the signature arc. Now,
we partition the signature into the sets L+ and L− defined to be

L+ = {(κ(t),κs(t)) : κ(t) < xc} and L− = {(κ(t),κs(t)) : κ(t) ≥ xc}. (5)

Further denote the points in L+ by (κ+(t),κ+
s (t)) and similarly the points in L− by

(κ−(t),κ−
s (t)). For all points in L+ and L−, the cumulative distance between each

point and the midpoint are calculated so that for an arbitrary point the cumulative
distance is

‖v+
i ‖ =

√
(κ+

i (t) − xm)2 + (κ+
si (t) − ym)2 +

i−1∑
m=0

‖v+
m‖. (6)

Themagnitudes are compiled into a vector v̂ as previously described and the symme-
try of the distribution is calculated with Eq. (4). This process is repeated and adapted
appropriately for when S is segmented by the κs-axis.

2.3.2 Local Joint Symmetry

For local joint symmetry, S is divided by the κ-axis so that κs(t) = 0 at only the
initial and final point of an arc L . Two distinct arcs L+ and L− are selected from S,
then translated so that they are aligned as in Fig. 7 with (xc, yc) as the point where the
arcs are coincident. The symmetry calculation between the two arcs is identical to
the process described in (5) and (6) so the skewness can be calculated as in (4). The
process described is repeated and adapted appropriately for when S is segmented by
the κs-axis.

3 Color Methodology

3.1 Global Color Fractal Dimension

Our first algorithm is to calculate the box counting dimension of an image with
respect to color. We are motivated to use fractal dimension by the contrast in color
uniformity between moles and melanomas. Observe that in Fig. 8, a typical mole
has a uniform color distribution in the sense that the pigment is the same through
the entire lesion. In contrast, a typical melanoma, as seen in Figs. 4 and 8, has a
nonuniform color distribution.

In short, we calculate the global color mean, then iteratively partition the lesion
and calculate the fractal dimension from the count of subsets of the partition with
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Fig. 11 Signature curve

a mean color value sufficiently close the global color mean. We will refer to this
measure as the global color fractal dimension. In fact, we calculate three fractal
dimensions corresponding to each color in the image’s RGB color distribution. Each
color distribution is stored in an n × m matrix, which we denote �p such that p =
r, g, or b, corresponding to red, green, or blue. An entry in �p is denoted by �(i, j)
to indicate its position at the i th row and j th column in �p. First, we calculate the
global color mean M of �p by

M = 1

mn

m∑
i=1

n∑
j=1

�p(i, j). (7)

We then partition �p into 4t submatrices, where tcorresponds to the iteration count.
In Figs. 12, 13, and 14, we show the partition of the image, where each cell represents
a submatrix of �p with a size of n

2t × m
2t .

On the t th iteration, we have a set of 4t submatrices and calculate the local mean
μ of each submatrix as in (7) to obtain the set Mt = {μ1, . . . ,μ4t }. Let χ(t) = #μp

with p ∈ 1, . . . , 4t such that each μp satisfies |M − μp| < ε, where ε = 0.01, 0.03,
and 0.05. We use these three values for ε in order to enhance the accuracy of our
diagnostic algorithm. Now, we introduce the discrete function f (t) such that
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f (t) =
{
log(4t )

log(χ(t))
.

The global fractal color dimension of a given color distribution �p is calculated as
the slope of the simple linear regression through our function f (t). We repeat this
process for each of the red, green, and blue color distributions over five iterations. For
awell-behavedmole in the sense that the pigment is uniform throughout the lesion,we
observe the pattern that χ(t)/4t ≈ 1 for all t . In contrast, for melanomas we observe
that χ(t)/4t > χ(t + 1)/4t+1 because the pigment of the lesion is nonuniform. In
other words, subsets of our partition have less resemblance to the entire lesion as t
increases.

Fig. 12 t = 0

Fig. 13 t = 1
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Fig. 14 t = 2

3.2 Global Plane Method

Now, we present an alternative geometric method for distinguishing between moles
and melanomas. For any image of a lesion, consider a given red, green, or blue
color distribution of that image with size n × m. The distribution can be represented
as a surface �(x, y) ∈ R

3. The surface has a characteristic shape corresponding to
whether the lesion is a mole or melanoma. For a well behavedmole, the surface is rel-
atively flat because the color is uniform throughout the lesion. In addition, the surface
is smooth because the color changes continuously throughout the lesion. In contrast,
the surface generated from a melanoma has many discontinuities in color and has a
larger degree of variation. To distinguish these shapes, we calculate the global least
squares plane through �(x, y), then partition�(x, y) into subsurfaces and calculate
the corresponding least squares plane. Our metric for distinguishing between moles
and melanomas is obtained by measuring how parallel the subsurfaces’ least squares
plane is to the global plane.

We begin by calculating the least squares plane through the surface defined by
�(x, y) and determining its normal vector n�. This plane will be referred to as the
global plane through the surface of �(x, y). We proceed by uniformly partitioning
�(x, y) into subsurfaces as in the global color fractal dimension algorithm. On the
t th iteration, the surface is partitioned into 4t subsurfaces and let φp(x, y) denote a
subsurface with p ∈ 1, . . . , 4t . For each subsurface, we calculate the least squares
plane referred to as the local plane and determine its normal vector denoted as nφp .
For each of the 4t local planes, we will quantify how parallel the global and local
plane are by the ratio

λp = 1

π
arccos

(
n� · nφp

|n�||nφp |
)

. (8)

The angle between the global and local plane, as seen in Fig. 15, follows as θ = πλp.
We divide by π in (8) in order that λp ∈ [0, 1]. When λp ≈ 0 the global and local
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Fig. 15 Intersecting global
and local planes

plane are nearly parallel, whereas they are nearly perpendicular when λp ≈ 1. After
completing n iterations, we compute the degree of global color uniformity � of the
color distribution as

� =
n∑

t=0

4t∑
i=0

λi .

We repeat the calculation of� for each of the red, blue, and green color distributions.
Relatively, small values of � are deemed to correspond to moles because their color
distribution is nearly uniform, which results in λp values near zero. In contrast, the
variegated color distribution of a melanoma results in a subdivision of the surface
with an increasing number of subsurfaces of larger angle θ, illustrated in Fig. 15.
Thus, melanomas with a nonuniform color distribution correspond to high values
of �.

4 Signature Results

4.1 Data Set

Our data set consists of 60 melanomas and 60 moles, which were acquired from
several data bases including Opticom Data Research and MoleMap in New Zealand,
[15]. All of the tumors from both databases included an official diagnosis and delin-
eation of the tumor contour. After downloading the images, each image was indi-
vidually discretized into a set of (x, y) points using active contour segmentation and
normalized [9, 10].



Applications of Signatures Curves to Characterize Melanomas and Moles 185

Table 1 Intersecting global and local planes

ηκ ηκs Rκ Rκs ρκ ρκs

Melanoma 16.6 30.63 0.241 0.855 0.0008 0.0057

Moles 3.68 13.08 0.058 0.006 0.0047 0.0007

4.2 Data and ROC Analysis

4.2.1 Zero Curvature Points

We include our results of the analysis of the zero curvature points of the signature
curve in Table 1. Moles have relatively few zero curvature points because the shape
of their contour is elliptical, which also corresponds to a smaller average range. In
contrast, melanomas have a greater number of zero curvature points due to their
irregularly shaped contour, hence resulting a greater average range.

4.2.2 Global Contour Symmetry

The global contour symmetry algorithm is performed for 37 iterations for each of
the �θ = 5π

180 rotations, where the output is a skewness value. Based on data obser-
vation, a symmetrical axis λ1 corresponds to δ < 0.01 and a very symmetrical axis
λ2 corresponds to δ < 0.001. The symmetry score � = ∑

λ1 + ∑
λ2, is calculated

for each contour.
The average number of symmetrical and very symmetrical axes for a mole was

27.67 and 13.98, whereas the corresponding averages for a melanoma are 11.39 and
4.45. We calculated an ROC curve, which is a plot of the true positive rate against
the false positive rate. The area under the ROC curve indicates the accuracy of our
methodology to correctly diagnosemelanoma andmoles. Our ROC curve is included
in Fig. 16, where the area under the curve corresponds to an accuracy of 91.64%.

4.2.3 Local Symmetry

In both the local individual and joint symmetry, a symmetrical axis λ1 corresponds to
δ < 0.3, a very symmetrical axis λ2 corresponds to the δ < 0.1. The total symmetry
score is calculated by summing the local individual and joint symmetry score using
Eq. (8). We have included our results from the local individual and joint symmetry
algorithm, which is included in Tables 2 and 3 with each entry listed as the mean ±
standard deviation.
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Table 2 Individual
symmetry

Mean λ1 Mean λ2

κ-axis

Moles 3.18 ± 3.25 1.21 ± 1.45

Melanoma 11.83 ± 5.08 4.14 ± 2.21

κS -axis
Moles 1.54 ± 1.10 0.43 ± 0.54

Melanoma 5.03 ± 2.70 1.37 ± 1.08

Table 3 Joint symmetry Mean λ1 Mean λ2

κ-axis

Moles 0.78 ± 1.65 0.26 ± 0.67

Melanoma 10.94 ± 9.01 3.42 ± 2.80

κS -axis
Moles 10.47 ± 7.63 3.78 ± 2.75

Melanoma 40.83 ± 26.07 13.23 ± 9.06

Fig. 16 ROC analysis
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Table 4 Global color fractal dimension results

εr = 0.01 εr = 0.03 εg = 0.01 εg = 0.03 εb = 0.01 εb = 0.03

Moles 0.5438 0.6755 0.4045 0.6115 0.3499 0.5861

Melanomas 0.4043 0.6035 0.3180 0.5376 0.2761 0.5097

5 Color Results

5.1 Image Processing

Each image was manually prepared, so that it was suitable to use with our computer
aided diagnosis software. We began the image preparation process by removing the
backgroundwith photoshop so that only the skin lesion is visible. Thenmagnified the
image so that its dimensions were at least 700 × 700 pixels and cropped the image
to minimize the background white space.

5.2 Data and ROC Analysis

5.2.1 Global Color Fractal Dimension

As predicted, the global color fractal dimension of moles was significantly higher
than that of melanomas. The higher global fractal color dimension correspond to a
higher degree of color uniformity because there are more number of pieces of the
partition with an average color near the global mean. We have included the average
global color fractal dimension of the moles and melanomas in our data set in Table 4.

The columns correspond to our different thresholds when ε = 0.01 and ε = 0.03.
The subscripts r, g, and b correspond to the red, blue, and green color distributions,
respectively.

We calculated an ROC curve in order to objectively quantify the accuracy of our
algorithm. We combined the global color fractal dimension values calculating for
when ε = 0.01, 0.03, and 0.05 for the red, green, and blue color distributions. After
calculating the ROC curve, we determined that our global color fractal dimension
method has an accuracy of 95.71% of diagnosing melanoma in our data set.

5.2.2 Global Plane Method

The measure of global color uniformity using the global plane method is indicated
by the value of �p, where p = r, b, or g. We have included the average �p value
for all of the moles and melanomas in our data set in Table 5, where each entry is the
mean ± the standard deviation.
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Table 5 Global color fractal dimension results

�r �g �b

Moles 110.20 ± 27.75 122.38 ± 27.64 123.63 ± 27.53

Melanomas 148.67 ± 24.76 160.70 ± 24.77 165.57 ± 20.90

Fig. 17 ROC analysis

A small�p value corresponds to small values ofλp , which indicates that the global
and local plane are nearly parallel. Thus, the color distribution has a higher degree
of color uniformity because the local color is nearly the same as the global color.
Since the mean �p values are significantly lower than the corresponding melanoma
averages, then moles have a higher degree of color uniformity.

We objectively tested that accuracy of the global ball method to diagnose
melanoma by calculating an ROC curve. We have included our curve in Fig. 17,
where the area under the curve and accuracy of our algorithm is 0.9615.

6 Conclusion

Signature curves capture an object’s shape and detect and quantify changes in the
curvature of their boundary. They have proven to be effective as a tool detecting
global and local symmetry in melanoma and moles. In global contour symmetry, we
have shown that they significantly reduce the computational complexity of detecting
local symmetry. Further, this algorithm can also be used in a variety of computer
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vision applications as a means of quantifying global and local symmetry of arbitrary
two and three dimensional objects [12, 13]. For example, the signature method has
previously been applied to characterize breast tumors by the authors [6] and an
adapted version of the symmetry algorithm as a similarity measure has been used to
solve spherical jigsaw puzzles [7].
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Contemporary Interpretation of a Historical
Locus Problem with the Use of
Computer Algebra

Roman Hašek, Zoltán Kovács and Jan Zahradník

Abstract This paper deals with the joint use of computer algebra and the dynamic
geometry features of the mathematics software GeoGebra to solve a locus problem.
Through a generally unknown problem from an eighteenth century Latin book of
geometry exercises the use of the computer algebra features of GeoGebra will be
presented on the one hand as a means of automatic computation of the locus equa-
tion and on the other hand as an environment to realize the symbolic step-by-step
derivation of the equation. The core principles of the effective implementation of
computer algebra functions within the dynamic geometry system will be presented.
An enhanced approach to solving the problem, inspired by the findings from the use
of the computer to investigate the locus, will cause the appearance of an unexpected
and until now not described curve.

Keywords Computer algebra · Locus equation · History of mathematics ·
GeoGebra

1 Introduction

Issues of the joint use of computer algebra and the dynamic geometry features of the
GeoGebra software [14] to solve locus problemswill be dealt with in this paper. They
will be addressed through the detailed solution of a particular locus problem coming
from the eighteenth century Latin book Exercitationes Geometricae, authored by
Ioannis Holfeld (1747–1814) and published by the Jesuit College of St. Clement in
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Prague in 1773, [15]. From a total of 47 solved geometric problems presented in the
book problem number 35 will be dealt with. After the detailed introduction of its
original solution, the use of GeoGebra to solve it will be discussed, focusing on the
implementation of computer algebra to derive an equation of the respective locus.
On the one hand GeoGebra provides a user with the CAS environment to derive the
equation step by step and on the other hand, it is endowed with powerful tools for
its automatic computation on the background of appropriate functions.

The paper reflects two different perspectives; the perspective of a lecturer imple-
menting it in mathematics teacher training courses and the perspective of a developer
of the computer algebra features of GeoGebra. Although the authors have proven the
benefits of solving the problem with future teachers, in order not to be too extensive
the paper does not address this issue. A number of studies have dealt with the impor-
tance of the incorporation of the historical perspective into mathematics education.
For further reading about the findings of such studies and about the indisputably
positive effect of historical issues on the quality of mathematics teaching [4, 9, 10]
can be recommended. The use of some other problems from the book by Ioannis
Holfeld in mathematics teaching is presented in [12].

1.1 Origin of Problem 35

Problems in Exercitationes Geometricae are focused primarily on conic sections.
There are, in particular, general problems on conics, locus problems and problems
on surface areas and volumes of solids of revolution among the 47 problems in the
book. Their assignments, as well as their solutions, illustrate the approach to the
geometry of curves and to locus problems typical of mathematics of the seventeenth
and eighteenth centuries. They take a reader back to the era before the currently preva-
lent analytical method based on the Cartesian coordinates was fully established, [16,
22]. These geometry problems were viewed as being more associated with mechan-
ical representations. Curves were drawn by the notional movement of geometric
structures. Configurations fitting the assignment of a task but different from its illus-
trative picture were not considered. Negative results were very rarely dealt with and
although variables x and y were used as coordinates to derive an equation of a curve
the notion of ‘coordinates’ was not mentioned. The use of dynamic geometry to solve
problem number 35 allows us to replicate the method of the geometric construction
of the locus curve typical of that time [9], as well as to examine all possible con-
figurations of the task and subsequently to discover that from the perspective of the
contemporary solver the corresponding locus curve can be seen as far more complex
than the original solution given in the book.

Despite their date of publication, a number of problems from [15] other than
problem 35 are still attractive and are worth resolving with the help of contemporary
methods. Assignments of some of them together with a more detailed description of
features typical of the method used in the book and some findings about the author’s
life are provided in [12, 24].
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1.2 GeoGebra, the Software Used

GeoGebra is open source software that is free for noncommercial purposes, [14].
Thanks to its unique combination of environments such as Graphics, Algebra,
Spreadsheet, CAS and 3D Graphics it allows a user to apply different views on
studied objects. In this paper, we are particularly focused on the implementation
of computer algebra in GeoGebra and its joint use with the dynamic geometry
environment Graphics.

GeoGebra has an embedded computer algebra system (CAS),Giac, [17, 21]. It is
widely used in several types of computations in the background during GeoGebra’s
internal calculation, including algebraic computations such as expansion and factor-
ization, working with arbitrary big integers (for example, to determine the greatest
common divisor or the least common multiplier and prime factorization), solving
equations, differential equations and equation systems, computing limits, derivatives
and antiderivatives; methods for calculating determinants, function fitting, probabil-
ity calculations, and statistics are also supported. In addition to this, GeoGebra is
capable of outsourcing some special computations to the external CAS Singular, [2,
8, 20], including absolute factorization, locus, and envelope equation calculation and
solving algebraic equation systems in the frame of its theorem proving subsystem.

2 The Locus Problem and Its Original Solution

Introduced in this section is the assignment of problem 35 together with a detailed
presentation of its original solution given in [15].

Problem 35Given a circle with a diameterMP (see Fig. 1); construct a radius AB to
this circle and a line segment BO perpendicular to MP so that MO : AO = r : BC
(r is the radius of the circle). Find the locus of point C . (Remark:Length of the
segment BC is the fourth proportional of lengths MO , AO , and r .) ([15], p. 41,
Problema 35.).
The original illustration of the problem assignment, in [15] referred to as Fig. 32, is
shown in Fig. 1 (a copy of problem 35 original Latin assignment is displayed at http://
www.pf.jcu.cz/~hasek/Holfeld).Wemust not be confused by the points and segments
in the picture, which are not mentioned in the assignment. Like certain other figures
in the book, this also served to illustrate more than one exercise. For this reason we
will use the modified image in Fig. 2, left, containing only given elements and the
most currently utilized arrangement of the coordinate axes to illustrate the original
solution to the problem.

Ioannis Holfeld (I.H. in the following) begins his solution by labeling lengths
of selected segments; AD = x, DC = y, AB = r, OM = z. After that, from the
similarity of triangles AOB and ADC (without mentioning this concept) he derives
the relation OA : OB = x : y and substituting OA = r − z he gets the formula

http://www.pf.jcu.cz/~hasek/Holfeld
http://www.pf.jcu.cz/~hasek/Holfeld
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Fig. 1 Original illustration
of the assignment of
problem 35

Fig. 2 Problem 35; the
given elements and their
labeling (left), parabola
y2 = r2 + 2r x (solid line) as
the solution according to
Ioannis Holfeld (right)

OB = r y − zy

x
. Then I.H. expresses the length of OB in another way as OB =√

2r z − z2.Although he does notmention it, it is evident that he has applied the ‘right
triangle altitude theorem’ (also known as ‘geometric mean theorem’) on the right
triangle MPB, see Fig. 2, where BO is the altitude and MO = z and OP = 2r − z
are two corresponding line segments on its hypotenuse MP. Comparing both the
expressions of OB I.H. gets

r y − zy

x
=

√
2r z − z2, (1)

fromwhich he derives z = r − r x
√
x2 + y2

(I.H. does not mention it but it is clear that

it is one of the roots of the quadratic equation (x2 + y2)z2 − 2r(x2 + y2)z + r2y2 =
0 in z that is equivalent to (1). Its second root of the form of z = r + r x

√
x2 + y2

does

not match the considered configuration. Its effect is mentioned later.). Using, this
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equality I.H. first writes AO = r − z = r x
√
x2 + y2

. Then, substituting for MO ,

AO and BC into the relation of the fourth proportional MO : AO = r : BC , which

is used in the assignment of the problem, he gets
(
r − r x

√
x2 + y2

) : r x
√
x2 + y2

=

r : (√
x2 + y2 − r

)
that he simplifies through

√
x2 + y2

x
=

√
x2 + y2

√
x2 + y2 − r

into the

form of x + r = √
x2 + y2. Finally, squaring both sides of the latter equality and

simplifying the resulting one he derives the equation of the studied locus

y2 = r2 + 2r x (2)

that he immediately interprets as the equation of the parabola with the parameter 2r
equal to the length of the diameter PM of the given circle. Its plot for the particular
value of r = 1 is shown in Fig. 2, right, as the solid line parabola (the dashed line
parabola corresponds to the above mentioned second root of the quadratic equa-
tion equivalent to (1), which was not considered by I.H.). From the perspective of
today’s solver let us add that the resulting parabola (2) has focus F = [0, 0], directrix
d : x = −r and the focal parameter p = r .

3 Solution Using Computer Algebra in GeoGebra

GeoGebra features of the dynamic geometry and computer algebra will be used to
model the assignment of the problem, to find the shape of the resulting locus curve
and to realize the automatic derivation of its algebraic equation in this section.

3.1 The Issue of Computer Algebra Implementation

To create the dynamic geometric model of problem 35 we use the Graphics view of
GeoGebra. There is more than one way to do so, but not all of them suit the demands
of the subsequent utilization of the symbolic algebra tools of GeoGebra for the
purpose of determining the locus curve and its equation. Namely, we are referring to
the commands Locus and LocusEquation; the former numerically collects significant
points of the curve to support high quality visualization, while the latter uses a pure
symbolic algebraic method to compute the equation of a curve.

Partly due to the algebraic theory and partly due to its implementation in the
dynamic geometry domain, there are some restrictions in the background which may
need to be kept in mind when modeling problems by utilizing computer algebra
methods, including GeoGebra. We will mention them successively herein.

The first issue is that the LocusEquation command can only process algebraic
problems. This means that the construction steps must be described by polynomial
equations of the corresponding geometrical objects, which are typically the Cartesian
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coordinates of the points. Fortunately, Euclidean constructions, that is, constructions
bymeans of a compass and a straightedge ruler, have proven to be algebraic problems
(see [5, 7, 19]). Let us note that the converse of this statement is not true: awell-known
counterexample is the trisection of an angle which is algebraic but not constructible
by Euclidean steps, [5].

3.2 Euclidean Construction of Problem 35

As this section will show, the assignment to problem 35 can be realized as a pure
Euclidean construction, but not every such a construction is optimal for the appli-
cation of computer algebra. See Fig. 3. First, using the Circle with Centre through
Point tool we draw the circle c with the center A = [0, 0] passing through point M
on the x-axis and therefore, the radius of c is r = |AM |. The point M can be placed
on the x-axis arbitrarily, but for simplicity we choose M = [1, 0]. The remaining
intersection of c with the x-axis is denoted P . Having constructed the circle c we
put a movable point B on it and using the Line tool construct a line AB. Finally,
applying the tool Perpendicular Line we construct a line through B perpendicular to
PM , which coincides with the x-axis, and mark its foot with O .

Now, we have to construct the point C so that the condition of the fourth propor-
tional MO : AO = r : BC is fulfilled. With GeoGebra we can do it in two ways,
either compute the appropriate length of the segment BC and then place the point
C , or determine the position of C strictly geometrically. In the following, we use the
latter method demonstrating the Euclidean constructibility of the locus’ points.

However, this “Euclidization process” is in general not always straightforward and
unique for a given locus problem—multiple constructions can be found to describe

Fig. 3 Startup geometric
construction before
Euclidization
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Fig. 4 Geometric
construction of point C by
using the “naive” approach

a problem when the steps are restricted to being pure Euclidean ones. One “naive”
approach can be as described in Fig. 4, by introducing several helper objects to get
the required ratios. To make it possible to use the intercept theorem to construct the
length of BC , circles d and e have been created. Their intersections with line h (the
perpendicular to the x-axis at M) create points O ′ and A′, respectively. Actually,
other intersection points O ′′ and A′′ are created silently, because a circle and a line
usually have two intersection points. After joining A and O ′ (line i) and creating a
parallel line ( j) to it which goes through A′, it is clear that the intersection point X
of line j and the x-axis creates a segment X A of the length k complying with the
property MO ′ : A′O ′ = AM : k. That is, k = BC . Now creating another circle p
with center B and radius k, one of the intersection points of the circle and line AB
must be the sought point C .

By silently introducing points O ′′, A′′ andC ′ (the last one is the other intersection
point of AB and p) we actually define a larger than expected set of points (see
Sect. 3.3). To filter out the unwanted points we may want to consider another way
for Euclidization.

Our second approach is described in Fig. 5. Compared to Fig. 2, left, the following
elements are added: First, we draw a ray MB and denote E its intersection with
y-axis. Then, we lead a line parallel to MP through E and label its intersections
with the lines OB and AB as Q and C , respectively. Now, we are to prove that
the latter point C satisfies the condition MO : AO = r : BC , i.e., that it belongs to
the investigated locus. To do so, we use two pairs of similar triangles, �MOB ∼
�EQB and �AOB ∼ �CQB. Their similarities give rise to the equalities MO :
BO = EQ : BQ and AB : BO = CB : BQ, respectively, from the comparison of
which we obtain MO : EQ = AB : CB. Then, due to the identities EQ = AO
(consequence of the construction in Fig. 5) and AB = r we get the final relation
MO : AO = r : BC . It means that the point C in Fig. 5 satisfies the assignment of
problem 35. Justification that the same conclusion applies to the positions of B in
other quadrants is analogous to the above procedure and we leave it to the reader. It
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Fig. 5 Geometric
construction of point C ,
point B being in the 1st
quadrant

should be noted that a rather special case is the position of B on the y-axis, that, due
to zero AO , satisfies the fourth proportional condition only in the modified form of
MO · BC = r · AO.

3.3 The Locus Curve

Having established the geometric construction of the locus’ points we use GeoGe-
bra’s built-in functions Locus and LocusEquation to explore the locus curve, namely
its shape and equation. To find the “geometric” curve we use the Locus tool of the
Graphics view or enter the command Locus[C,B] either into the input line or within
CAS. To let GeoGebra find the “algebraic” equation of the locus curve we invoke the
command LocusEquation[C,B], either through the input line or within CAS again.

In the “naive” approach the result is seen in Fig. 6. The plotted “geometric” locus
is a smaller set than the “algebraic” one which is shown as dashed. For comparison,

Fig. 6 Locus of point C
using the “naive” approach
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Fig. 7 Locus of point C ′
using the “naive” approach

another Fig. 7 is demonstrated to support the idea that the loci of points C and C ′
together represent certain parts of the “algebraic” locus.What is more, in some sense
the points C and C ′ cannot be distinguished “algebraically’ in the “naive” approach.
This confirms that in the “algebraic” approach both intersection points of a line and
a circle must be handled equally.

The dashed algebraic set is the product of four components, namely 2 x −
y2 + 1, 2 x + y2 − 1, 2 x3 − x2 y2 + 5 x2 + 2 x y2 − y4 + 9 y2 and2 x3+x2 y2 +
3 x2 + 2 x y2 + y4 − y2. Here the first two factors are parabolas, and one of the
last two quartic factors seem to be present also in the geometric locus, at least
partially.

In our second approach, Fig. 5 shows the solution only as the parabola. It results in
the algebraic equation of the third degree, the polynomial of which can be factored
into the product y(2x − y2 + 1) where along with the expected result 2x − y2 +
1 corresponding to Holfeld’s parabola we have got an additional factor y, which
corresponds to the x-axis. It is clear that the latter is not a geometric solution to
problem 35. From the algebraic point of view, factor y arises from the solution of the
system of algebraic equations corresponding to the configurations so that B = M or
B = P .

Dynamic construction of the problem allows us the ease to extend our second
inquiry to other possible cases that are not captured in the illustrative picture. Specif-
ically, we take into account the position of pointC on the opposite ray with respect to
point B which we have not hitherto considered. By using this trick, we can eventually
distinguish between loci of C and C ′.

Let us therefore use the toolReflectObject in Point to construct pointC ′ symmetric
with point C with respect to B. We are interested in the locus of C ′ if B is being
moved along the circle c. To find the locus curve we again use the Locus tool or enter
the Locus[C ′, B] command. As a result we get a curve of a surprising shape, looking
like a pretzel, see Fig. 8 and [11]. To ask GeoGebra about the equation of this curve
we apply the command LocusEquation[C ′, B]. It gives us a 5th degree polynomial,
the factorization of which is y(2x3 + x2y2 + 3x2 + 2xy2 + y4 − y2) = 0 where the
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Fig. 8 Geometric
construction of point C
considering both its possible
positions on line AB

first factor y has the same origin as in the case of the result from the command
LocusEquation[C,B] applied above and the second factor relates to the locus curve
we are interested in. Actually, this factor already occurred in the “naive” approach.

A remarkable curve, let us call it ‘pretzel curve’, of equation y4 + x2y2 + 2xy2 +
2x3 + 3x2 − y2 = 0 thus appeared as an unexpected result of applying the current
approach to problem 35 (it was first published in [13]). As far as the authors know
only a similar but not identical curve of the fourth degree is mentioned in [6, 23].

In order to apply the commands Locus[T,M] and LocusEquation[T,M] algebraic
problems should be formalized in such a way as to make it possible to eliminate all
variables but x and y of the mover M (input) point to express the algebraic equation
of the tracer T (output) point. GeoGebra’s underlying CAS requires the description
of the problem as a polynomial equation system with rational coefficients—this is
the usual way of calculating the locus equation in automatized computation. As we
mentioned in Sect. 1.2, GeoGebra uses two possible CAS in the background, but
both use Gröbner basis computations to eliminate the intermediate variables.

GeoGebra comes with a subsystem which automatically translates the DGS steps
into polynomial equations. This work was recently elaborated on through the exten-
sive work of Recio, Botana, Abanades, Escribano, and Arbeo (see [1]) in the early
2010s, and further refined by others including the authors. Some typical Euclidean
steps are, however, as yet not fully implemented or not implemented at all. One
such step, for example, is mirroring a line to another line. These missing features in
GeoGebra may require additional work to describe the non-implemented step in a
substitute way. For example, we realized in Sect. 3.2 that such work was necessary
to describe the algebraic expression MO : AO = r : BC in another way, namely, to
use similar triangles and the ratios between the appropriate sides.

As an example of the most recent result of the intensive development of the com-
puter algebra tools of GeoGebra we are now able to introduce the pretzel curve by
means of an even more natural approach. A new feature in GeoGebra is to compute
an implicit locus for a given condition and amover point.When considering the same
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Euclidean construction, one can investigate the output of the command LocusEqua-
tion[MO/AO==r/BC,C] (see [18]). In this case, we get both the parabola and the
pretzel curve at the same time with no additional components.

4 Algebraic Solution

In addition to the automatic derivation of the locus equation based on the geomet-
ric construction we can use the computer algebra features of GeoGebra in a less
sophisticated way, as it is introduced in this section CAS, the CAS of GeoGebra,
is used as a suitable environment to the stepwise solution of problem 35 here. As
mentioned, there are more ways to derive the equation of the locus curve. One of
them, to reproduce the steps of I.H. described in Sect. 2, we leave to the reader. In
the following, we will base our procedure on the second approach of the Euclidean
construction given in Sect. 3.2.

First, we express the task as the system of nonlinear equations. Then, solving it
by elimination we arrive at the algebraic equation of the locus in x and y.

Let us follow Fig. 9. Coordinates of the decisive points are A = [0, 0], M =
[r, 0], B = [r cosϕ, r sin ϕ], O = [r cosϕ] and C = [x, y], where ϕ is the angular
coordinate of points B and C . Let us mark u and v the directed distance from A to O
and from B toC , respectively, so that u ≥ 0 for O falling on the ray AM and u ≤ 0 for
O falling on the opposite ray AP , and, in the same way, v ≥ 0 forC laying on the ray
opposite to the ray BA and v ≤ 0 for C laying on the ray BA. Using v, we can write
x

r + v
and

y

r + v
, where r + v �= 0, instead of cosϕ and sin ϕ, respectively, to get

B =
[

r x

r + v
,

r y

r + v

]
and O =

[
r x

r + v
, 0

]
. Consequently, the undirected distances

used in the formula
MO

AO
= r

BC
for the fourth geometric proportional are AO =

Fig. 9 Problem 35; location
of the problem assignment in
the coordinate system
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∣
∣
∣
∣
r x

r + v
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∣
∣
∣, MO = |r − u| =

∣
∣
∣
∣r − r x

r + v

∣
∣
∣
∣ =

∣
∣
∣
∣
r2 + rv − r x

r + v

∣
∣
∣
∣, BC = |v| and, allowing

AO = 0, it can be rewritten into the form |rv + v2 − vx | = |r x | equivalent to

(rv + v2 − vx)2 − (r x)2 = 0, (3)

the first equation in x and y defining the locus of point C . The second and third such
equations are expressions of conditions for the length of the radius vector of point C
and the nonzero value of r + v, respectively;

x2 + y2 − (r + v)2 = 0, (4)

k(r + v) + 1 = 0. (5)

Now we are to solve the system of algebraic equations (3)–(5). Possible realization
of this task by elimination of the parameters v and k in the CAS of GeoGebra is as
follows:

The locus of pointC is thus defined by the sixth degree algebraic equation in variables
x and y, the polynomial of which can always, i.e., independently on the radius r of
the defined circle, be factored into the product of two polynomials of the second and
fourth degree, respectively,

(−y2 + 2r x + r2)(y4 + x2y2 + 2r xy2 + 2r x3 + 3r2x2 − r2y2) = 0. (6)

As we know, the second degree factor of the polynomial (6) corresponds to the
parabola, i.e., the solution given by I.H., and the fourth degree factor defines the
‘pretzel curve’. This curve given by the algebraic equation
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y4 + x2y2 + 2r xy2 + 2r x3 + 3r2x2 − r2y2 = 0

is worth further exploration and GeoGebra is the appropriate instrument with which
to do so. For example, we quite easily reveal the equation in the polar coordinates

R = 1 − 2 cosΦ

1 − cosΦ
(7)

or rational parameterization

x = −t4 + 4t2 − 3

2t2 + 2
, y = t3 − 3t

t2 + 1
; t ∈ R, (8)

of this curve, both (7) and (8) belonging to r = 1.

5 Conclusion

Through the solution of the locus problem, which is not a well-known problem, the
effectiveness of the symbolic computer algebra means of GeoGebra and of their joint
use with the dynamic geometric feature within this software has been presented in
this paper. GeoGebra is endowed with functions that are designed for the automatic
computation of a locus curve equation aswell aswith the environment (CAS) enabling
the symbolic step by step computation of the equation. This variability of the use of
symbolic computer algebra tools determinesGeoGebra for utilization inmathematics
teaching. It allows a teacher to choose different approaches to the solution of such
complex problems, depending on the level of mathematical abstraction of pupils or
students.

Utilization of the symbolic algebra feature to investigate a locus which has been
presented in the paper is only a part of a much broader base of symbolic algebra tools
implemented in GeoGebra. As other examples we can mention the prover subsystem
[3] or computation of envelopes [1]. Implementation of the tools of symbolic algebra
in GeoGebra is the subject of continuous development. Currently, intensive work is
being performed to increase the speed of solving equation systems with a large
number of variables and to broaden its availability on several computer platforms
including mobile phones and tablets. This work is being performed by the GeoGebra
Team under the supervision of Bernard Parisse’s, inventor of Giac.

Acknowledgements We are grateful to Francisco Botana for his valuable advice and contribution
to the effective use of computer algebra in GeoGebra.
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Computing the
Chern–Schwartz–MacPherson Class
of Complete Simplical Toric Varieties

Martin Helmer

Abstract Topological invariants such as characteristic classes are an important tool
to aid in understanding and categorizing the structure and properties of algebraic
varieties. In this note, we consider the problem of computing a particular char-
acteristic class, the Chern–Schwartz–MacPherson class, of a complete simplicial
toric variety X� defined by a fan � from the combinatorial data contained in the
fan �. Specifically, we give an effective combinatorial algorithm to compute the
Chern–Schwartz–MacPherson class of X� , in the Chow ring (or rational Chow ring)
of X� . This method is formulated by combining, and when necessary modifying,
several known results from the literature and is implemented in Macaulay2 for test
purposes.

Keywords Chern–Schwartz–MacPherson class · Chern class · Toric varieties ·
Computer algebra · Computational intersection theory

1 Introduction and Background

The Chern–Schwartz–MacPherson (cSM ) class is a generalization of the total Chern
class, that is the Chern class of the tangent bundle, to singular varieties. Unlike other
generalizations of theChern class to the singular setting the cSM classmaintainsmany
of the functorial properties of the total Chern class, and in particular maintains the
relation to the Euler characteristic. Thismeans, explicitly, that as with the Chern class
the cSM class contains the Euler characteristic as the degree of its zero dimensional
component, this relationship is discussed in more detail in Sect. 1.2.

Historically, the existence of a functorial theory of Chern classes for singular vari-
eties in terms of a natural transformation from the functor of constructible functions
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to some nice homology theory, and its relation to the Euler characteristic, was conjec-
turedbyDeligne andGrothendieck in the1960s. In the1974, article [11],MacPherson
proved the existence of such a transformation, introducing a new notion of Chern
classes for singular algebraic varieties. Independently in the 1960s Schwartz [13]
defined a theory of Chern classes for singular varieties in relative cohomology. It
was later shown in a paper of Brasselet and Schwartz [3] that these two different
notions were in fact equivalent. This construction is now commonly referred to as
the Chern–Schwartz–MacPherson class.

In this note, we present Algorithm 1 which computes the Chern–Schwartz–
MacPherson class and/or theEuler characteristic of a complete simplicial toric variety
X� defined by a fan �. The algorithm is based on a result of Barthel et al. [2] which
gives an expression for the cSM class of a toric variety in terms of torus orbit closures.
Note that, for simplicity, we will only consider toric varieties X� over C.

From a computational point of view the problem of calculating the cSM class for
subschemes V of Pn has been considered by Aluffi in [1], by Jost in [10] and by the
author of this note in [8, 9]; this problem has also been considered for subschemes of
some smooth complete toric varieties by the author in [7].All of these algorithms have
at their core the need to solve polynomial systems of varying difficulty; for example
by means of Gröbner bases calculations or polynomial homotopy continuation. As
such the running times of all such algorithms are dependent on the algebraic degrees
of the defining equations of V and on other algebraic properties of the defining
equations. Given, the often substantial computational cost of solving polynomial
systems we believe that an approach to computing cSM classes which is strictly
combinatorial in nature is desirable in settings where this is possible, such as the
toric setting considered here.

We note that the restriction to complete simplicial toric varieties is not required in
the statement of the result of Barthel et al. [2] onwhich our algorithm is based, indeed
these restrictions are present on the algorithm only for the purpose of simplifying
the construction of the Chow ring of the toric variety. If one was able to construct
the Chow ring in a simple manner with the restrictions removed the algorithm could
be applied unchanged in this more general setting.

The Macaulay2 [6] implementation of our algorithm for computing the cSM class
and Euler characteristic of a complete simplicial toric variety presented in this note
can be found at https://github.com/Martin-Helmer/char-class-calc. This implemen-
tation is accessed via the “CharToric” package. Note that this implementation is
also available in the github version of the “CharacteristicClasses” Macaulay2 pack-
age, see https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/
CharacteristicClasses.m2, and will be included in the next release of Macaulay2.

Example 1.1 LetHr denote the r th Hirzebruch surface (see, for example, Cox et al.
[4, Example 3.1.16]). Taking r = 5 and letting R = C[x0, x1, x2, x3, x4] be the total
coordinate ring of the toric variety Hr we have that

cSM(Hr ) = 4x1x2 + 2x1 + 7x2 + 1 ∈ A∗(Hr ), (1)

https://github.com/Martin-Helmer/char-class-calc
https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/CharacteristicClasses.m2
https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/CharacteristicClasses.m2
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where A∗(Hr ) is the Chow ring of Hr . We may write this as

A∗(Hr ) ∼= Z[x0, x1, x2, x3, x4]/(x0x2, x1x3, x0 − x2,−x3 + x1 + 5x2). (2)

From this we deduce that the Euler characteristic is

χ(Hr ) =
∫

cSM(Hr ) = 4,

where
∫

α denotes the degree of the zero-dimensional part of the cycle class α in
some Chow ring (which is the coefficient of x1x2 in this case). Note that the Euler
characteristic could also be obtained directly as the number of 2-dimensional cones
in the fan corresponding to the toric varietyHr via Theorem 12.3.9 of Cox et al. [4].

The content of this note will be organized as follows. In Sect. 1.1 we will establish
the setting for this work and review the construction of the rational Chow ring of a
complete and simplicial toric variety. In Sect. 1.2wewill state the problem and briefly
review the definition of the cSM class. We then review relevant related results in Sect.
1.3. In Sect. 2 we detail the construction of our algorithm for computing the cSM
class in the setting considered here. The problem of computing the multiplicity of a
cone in an explicit manner is considered in Sect. 2.1. Our algorithm for computing
cSM classes (Algorithm 1), along with the results of some performance testing of
Algorithm 1 is given in Sect. 2.2.

1.1 Setting and Notation

Let X� be an n-dimensional complete and simplicial toric variety defined by a fan�.
Similar to the construction of the Chow ring in the smooth case we may construct the
Chow ring of X� from the Chow groups, that is the groups A j (X�) of codimension
j-cycles on X� modulo rational equivalence. The only difference in this case will
be that we work over the rational number field Q rather than the integers.

Using, the definition of the intersection product on rational cycles (see Sect. 12.5
of [4]) we have that the rational Chow ring of X� is given by the graded ring

A∗(X�)Q = A∗(X�) ⊗Z Q =
n⊕
j=0

A j (X�) ⊗Z Q. (3)

For each cone σ in the fan � the orbit closure V (σ ) is a subvariety of codimen-
sion dim(σ ). We will write [V (σ )] for the rational equivalence class of V (σ ) in
Adim(σ )(X�).

For convenience of notation we will also write A�(X�) for the dimension �-
cycles on X� modulo rational equivalence. For a more in depth discussion of rational
equivalence, Chow groups, and Chow rings see Fulton [5].
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Proposition 1.2 (Lemma 12.5.1 of [4]) The collections [V (σ )] ∈ A j (X�) for σ ∈
� having dimension n − j generate A j (X�), the Chow group of dimension j . Fur-
ther, the collection [V (σ )] for all σ ∈ � generates A∗(X�) as an abelian group.

The following proposition gives us a simple method to compute the rational Chow
ring of a complete, simplicial toric variety X� . We will use this result to compute
the rational Chow ring A∗(X�)Q in Algorithm 1, our algorithm to compute the cSM
class of a complete, simplicial toric variety.

Proposition 1.3 (Theorem 12.5.3 of Cox et al. [4]) Let N be an integer lattice with
dual M. Let X� be a complete and simplicial toric variety with generating rays
�(1) = ρ1, . . . , ρr where ρ j = 〈

v j
〉
for v j ∈ N. Then, we have that

Q[x1, . . . , xr ]/(I + J ) ∼= A∗(X�)Q, (4)

with the isomorphism map specified by [xi ] �→ [V (ρi )]. Here I denotes the Stanley–
Reisner ideal of the fan �, that is the ideal in Q[x1, . . . , xr ] specified by

I = (xi1 · · · xis | ii j distinct and ρi1 + · · · + ρis is not a cone of �) (5)

and J denotes the ideal of Q[x1, . . . , xr ] generated by linear relations of the rays,
that is J is generated by linear forms

r∑
j=1

m(v j )x j (6)

for m ranging over some basis of M.

1.2 Problem

Themain problem considered in this note is the following: given a complete simplical
toric variety X� how do does one efficiently compute the class cSM(X�) in the Chow
ring A∗(X�)Q?Wewill give amethod to solve this problem inAlgorithm1. To further
establish the context for this problem, however, we will briefly discuss the definition
of the Chern–Schwartz–MacPherson class.

The total Chern class of a j-dimensional nonsingular variety V is defined as
the Chern class of the tangent bundle TV , we write this as c(V ) = c(TV ) · [V ] in
the Chow ring of V , A∗(V ). See Fulton [5, Sect. 3.2] for a definition of the Chern
class of a vector bundle. As a consequence of the Gauss–Bonnet–Chern theorem (or
the Grothendieck–Riemann–Roch theorem, see for example Schürmann and Yokura
[12]), we have that the degree of the zero-dimensional component of the total Chern
class of a projective variety is equal to the Euler characteristic, that is
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∫
c(TV ) · [V ] = χ(V ). (7)

Here
∫

α denotes the degree of the zero-dimensional component of the class α ∈
A∗(V ), i.e., the degree of the part of α in A0(V ).

There are several known generalizations of the total Chern class to singular vari-
eties. All of these notions agree with c(TV ) · [V ] for nonsingular V , however the
Chern–Schwartz–MacPherson class is the only one of these that satisfies a property
analogous to (7) for any V , i.e.,

∫
cSM(V ) = χ(V ). (8)

We review here the construction of the cSM classes, given in the manner considered
by MacPherson [11]. For a scheme V , let C(V ) denote the abelian group of finite
linear combinations

∑
W mW1W , where W are (closed) subvarieties of V , mW ∈ Z,

and 1W denotes the function that is 1 in W , and 0 outside of W . Elements f ∈ C(V )

are known as constructible functions and the group C(V ) is referred to as the group
of constructible functions on V . To make C into a functor we let C map a scheme V
to the group of constructible functions on V and a proper morphism f : V1 → V2 is
mapped by C to

C( f )(1W )(p) = χ( f −1(p) ∩ W ), W ⊂ V1, p ∈ V2 a closed point.

Another functor from algebraic varieties to abelian groups is the Chow group functor
A∗. The cSM class may be realized as a natural transformation between these two
functors.

Definition 1.4 The Chern–Schwartz–MacPherson class is the unique natural trans-
formation between the constructible function functor and the Chow group functor,
that is cSM : C → A∗ is the unique natural transformation satisfying:

• (Normalization) cSM(1V ) = c(TV ) · [V ] for V nonsingular and complete.
• (Naturality) f∗(cSM(φ)) = cSM(C( f )(φ)), for f : X → Y a proper transforma-
tion of projective varieties, φ a constructible function on X .

For a scheme V let Vred denote the support of V , the notation cSM(V ) is taken to
mean cSM(1V ) and hence, since 1V = 1Vred , we denote cSM(V ) = cSM(Vred).

Note that the cSM classes (and constructible functions) also satisfy the same inclu-
sion/exclusion relation as the Euler characteristic, i.e., for V1, V2 subschemes of a
scheme W we have

cSM(V1 ∪ V2) = cSM(V1) + cSM(V2) − cSM(V1 ∩ V2).

Wenote that in some settings, such as subschemes of projective spaces or subschemes
of some toric varieties, computing the cSM class seems to provide a quite effective
means, relative to other available techniques, to compute the Euler characteristic. For
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a discussion of this see, for example, [7, 8]. For toric varieties themselves, however,
this is not the case as there is in fact an explicit formula for the Euler characteristic
of a toric variety, see Theorem 12.3.9 of Cox et al. [4].

1.3 Review of Results

In this section, we review the results which will provide the basis for Algorithm 1
below.Themain ingredient in this algorithm is the following result ofBarthel et al. [2].

Proposition 1.5 (Main Theorem of Barthel et al. [2]). Let X� be an n-dimensional
complex toric variety specified by a fan �. We have that the Chern–Schwartz–
MacPherson class of X� can be written in terms of orbit closures as

cSM(X�) =
∑
σ∈�

[V (σ )] ∈ A∗(X�)Q (9)

where V (σ ) is the closure of the torus orbit corresponding to σ .

We now recall the definition of the multiplicity of a simplicial cone, for more
details see §6.4 of Cox et al. [4]. Let N be an integer lattice with dual lattice M , let
σ = 〈v1, . . . , vd〉 be a simplicial cone and let

Nσ = Span(σ ) ∩ N , (10)

recall that Span(σ ) ⊂ NR is the smallest subspace of the vector space NR which
contains σ . We note that the index of the subgroup Zv1 + · · · + Zvd ⊂ Nσ in Nσ is
finite. We define the multiplicity of σ as

mult(σ ) = [Nσ : Zv1 + · · · + Zvd ⊂ Nσ ] (11)

where [G : H ] denotes the index of a subgroup H in a group G. In practice, we
shall employ Lemma 2.1 to compute mult(σ ). Specifically Lemma 2.1 will allow us
to compute the multiplicity of a simplicial cone. Since we only consider complete
simplicial toric varieties in Algorithm 1 this lemma may be used to compute the
multiplicity in all cases considered here.

To compute the classes [V (σ )] appearing in (9) we will employ the following
proposition combined with Proposition 1.3.

Proposition 1.6 (Theorem 12.5.2. of Cox et al. [4]) Assume that X� is complete
and simplicial. If ρ1, . . . , ρd ∈ �(1) are distinct and if σ = ρ1 + · · · + ρd ∈ � then
in A∗(X�) we have the following:

[V (σ )] = mult(σ )[V (ρ1)] · [V (ρ2)] · · · [V (ρd)]. (12)

Here, mult(σ ) will be calculated using Lemma 2.1.
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2 Algorithm and Performance

In this section, we describe the process by which we turn the Main Theorem of
Barthel et al. [2] (Proposition 1.5) into a computational method to find cSM classes
of complete simplicial toric varieties.

2.1 Computing Multiplicitiy

One of the main computational steps in Algorithm 1 below, for singular cases, is the
computation of the multiplicity of a cone σ ∈ �. In practice this computation will
be accomplished using Lemma 2.1. This lemma is a modified version of Proposition
11.1.8. of Cox et al. [4]. We have altered the statement of the result to explicitly show
how we will compute these multiplicities in practice. The main point here is to show
how the definition of the multiplicity of a cone given in (11) can be phrased in terms
of straightforward linear algebra computations in the cases considered in this note.

Lemma 2.1 (Modified version of Proposition 11.1.8. of Cox et al. [4]). Let N = Z
n

be an integer lattice. For a simplicial cone σ = ρ1 + · · · + ρd ⊂ N let Mσ be the
matrix with columns specified by the generating vectors of the rays ρ1, . . . , ρd which
define the cone σ ; we have

mult(σ ) = |det(Herm(Mσ ))| (13)

whereHerm(Mσ ) denotes the Hermite normal form of matrixMσ with all zero rows
and/or zero columns removed. Further mult(σ ) = 1 if and only if Uσ is smooth.

Proof Suppose ρ1 = 〈u1〉 , . . . , ρd = 〈ud〉 so that we can write σ = 〈u1, . . . , ud〉. In
Proposition 11.1.8. of Cox et al. [4] it is shown that if e1, . . . , ed is a basis for Nσ (see
(10)) and ui = ∑d

j=1 ai, j e j = E[ai, j ] (where E is the n × d matrix with columns
e1, . . . , ed ) then we have that

mult(σ ) = ∣∣det ([ai, j ])∣∣ . (14)

The matrix Mσ defined by the rays ρ1, . . . , ρd is the n × d matrix with columns
given by the vectors u1, . . . , ud . Note that Mσ has rank d. Choose e1, . . . , ed to be
a basis of Nσ so that the matrix E with columns e1, . . . , ed has the form

E =
[
Ẽ
0

]
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with det(Ẽ) = 1. Now since Mσ has rank d we may write

Mσ =
[
Herm(Mσ )

0

]
T

for Herm(Mσ ) the d × d matrix obtained from the Hermite normal form ofMσ with
the zero rows removed and T a d × d unimodular matrix. Then we have that

[
Ẽ
0

]
[ai, j ] =

[
Herm(Mσ )

0

]
T,

and hence Ẽ[ai, j ] = Herm(Mσ )T . Note that det(Ẽ) = det(T ) = 1, this gives that
det([ai, j ]) = det (Herm(Mσ )) as claimed.

The Hermite normal form of Mσ is obtained by performing unimodular column
operations onMσ and thus represents a change of basis of Nσ , we may call this new
basis for Nσ e1, . . . , ed . SinceMσ has rank d then removing the zero rows we obtain
the matrix Herm(Mσ ) and wemay then take this matrix to be the matrix [ai, j ] in (14)
since the matrix Herm(Mσ ) specifies the change of basis for Nσ from u1, . . . , ud to
e1, . . . , ed . The matrixMσ defined by the rays ρ1, . . . , ρd is the matrix with columns
given by the vectors u1, . . . , ud , that is Mσ = [u1, . . . , ud ], further Mσ has rank d.
Nσ = Span(σ ) ∩ N is the lattice generated by the columns of the matrix Mσ , that
is Nσ = {

y | y = Mσ x, x ∈ R
d
} ∩ N . From the definition of the Hermite form we

have that

MσT =
[
Herm(Mσ )

0

]

for some unimodular matrix T . Thus, we have

Nσ =
{
y | y =

[
Herm(Mσ )

0

]
x, x ∈ R

d

}
∩ N ,

meaning we may take the matrix [ai, j ] = Herm(Mσ ) in (14) and the conclusion
follows.

The remaining statements are given in the form stated above in Proposition 11.1.8.
of Cox et al. [4]. �

2.2 Algorithm

In Algorithm 1, we present an algorithm to compute cSM(X�) for a complete, sim-
plicial toric variety X� defined by a fan �. Note that we represent [V (ρ j )] as x j via
the isomorphism given in Proposition 1.3.
We note that Algorithm 1 is strictly combinatorial; hence the runtime depends only
on the combinatorics of the fan � defining the toric variety.
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Algorithm 1. Input: A complete, simplicial toric variety X� defined by a fan � with �(1) =
{ρ1, . . . , ρr } and a boolean, Euler_only, indicating if only the Euler characteristic is desired. We
assume dim(X�) ≥ 1.
Output: cSM (X�) in A∗(X�)Q ∼= Q[x1, . . . , xr ]/(I + J ) and/or the Euler characteristic χ(X�),
if Euler_only=true then only χ(X�) will be computed.

• Compute the rational Chow ring A∗(X�)Q ∼= Q[x1, . . . , xr ]/(I + J ) using Proposition 1.3.
• csm = 0.
• For i from dim(X�) to 1:

– orbits = all subsets of �(1) = {ρ1, . . . , ρr } containing i elements.
– total = 0.
– For ρ j1 , . . . , ρ js in orbits:

· σ = ρ j1 + · · · + ρ js .
· Find w = mult(σ ) using Lemma 2.1.
· [V (σ )] = mult(σ )[V (ρi1 )] · · · [V (ρis )] = w · xi1 · · · xis .
· total = total + [V (σ )].

– csm = csm + total.
– If i == dim(X�):

· Set (cSM (X�))0 = csm.
· Set χ(X�) = sum of the coefficients of the monomials in (cSM (X�))0.
· If Euler_only==true:

· Return χ(X�).

• Set cSM (X�) = csm.
• Return cSM (X�) and/or χ(X�) .

In this subsection, we give the run times for Algorithm 1 applied to a variety of
examples. Consider, a complete simplicial toric variety X� . We give two alternate
implementations of Algorithm 1 to reflect what we can expect the timings to be in
both the smooth cases and singular cases.

Specifically, the running times in Table 1 for Algorithm 1 marked with a † check
the input to see if the given fan� defines a smooth toric variety, if it does these imple-
mentations use the fact that mult(σ ) = 1 for all σ ∈ � and hence do not compute the
Hermite normal forms and their determinates in Lemma 2.1. However to show how
the algorithm would perform on a singular input of a similar size and complexity, we
also give running times for an implementation which always computes the Hermite
forms and their determinates in Lemma 2.1.

In this way, we see in a precise manner what the extra cost associated to com-
puting the cSM class and Euler characteristic of a singular toric variety would be in
comparison to the cost of computing a smooth toric variety defined by a fan having
similar combinatorial structure. Hence, the running time for a given example would
be very similar to that of a singular toric variety with a similar number and dimension
of cones to those considered in the examples in Table 1.

By default the implementation of Algorithm 1 in our “CharToric” package checks
if the input defines a smooth toric variety, i.e., performs the procedure of the imple-
mentations marked with †. As such the performance of the package methods on
smooth cases can be expected to be that of Algorithm 1 † in Table 1.
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Table 1 In the table, we present the time to compute the Chow ring separately from the time
required for the other computations, as such the total run time for each algorithm will be the time
listed in its column plus the time to compute the Chow ring if the Chow ring is not already known.
Computations were performed using Macaulay2 [6] on a computer with a 2.9GHz Intel Core i7-
3520M CPU and 8GB of RAM. The Fano sixfolds are those built by the smoothFanoToricVariety
method in the “NormalToricVarieties” Macaulay2 [6] package. Pn denotes a projective space of
dimension n

Input Algorithm 1
† (s)

Algorithm 1
(Euler only)
† (s)

Algorithm1 (s) Algorithm 1
(Euler only) (s)

Chow ring
(Proposition
1.3) (s)

P6 0.0 0.0 0.0 0.0 0.1

P16 5.3 0.0 85.4 0.0 0.7

P5 × P6 0.3 0.0 3.7 0.0 1.2

P5 × P8 1.1 0.0 16.8 0.1 2.1

P8 × P8 12.0 0.1 168.5 0.1 4.5

P5 × P5 × P5 12.8 0.2 156.7 0.6 11.8

P5 × P5 × P6 28.4 0.3 387.1 0.8 17.0

Fano sixfold
123

0.3 0.0 1.0 0.4 1.1

Fano sixfold
1007

0.4 0.1 1.0 0.1 1.8

We also remark that the extra cost in the singular case (or in the case, where we do
not check the input) comes entirely fromperforming linear algebrawith integermatri-
ces. As such the running times in these cases could perhaps be somewhat reduced
by using a specialized integer linear algebra package. To give a rough quantification
of what performance improvement one might expect from this we performed some
testing using LinBox [15] and PARI [16] via Sage [14] on linear systems of similar
size and structure to those arising in the examples in Table 1. In this testing, we found
that the specialized algorithms seemed to be around two to three times faster than
the linear algebra methods used by our implementation in the “CharToric” package,
however, this testing is by no means conclusive.

In any case, it seems reasonable to conclude that some performance increase
could be expected, for singular examples, if one used a specialized, fast integer
linear algebra package to compute the Hermite forms and determinates arising in
Algorithms 1. Finally, we note that additional efficiencies in implementation might
also be found by a more careful implementation of the combinatorial procedures in
a compiled language such as C or C++ rather than the Macaulay2 [6] language used
here, which is an interpreted language.
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The Generalized Rabinowitsch Trick

Deepak Kapur, Yao Sun, Dingkang Wang and Jie Zhou

Abstract The famousRabinowitsch trick forHilbert’sNullstellensatz is generalized
and used to analyze various properties of a polynomial with respect to an ideal.
These properties include, among others, (i) checking whether the polynomial is a
zero divisor in the residue class ring defined by the associated ideal and (ii) checking
whether the polynomial is invertible in the residue class ring defined by the associated
ideal. Just like using the classical Rabinowitsch’s trick, its generalization can also
be used to decide whether the polynomial is in the radical of the ideal. Some of the
byproducts of this construction are that it is possible to be more discriminatory in
determining whether the polynomial is a zero divisor (invertible, respectively) in the
quotient ring defined by the ideal, or the quotient ideal constructed by localization
using the polynomial. This method also computes the smallest integer which gives
the saturation ideal of the ideal with respect to a polynomial. The construction uses
only a single Gröbner basis computation to achieve all these results.

Keywords Rabinowitsch trick · Zero divisor · Invertible · Radical membership

1 Introduction

The classical Rabinowitsch trick was first proposed by J.L. Rabinowitsch in his
1-page paper Zum Hilbertschen Nullstellensatz in 1929 [9]. This ingenious trick was
used to prove the famous Hilbert’s Nullstellensatz theorem. Based on this proof, the
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radical membership problem can be solved. Let k[X ] be a polynomial ring over a
field k, f be a polynomial and I be an ideal in k[X ], where X = [x1, . . . , xn] is a set
of variables. The classical Rabinowitsch trick involves adding f y − 1 for performing
radical membership test of f in I , where y is a new indeterminate different from X .
In 2009, Sato and Suzuki [12] used this trick to compute the inverse of a polynomial
f in the residue class ring k[X ]/(I : f ∞).
A general construction to determinewhether a given polynomial f is a zero divisor

or invertible in the quotient ring k[X ]/I , is proposed. It is proved that all this can be
done using a single Gröbner basis construction of I augmented with a generalization
of the classical Rabinowitsch trick, f y − z, where y, z are new indeterminates not
appearing in X . It is also possible to perform radical membership test on f in I
using the generalized construction. The generalized construction can be also used to
compute theGröbner bases of a family of related ideals–I , I : f , I : f 2, . . . , I : f ∞,
I + 〈 f 〉, I : f + 〈 f 〉, I : f 2 + 〈 f 〉, . . ., or I : f ∞ + 〈 f 〉 simultaneously, where I :
f s = {h | h f s ∈ I }.
These results provide a necessary and sufficient condition for deciding whether f

is invertible in k[X ]/(I : f i ) or whether f is a zero divisor in k[X ]/(I : f i ), where
i is a nonnegative integer.

This paper is organized as follows. We review the properties of the classical
Rabinowitsch trick in Sect. 2; we also relate it to Spear’s trick of introducing a tag
variable for studying properties of polynomial ideals; Bayer’s further exploited the
tag variable construction. In Sect. 3, we give two main results about the structure
of the Gröbner basis of I ∪ { f y − z} and discuss how to check invertibility of f ,
radical membership of f , or f being a zero divisor in the residue class ring defined
by I . An application of the generalized Rabinowitsch trick is presented in Sect. 4.
Section 5 includes concluding remarks; as said there, constructions proposed in this
paper generalize in a natural way to parameterized system using the comprehensive
Gröbner system construction [7, 8].

2 Rabinowitsch Trick and Tag Variables

2.1 The Classical Rabinowitsch Trick

The classical Rabinowitsch trick was proposed to prove the famous Hilbert’s Null-
stellensatz theorem. Given polynomials f, f1, . . . , fs in k[X ], if f vanishes on the
common zeros of f1, . . . , fs , then there exists polynomials a0, a1, . . . , as in k[X, y],
such that

a0( f y − 1) + a1 f1 + · · · + as fs = 1,

where y is an extra variable different from X . Substituting y by 1/ f , there exists an
integer m such that f m in the ideal generated by f1, . . . , fs . For details, the reader
can refer to [4]. The classical Rabinowitsch’s trick can be used to solve the radical
membership problem of an ideal by the following proposition (page 176, [3]).



The Generalized Rabinowitsch Trick 221

Proposition 1 Let k be an arbitrary field and let I = 〈 f1, . . . , fs〉 ⊂ k[X ] be an
ideal. Then f ∈ √

I if and only if the constant polynomial 1 belongs to the ideal
I + 〈 f y − 1〉.

Sato and Suzuki [12] used the classical Rabinowitsch trick to compute the inverse
of a polynomial f in residue class ring k[X ]/(I : f ∞).

Proposition 2 Let I be an ideal and f be a polynomial in k[X ]. If G is a Gröbner
basis of the ideal I + 〈 f y − 1〉 in k[X, y] w.r.t. a term order such that y >> X, then
f is invertible in k[X ]/(I : f ∞) if and only if G has a form G = {y − h, g1, . . . , gl}.
Further, h is an inverse of f in k[X ]/(I : f ∞) and I : f ∞ = 〈g1, . . . , gl〉.

Proposition 2 can only be used to decide whether f is invertible in k[X ]/(I : f ∞)

directly. To decide whether f is invertible in k[X ]/I , however, the equality of the
two ideals I and I : f ∞ needs to be checked.

2.2 Tag Variable

Spear [14] introduced the concept of a tag variable and showed how various ideal
theoretic operations can be performed with Gröbner basis computations using lex-
icographic ordering and the associated elimination ideals; please refer to [10] for
many interesting comments about Spear’s contributions to Gröbner basis theory. In
[13], Shannon, and Sweedler used tag variables to test if a given polynomial g of
k[x1, . . . , xn] lay in k[ f1, . . . , fs].

In [10], Mora credited Bayer [1] for using a tag variable and reverse lexicographic
ordering to analyze the properties of a polynomial f with respect to a polynomial
ideal I = 〈 f1, . . . , fs〉.

If a Gröbner basisG = 〈g1, . . . , gt 〉 of ideal I + 〈 f − z〉 over k[X, z] is computed
w.r.t. a reverse lexicographical ordering such that X >> z, then each gi can be
uniquely expressed as

gi = zdi hi , z � hi , hi ∈ k[X, z],

where di is a nonnegative integer. If z divides gi , let ai (X, z) = gi/z; otherwise,
ai = gi . Substitute z = f into ai and hi , and let

Ai (X) = ai (X, f ), Hi (X) = hi (X, f ).

Proposition 3 [10] Using the above definitions of Ai ’s and Hj ’s,

1. {A1, . . . , At } is a basis of I : f , and
2. {H1, . . . , Ht } is a basis of I : f ∞.

Since the reverse lexicographical (rev-lex) ordering is not a well-ordering, the
procedure of computing a Gröbner basis of an ideal w.r.t. the rev-lex ordering may
not terminate as illustrated by the following example.
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Example 1 Consider I = 〈x1, x22 + x2〉; let f = x1 − x2 be a polynomial.

Bayer’s method advocates computing a Gröbner basis of 〈x1, x2 + x22 , x1 − x2 −
z〉 = 〈 f1, f2, f3〉 w.r.t. the rev-lex ordering x1 > x2 > z. Assuming that the Buch-

berger’s algorithm [2] is used, let f
F
be the remainder on division of f by the ordered

tuple F , and the S − polynomial of f and g is

S( f, g) = xr

lt( f )
f − xr

lt(g)
g,

where lt( f ) is the leading term of polynomial f w.r.t. the rev-lex ordering x1 > x2 >
z, and xr is the least common multiple of lt( f ) and lt(g).

Initial: F = ( f1, f2, f3);

Step1: S( f1, f2) = x2 · f1 − x1 · f2 = −x1x22 := f4, f4
F = 0;

Step2: S( f1, f3) = f1 − f3 = x2 + z := f5.
In F , only the leading term of f2 can divide lt( f5). Let f5 − f2 = −x22 + z, which

is still only reduced by f2. Sequentially, it gives an infinite sequence

x2 + z,−x22 + z, x32 + z, . . . , (−1)k+1xk2 + z, . . . .

The procedure of computing a Gröbner basis of 〈x1, x2 + x22 , x1 − x2 − z〉 w.r.t. the
rev-lex ordering x1 > x2 > z does not terminate. So Bayer’s method can not be used
directly in this case.

Mora claimed a way to overcome this problem by homogenizing an ideal. For
homogeneous ideals, the Gröbner basis of an ideal w.r.t. rev-lex ordering exists.
A nonhomogeneous ideal can thus first be homogenized; use then Proposition 3
on the homogenized ideal basis and then dehomogenize the result. It should be
noted however that the dehomogenization does not produce a Gröbner basis of the
nonhomogeneous ideal. Moreover, we want to emphasize that Proposition 3 only
guarantees as its output, a basis of I : f or I : f ∞, not a Gröbner basis.

Example 2 Let the ideal I = 〈x22 , x1x2 + x23 〉, the polynomial f = x1x2.

The Gröbner basis of I + 〈 f − z〉 w.r.t. the rev-lex ordering x1 > x2 > x3 > z
is G = 〈z2, x2z, x23 + z, x22 , x1x2 − z〉. By the Proposition 3, I1 = {x1x2, x2, x1x2 +
x23 , x

2
2 } is a basis of I : f . It is easy to check x23 is in I : f , but lt(x23 ) = x23 is not

divided by any leading term of polynomials in G. So I1 is not a Gröbner basis.

3 The Generalized Rabinowitsch Trick

In this section, we generalize the Rabinowitsch trick and discuss properties of f
in a quotient ring such as k[X ]/I, k[X ]/(I : f ). Specifically, we provide necessary
and sufficient conditions to check whether f is invertible or a zero divisor in k[X ]/I ,
k[X ]/(I : f ), . . ., k[X ]/(I : f s), . . ., and k[X ]/(I : f ∞).We can also checkwhether
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f is in
√
I , the radical of ideal I , as well as find the smallest integer m such that

I : f m = I : f ∞.
A polynomial f is invertible in k[X ]/I , if f /∈ I and there exists g in k[X ] such

that f g − 1 ∈ I . Moreover, such g is called an inverse of f in k[X ]/I . A polynomial
f is a zero divisor in k[X ]/I , if f /∈ I and there exists h in k[X ] such that h /∈ I and
f h ∈ I .
The generalized Rabinoswitsch’s trick can be interpreted as integration of

Rabinowitsch’s trick with that of tag variable as illustrated below. Consider, the
following ideal

J = I + 〈 f y − z〉 ⊂ k[X, y, z],

associated with I and f , where y and z are two new variables different from X .
Firstly, we analyze some special polynomials in J , which can be expressed

as g = pt yzt + pt−1yzt−1 + · · · + p0y + qr zr + qr−1zr−1 + · · · + q1z + q0, where
p0, . . . , pt , q0, . . . , qr are polynomials in k[X ].
Lemma 1 Let I = 〈 f1, . . . , fs〉 be an ideal, f be a polynomial in k[X ], and J =
I + 〈 f y − z〉be an ideal in k[X, y, z]. Given a polynomial g = pt yzt + · · · + p0y +
qr zr + · · · + q1z + q0 in J , where p0, . . . , pt , q0, . . . , qr ∈ k[X ], then

pi−1 f
i−1 + qi f

i ∈ I,

where i is a nonnegative number, p j = 0 when j > t , and qk = 0 when k > r .
Moreover, pi−1 ∈ I : f i−1 + 〈 f 〉, and when pi−1 = 0, qi ∈ I : f i .

Proof Since g is a polynomial in J , there exists a1, . . . , as, as+1 ∈ k[X, y, z], such
that

pt yz
t + · · · + p0y + qr z

r + · · · + q1z + q0 = a1 f1 + · · · + as fs + as+1( f y − z).
(1)

Now setting z = f y in the above Eq. (1) gives

pt ( f y)
t y + · · · + p0y + qr ( f y)

r + · · · + q1( f y) + q0 = a′
1 f1 + · · · + a′

s fs,

where a j
′ ∈ k[X, y] for j = 1, . . . , s. Viewing the right side of the above equation

as a polynomial in k[X ][y], it is possible to reformulate it as a1′ f1 + · · · + as ′ fs =
bk yk + · · · + b1y + b0, where b0, . . . , bk ∈ k[X ]. Note that each b j can also be
arranged as an expression of the form b j = c1 f1 + · · · + ct ft for some c1, . . . , ct ∈
k[X ], so b0, . . . , bk ∈ I . Thus,

pt ( f y)
t y + · · · + p0y + qr ( f y)

r + · · · + q1( f y) + q0 = bk y
k + · · · + b1y + b0.

Comparing each coefficient of yi , bi = pi−1 f i−1 + qi f i . So pi−i f i−1 + qi f i ∈ I ,
i.e. pi−1 + qi f ∈ I : f i−1. It is obvious that pi−1 in I : f i−1 + 〈 f 〉, and qi ∈ I : f i

when pi−1 = 0. �
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Lemma 2 Let I, J be defined as in Lemma 1. For a polynomial h in k[X ], h f s ∈ I
if and only if hzs ∈ J , where s is any nonnegative integer.

Proof (⇒) : If h f s ∈ I , then hzs = h( f y − ( f y − z))s = h f s ys + hp( f y − z) ∈
J , where p ∈ k[X, y, z]. (⇐) : It is obvious from Lemma 1.

�

We analyze the ideal J by studying its Gröbner basis using a block ordering in
which y � z � X . Using the structure of this Gröbner basis, we give below the
main theoretical result.

Let g be a polynomial in k[X, y, z] and “≺” be an admissible monomial order-
ing on the set of power products of X ∪ {y, z}. We use notations lpp(g) and lc(g)
to represent the leading power product and leading coefficient of g with respect to
“≺,” respectively. The notation “≺y,z” is a restriction of “≺” on the set of power
products of {y, z}. We use the notations lppy,z(g) and lcy,z(g) to represent the lead-
ing power product and leading coefficient of g with respect to “≺y,z” respectively.
The notation tail(g) represents the part of g − lc(g)lpp(g), i.e., g can be expressed
as g = lc(g)lpp(g) + tail(g). For example, let g = 2x2yz + x3z, and “ ≺” be the
lexicographic ordering w.r.t. z > y > x , lpp(g) = x2yz, lc(g) = 2, lppy,z(g) = yz,
lcy,z(g) = 2x2 and tail(g) = x3z. And lcy,z(g) is in k[X ].
Theorem 4 Let I be an ideal and f be a polynomial in k[X ]. Let G be a Gröbner
basis of ideal J = I + 〈 f y − z〉 ⊂ k[X, y, z] with respect to a block ordering “≺”
such that y � z � X.

1. Let Ps = {lcy,z(g) | g ∈ G ∩ k[X ][z], lppy,z(g) = zk and 0 ≤ k ≤ s} ⊂ k[X ].
For any integer s ≥ 0, Ps is a Gröbner basis of I : f s .

2. Let Qs = Ps ∪ {lcy,z(g) | g ∈ G, lppy,z(g) = yzt , and 0 ≤ t ≤ s} ⊂ k[X ]. For
any integer s ≥ 0, Qs is a Gröbner basis of I : f s + 〈 f 〉.

Proof (1) First, we prove Ps ⊂ I : f s . For any q ∈ Ps , by the construction of Ps ,
there exists a polynomial g ∈ G, such that g = qzk + tail(g), where 0 ≤ k ≤ s. From
Lemma 1, we know q f k ∈ I . So q ∈ I : f k ⊂ I : f s . Therefore, we have proved
Ps ⊂ I : f s .

Second, we prove Ps is a Gröbner basis of I : f s , or equivalently, we need to
prove that for any h ∈ I : f s , there exists q ∈ Ps , such that lpp(q) divides lpp(h).
Let h be any polynomial in I : f s , we have h f s ∈ I . Hence, we have hzs ∈ J by
Lemma 2. Since G is a Gröbner basis of J , there exists a polynomial g ∈ G, such
that lpp(g) divides lpp(hzs). So g must have the form of g = qzk + tail(g), where
q ∈ k[X ] and 0 ≤ k ≤ s. Thus, lpp(g) | lpp(hzs)means lpp(q) | lpp(h), and we also
have q ∈ Ps by the construction of Ps .

(2) First, we prove Qs ⊂ I : f s + 〈 f 〉. For any p ∈ Qs ⊂ k[X ], if p ∈ Ps , then
p ∈ I : f s ⊂ I : f s + 〈 f 〉 by (1).Otherwise, if p /∈ Ps , then there exist a polynomial
g ∈ G having the form of g = pyzt + tail(g), where 0 ≤ t ≤ s. By Lemma 1, we
have p ∈ I : f t + 〈 f 〉 ⊂ I : f s + 〈 f 〉. So we have proved Qs ⊂ I : f s + 〈 f 〉.
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Second,we show Qs is aGröbner basis of I : f s + 〈 f 〉. For any h ∈ I : f s + 〈 f 〉,
there exists q ∈ I : f s and a1, a2 ∈ k[X ] such that h = a1q + a2 f by the defi-
nition of I : f s + 〈 f 〉. Since q ∈ I : f s , we have q f s ∈ I , and hence, qzs ∈ J
by Lemma 2. Next, we construct the polynomial T = hyzs − a2zs+1 = (a1q +
a2 f )yzs − a2zs+1 = a1qyzs + a2( f y − z)zs ∈ J . Since G is a Gröbner basis of J
and lpp(T ) = lpp(h)yzs , there exists a polynomial g ∈ G, such that lpp(g) divides
lpp(h)yzs . This g must have the form of g = pykzt + tail(g), where 0 ≤ k ≤ 1
and 0 ≤ t ≤ s. So we have lpp(p) | lpp(h). Due to the form of g we also have
p ∈ Qs . This shows that for any h ∈ I : f s + 〈 f 〉 there exists p ∈ Qs such that
lpp(p) | lpp(h). �

If G is a minimal Gröbner basis1 of J , it is easy to see that I : f i−1 � I : f i if
and only if Pi−1 � Pi , and I : f i−1 + 〈 f 〉 � I : f i + 〈 f 〉 if and only if Qi−1 � Qi .

The following result serves as the basis for checking if a polynomial is invertible
or a zero divisor in a residue class ring as well as for checking its membership in the
radical of an ideal.

Theorem 5 Let I be an ideal and f be a polynomial in k[X ]. Let G be a mini-
mal Gröbner basis of ideal J = I + 〈 f y − z〉 ⊂ k[X, y, z] with respect to a block
ordering “ ≺” such that y � z � X, and Ps, Qs are constructed from G as stated
in Theorem 4. The following properties hold:

1. f is invertible in k[X ]/(I : f s) if and only if 1 ∈ Qs and 1 /∈ Ps+1, i.e., I : f s +
〈 f 〉 = 〈1〉 and f /∈ I : f s . The inverse of f in k[X ]/(I : f s) can be obtained
from G.

2. f is a zero divisor in k[X ]/(I : f s) if and only if Ps � Ps+1 and 1 /∈ Ps+1, i.e.
I : f s � I : f s+1 and f /∈ I : f s .

3. f is in the radical ideal
√
I if and only if there exists an integer s such that

1 ∈ Ps, i.e. I : f s = 〈1〉.
4. m is the smallest integer such that I : f ∞ = I : f m, if and only if Pm−1 � Pm =

Ps for all s > m. Further, Pm is a Gröbner basis of I : f ∞.

Proof (1). (⇒) : If f is invertible in k[X ]/(I : f s), then f /∈ I : f s and there exists
h such that f h − 1 ∈ I : f s . So 1 /∈ I : f s+1 and 1 ∈ I : f s + 〈 f 〉. By Theorem 4
(1) and (2), we have 1 ∈ Qs and 1 /∈ Ps+1.

(⇐) : If 1 /∈ Ps+1 and 1 ∈ Qs , then f /∈ I : f s and there exists g ∈ G hav-
ing the form of g = yzt + pt−1yzt−1 + · · · + p0y + qr zr + · · · + q1z + q0, where
p0, . . . , pt−1, q0, . . . , qr ∈ k[X ] and 0 ≤ t ≤ s. By Lemma 1, 1 + qt+1 f ∈ I : f t ⊂
I : f s , so f is invertible in k[X ]/(I : f s) and −qt+1 is its inverse.

(2). (⇒) : If f is a zero divisor in k[X ]/(I : f s), then f /∈ I : f s and there
exists h /∈ I : f s such that f h ∈ I : f s . So 1 /∈ I : f s+1 and h ∈ (I : f s+1) \ (I :
f s). Then I : f s � I : f s+1. By Theorem 4 (1), Ps, Ps+1 are Gröbner bases of I : f s

and I : f s+1 respectively. So Ps � Ps+1 and 1 /∈ Ps+1.

1A set G is a minimal Gröbner basis of I if (1) G is a Gröbner basis of I , and (2) for each g ∈ G,
lpp(g) is not divisible by any leading power products of G \ {g}.
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(⇐) : If 1 /∈ Ps+1 and Ps � Ps+1, then f /∈ I : f s and there exists h ∈ Ps+1 and
h /∈ Ps . From Theorem 4 (1), there exists g = hzs+1 + tail(g) ∈ G. Then h f s+1 ∈ I
by Lemma 1. So h f ∈ I : f s , and f is a zero divisor in k[X ]/(I : f s).

(3). (⇒) : If f ∈ √
I , then there exists an integer t such that f t ∈ I . So zt ∈ J

from Lemma 2. Since G is a minimal Gröbner basis of J , there exists g ∈ G, such
that lpp(g) | zs . So g must have the form of g = zs + tail(g), where 0 ≤ s ≤ t . By
Theorem 4 (1), 1 ∈ Ps .

(⇐) : If there exists an integer s such that 1 ∈ Ps , then there exists a polynomial
g = zk + tail(g), where 0 ≤ k ≤ s. By Lemma 1, f k ∈ I , and hence, f ∈ √

I .
(4). Since G is a minimal Gröbner basis of J , by Theorem 4 (1), I : f m−1 � I :

f m = I : f ∞ if and only if Pm−1 � Pm = Ps , for all s > m. Since Pm is a Gröbner
basis of I : f m by Theorem 4 (1), Pm is also a Gröbner basis of I : f ∞.

�
In case f is invertible in k[X ]/(I : f s), the above proof shows how to construct

the inverse of f . In particular, f is invertible in k[X ]/I if and only if 1 ∈ Q0, implying
that G contains a polynomial of the form y − h, where h ∈ k[X ]. In that case, h is an
inverse of f in k[X ]/I . Similarly, f is a zero divisor in k[X ]/I if and only if P0 � P1
and 1 /∈ P1.

The following example illustrates Theorems 4 and 5.

Example 3 Let I = 〈x21 (x1x2 − 1)〉 ⊂ Q[x1, x2], and f = x1. Decide the properties
of f in Q[x1, x2]/I , Q[x1, x2]/(I : f ), . . ., and Q[x1, x2]/(I : f ∞).

Aminimal Gröbner basis of I + 〈 f y − z〉 ⊂ Q[x1, x2, y, z] using a lexicographic
ordering with (y > z > x1 > x2) is

G = {x31 x2 − x21 , (x
2
1 x2 − x1)z, (x1x2 − 1)z2, x1y − z, yz2 − x2z

3}.

As per Theorem 4, we construct the following sets:

P0 = {x31 x2 − x21 }, Q0 = P0 ∪ {x1},

P1 = {x31 x2 − x21 , x
2
1 x2 − x1}, Q1 = P1 ∪ {x1},

P2 = {x31 x2 − x21 , x
2
1 x2 − x1, x1x2 − 1}, Q2 = P2 ∪ {x1, 1}.

From Theorems 4 and 5, we have:

1. P0 is a Gröbner basis of I ; P1 is a Gröbner basis of I : f ; P2 is a Gröbner basis
of I : f 2.

2. Q0 is a Gröbner basis of I + 〈 f 〉; Q1 is a Gröbner basis of I : f + 〈 f 〉; Q2 is a
Gröbner basis of I : f 2 + 〈 f 〉.

3. f is invertible in Q[x1, x2]/(I : f 2), and x2 is its inverse.
4. f is a zero divisor in Q[x1, x2]/I and Q[x1, x2]/(I : f ).
5. The integer 2 is the smallest integer m such that I : f ∞ = I : f m , and P2 is a

Gröbner basis of I : f ∞.
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4 Application in Dynamic Evaluation

It is well known that an ideal I can be decomposed using a polynomial f as follows:

I = (I : f ∞) ∩ (I + 〈 f m〉),

where m is the smallest number such that I : f ∞ = I : f m . From Theorem 4,
the smallest m and a Gröbner basis of I : f ∞ = I : f m can be derived from a
Gröbner basis of ideal I + 〈 f y − z〉. This means we get a decomposition of I from
G. Particularly, this decomposition is not trivial if f is a zero divisor in k[X ]/I .

In [11], Noro gave a modular method of decomposing a radical and zero-
dimensional ideal I into I : f and I + 〈 f 〉 to do dynamic evaluation a la Duval
[5], where f is a zero divisor in k[X ]/I . Note that, Noro considered only the case
when m is 1 since I is radical. His method needs to compute Gröbner basis for I : f
and I + 〈 f 〉 separately. In contrast, our approach can produce these two Gröbner
bases simultaneously. The following example is taken from [5].

Example 4 Let Q(a, b, c, d) be ring defined by a, b, c, d, which are the roots of
x2 − 2, x2 + 3, x2 + 6, and x2 + 1 − 2c, respectively. Check whether a + b − d is
invertible in Q(a, b, c, d), and compute an inverse if it exists.

The ring Q(a, b, c, d) is isomorphic to the quotient ring Q[X ]/I where
X = {x1, x2, x3, x4} and I = 〈x21 − 2, x22 + 3, x23 + 6, x24 − 2x3 + 1〉. Note that
Q(a, b, c, d) is not a field since I is not maximal, which means a + b − d may
not be invertible in Q(a, b, c, d).

Let f = x1 + x2 − x4. Compute aminimalGröbner basesG of J = I + 〈 f y − z〉
in Q[x1, x2, x3, x4, y, z] using a lexicographic ordering with y > z > x4 > x3 >
x2 > x1. We get G = {x21 − 2, x22 + 3, x23 + 6, x24 − 2x3 − 1, (x3x4 + x1x2x4 +
x2x3 + x1x3 + 2x2 − 3x1)z, (x3 − x1x2)y + (1/2)(x4 + x2 + x1)z, (x4 − x2 − x1)
y + z, zy + (1/120)(5x1x2x4 + 2x2x3 + 3x1x3 + 16x2 − 21x1)z2}.

As Theorem 4, we construct the following sets:
Q0 := {x21 − 2, x22 + 3, x23 + 6, x24 − 2x3 − 1},
P0 := Q0 ∪ {x3 − x1x2, x4 − x2 − x1},
Q1 := Q0 ∪ {x3x4 + x1x2x4 + x2x3 + x1x3 + 2x2 − 3x1},
P1 := Q1 ∪ {1}.
By Theorem 5, f is a zero divisor in Q[X ]/I and hence, not invertible in Q[X ]/I .
Further, I : f ∞ = I : f . A nontrivial decomposition of I is thus I = (I : f ) ∩ (I +
〈 f 〉) = 〈Q1〉 ∩ 〈P0〉.

Again using Theorem 5 (1), f is in fact invertible inQ[X ]/(I : f ), and an inverse
can be obtained from the polynomial zy + (1/120)(5x1x2x4 + 2x2x3 + 3x1x3 +
16x2 − 21x1)z2, i.e. an inverse of f in Q[X ]/(I : f ) is −(1/120)(5x1x2x4 +
2x2x3 + 3x1x3 + 16x2 − 21x1).
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5 Conclusions

Using a generalization of the classical Rabinowitsch trick, we have proposed a
method for checking whether a given polynomial f is invertible or a zero divi-
sor in a residue class ring k[X ]/I , where I is a polynomial ideal. This check is
performed by computing a Gröbner basis of I ∪ { f y − z} by using a block ordering
in which y � z � X , where y, z are new variables different from the variables in
X . If f is not invertible in k[X ]/I , it can be determined using the same Gröbner basis
construction whether there is an s such that f is invertible in the residue class ring
defined by the colon ideal I : f s on k[X ]. As a byproduct, the smallest number s can
be computed such that I : f s = I : f ∞, the saturation ideal of I with respect to f .
The method can also be used to determine whether f is invertible or a zero divisor
in k[X ]/(I : f ), k[X ]/(I : f 2), k[X ]/(I : f 3), etc.

A nice aspect of the proposed construction is that it naturally generalizes to para-
metric systems using a comprehensive Gröbner system by an algorithm such as
in [7, 8]. A paper on this generalization is under preparation; preliminary results
on the findings were presented as an invited talk at the International Workshop on
Automated Deduction in Geometry (ADG), Coimbra, Portugal, in July 2014.
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AWeb-Based Quantum Computer Simulator
with Symbolic Extensions

O.G. Karamitrou, C. Tsimpouris, P. Mavridi and K.N. Sgarbas

Abstract This paper presents a quantum computer simulator with a web interface,
based on the circuit model of quantum computation. This is the standard model
for which most quantum algorithms have been developed. According to this model,
quantum algorithms are expressed as circuits of quantum registers (series of qubits)
and quantum gates operating on them. The paper also proposes another version of the
existing simulator using symbolic computation in Python programming language, in
order to perform quantum calculations.

Keywords Quantum computation · Simulator · Circuit model · Quantum gates ·
Python language

1 Introduction

Quantum computation and quantum information is the study of the information
processing tasks that can be accomplished using quantummechanical systems.Quan-
tum computing combines quantum mechanics, information theory and aspects of
computer science. Quantum computation exploits quantum effects in order to per-
form calculations more efficiently than ordinary computers do. Superposition and
entanglement are two key-phenomena in the quantum field that provide a much more
efficient way to perform computations than classical algorithms.
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The bit is the fundamental concept of classical computation and information. The
quantum analog of a bit is called quantum bit or qubit. A classical bit has a state,
which is either 0 or 1.A qubit can be in a composition of its basis states (denoted in
Dirac notation as |0〉 and |1〉), called superposition:

|x〉 = a|0〉 + b|1〉

where a, b are complex numbers called probability amplitudes. When we measure a
qubit we get 0 with probability a2 or 1 with probability b2. So a2 + b2 = 1. Quantum
gates are the basic components for quantum computation. In contrast to classical
gates, quantum gates are not circuits with input and output, but operators over a
quantum register that consists of several qubits. Consequently, quantum algorithms
are implemented as a series of applications of quantum gates over the contents of
a quantum register. The most popular quantum algorithms are Grover’s algorithm,
which is able to search an unsorted database in time O(

√
N ) [2, 3], quantum Fourier

transform (QFT) [1] and Shor’s algorithm [5].
The objective of this paper is to present a quantum computer simulator. This

is a useful tool for students and researchers in quantum computation and quantum
information. The proposed simulator is based on the circuit model [4] of quantum
computation. This is the standard model in which most quantum algorithms have
been developed. The usage of this tool is focused in studying and understanding
quantum circuits, quantum computations and well known quantum algorithms, such
as Grover’s algorithm [1, 5] and Quantum Fourier Transform. It may also be very
useful for the development of new quantum algorithms and the construction of new
quantum gates. A demo of this tool with a web interface has been developed and
it is available from this URL: http://www.wcl.ece.upatras.gr/en/ai/resources/demo-
quantum-simulation.

The algorithm of the simulator and an example of its usage are presented in
Sect. 2. Section3 proposes another version of the quantum computer simulator using
symbolic processing and Sect. 4 concludes the paper with an overview and some final
remarks.

2 Quantum Computer Simulator

The quantum computer simulator presented here can simulate the operation of quan-
tum circuits. The inputs of the simulator are the number of qubits, the number of
computation steps, the initial state of the quantum register, and the gates that are
applied at each step. The outputs of the simulator are the quantum register state at
each step (the probability of measuring each one of the possible states and the phases
of each state).

The pseudocode of the simulator is shown in Table1. The simulation starts with
specific choices from the end-user. The user has to select the number of qubits of

http://www.wcl.ece.upatras.gr/en/ai/resources/demo-quantum-simulation
http://www.wcl.ece.upatras.gr/en/ai/resources/demo-quantum-simulation
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Table 1 The pseudocode of the quantum computer simulator

Pseudocode

1. Start

2. Read the number of qubits

3. Read the number of computations steps

4. Read the initial state of quantum register

5. Calculate the tensor product of the initial state of quantum register

6. i = 1

7. Read the matrix of quantum gate at i th step

8. Calculate the tensor product of the matrices of quantum gates at the i th step

9. Calculate the new state of the quantum register

10. If i is less than the number of computations steps, i = i + 1, go to step 7,

11. Produce the output (measure and phase of quantum register)

12. End

the input quantum register and the number of computation steps. After this, the user
selects the initial quantum state of the quantum register and the appropriate quantum
gates that are applied at eash step, as shown in Fig. 1. The available quantum gates
are:

1. Identity
2. Hadamard
3. Controlled Not
4. Toffoli gate, also known as CCNOT
5. Phase Shift
6. Controlled Phase Shift
7. Fredkin

Fig. 1 Example of the web-based quantum computer simulator
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Fig. 2 Output of the web-based quantum computer simulator

The output of the simulator is shown in Fig. 2.
The quantum computer simulator has been developed in Python, using some extra

libraries for our purposes. The fundamental library that is used isNumpy: the package
for scientific computing in Python.

3 Future Work

The computational complexity of an algorithm that simulates quantum systems with
2 base states is O(2n), where n is the number of quantum systems. As the number of
qubits increases, the presented quantum computer simulator suffers from exponential
slowdown, because the calculations between the producedmatrices (2n × 2n) quickly
exceed the computational abilities of classical computers.

As a future upgrade of the presented quantum computer simulator, we intend to
add an option for symbolic computation instead of Numpy to perform operations
between the quantum register and the matrix of the appropriate gate.

We shall use Sympy for those calculations. This new quantum computer simulator
takes the advantage of this change, which is that it can represent very large num-
bers, as a result of using arbitrary precision arithmetic. On the other hand, Numpy
uses machine arithmetic, which imports limitations. Because of arbitrary precision
arithmetic, we can represent very large, very small, or very precise numbers.
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The basic idea of this approach is:

• to use Sympy library of Python to do symbolic manipulation of quantum compu-
tations.

• to use mpmath library of Sympy for the numerical computations at the final step
that we get the final quantum register (output), in order to compute the measure
and phase of each state of quantum register.

4 Conclusion

Aweb-based quantum computer simulator has been developed and used for quantum
computations. Using this quantum computer simulator, a significant number of quan-
tum computations can be performed in short time. The symbolic extension which
we described may be helpful for future development of a simulator that can perform
quantum computations with larger input.
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Dixon-EDF: The Premier Method
for Solution of Parametric Polynomial
Systems

Robert H. Lewis

Abstract Using examples of interest from real problems, wewill discuss the Dixon-
EDF resultant as a method of solving parametric polynomial systems.Wewill briefly
describe the method itself, then discuss problems arising in geometric computing,
flexibility of structures, pose estimation, robotics, image analysis, physics, differen-
tial equations, and others. We will compare Dixon-EDF to several respected imple-
mentations of Gröbner bases algorithms on several systems.We find that Dixon-EDF
is greatly superior, usually by orders of magnitude, in both CPU usage and RAM
usage.

Keywords Polynomial system · Resultant · Dixon · Determinant · Symbolic com-
puting · Gröbner basis

1 Polynomial Systems

“Solve a system of polynomial equations” means different things to different people.
Everyone will agree that we take a collection of multivariate polynomials, set each
to 0, and search for the common roots. For us in this paper, we have a ground
ring K , variables x1, x2, . . . , xn , and parameters a1, a2, . . . , am , so we are working
over K [x1, x2, . . . , xn, a1, . . . , am]. K is primarily Z or Q; secondarily, Z/p for p
“large,” 40000 − 231; possibly another finite field. We are not interested in K = Z/2
or cryptology. We are not interested in purely numerical solution. We want an exact
symbolic solution, at least to the point where we have an equation in one variable
we could turn over to numerical solvers (after choosing numerical values for the
parameters.) We typically have n equations in n variables x1, x2, . . . , xn and some
parameters. Ideally, the system is neither over- nor under-determined, though it could
be. Always, n ≥ 2; usually 3 ≤ n ≤ 15. There are always parameters. Usually there
are as many parameters as variables.
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What does “solve the system” mean? In this work, it means to eliminate all but
one of the variables. We are then left with one equation in one variable and the
parameters—the resultant [6, 7, 24]. If desired, numerical values for the parame-
ters can then be substituted, and the variable obtained numerically. If desired, to get
numerical values for all the variables we could run this method in parallel on dif-
ferent machines and then test all combinations of values for each variable. For most
problems this last step is no problem. But for many problems, the resultant is really
the desired solution already.

The Bezout–Dixon method produces a matrix whose determinant is a multiple of
the resultant. Dixon-EDF [13] is a way to compute the resultant without finding the
entire determinant. Often the determinant is too large to compute, but it has many
factors and so the resultant is much smaller than the determinant. Often the resultant
occurs with multiplicity. We detect these polynomial factors “early,” hence EDF =
Early Detection of Factors. The output of the algorithm is a list of polynomials whose
product is the determinant. Interesting problems tend to have many factors. There is
no guarantee that this will work better than a standard determinant method. However,
on many real problems from interesting applications, it does very well [14, 16, 17].

Gröbner Bases are well known [6, 24]. They have many applications, among
which is solving systems of polynomial equations.

Let us emphasize a key difference between resultant solutions and Gröbner bases
solutions. The resultant of a system of n polynomials in n variables is a single
polynomial in one variable (and, usually, parameters). A Gröbner basis used this
way yields a number polynomials in triangular form. That is, the first polynomial
contains only one variable (and the parameters), the second has two variables, etc.
It seems reasonable that the Gröbner basis is more “complete,” and may well take
longer to compute. However, often one or two resultants are not only sufficient, they
are exactly what is desired—the other variables are mere artifacts. In any event, one
may compute the resultants for different desired variables in parallel on different
machines. This is a huge advantage.

Over the last 15years we have noticed again and again that when engineers,
scientists, and most mathematicians want to solve a polynomial system, they want
a symbolic solution. They try Gröbner bases, usually in either Maple, Mathematica,
or Magma. Many times, the program crashes or the user gives up after many hours.
Almost always these systems would be enormously easier to solve with Dixon-EDF.
I do not know of any examples of the type of problem described here where Gröbner
bases are better than Dixon-EDF.

There is a further advantage to Dixon-EDF. Since we are computing the deter-
minant of a matrix (or factors thereof), there are many ways to do that. Basically
Dixon-EDF is a modified and adaptive row and column reduction. But one can easily
examine the state of the computation and interrupt it part way to switch to another
method. As we will see below, it is often useful to switch to the Gentleman Johnson
idea of expansion by minors with storage of minors [10].

Computations in this paper were run on an Intel Imac at 2.3GHzwith 16 gigabytes
of RAM, and on faster Linux servers with 130 gig. Dixon-EDF was run in Fermat
[11]. Some Fermat code for Dixon-EDF is at [12]. The actual commands used in
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Magma and Maple are in an appendix. Maple has some built-in triangularize and
Gröbner bases routines, as well as the FGb package of Faugere [8]. FGb is usually
superior and the others were not often used here. The Maple FGb commands were
explained to us by Faugere [9]. Two ways to use Magma are given in the appendix.
One was recommended by an experienced user of Magma, the other was specified
by Magma programmer Steel [23]. These are referred to as Magma 1 and Magma 2.
Magma 1 is usually inferior so it was not used on some examples.

This is a paper in applied experimental mathematics. It is not a paper in pure
mathematics. We do not have a theorem saying that under certain conditions Dixon-
EDF is many times more efficient than Gröbner bases. Perhaps someone will be
inspired to produce such a theorem.

2 Brief Explanation of Dixon-EDF

This has been published [13, 15].

• The resultant is a factor of the determinant of the “second Dixon matrix,” M. M
contains polynomials in the parameters and usually one remaining variable.

• We wish to avoid simply computing the determinant of M . Instead we begin to
column normalize the matrix M .

• To avoid creating large messy denominators (rational functions) we pull out
denominators from each row as soon as they arise. Then later we factor out gcds
whenever possible from the numerators in each row and column.

• We keep track of all denominators and gcds so discovered.We check often to see if
some polynomial in the denominator list has a common gcd with some polynomial
in the numerator list; if so we divide it out. In the end, the denominator list must
be all 1. The product of the numerator list is Det[M].

• This can work efficiently because the determinant of the second Dixon matrix M
usually has many factors. This is a bad way of computing the determinant of a
“random” matrix. But random matrices are seldom of interest.

There are subtleties that can make an enormous difference in execution time.
First, the strategy of picking the pivot on each reduction step. Second, one may run
the algorithm first over Z/p. Quite often this gives the actual answer over Z if p is
fairly large, say close to 231. Third, the second Dixon matrix is often really the third,
because if the second is not square, one extracts a maximal minor. Usually there are
many maximal minors. One tries to select the “best” one by some heuristic, such as
sparseness.

Here is a simple example. Given initially

M0 = ( 9 2

4 4 ) numerators: denominators:
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We factor a 2 out of the second column, then a 2 from the second row. Thus:

M0 = ( 9 1

2 1 ) numerators: 2, 2 denominators:

We change the second row by subtracting 2/9 of the first:

M0 = ( 9 1

0 7/9 )

numerators: 2, 2 denominators:

We pull out the denominator 9 from the second row, and factor out 9 from the first
column:

M0 = ( 1 1

0 7 )

numerators: 2, 2, 9 denominators: 9

We “clean up” by dividing out the common factor of 9 from the numerator and
denominator lists; any 1 that occurs may be erased and the list compacted. Since the
first column is canonically simple, we are finished with one step of the algorithm,
and have produced a one-smaller M1 for the next step.

M1 = (7)

numerators: 2, 2 denominators: 1

The algorithm terminates by pulling out the 7:

numerators: 2, 2, 7 denominators: 1

At end: three numerators, one denominator (= 1).

As expected (since the original matrix contained all integers) the denominator list is
empty. The product of all the entries in the numerator list is the determinant, but we
never needed to deal with any number larger than 9.

We now illustrate the power of Dixon-EDF with a series of examples. The ground
ring K = Z in all cases.

3 A Motion Controller

In 2009, an engineer named Nachtwey [18] was dealing with a motion controller
leading to the following system:
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x0 + v0(a1 − a0)/j + a0/2(a1 − a0)2/j2 + j/6(a1 − a0)3/j3 − x1,
v0 + a0(a1 − a0)/j + j/2(a1 − a0)2/j2 − v1,
x1 + v1(a1 − a5)/j + a1/2(a1 − a5)2/j2 − j/6(a1 − a5)3/j3 − x5,
v1 + a1(a1 − a5)/j − j/2(a1 − a5)2/j2 − v5,
x5 + v5(−a5/j) + a5/2(−a5/j)2 + j/6(−a5/j)3 − x7,
v5 + a5(−a5/j) + j/2(−a5/j)2

Set each expression to 0, multiply out the denominators. There are six variables
(x1, x5, v1, v5, a1, a5) and five parameters. Results vary depending on the variable
being solved for:
for v5, the answer has 95 terms:

Dixon-EDF: takes 0.04 s, 9.0 meg RAM
Maple’s FGb: takes 0.36 s, 358 meg RAM
Maple’s Basis cmd: killed after 4ḣ, 235 meg
Maple’s Triangular: takes 1.13 s, 124 meg
Magma 2: takes 0.16 s, 32 meg

for x1, the answer has 244 terms:
Dixon-EDF: takes 0.12 s, 9.1 meg.
Maple’s FGb: takes 1.56 s, 371 meg
Maple’s Basis cmd: killed after 3h, 227 meg
Maple’s Triangular: takes 16 mins, 520 meg
Magma 2: takes 0.46 s, 31 meg.

4 Physics: A Spinning Double Pendulum

J. Tot has studied the motion of a spinning double pendulum [26]. He derived three
equations in two variables s, t and three parameters q,mu, ld.

q ld s3 t2 − s3 t2 − q ld s t2 + 2 q s t2 − s t2 − q mu ld s4 t + q mu ld t + q ld
s3 − s3 − q ld s + 2 q s − s,

q ld s t4 − q s t4 − q ld s2 t3 + q s2 t3 − s2 t3 − q ld t3 + q t3 − t3 + q ld s2 t
+ q s2 t − s2 t + q ld t + q t − t − q ld s + q s,

10 q2 ld2 s3 t5 − 10 q2 ld s3 t5 − 10 q ld s3 t5 + 10 q s3 t5 − 2 q2 ld2 s t5 + 6 q2

ld s t5 − 2 q ld s t5 − 4 q2 s t5 + 2 q s t5 − 15 q2 mu ld2 s4 t4 − 5 q2 ld2 s4 t4 + 15
q2 mu ld s4 t4 + 5 q2 ld s4 t4 − 5 q s4 t4 + 5 s4 t4 − 10 q2 ld2 s2 t4 + 12 q2 ld s2

t4 − 2 q ld s2 t4 − 2 q2 s2 t4 − 6 q s2 t4 + 8 s2 t4 − q2 mu ld2 t4 + 3 q2 ld2 t4 + q2

mu ld t4 − 9 q2 ld t4 + 6 q ld t4 + 6 q2 t4 − 9 q t4 + 3 t4 + 10 q2 mu ld2 s5 t3 − 10
q2 mu ld s5 t3 + 10 q mu ld s5 t3 + 12 q2 mu ld2 s3 t3 + 12 q2 ld2 s3 t3 − 12 q2 mu
ld s3 t3 + 12 q mu ld s3 t3 − 12 q2 ld s3 t3 − 12 q ld s3 t3 + 12 q s3 t3 + 2 q2 mu ld2

s t3 − 4 q2 ld2 s t3 − 2 q2 mu ld s t3 + 2 q mu ld s t3 + 12 q2 ld s t3 − 4 q ld s t3

− 8 q2 s t3 + 4 q s t3 − 10 q2 ld2 s4 t2 + 8 q2 ld s4 t2 + 2 q ld s4 t2 − 8 q s4 t2 + 8
s4 t2 − 12 q s2 t2 + 12 s2 t2 + 2 q2 ld2 t2 − 8 q2 ld t2 + 6 q ld t2 + 8 q2 t2 − 12 q
t2 + 4 t2 − 2 q2 mu ld2 s5 t − 2 q2 mu ld s5 t + 2 q mu ld s5 t − 4 q2 mu ld2 s3 t + 2
q2 ld2 s3 t − 4 q2 mu ld s3 t + 4 q mu ld s3 t − 2 q2 ld s3 t − 2 q ld s3 t + 2 q s3 t
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− 2 q2 mu ld2 s t − 2 q2 ld2 s t − 2 q2 mu ld s t + 2 q mu ld s t + 6 q2 ld s t − 2 q
ld s t − 4 q2 s t + 2 q s t − q2 mu ld2 s4 + 3 q2 ld2 s4 + q2 mu ld s4 + 3 q2 ld s4 −
6 q ld s4 − 3 q s4 + 3 s4 + 2 q2 ld2 s2 + 4 q2 ld s2 − 6 q ld s2 + 2 q2 s2 − 6 q s2 + 4
s2 + q2 mu ld2 − q2 ld2 − q2 mu ld + q2 ld + 2 q2 − 3 q + 1

The third equation is the Jacobian determinant of the first two. He wants the
resultant found by eliminating the two variables.

Dixon-EDF solves this is 8.4 s, 51 meg.
Maple-FGb succeeds in 340s, 2 gig.
Magma 1 succeeds in 5280s and 520 meg.
Magma 2 succeeds after 5910s and 294 meg.

5 Computational Geometry: Heron’s Formula

The familiar Heron’s formula is the relation between the area A and sides a, b, c of
a triangle:

A2 = s(s − a)(s − b)(s − c)

(s = (a + b + c)/2.) This can be easily derived as the resultant of a polynomial
system: Place (0, a) on x-axis, point (x, y) in first quadrant, lengths b and c, yielding
obvious equations:

x2 + y2 − c2,
(x − a)2 + y2 − b2,
2 A − a y
We eliminate x and y, getting the answer of A in terms of a, b, c. This is a classic

example of where the resultant for one variable is exactly what we want.
Now, we easily generalize this idea to 3, 4, 5, . . ., dimensions. The figure below

shows the set up for three dimensions, a tetrahedron (Fig. 1).
Here is the system for five dimensions, after some routine simplifications, there

are 15 equations:
y2 + x2 − cs2, −2 as x + cs2 − bs2 + as2,
z21 + y21 + x21 − f s2, −2 as x1 + f s2 − ds2 + as2,
−2 y y1 − 2 x x1 + f s2 − es2 + cs2,
w2

2 + z22 + y22 + x22 − gs2, −2 as x2 − hs2 + gs2 + as2,
−2 y y2 − 2 x x2 − is2 + gs2 + cs2,
−2 z1 z2 − 2 y1 y2 − 2 x1 x2 − js2 + gs2 + f s2,
u23 + w2

3 + z23 + y23 + x23 − ks2, −2 as x3 − ls2 + ks2 + as2,
−2 y y3 − 2 x x3 − ms2 + ks2 + cs2,
−2 z1 z3 − 2 y1 y3 − 2 x1 x3 − ns2 + ks2 + f s2,
−2w2 w3 − 2 z2 z3 − 2 y2 y3 − 2 x2 x3 − os2 + ks2 + gs2,
−as y z1 w2 u3 + 120 V
There are fourteen coordinate variables to eliminate. The (second) Dixon matrix

is 313 × 313, very sparse. EDF finishes completely in 6.5min, 844 meg RAM. But
the answer appears before that. As often happens with EDF, the answer appears
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Fig. 1 Tetrahedron in 3D

on the list of factors early, at row 266, after 1.8min, 50 meg. It has 823 terms.
At completion, there are hundreds of numerators. Most are monomials, plus the
following list showing the number of terms in each polynomial:
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4161 130 6 823 130 6 823 6 22 22 22
6 22 6 130 6 10000 6 130 6 10000 22 6 6 22 6 22 10000 57147 57147

After canceling all common factors (which is fast) we have finally:
1 823 130 6 22

Gröbner basis Maple and Mathematica, fail:
Maple FGb: killed after 9.5h, 53 gig.
Magma 1: killed after 9.5h, 2.6 gig. Magma 2: killed after 33h, 4 gig.

The answer has 823 terms, 230400vo2 − bs2 f s4os4 − cs2es2 f s2os4 + · · · + cs2ds2

es2gs2hs2 − bs2ds2es2gs4.
In four dimensions, we have the same idea, with ten equations. Now Dixon-EDF
finishes completely in 0.944s, 24 meg:

131 1 22 1 6
Maple FGb: succeeds 31min, 13 gig.
Magma 1: killed after 360min, 4 gig. Magma 2: succeeds 1.90 s, 32 meg.
This problem is not just a good example for Dixon-EDF. These resultants come

up in a proof of the Bellows Conjecture [3].
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6 A Differential Equation for a Circle Rolling on an Ellipse

There is a subject called differential algebra in which symbolic algebra helps to
solve differential equations [2, 22]. Here we have a geometric problem that results
in a similar idea.
Problem: Describe a circle rolling on an ellipse (like an epicycloid, which is circle
on circle). I can find no reference to this problem anywhere.

Let the ellipse have semi-axes a and b. Let the circle have radius r.
Solution: Set up parameters that are certain angles. Label important points like the
point of intersection of the circle and ellipse. Get equations from the geometry of
the circle and ellipse. As with an epicycloid, the key equation says that the distance
rolled along the circle equals that along the ellipse.

The problem: arclength on an ellipse is an elliptic integral! How do we get poly-
nomials? Answer: the derivative of the arclength can be expressed in trig functions.
In this way, we eventually get nine polynomial equations in eleven variables.

v2 − 2 k v + k2 + h2 − 2 u h + u2 − r2,
t4 k2 + 2 t2 k2 + k2 − 4 b t4 k − 4 b t2 k + t4 h2 + 2 t2 h2 + h2 − 4 a t3 h − 4 a t

h + 4 b2 t4 − r2 t4 + 4 a2 t2 − 2 r2 t2 − r2,
−2 b t3 k − 2 b t k + a t4 h − a h + 4 b2 t3 − 2 a2 t3 + 2 a2 t,
−r2 t2 cg − r2 cg − t2 k v − k v + 2 b t2 v + t2 k2 + k2 − 2 b t2 k + t2 h2 + h2

− t2 u h − u h − 2 a t h + 2 a t u,

−r2 t4 dcg2 − 2 r2 t2 dcg2 − r2 dcg2 − a2 t4 cg2 − 4 b2 t2 cg2 + 2 a2 t2 cg2 − a2

cg2 + a2 t4 + 4 b2 t2 − 2 a2 t2 + a2,
t4 k dk + 2 t2 k dk + k dk − 2 b t4 dk − 2 b t2 dk + t4 h dh + 2 t2 h dh + h dh −

2 a t3 dh − 2 a t dh − 2 b t3 k − 2 b t k + a t4 h − a h + 4 b2 t3 − 2 a2 t3 + 2 a2 t,
v dv − k dv − v dk + k dk + h dh − u dh − du h + du u,

−2 b t3 dk − 2 b t dk + a t4 dh − a dh + b t4 k − b k + 2 a t3 h + 2 a t h − 2 b2

t4 + a2 t4 + 6 b2 t2 − 6 a2 t2 + a2,
−r2 t2 dcg − r2 dcg − t2 k dv − k dv + 2 b t2 dv − t2 v dk − v dk + 2 t2 k dk +

2 k dk − 2 b t2 dk + 2 t2 h dh + 2 h dh − t2 u dh − udh − 2 a tdh + 2 b t v−2 b t k
− t2 du h − du h + a t2 h − a h − a t2 u + a u + 2 a t du.

Note du = derivative of u, dh = derivative of h, t = time, u = x−coordinate of
the contact point, v = y−coordinate. Eliminate all variables except u, du, t . Leave
parameters a, b, r .

This is a challenging problem. The second matrix is 42 × 42 (for u and du) or
45 × 45 (for v and dv). The time and space for Dixon-EDF depends on how one
adjusts the algorithm. First, if one spends 15 minutes of real time, one can find much
better (sparser) maximal minors when one extracts the squarematrix from the second
Dixon matrix. Then a straight forward EDF all the way to step 42 (for u and du)
takes about 8h. However, we can run EDF through step 34, leaving an 8 × 8 matrix
with number of terms:
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826 301 1085 159 472 1162 157 119
0 20 0 7 19 0 7 14
2657 1096 3449 896 1676 3545 598 613
552 357 738 247 428 852 235 257
2086 831 2490 667 1283 2450 373 374
196 23 316 24 88 351 0 0
653 299 862 235 448 989 162 185
276 141 306 107 199 382 77 100
Now use Gentleman–Johnson [10] to expand the determinant. In total, this takes

4.5h, 8 gig. An even better choice of maximal minor run to step 37 leaves a 5 × 5
matrix.

332 608 1526 2715 1923
1808 2583 5453 8160 6512
1323 1926 4212 6482 5117
700 1145 2579 4244 3119
76 122 440 847 672
At this point, there are no denominators (!) and the list of numerators has 219

polynomials. Most have fewer than three terms, but there are also:
3 8 6 8 9 10 6 6 9 7 9 8 5 8 8 6 8 9 8 8 8 9 6 7 8 7 8 8 8 6 7 6 6 8 6 8 7 6 7 8 3 4 3

3 3 4 3 3 4 8 20 4 3 4 4 4 34
Finishing the 5 × 5 determinant, in total this takes less than 90min and 1.44 gig.
After dividing common factors, the final list of numerator terms is:

1 3 1 2 2 4 10 45623 2 102
The resultant (45623 terms) factors into twopieces, corresponding to rolling inside

and outside. The pieces have 2264 and 2146 terms and are degree 4 in u and du.
Similar for v and dv. The other six variables are artifacts of no real interest (Fig. 2).

If we plug in a = 2, b = 3, r = 1, we may use standard numerical software
(Maple) to solve the two differential equations (the resultants just computed) numer-
ically. The result is in Fig. 2.

Attempting this system on Maple and Magma yielded:
Maple FGb: killed after 30h, 22.8 gig.
Magma 1: killed after 18h CPU, 43 gig RAM, 40h real time (disk thrashing).
Magma 2: killed after 48h, 5.8 gig.

7 Flexibility of Structures

This is joint work with Evangelos A. Coutsias, UNM, and Stony Brook.
As part of his research into flexible octahedra, Bricard [1] described this planar

system of seven rigid rods (Fig. 3), which he said was equivalent to the octahedra
problem. The structure is described by a system of six equations in six variables (the
sine and cosine of the angles α, β, γ ) and 11 parameters (the sides). The resultant
res, computable only by EDF (in 4 minutes), has 190181 terms. The determinant of
the 29 × 29 matrix contains res2 and many other factors. res appears first at step 26.
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Fig. 2 Circle rolls on ellipse

The problem: the structure is generically rigid. Find all ways that it becomes
flexible. One obvious way is if all the quadrilaterals are parallelograms (Fig. 4).

Coutsias and colleagues have developed complex numerical algorithms for the
general subject of flexible structures [4, 5].

I developed an algorithm that analyses the resultant to find modes of flexibility.
Several surprising new modes were found in 2014 [16] in this way, which we call
“exotic configurations.” These could not have been found numerically.

This has ramifications for computational chemistry [25].

Fig. 3 Bricard’s
quadrilaterals
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Fig. 4 Flexible because
parallelograms

There is a way to reduce the system of six equations to three using the well-known
half-angle tangent substitution. With t1 = tan(α/2), t2 = tan(β/2), t3 = tan(γ /2)
we have equations

a1 t22 t
2
1 + b1 t21 + 2 c1 t2 t1 + d1 t22 + e1,

a2 t23 t
2
2 + b2 t22 + 2 c2 t3 t2 + d2 t23 + e2,

a3 t23 t
2
1 + b3 t21 + 2 c3 t3 t1 + d3 t23 + e3,

where the 15 parameters are certain combinations of the eleven sides. This system
also describes the molecule cyclo-hexane [5].

Dixon-EDF computes the resultant of this system (5685 terms) in 2.58 s using 60
meg RAM. Maple-FGb was killed after 20min, using 28 gig RAM. Magma 1 was
killed after 1800min, 1.58 gig RAM. Magma 2 crashed after 7min and 480 meg
RAM.

8 Robotics: A Writing System

Two robotics students posted a question concerning the device in Fig. 5 [21]. There
are four arms AB, BC, CD, DO connected in pivoting joints O, A, B, C, D. There is
a pen at (x, y) on a rigid plate (shaded). β1, β2, θ1, θ2, x, y vary with the motion. O
and A do not move. α, l1, l2, l3, aa are parameters. The problem: find expressions for
θ1, θ2 in terms of x, y and the parameters.

It is not difficult to write equations for (x, y) in terms of sine and cosine of the
various angles.As in the previous section,we thenuse the half-angle tangent identities
to form four equations. t1 = tan(θ1/2), b1 = tan(β1/2), al = tan(α/2), etc.

aa t22 t21 b22 b21 + 2 l1 t21 b22 b21 + aa t21 b22 b21 − 2 l1 t22 b22 b21 + aa t22 b22 b21 +
aa b22 b

2
1 + 2 l2 t22 t

2
1 b

2
1 + aa t22 t

2
1 b

2
1 + 2 l2 t21 b

2
1 + 2 l1 t21 b

2
1 + aa t21 b

2
1 + 2 l2 t22 b

2
1 −

2 l1 t22 b21 + aa t22 b21 + 2 l2 b21 + aa b21 − 2 l2 t22 t21 b22 + aa t22 t21 b22 − 2 l2 t21 b22 +
2 l1 t21 b

2
2 + aa t21 b

2
2 − 2 l2 t22 b

2
2 − 2 l1 t22 b

2
2 + aa t22 b

2
2 − 2 l2 b22 + aa b22 + aa t22 t

2
1 +

2 l1 t21 + aa t21 − 2 l1 t22 + aa t22 + aa,

2 l1 t2 t21 b22 b
2
1 − 2 l1 t22 t1 b22 b

2
1 − 2 l1 t1 b22 b

2
1 + 2 l1 t2 b22 b

2
1 + 2 l2 t22 t21 b2 b21 +

2 l2 t21 b2 b21 + 2 l2 t22 b2 b21 + 2 l2 b2 b21 + 2 l1 t2 t21 b21 − 2 l1 t22 t1 b21 − 2 l1 t1 b21 +
2 l1 t2 b21 − 2 l2 t22 t

2
1 b

2
2 b1 − 2 l2 t21 b

2
2 b1 − 2 l2 t22 b

2
2 b1 − 2 l2 b22 b1 − 2 l2 t22 t

2
1 b1 −
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Fig. 5 Robotic arms

2 l2 t21 b1 − 2 l2 t22 b1 − 2 l2 b1 + 2 l1 t2 t21 b
2
2 − 2 l1 t22 t1 b

2
2 − 2 l1 t1 b22 + 2 l1 t2 b22 +

2 l2 t22 t
2
1 b2 + 2 l2 t21 b2 + 2 l2 t22 b2 + 2 l2 b2 + 2 l1 t2 t21 − 2 l1 t22 t1 − 2 l1 t1 + 2 l1 t2,

−al2 x t21 b21 − x t21 b21 − l3 al2 t21 b21 − l2 al2 t21 b21 − l1 al2 t21 b21 + l3 t21 b21 −
l2 t21 b21 − l1 t21 b21 − al2 x b21 − x b21 − l3 al2 b21 − l2 al2 b21 + l1 al2 b21 + l3 b21 −
l2 b21 + l1 b21 − 4 l3 al t21 b1 − 4 l3 al b1 − al2 x t21 − x t21 + l3 al2 t21 + l2 al2 t21 −
l1 al2 t21 − l3 t21 + l2 t21 − l1 t21 − al2 x − x + l3 al2 + l2 al2 + l1 al2 − l3 + l2 + l1,

−al2 y t21 b21 − y t21 b21 − 2 l3 al t21 b21 + 2 l1 al2 t1 b21 + 2 l1 t1 b21 − al2 y b21 −
y b21 − 2 l3 al b21 + 2 l3 al2 t21 b1 + 2 l2 al2 t21 b1 − 2 l3 t21 b1 + 2 l2 t21 b1 + 2 l3 al2 b1 +
2 l2 al2 b1 − 2 l3 b1 + 2 l2 b1 − al2 y t21 − y t21 + 2 l3 al t21 + 2 l1 al2 t1 + 2 l1 t1 −
al2 y − y + 2 l3 al

We eliminate t2, b1, b2 to form the resultant for t1, then eliminate t1, b1, b2 to
form the resultant for t2. The first is easier because α on the rigid plate is more easily
related to β1, θ1 and the origin.

For the t1 resultant: Dixon-EDF takes 40s, 132 meg. Maple FGb was killed after
200min and 20 gig. Magma 2 was killed after 24h and 6 gig.

For the t2 resultant: Dixon-EDF takes between 60 and 150min, depending on
whether Gentleman–Johnson [10] is used, and between 1.6 and 2.6 gig. Maple FGb
was killed after 25h and 68 gig. Magma 2 was killed after 25h and 9 gig.
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9 Pose Estimation

Suppose we have a quadrilateral ABCE ; it does not have to be planar. The distances
between each pair of vertices are known. The object moves. We observe it from point
P , noting the angles spanned by each pair of vertices. The classic four point pose
problem is to deduce the distances X1, X2, X3, X4.

There are four variables X1, X2, X3, X4. The parameters are AB, BC , CE , AE ,
AC, BE . An overdetermined system results from applying the law of cosines to each
triangle having vertex P .

Using four equations including the diagonals AC and BE gives an easy system of
equations, solvable by many means. But suppose the object could be flexible! Then
we have to use only the outside edges; diagonal distances might change (Figs. 6 and
7).

Maple and Magma both fail on this. FGb was killed after 25h, exhausting 62 gig
of RAM. Magma 1 was killed after 40h. Magma 2 crashed after 308min, 8.2 gig.

Fig. 6 Viewing four points
on an object

Fig. 7 Equations from law
of cosines, angles
p, q, r, s, t, u
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Dixon-EDF finishes in 36s, 275 meg RAM. However, the resultant can be com-
puted in less than 1s by the variation of EDF in which we run EDF to a certain point
(in this case after the third row) and then useGentleman–Johnson [10] to compute the
determinant of the remaining 9 × 9 matrix. This is a good example of the enormous
flexibility of Dixon-EDF, in which the user is in control throughout the process. The
resultant for X1 has 24068 terms.

The analogous problem with a five-sided figure, using only the outside edges, is
also solvable byDixon by a two step process.We nowhave variables X1, X2, X3, X4,

X5 and five equations. Use four of them to eliminate all variables but X1, X2. That
takes 144s. Then take that resultant (47295 terms) and the remaining fifth equation
and eliminate X2. That takes 4h. The final answer has 37291784 terms.

10 The Six-Line Problem

This was a problem of great interest around 1996–2000. Imagine a man-made object
in three-space, like a building. Abstract six lines. Imagine later photographing a
possibly different object.

Fig. 8 Six lines on a building
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Problem: Can we decide from the two-dimensional representation (photograph) that
this is the original object? Can we at least show that it is not the original object? That
is, develop an algorithm to reject incorrect objects from the 2D data. This is a problem
in automated image recognition (Fig. 8).

People who worked on this besides the author: Peter Stiller, Texas A&M; Robert
M. Williams, Naval Research Center; George Nakos, U.S. Naval Academy; Frank
Grosshans, Westchester University (Pennsylvania); Ronald Gleeson, The College of
New Jersey; Michael Hirsch, student.

Using algebraic geometry, Peter Stiller produced a transformation: object ⇒
six lines ⇒ nine three-dimensional (“3D”) invariants [17]. Later, we get a two-
dimensional photograph of some possibly different object. From the photograph
⇒ four two-dimensional (“2D”) invariants. There are four variables representing a
transformation matrix, but one can be eliminated. This yields four polynomial equa-
tions in three variables involving the 9 + 4 = 13 invariants as parameters. The goal
is to eliminate the three remaining variables (which are a12, a21, and a22) producing
a resultant in the 13 parameters. This is exactly what one wants to test the data for
any object.

A full symbolic solution seemed impossible. Everyone at the time acknowledged
that a Gröbner bases attack was hopeless. By experimenting with substituting numer-
ical values for most of the parameters on known objects, it became clear that the
resultant was actually quite small—less than 500 terms. Yet a symbolic solution
seemed hopeless.

The second Dixon matrix is 24 × 24:
416 0 0 0 352 8 838 507 0 1035 132 0 636 782 0 48 88 320 0 1006 242 8 679 488
880 494 57 22 532 93 0 0 238 1091 0 0 278 0 380 0 0 164 34 1273 0 88 489 922
2942 1382 68 104 2068 32 2898 1548 222 5110 0 88 2987 3738 917 12 484 1706
56 4550 ...
684 356 168 74 204 0 57 0 158 572 0 0 154 288 416 0 0 108 0 455 0 0 0 498
3250 2460 328 196 2127 202 3548 1630 644 5774 20 88 3847 4801 1957 12 508
2029 98 ...
1670 805 242 126 802 136 0 0 446 1494 0 0 734 0 797 0 0 453 48 1580 0 132 612
1500
70 14 22 8 12 0 0 0 16 38 0 0 4 0 32 0 0 4 0 30 0 0 0 48
96 0 0 0 160 0 680 248 0 950 0 0 452 620 0 0 0 278 0 660 52 0 160 84
792 0 0 0 376 83 140 116 0 960 184 52 674 612 0 60 234 312 26 1569 342 85 1002
872
28 0 0 0 0 0 178 72 0 148 0 0 54 90 0 0 0 36 0 92 0 0 16 24
562 476 16 16 352 0 1024 125 76 1645 0 0 866 1158 298 0 0 462 0 1355 120 12 401
372
2 0 0 0 2 0 8 0 0 8 0 0 0 8 0 0 0 2 0 0 0 0 0 0
0 0 0 0 24 0 146 48 0 116 0 0 34 82 0 0 0 30 0 56 0 0 0 0
386 208 17 6 224 29 0 0 78 425 0 0 202 0 140 0 0 104 10 509 0 24 201 384
4665 2389 636 264 2913 500 1118 768 1016 4818 445 204 2770 2933 2042 150 668
... 5390 ...
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614 612 24 0 480 0 2005 774 88 2330 0 0 1318 1512 374 0 0 674 0 2056 242 24 753
566
1026 0 0 0 638 92 510 360 0 1334 264 48 1180 1244 0 98 341 510 32 1494 641 96
504 1099
688 600 28 16 480 0 1855 652 96 2312 0 0 1256 1640 392 0 0 668 0 2052 226 24
725 526
6156 2986 727 354 3826 511 2709 1733 832 6376 220 196 4786 5640 2500 98 960
... 6336 ...
1490 922 114 52 938 166 124 100 474 2039 152 36 540 518 738 48 188 290 66
2333 290 ...
3085 1448 430 186 1793 298 576 230 656 2596 0 0 1693 1875 1298 0 0 888 104
2814 458 ...
474 0 0 0 220 40 88 76 0 542 140 29 384 348 0 48 168 178 14 902 228 36 658 488
1854 1106 32 98 1311 88 1924 668 190 3376 0 0 1538 2802 744 0 0 982 2672 ...
1048 1518
1196 0 0 0 474 56 1220 446 0 2556 12 32 1853 1742 0 0 184 885 0 2554 442 82
1024 1048

Again, these are the numbers of terms in the polynomial at each spot in the matrix.
For example, one of the smallest polynomials (70 terms) is

− l1 l2 n11 p22 q2 q4 + l2 n11 p22 q2 q4 + l1 n11 p22 q2 q4 − n11 p22 q2 q4 − l22
g p21 q2 q4 + l1 l2 g p21 q2 q4 + l2 g p21 q2 q4 − l1 g p21 q2 q4 + l22 g p12 q2 q4 −
l1 l2 g p12 q2 q4 − l2 g p12 q2 q4 + l1 g p12 q2 q4 + l1 l2 n22 p11 q2 q4 − l2 n22 p11
q2 q4 − l1 n22 p11 q2 q4 + n22 p11 q2 q4 + l1 l2 n22 p22 q4 − l2 n22 p22 q4 − l22 n11
p22 q4 + l1 l2 n11 p22 q4 + l2 n11 p22 q4 − l1 n11 p22 q4 + l22 p22 q4 − 2 l1 l2 p22 q4
+ l1 p22 q4 + l22 g p21 q4 − l2 g p21 q4 − l22 g p12 q4 + 2 l1 l2 g p12 q4 + l2 g p12
q4 − 2 l1 g p12 q4 − l1 l2 n22 p11 q4 + l2 n22 p11 q4 + l1 l2 p11 q4 − l2 p11 q4 − l1
l2 n22 p22 q2 + l2 n22 p22 q2 + l1 l2 n11 p22 q2 − l2 n11 p22 q2 + l22 g p21 q2 − 2 l1
l2 g p21 q2 − l2 g p21 q2 + 2 l1 g p21 q2 − l22 g p12 q2 + l2 g p12 q2 + l22 n22 p11 q2− l1 l2 n22 p11 q2 − l2 n22 p11 q2 + l1 n22 p11 q2 − l22 n22 q2 + 2 l1 l2 n22 q2 − l1
n22 q2 − l1 l2 n11 q2 + l2 n11 q2 + l22 n11 p22 − l1 l2 n11 p22 − l22 p22 + l1 l2 p22
− l22 g p21 + l1 l2 g p21 + l22 g p12 − l1 l2 g p12 − l22 n22 p11 + l1 l2 n22 p11 + l22
p11 − l1 l2 p11 + l22 n22 − l1 l2 n22 − l22 n11 + l1 l2 n11

This matrix is hopelessly large for Dixon-EDF running on any now-conceivable
computer system—unless the answer were to emerge very early in the process. It
does not.

We solved the problem then [17] by a long series of tricks: interpolation, modding
out by certain polynomials, etc. It was very difficult. The answer has only 239 terms!

Already in 1998 we had the idea to do Dixon in stages, as in the previous section
on pose estimation.

• Take three of the equations and eliminate two variables. The resultant would have
one variable and 13 parameters.

• Take another set of three, do it again, obtaining a second resultant in the same
variable.

• Finally take those two resultants and eliminate the last variable.
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This helps a bit. Suppose we eliminate the two variables a12 and a21. The second
Dixon matrix is 10 × 10:

96 0 44 0 82 38 12 24 4 94
24 8 0 0 0 6 18 6 0 12
610 0 356 0 707 313 64 130 68 719
210 0 0 8 0 98 76 78 24 130
34 0 84 0 60 6 37 2 0 33
168 10 60 22 44 96 44 96 24 126
1168 32 510 44 472 644 360 484 160 978
1043 8 986 32 999 414 444 363 84 917
1673 24 990 46 1713 937 294 662 232 1538
980 12 513 24 918 472 162 325 110 998
This is still hopeless. The resultant, in a22, would have hundreds of millions of

terms. No significant factor is found early. We would need to then feed two such
massive polynomials to Dixon again. This approach was therefore abandoned in
1998.

However, in July 2015 I decided to try to eliminate instead the two variables a22
and a21. Astonishingly, the second Dixon matrix is

104 0 0 0 72
1232 96 594 180 1489
1195 72 581 0 0
642 0 0 104 545
148 0 96 0 0

Dixon-EDF finishes in only 33s. The numerator list is
1 1 1 1 1 104 2 96 216340

But the last polynomial is easily found to have contents (simple factors):
1 1 104 2 96 192 130 48 2

Only the factor of 192 terms involves all the parameters. It is the resultant in a12.
Repeat with another set of three equations. The same thing happens. Then feed

the two 192 term polynomials to Dixon-EDF to eliminate a12. In 10s we have the
answer of 1086153 terms. But this has an easily discovered content of 22726 terms,
yielding the answer of 239 terms. The total elapsed time for Dixon-EDF is 96s, using
610 meg RAM.
Try the first stage with Gröbner bases:

• Maple FGb: killed after 6.4h, 48 gig RAM.
• Magma 1: killed after 1.1h, 48 gig RAM.
• Magma 2: killed after 6.7h, 31 gig RAM.

Try the second stage with Gröbner bases:

• Maple FGb: crashed after 6.2h, 12.5 gig RAM.
• Magma 1: killed after 14h, 5 gig RAM.
• Magma 2: killed after 15h, 28 gig RAM.
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11 Conclusions

We found great success in applying Dixon-EDF to polynomial systems arising in
important applications. Dixon-EDF succeeds on many other systems [14, 19, 20].
Maple failed repeatedly with several implementations of Gröbner bases, as did two
methods in Magma. Some of the systems above were also tried in Mathematica and
Singular and failed.

• Dixon-EDF is a powerful tool for symbolic solution of systems of multivariate
equations.

• Dixon-EDF succeeds where other methods fail. It is usually orders of magnitude
more effective, at least on systems with parameters.

• Dixon-EDF challenges the user’s creativity. There aremany variations and options.

Appendix

The Maple-FGb commands for the pose example:

|\ˆ/| Maple 2015 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2015
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.

> with(FGb):
p := 0;
v1 := [ x2, x3, x4 ];
v2 := [ x1, b1,b2,b3,b4,c12,c23,c34,c41 ];
sys := [x1ˆ2 + x2ˆ2 - c12*x1*x2 - b1, x2ˆ2 + x3ˆ2 - c23*x2*x3 - b2,

x3ˆ2 + x4ˆ2 - c34*x3*x4 - b3, x4ˆ2 + x1ˆ2 - c41*x4*x1 - b4];
> ll1:=fgb_gbasis_elim(sys, p,v1,v2,{"step"=8,"verb"=3,"index"=40000000});

Magma 1 commands for the pose example:

Magma V2.21-8 Thu Dec 10 2015 13:26:28 on ace-math01 [Seed = 2343837211]
Type ? for help. Type <Ctrl>-D to quit.
Q := RationalField();
A<x1,x2,x3,x4,b1,b2,b3,b4,c12,c23,c34,c41> := AffineSpace(Q,12);
X := Scheme(A, [x1ˆ2 + x2ˆ2 - c12*x1*x2 - b1, x2ˆ2 + x3ˆ2 - c23*x2*x3 - b2,

x3ˆ2 + x4ˆ2 - c34*x3*x4 - b3, x4ˆ2 + x1ˆ2 - c41*x4*x1 - b4]);
I := Ideal(X);
time J := EliminationIdeal(I, { x1,b1,b2,b3,b4,c12,c23,c34,c41 });

Magma 2 commands for the pose example:

Magma V2.21-8 Thu Dec 10 2015 13:26:28 on ace-math01 [Seed = 2343837211]
Type ? for help. Type <Ctrl>-D to quit.
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Q:=RationalField();
F<b1,b2,b3,b4,c12,c23,c34,c41> := FunctionField(Q,8);
R<x1,x2,x3,x4> := PolynomialRing(F,4,"elim", [2,3,4]);
I := Ideal ([x1ˆ2 + x2ˆ2 - c12*x1*x2 - b1, x2ˆ2 + x3ˆ2 - c23*x2*x3 - b2,

x3ˆ2 + x4ˆ2 - c34*x3*x4 - b3, x4ˆ2 + x1ˆ2 - c41*x4*x1 - b4]);
time G := GroebnerBasis(I);
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Visualization of Orthonormal Triads
in Cylindrical and Spherical Coordinates

J. López-García, J.J. Jiménez Zamudio and M.E. Canut Díaz Velarde

Abstract According to Committee on Programs for Advanced Study of Mathe-
matics and Science in American High Schools [1] (Gollub et al. (eds.) in Learning
and Understanding. Improving Advanced Study of Mathematics and Science in U.S.
Hight Schools. National Academic Press, Washington, 2002), “the primary goal of
advanced study in any discipline should be for students to achieve a deep concep-
tual understanding of the disciplines content”. It is undoubted that abstraction is one
of the skills that teachers wish to improve in their students, but, how can teach-
ers take advantage of technological resources, such as CAS or DGS, as help in their
classes in undergraduate courses? One concept, whose importance is both theoretical
and practical, corresponds to the coordinate transformation, in particular orthogonal
coordinate systems. We can use trigonometric constructions to find the transforma-
tion equations, namely, the algorithm for transforming a Cartesian system into other
coordinate system, as cylindrical or spherical coordinates. Not only, if we add the
knowledge and some techniques from Linear Algebra, we can motivate new math-
ematical properties, but also we will increase considerably the abstract reasoning
and symbolic calculation. We know that visualization helps intuitive understanding.
Therefore, we propose using CAS and DGS to show how a triad, of basis vectors, is
continuously changing direction, keeping the norm vector without change, and how
this match visualization with the reasoning from theories of linear algebra.
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1 Introduction

In recent years, new technologies have enhanced the theories using different repre-
sentations in teaching math concepts, to make possible new ways of representing
mathematical objects, through visualization by the students. It is for this reason that
technological innovations have changed the technical and didactic models that were
handled in the teaching of mathematics. Currently, this technological development
allowsmore often to symbolize somemathematical concepts through different repre-
sentations in arithmetic, numerical, graphical, algebraic, verbal, and symbolic more
quickly and easily with calculators and computers. Thus, the display is related to
the operation of cognitive structures, establishing the variety of representations with
a mathematical object. Visualization is simply a means by which a student could
improve mathematical understanding. When we refer to visualizing a concept, we
are talking about understanding a concept through a visual image [2] which claims
that: Computers have a direct and specific role in this renewal of the display due to
the ways in which computers can generate math graphs. A particular case of study
is when students work in coordinate systems different to Cartesian coordinates, they
tend to make just algorithmic tasks, and sometimes cannot answer questions like: In
spherical coordinates, do unit vectors dependent on the local point?

2 Visualization in Mathematical Education

In the field of mathematical education, in recent years some approaches have arisen
in order to understand mathematical concepts during teaching of mathematics. Var-
ious aspects that are important for learning fundamental cognitive activities such
as representation, conceptualization, reasoning, visualization, comprehension, prob-
lem solving, etc., require math teacher of various systems of semiotic representation,
simultaneous and articulated [3]. Within these cognitive approaches, there are basic
concepts with the same meaning, even though, terminology used is comparable;
this happens with notions such as visualization, spatial ability, geometric reason-
ing, spatial thinking, and spatial vision. This paper aims to define some concepts
used to characterize the cognitive processes involved and developed when geometry
problems are solved, taking a fundamental basis proposed by Duval [4]. There are
different views on the meaning of the display, which researchers [5] point out that
the notion of visualization or visual thinking is strongly linked with the ability to
form mental images. What characterizes a mental image is to enable the evocation
of an object, without the right to be present [5]. Following this idea makes a very
general description of the display as “the act by which an individual establishes a
strong connection between internal construction and something to which access is
gained through the senses” [6].

The spatial visualization has received much attention as a research topic in Math-
ematical Education [7]. It is evaluating the processes and capabilities of individuals
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to perform certain tasks that require “seeing” or “imagining” mentally, mathematical
or geometric objects. Zimmermann and Cunningham, describe it as “the process of
production or use of geometric or graphical representations of mathematical con-
cepts, principles or problems, either hand drawn or computer generated” [2]. Also,
they mention that a diagram display simply means to form a mental picture of the
diagram, but a problem is displayed to understand it in terms of a chart or a visual
figure. In general, it is considered that the term display is used in reference to picto-
rial figures representations, which can be internal or external. Therefore, it must be
graphs, diagrams, shapes that are built manually or computer-generated internal rep-
resentations, and they strengthen the cognitive process that leads to learning. When
speaking of internal representations, it refers to mental images, visual images, and
conceptual images. Gilbert [8] emphasizes that any visualization produces models,
which play a central role in learning science. Therefore, we understand visual images,
like mental schemes that represent visual information. Specifically, we are interested
in linking algebraic concepts with geometric concepts for improving the students’
understanding as the main purpose of any advanced study [1].

3 Orthonormal Triads in Cylindrical and Spherical
Coordinates

AsHaaser et al. [9] state, the geometric idea behind an analytical model is the concept
of coordinate system. In geometry, a coordinate system is a system that uses one or
more numbers (coordinates) to determine the position of a point or other geometric
object. A coordinate system is a continuous one-one correspondence between the
points of a space and the n-tuples of real numbers or points in space.

A topic that is commonly taught in undergraduate courses is transformation of
coordinates; basically, teachers used to work with cylindrical and spherical coor-
dinates instead use Cartesian coordinates. For example, they would teach how to
operate these formulas

x = r sin θ cosφ (1)

y = r sin θ sin φ (2)

z = r cos θ (3)

They used to introduce some of the main uses of the coordinates, for example to
solve some kind of integrals

∫ b

a

∫ φ2(θ)

φ1(θ)

∫ r2(θ,φ)

r1(θ,φ)

f (r, φ, θ)r2 sin φdrdφdθ (4)
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or to find different expressions for some points, by example: the way of transform-
ing (1, 1, 1) given in Cartesian Coordinates to (

√
3, arctan

√
2, π/4) in Spherical

Coordinates.

3.1 Teaching New Mathematical Objects

If teachers want to go farther into linking algebraic concepts with geometric concepts
for improving the students understanding, our proposal is to teach what the rotation
matrices makes of over a triad in the process of coordinate transformations, analyt-
ically and geometrically with help of DGS or CAS. Therefore, we started asking
students if they are able to figure out how the scalars of the transformation matrix are
linked with the rotate picture of one given basis, such as, the triads shown (Figs. 1, 2
and 3).

It is possible to verify that three vectors of a basis of a coordinate system are
related to another basis, through the linear transformation given by Eq. (5).

⎛
⎝ ê′

1

ê′
2

ê′
3

⎞
⎠ =

⎛
⎝ ê1 · ê′

1 ê2 · ê′
1 ê3 · ê′

1

ê1 · ê′
2 ê2 · ê′

2 ê3 · ê′
2

ê1 · ê′
3 ê2 · ê′

3 ê3 · ê′
3

⎞
⎠

⎛
⎝ ê1

ê2
ê3

⎞
⎠ (5)

Fig. 1 Cartesian basis

Fig. 2 Rotated orthogonal
basis
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Fig. 3 Former and rotated
orthogonal basis

In particular, we establish the notation as (î, ĵ, k̂) = (ê1, ê2, ê3) (Fig. 1) for Carte-
sian coordinates, and (ê′

1, ê′
2, ê′

3) (Fig. 2) for spherical or cylindrical coordinates.Con-
sequently, for the cases mentioned, the transformation respectively are the Eqs. (6)
and (7)

⎛
⎝ êr

êθ

êφ

⎞
⎠ =

⎛
⎜⎜⎝ sin θ cosφ sin θ sin φ cos θ

cos θ cosφ cosθ sin φ − sin θ

− sin φ cosφ 0

⎞
⎟⎟⎠

⎛
⎝ î

ĵ
k̂

⎞
⎠ (6)

⎛
⎝ êρ

êθ

êz

⎞
⎠ =

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠

⎛
⎝ î

ĵ
k̂

⎞
⎠ (7)

After this explanation, some students cannot visualize what is happening yet,
mathematically speaking.

Students must understand how a basis is produced. When the topic is chosen in
three dimensions, three mutually perpendicular planes, x =constant, y=constant
and z=constant are selected, then a trihedral formed by three orthogonal dihedrals
is obtained. This means, it has gotten rectangular coordinates as the result of the
intersection of three orthogonal surfaces.

In rectangular coordinates when we translate the point (x, y, z) to (x + Δx, y +
Δy, z + Δz), the triad of vectors of the basis associated to both points is parallel
(Fig. 4).

Cylindrical coordinates or spherical coordinates come from the intersection of
two planes and one curved surface (a cylinder), and the intersection of two curved
surfaces and one plane, respectively, which will be explained in the next section.
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Fig. 4 Two triads of vector with the same orientation

3.2 Basis Vectors in Spherical and Cylindrical Coordinates

Kurmyshev and Sánchez-Yañez [10] point out that often mathematical physicists or
engineers are used to fitting the best system of coordinates for facing an specific
problem, instead of Cartesian coordinates. The main reason is to pose and solve a
problem, which could be easier if they choose a natural system for the problem.

According toHauser [11],Arfken andWeber [12], cylindrical, spherical, parabolic
coordinates, hyperbolic, just for naming a few, are only some particular cases of the
generalized coordinates q1, q2, q3, depending on which it can analyze the motion of
a particle.

The equations which relate the Cartesian coordinates x, y, z with generalized
coordinates q1, q2, q3, are x = q1, y = q2, z = q3. Then any vector r can be written
as r = r1ê1 + r2ê2 + r3ê3 where (ê1, ê2, ê3) are the unit basis vectors.

In spherical coordinates, as we mentioned, one of the surfaces is a plane. The
others two surfaces are a cone and a sphere (Fig. 5). Of course, their basis vectors
are normal to these surfaces (Fig. 6). In this case, the generalized coordinates are
q1 = r , q2 = θ , q3 = φ.

When the variable theta is incremented, withφ =constant, and r =constant, we can
realize how these vectors are parallels no more (Fig. 7). Moreover, the use of DGS
shows how is changing the normal vector as theta angle is changing (Fig. 6). Students
have to analyze that the basis depends on each point and in that sense the coordinate
system is local. In other words, students have to be aware, that the basis is dependent
on each point P(r, θ, φ), and in that sense the coordinate system (êr , êθ , êφ) is local.
It is the challenge to resolve using visualization theories.

Similar things happen when we are working in cylindrical coordinates. Their
normal vectors are associated at two planes and a cylinder. One of the planes is
parallel to the plane xy and the other is perpendicular at the first plane.

If the radius ρ (circular cylinder no change) and the plane z are maintained con-
stant, and the angle φ is continuously varied, we can notice that the triads of vectors
are changing constantly. Analogously, the variations happen if we change two or
three coordinates instead of just one.
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Fig. 5 Plane, cone, and
sphere

Fig. 6 Normal basis vectors
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Fig. 7 Normal vectors are parallel no more

3.3 Meaning Geometric of the Algebraic Results

If we return to the point (1, 1, 1), given in Cartesian coordinates, which was
mentioned before, and we get its representation in spherical coordinates using
ρ = √

3, θ = arctan
√
2, φ = π/4, in Eq. (6). The basis associated to the point

given is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

êr

êθ

êφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

3
π

√
3

3
π

√
3

3
π

√
6

6
π

√
6

6
π −

√
6

3
π

−
√
2

2
π

√
2

2
π 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

î

ĵ

k̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

3
π î +

√
3

3
π ĵ +

√
3

3
π k̂

√
6

6
π î +

√
6

6
π ĵ −

√
6

3
π k̂

−
√
2

2
π î +

√
2

2
π ĵ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

But, what is the meaning of the scalars from matrix in Eq. (8)? We wish to give a
geometric meaning at these numbers with the target of understanding what we have
done.

To get it, we might help us of some visualization tools. If we use any DGS, by

example GeoGebra (Fig. 8), we can realize that the vectors êr =
√
3

3
π î +

√
3

3
π ĵ +√

3

3
π k̂, êθ =

√
6

6
π î +

√
6

6
π ĵ −

√
6

3
π k̂, êφ = −

√
2

2
π î +

√
2

2
π ĵ are the resultants

of each triad of scalars of the basis, in terms of the standard unit vectors (î, ĵ, k̂).

If we can do it, we claim that we have been able to understand the link between
algebraic concepts and geometric representations, of course with the help of some
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Fig. 8 Basis vectors ê1, ê2, ê3 in spherical coordinates

DGS or CAS (they are the unitary vectors). Therefore, our students could deepen
their knowledge as we wish in learning math.

4 Conclusions and Reflections

With some CAS (by example MAPLE or GeoGebra) is easy to show how a triad, of
basis vectors, is continuously changing its directionwhenwe areworking in spherical
coordinates or cylindrical coordinates.

The learning–teaching process is short and more dynamic in order to visualize
that the change of triad depends on the point of analysis and it gives meaning to
algebraic construction.

It is possible to switch to several representations, such as, geometrical and alge-
braic when you need it. We think that great transformation in the fieldwork in math
could be supported by a lot of micro-changes in everyday duties in the classroom,
gathering and sharing research on mathematical education to improve our function
as teachers.

We can help more and more students in their tasks if we were able to allow our-
selves a little change and incorporate the technological advance into our classrooms,
of course keeping a high degree of mathematical abstraction.

We are interested in proceeding to use of visualization. Therefore, the next step in
the subject of coordinates transformation could be to go further and try to understand
what happen in other kind of coordinates, by example hyperbolic coordinates, whose
basis vectors are no longer mutually perpendicular to each other.
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Geometric and Computational Approach
to Classical and Quantum Secret Sharing

Ryutaroh Matsumoto and Diego Ruano

Abstract Secret sharing is a cryptographic scheme to encode a secret to multiple
shares being distributed to participants, so that only qualified (or authorized) sets of
participants can reconstruct the original secret from their shares. It is also known that
every linear ramp secret sharing can be expressed by a nested pair of linear codes
C2 ⊂ C1 ⊂ Fn

q . On the other hand, a nest code pair C2 ⊂ C1 ⊂ Fn
q can also give a

quantum secret sharing. SinceC1 andC2 are linear codes, it is natural to use algebraic
geometry codes to construct C1 and C2. The purpose of this work is to find sufficient
conditions for qualified or forbidden sets by using geometric properties of the set of
points.

Keywords Algebraic geometry codes · Quantum secret sharing · Access structure

1 Introduction

Secret sharing (SS) [15] is a cryptographic scheme to encode a secret to multiple
shares being distributed to participants, so that only qualified (or authorized) sets
of participants can reconstruct the original secret from their shares. Traditionally
both secret and shares were classical information (bits). Several authors [5, 7, 16]
extended the traditional SS to a quantum one so that a quantum secret can be encoded
to quantum shares.

When we require unqualified sets of participants to have zero information of the
secret, the size of each sharemust be larger than or equal to that of the secret. By toler-
ating partial information leakage to unqualified sets, the size of shares can be smaller
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than that of the secret. Such an SS is called a ramp (or non-perfect) SS [2, 13, 17].
The quantum ramp SS was proposed by Ogawa et al. [14]. In their construction [14]
as well as its improvement [18], the size of shares can be L times smaller relative to
quantum secret than its previous construction [5, 7, 16], where L is the number of
qudits in quantum secret.

Classical secret sharing is said to be linear if a linear combination of shares
corresponds to the linear combination of the original secrets [3]. It is also known that
every linear ramp secret sharing can be expressed by a nested pair of linear codes
C2 ⊂ C1 ⊂ Fn

q . On the other hand, a nest code pair C2 ⊂ C1 ⊂ Fn
q can also give a

quantum secret sharing as described in [10]. A share set is said to be forbidden if it
has no information about the secret. It is natural to express conditions for qualified
and forbidden sets in terms of C2 ⊂ C1, and the following is known:

Theorem 1 ([1, 9, 10]) Let J ⊆ {1, …, n}, and define PJ : Fn
q → F|J |

q , (x1, …,
xn) �→ (x j : j ∈ J ). We consider classical and quantum secret sharing constructed
from C2 ⊂ C1. J can be regarded as a share set, and J is qualified in the classical
secret sharing if and only if

dim PJ (C1)/PJ (C2) = dim C1/C2, (1)

and J is forbidden in the classical secret sharing if and only if

PJ (C1) = PJ (C2). (2)

Let J = {1, …, n} \ J . In the quantum secret sharing, J is qualified if and only if

both

{
(1) is true,
PJ (C1) = PJ (C2)

i.e.,

{
J is classically qualified,
J is classically forbidden

(3)

hold, and J is forbidden if and only if J is qualified.

Since C1 and C2 are linear codes, it is natural to use algebraic geometry codes
to construct C1 and C2 [4]. Let F be an algebraic function field of one variable
with genus g(F), P1, …, Pn its rational places, G1 ≥ G2 divisors whose support
contain none of P1, …, Pn . Define C(P1 + · · · + Pn , G1) = {( f (P1), …, f (Pn)) |
f ∈ L (G1)}. By the Riemann–Roch theorem, for C1 = C(P1 + · · · + Pn , G1) and
C2 = C(P1 + · · · + Pn , G2), it is straightforward to see

Theorem 2 Equation (1) holds if

|J | ≥ 1 + degG1. (4)

Equation (2) holds if
|J | ≤ degG2 − 2g(F) + 1. (5)

Equation (3) holds if
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|J | ≥ max{1 + degG1, n − (degG2 − 2g(F) + 1)}. (6)

The purpose of this work is to find sufficient conditions less demanding than
(4)–(6) by using geometric properties of the set of points {Pj | j ∈ J }.

2 Geometric and Computational Analysis of Qualified
and Forbidden Sets

2.1 Computational Approach

Fix a rational place Q arbitrarily. When C1 = C(P1 + · · · + Pn , G1) and
C2 = C(P1 + · · · + Pn , G2), (1) holds

⇔ C

(∑
j∈J

Pj ,G1

)
/C

(∑
j∈J

Pj ,G2

)

 C(P1 + · · · + Pn ,G1)/C(P1 + · · · + Pn ,G2)

⇔ ker(PJ ) ∩ C(P1 + · · · + Pn ,G1) = ker(PJ ) ∩ C(P1 + · · · + Pn ,G2)

⇔ C

(∑
j /∈J

PJ ,G1 −
∑
j∈J

Pj

)
= C

(∑
j /∈J

PJ ,G2 −
∑
j∈J

Pj

)

⇔ f1 ∈ L

(
G1 −

∑
j∈J

Pj

)
⇒ ∃ f2 ∈ L

(
G2 −

∑
j∈J

Pj

)
s.t. f1(Pj ) = f2(Pj )∀ j /∈ J

⇔ f1 ∈ L

(
G1 −

∑
j∈J

Pj

)
⇒ ∃ f2 ∈ L

(
G2 −

∑
j∈J

Pj

)
s.t. f1 − f2 ∈ L

(
G1 −

∑
j /∈J

Pj

)

⇔ ∀ f1 ∈ L

(
G1 −

∑
j∈J

Pj

)
, ∃ f2 ∈ L

(
G2 −

∑
j∈J

Pj

)
, ∃ f3 ∈ L

(
G1 −

n∑
j=1

Pj

)
s.t. f1 = f2 + f3

⇔ L

(
G1 −

∑
j∈J

Pj

)
⊆ L

(
G1 −

n∑
j=1

Pj

)
+ L

(
G2 −

∑
j∈J

Pj

)

⇔ vQ

(
L

(
G1 −

∑
j∈J

Pj

))
⊆ vQ

(
L

(
G1 −

n∑
j=1

Pj

)
+ L

(
G2 −

∑
j∈J

Pj

))

⇐ vQ

(
L

(
G1 −

∑
j∈J

Pj

))
⊆ vQ

(
L

(
G1 −

n∑
j=1

Pj

))
∪ vQ

(
L

(
G2 −

∑
j∈J

Pj

))
. (7)

For any rational place Q and any divisor G of F , vQ(L (G)) can be computed by
Gröbner bases and the algorithm in [11], provided that the defining equation of F
is in special position with respect to Q [6, 8, 12].

We turn our attention to (2). Equation (2) holds

⇔ C

(∑
j∈J

Pj ,G1

)
= C

(∑
j∈J

Pj ,G2

)



270 R. Matsumoto and D. Ruano

⇔ ∀ f1 ∈ L (G1), ∃ f2 ∈ L (G2) s.t. f1 − f2 ∈ L

(
−

∑
j∈J

Pj + G1

)

⇔ ∀ f1 ∈ L (G1), ∃ f2 ∈ L (G2), ∃ f3 ∈ L

(
−

∑
j∈J

Pj + G1

)
s.t. f1 = f2 + f3

⇔ L (G1) = L (G2) + L

(
G1 −

∑
j∈J

Pj

)

⇔ vQ(L (G1)) = vQ

(
L (G2) + L

(
G1 −

∑
j∈J

Pj

))

⇐ vQ(L (G1)) = vQ

(
L (G2)) ∪ vQ

(
L (G1 −

∑
j∈J

Pj

))
. (8)

A similar sufficient condition for (3) can be deduced from (4) and (5).

2.2 Explicit Sufficient Conditions

We explicitly write sufficient conditions for (7) and (8), and examine if they are
easier to hold than (4) and (5) for one point AG codes with G1 = m1Q and
G2 = m2Q. For any divisor G, let HQ(G) = −vQ(L (G + ∞Q) \ {0}). Observe
that HQ(0) is the Weierstrass semigroup at Q. The conductor of HQ(G) is defined
as min{i ∈ HQ(G) | i ≤ j ∈ N ⇒ j ∈ HQ(G)}, which generalizes the conductor of
the Weierstrass semigroup HQ(0).

Equation (7) holds if

vQ

(
L

(
m1Q −

∑
j∈J

Pj

)
\ {0}

)
= ∅

⇔ m1 ≤ min HQ

(
−

∑
j∈J

Pj

)
− 1 (9)

We see that condition (9) is less demanding than (4), becausemin HQ(−∑
j∈J Pj ) ≥

|J |.
Similarly, (8) holds if

m2 ≥ the conductor of HQ

(
−

∑
j∈J

Pj

)
− 1 (10)

We also see that condition (10) is less demanding than (5), because the conductor
of HQ(−∑

j∈J Pj ) is ≤ 2g(F). We can also make a similar improvement over (6):
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Condition (6) holds if

m1 ≤ min HQ

(
−

∑
j∈J

Pj

)
− 1 and m2 ≥ the conductor of HQ

(
−

∑
j /∈J

Pj

)
− 1.

In particular, for elliptic function fields (g(F) = 1),

(9) ⇔
{

m1 + 1 ≤ |J | if ∃ f ∈ L (∞Q), ( f )0 = ∑
j∈J Pj ,

m1 ≤ |J | otherwise
(11)

(10) ⇔
{ |J | ≤ m2 − 1 if ∃ f ∈ L (∞Q), ( f )0 = ∑

j∈J Pj ,

|J | ≤ m2 otherwise
(12)
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Computing the Dixon Resultant
with the Maple Package DR

Manfred Minimair

Abstract TheMaple packageDRprovides functions for computing theDixon resul-
tant of a system of parametric multi-variate polynomials. The Dixon resultant con-
stitutes a necessary condition for the polynomials to have a common root after spe-
cializing their parameters. The newest version 2 of the package DR includes the
new heuristic pivot row detection of factors for extracting the Dixon resultant from
the Dixon matrix. It is shown to be efficient on systems of benchmark polynomials,
outperforming other heuristics for a majority of systems.

Keywords Resultant · Dixon matrix · Polynomial system

1 Introduction

The Maple package DR [19] implements algorithms for computing the Dixon resul-
tant of a list f0, . . . , fn of parametric polynomials, with parameters p j , variables xk ,
and integer coefficients, in Z[p1, . . . , pk, x1, . . . , xn], where Z stands for the ring of
integers [6, 11]. The Dixon resultant of the fi ’s is a polynomial in the parameters
pi contained in the ring Z[p1, . . . , pk] and vanishes whenever the fi ’s have a com-
mon root in an appropriate space, explicated in Sect. 2. Because of these properties,
applications [4, 5, 9, 10, 17, 18, 21, 22, 24] commonly use the Dixon resultant to
eliminate variables from systems of equations [20].

The objective of this paper is to explain the usage and design of theMaple package
DR [19] for computing the Dixon resultant and to introduce the new heuristic pivot
row detection of factors (PRDF), applied in the package for efficiently extracting
the Dixon resultant from a maximal-rank submatrix of the Dixon matrix. The Maple
package DR has been created through merging Manfred Minimair’s and Arthur
Chtcherba’s packages for Dixon Resultant computation in 2006, also including some
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code contributed by Hoon Hong. The package is being expanded and maintained by
Manfred Minimair who has presented it at the conference applications of computer
algebra (ACA) 2015, Kalamata, Greece, for the first time. The new updated release
2 with expanded features has been made available since ACA 2015. The package
has been designed for ease of use, minimizing the need for user interventions, and
efficiency.

As the number of bibliographic references on the Dixon resultant indicates, Dixon
Resultant computation has been implemented by several authors. However, only the
package DR [19] and a package [15] implemented in the computer algebra system
Fermat seem to be currently available on the Internet.

Subsequently, Sect. 2 fixes some notation, defines Dixon resultant, and presents
some properties of the Dixon resultant and Sect. 3 describes the usage, design, and
implementation of the Maple package DR and introduces the new heuristic PRDF
for Dixon resultant extraction. Furthermore, Sect. 4 addresses the efficiency of Dixon
Resultant computation and experimentally demonstrates the efficiency of PRDF out-
performing other heuristics and Sect. 5 concludes the paper with a discussion of the
package and the computational results.

2 Preliminaries on the Dixon Resultant

This section introduces the basic notation used throughout this paper, defines Dixon
resultant and gives some fundamental properties of the Dixon resultant. In this paper,
weworkwith polynomials over the integers because theMaple packageDRprocesses
polynomial systems containing such polynomials as inputs. All definitions and state-
ments in this section can naturally be generalized to polynomial systems over alge-
braically closed fields [1].

2.1 Definition of Dixon Resultant

Let f0, . . . , fn be a list of parametric polynomials fi ∈ Z[p1, . . . , pk, x1, . . . , xn]
with parameters p j , variables xk , and integer coefficients. Furthermore, letQ denote
the algebraic closure of the rational numbers Q. Kapur et al. [11] define the Dixon
resultant DRes( f0, f1, . . . , fn) of the fi ’s to be a necessary condition for the exis-
tence, in Q

n
, of a common root of the fi ’s obtained through Dixon’s construction

of [6]. They also give the RSC condition (rank submatrix construction) for which
they show that Dixon’s construction yields a necessary condition for the existence
of a common root. Furthermore, Chtcherba’s and Kapur’s later Generalized RSC
condition [3] implies that the appropriately generalized Dixon’s construction yields
a necessary condition for the existence of a common root ifQ

n
is replaced with a dif-

ferent space. Consequently, the subsequently presented definition of Dixon Resultant
generalizes [11], referring to any expression obtained through Dixon’s construction
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as a Dixon Resultant, not necessarily an expression yielding a necessary condition.
Moreover, Sect. 2.2 explicates according to [3] what space for the common roots
may be chosen such that Dixon’s construction yields a necessary condition for the
existence of common roots in that space.

In the following, the Dixon resultant DRes( f0, f1, . . . , fn) of the fi ’s with respect
to the variables x1, . . . , xn is defined up to a rational factor in Q(p1, . . . , pk). The
definition constructively proceeds through computing the determinant of a maximal-
rank submatrix of the Dixonmatrix, which is determined from the Dixon polynomial
of the fi ’s.

2.1.1 Compute the Dixon Polynomial

Let x1, . . . , xn denote additional variable symbols distinct from the xi ’s. Then the
Dixon polynomial of the fi ’s is

det

⎛
⎜⎜⎜⎝

f0(x1, x2, . . . , xn) . . . fn(x1, x2, . . . , xn)
f0(x1, x2, . . . , xn) . . . fn(x1, x2, . . . , xn)

...
...

f0(x1, x2, . . . , xn) . . . fn(x1, x2, . . . , xn)

⎞
⎟⎟⎟⎠

(x1 − x1)(x2 − x2) . . . (xn − xn)
,

where the lth row in thematrix is obtained from the first rowby replacing x1, . . . , xl−1

with x1, . . . , xl−1. (The matrix in the formula for the Dixon polynomial is usually
called the Cancellation Matrix.)

Example 1 Let

f0 = −x31 + 3x1x
2
2 + 3x1 − 3p1,

f1 = −3x21 x2 + x32 − 3x2 − 3p2,

f2 = x21 − x22 − p3,

with variables x1 and x2 and parameters p1, p2 and p3. Then the Dixon polynomial
of f0, f1 and f2 is

⎛
⎜⎜⎝
x31 + 3x1x

2
2 + 3x1 − 3p1 −3x21 x2 + x32 − 3x2 − 3p2 x21 − x22 − p3

x31 + 3x1x
2
2 + 3x1 − 3p1 −3x21x2 + x32 − 3x2 − 3p2 x21 − x22 − p3

x31 + 3x1x
2
2 + 3x1 − 3p1 −3x21x2 + x32 − 3x2 − 3p2 x21 − x22 − p3

⎞
⎟⎟⎠

(x1 − x1)(x2 − x2)
=

(3x21 − 3x22 − 3p3)x
4
1 + (−x21 + x22 + p3)x

2
1x

2
2 + (6x1x

2
2 + (−3p3 + 9)x1 − 9p1)x

3
1+

(2x21 x2 − 6x32 + (−8p3 − 6)x2 − 6p2)x
2
1x2 + (−2x1x

2
2 + (p3 − 3)x1 + 3p1)x1x

2
2+

(−x21 x
2
2 + 3x42 + (−3p3 + 3)x21 + p3x

2
2 − 9p1x1 − 6p2x2 + 6p3)x

2
1+

(−8p3x1x2 − 6p2x1 − 6p1x2)x1x2 + (x21 x
2
2 − 3x42 + p3x

2
1 + (−3p3 − 3)x22 + 3p1x1 − 3p3)x

2
2+
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((−8p3 + 6)x1x
2
2 − 6p2x1x2 − 6p1x

2
2 + (−3p3 + 9)x1 − 9p1)x1 + ((p3 + 3)x21 x2+

(−3p3 − 9)x32 + 3p2x
2
1 − 6p1x1x2 − 9p2x

2
2 + (−3p3 − 9)x2 − 9p2)x2+

p3x
2
1 x

2
2 − 3p3x

4
2 − 6p1x1x

2
2 + 3p2x

2
1 x2 − 9p2x

3
2 − 3p3x

2
1 + 6p3x

2
2 − 9p1x1 − 9p2x2 + 9p3.

2.1.2 Set Up the Dixon Matrix

TheDixonmatrixM is thematrix of coefficients of theDixon Polynomial D uniquely
defined1 by the equality

D = rMc,

up to the orderings of the row vector r and column vector c, where r and c contain all
the monomials in x1, . . . , xn and, respectively, x1, . . . , xn of the Dixon polynomial
D [11].

Example 2 (cont. Example 1) The Dixon matrix M is implicitly given by

D = rMc

r = (1, x2, x1, x2
2, x1 x2, x1

2, x1 x2
2, x1

2x2, x1
3, x1

2x2
2, x1

4)

c = (1, x2, x1, x2
2, x1 x2, x1

2, x2
3, x1 x2

2, x1
2x2, x2

4, x1
2x2

2)T

and therefore M is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 p3 −9 p2 −9 p1 6 p3 0 −3 p3 −9 p2 −6 p1 3 p2 −3 p3 p3

−9 p2 −3 p3 − 9 0 −9 p2 −6 p1 3 p2 −3 p3 − 9 0 p3 + 3 0 0

−9 p1 0 −3 p3 + 9 −6 p1 −6 p2 0 0 −8 p3 + 6 0 0 0

−3 p3 0 3 p1 −3 p3 − 3 0 p3 0 0 0 −3 1

0 −6 p1 −6 p2 0 −8 p3 0 0 0 0 0 0

6 p3 −6 p2 −9 p1 p3 0 −3 p3 + 3 0 0 0 3 −1

3 p1 0 p3 − 3 0 0 0 0 −2 0 0 0

−6 p2 −8 p3 − 6 0 0 0 0 −6 0 2 0 0

−9 p1 0 −3 p3 + 9 0 0 0 0 6 0 0 0

p3 0 0 1 0 −1 0 0 0 0 0

−3p3 0 0 −3 0 3 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with respect to r and c.

2.1.3 Choose a Maximal-Rank Submatrix of the Dixon Matrix

View the Dixon matrix M as a matrix with scalar entries in the field of rational
expressions Q(p1, . . . , pk). Then, let S be any (square) submatrix of the Dixon
matrix M that has maximal rank.

1This definition differs from the notion of Dixon matrix used in [7].
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Example 3 (cont. Example 2) The matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 p3 −9 p2 −9 p1 6 p3 0 −3 p3 −9 p2 −6 p1 −3 p3

−9 p2 −3 p3 − 9 0 −9 p2 −6 p1 3 p2 −3 p3 − 9 0 0

−9 p1 0 −3 p3 + 9 −6 p1 −6 p2 0 0 −8 p3 + 6 0

−3 p3 0 3 p1 −3 p3 − 3 0 p3 0 0 −3

0 −6 p1 −6 p2 0 −8 p3 0 0 0 0

6 p3 −6 p2 −9 p1 p3 0 −3 p3 + 3 0 0 3

3 p1 0 p3 − 3 0 0 0 0 −2 0

−6 p2 −8 p3 − 6 0 0 0 0 −6 0 0

p3 0 0 1 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a maximal-rank submatrix S of the Dixon matrix M .

2.1.4 Dixon Resultant Extraction

In the final computational step, theDixon resultant is extracted from theDixonmatrix
by computing the determinant of the maximal-rank submatrix S of Sect. 2.1.3.

Definition 1 (Dixon resultant) The determinant of the maximal-rank submatrix S of
the DixonMatrix M is the Dixon resultant DRes( f0, . . . , fn) of the fi ’s with respect
to the variables x1, . . . , xn .

Since in Sect. 2.1.3 any maximal-rank submatrix can be chosen, the Dixon resul-
tant is not uniquely defined.

Example 4 (cont. Example 3) The Dixon resultant DRes( f0, . . . , fn), i.e., the deter-
minant of the maximal-rank submatrix S, is

36864 p3
9 − 248832 p1

2p3
6 + 248832 p2

2p3
6 − 699840 p1

4p3
3−

3639168 p1
2p2

2p3
3 − 2239488 p1

2p3
5 − 699840 p2

4p3
3 − 2239488 p2

2p3
5−

663552 p3
7 − 419904 p1

6 + 1259712 p1
4p2

2 − 2519424 p1
4p3

2 − 1259712 p1
2p2

4−
3732480 p1

2p3
4 + 419904 p2

6 + 2519424 p2
4p3

2 + 3732480 p2
2p3

4+
419904 p1

4p3 − 839808 p1
2p2

2p3 + 2239488 p1
2p3

3 + 419904 p2
4p3+

2239488 p2
2p3

3 + 2985984 p3
5.

2.2 Existence of Common Roots

Knowing when the Dixon resultant yields a necessary condition for the existence
of common roots of the fi ’s is crucial for applications and therefore, subsequently,
a result relating the vanishing of the Dixon resultant to the existence of common
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roots is presented. The generalized rank submatrix construction (RSC) Theorem 1
[3] shows some space in which the fi ’s have a common root if the Dixon resultant
vanishes. Before stating the theorem, some auxiliary notation is introduced.

Let the subset U0 ⊆ Q
n
and V0 ⊆ Q

k
be embedded in the projective set U and,

respectively, V and be the domain of the tuples of the variables (x1, . . . , xn) and,
respectively, parameters (p1, . . . , pk), overwhich solutions of the polynomial system
f0 = · · · = fn = 0 are thought. Furthermore, let m be the number of columns of the
Dixon matrix M , that is, the length of the vector c from Sect. 2.1.2. Then [3], setsU0,
V0, U and V and a map φ : U → P

m−1 exist such that φ restricted to U0 equals c.
According to [3], V can be obtained as a subset of Pk , the k-dimensional projective
space overQ, whereasU may have to embedded in a projective space of a dimension
possibly higher than n to allow the map φ.

Next, let qv be obtained by evaluating q at v ∈ V ⊆ P
k , as p1 = v1, . . . , pk =

vk , where q is a polynomial or vector of polynomials containing the parameters
p1, . . . , pk , and let Mh be obtained from the Dixon matrix M by homogenizing
the matrix entries of each row to the same minimal total degree with respect to the
homogenizing variable p0, however, total degrees are allowed to differ across rows.
Now, let q be restricted to ranging over tuples of m homogeneous polynomials,
of equal total degrees, in Z[p0, p1, . . . , pk], that are the members of the kernel of
the matrix Mh and let ZM be the set of all non-vanishing qv , for v ∈ V , viewed as
members of Pm−1. Furthermore, let φ−1(ZM) denote the inverse set of φ(U ) ∩ ZM

under φ and U − φ−1(ZM) be the projective closure of the set U − φ−1(ZM).

Theorem 1 (Generalized RSC [3]) The gcd of the determinants of the maximal-
rank submatrices of the Dixon matrix M evaluated at v vanishes if the fi v’s have a
common root in U − φ−1(ZM), for v ∈ V .

Consequently, the vanishing of DRes( f0, . . . , fn)v , for v ∈ V , is a necessary con-
dition for the existence of a common root of the fi ’s in U − φ−1(ZM).

Example 5 (cont. Example 4) The map φ is obtained from c by homogenizing the
entries of c with respect to x1 and x2 individually with respect to two different

homogenizing variables s and t . Then U0 = Q
2
which can be embedded into a

suitableU ⊆ P
4 [3]. Additionally, the fi ’s are homogenized like c to allow evaluating

them at U . Furthermore, V0 and V are chosen to be Q
k
and, respectively, Pk . Then,

the Dixon resultant DRes( f0, f1, f2) vanishes if f0, f1 and f2 have a common root
in U − φ−1(ZM). (Section5.1 of [3] illustrates the computation of φ(U ) ∩ ZM and
roots in U − φ−1(ZM) for similar polynomials fi .)
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3 Maple Package DR

The basic functions of the Maple Package DR are laid out in this section, fol-
lowed by descriptions of additional features for benchmarking and selecting par-
ticular implementations of subalgorithms.2 The new heuristic PRDF for extracting
the Dixon resultant from a maximal-rank submatrix of the Dixon matrix is explained
in Sect. 3.1.4.

3.1 Basic Functions and PRDF Heuristic

To simplify the notation, f1, f2, . . . and x1, x2, . . . also stand for the correspond-
ing Maple symbols f1, f2, . . . , x1, x2, . . . and objects represented by DR in Maple.
Similarly, x1, x2, . . . , shown in the subsequent text, are represented as x1_, x2_, . . .
through appending an underscore to x1, x2, . . . by DR. Additional symbols defined
through Maple commands will be shown with upright font, such as the subsequently
used name DP.

After loading the Maple package DR, Maple computes DRes( f0, . . . , fn) with
the command

DR:-DixonResultant([ f0, . . . , fn], [x1, . . . , xn]).

This command implements the four-step scheme for computing the Dixon resultant
[6, 11] defined in Sect. 2,

(1) compute the Dixon polynomial
DP := DR:-DixonPolynomia( f0, . . . , fn)

(2) set up the Dixon matrix
DM := DR:-DixonMatrix(DP)

(3) determine a maximal-rank submatrix of the Dixon matrix
RS := DR:-RankSubMatrix(DM)

(4) compute the determinant of the maximal-rank submatrix
DRES := DR:-DixonExtract(RS)

with the corresponding Maple commands provided by DR. The subsequent para-
graphs elaborate on the above steps and the corresponding functions provided byDR.

3.1.1 Compute the Dixon Polynomial

The command
DP := DR:-DixonPolynomial( f1, . . . , fn)

2The subsequent function specifications refer to subversion 2.1 of the package DR.
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computes the Dixon polynomial and assigns the triple D, v, v consisting of the
Dixonpolynomial D and the lists v = [x1, . . . , xn] and v = [x1, . . . , xn] to theMaple
symbol DP. The package DR uses Maple’s built-in standard functions for expanding
and dividing the determinant in the formula for the Dixon Polynomial.

3.1.2 Set up the Dixon Matrix

The command
DM := DR:-DixonMatrix(DP)

computes the Dixon matrix from the Dixon polynomial DP. It assigns the tuple
M, r, v, c, v, defined in Sect. 2.1.2, to the Maple symbol DM.

3.1.3 Choose a Maximal-Rank Submatrix of the Dixon Matrix

A maximal-rank (square) submatrix of the Dixon matrix M is obtained by special-
izing the parameters p j of M with random integers and determining the rows and
columnsof amaximal-rank submatrix of the specializedM withPLU-decomposition.3

It is expected that the same rows and columns constitute a maximal-rank submatrix
of the original M . This method for determining the maximal-rank submatrix is a
randomized scheme of Las Vegas type. That is, it may fail in some rare cases. The
package DR is able to detect and report such rare events of failure. The command

RS := DR:-RankSubMatrix(DM)

determines the maximal-rank submatrix S of the Dixon matrix M , which is assigned
to the Maple symbol RS. The failure case is detected by the command
DR:-DixonExtract presented in Sect. 3.1.4.

3.1.4 Dixon Resultant Extraction

This final step in the computation yields the Dixon resultant of the fi ’s by comput-
ing the determinant of the maximal-rank submatrix S of the Dixon matrix M . The
package DR provides a specialized version of Gaussian elimination for computing
this determinant. This version has been optimized to speed-up the computation by
taking advantage of factors commonly arising during Gaussian elimination on Dixon

3The Fermat implementation [15] computes the PLU-decomposition modulo a random prime num-
ber rather than over the rational numbers. The package DR does not use a random prime to reduce
the failure probability of this step. Furthermore, the speed-up gained in Maple through computing
modulo a random prime has been insignificant as compared to the dominating computational step
Sect. 3.1.4 for benchmark systems of Sect. 3.2 and therefore is ignored up by the current version of
DR.
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Matrices and to provide a representation of the resultant that is compact by comput-
ing the determinant in factored form. It usually outperforms the built-in determinant
function of Maple which relies on versions of fraction-free Gaussian elimination
that ignore the special factors arising from the Dixon matrix. (For remarks on the
efficiency of this operation see Sect. 4.)

Computation of the Dixon resultant proceeds by Gaussian elimination with row-
pivoting on the matrix S such that the determinant of S is the product of all the pivots
determined during elimination. The Gaussian elimination and determinant compu-
tation uses the following operations. At the lth elimination step, after row pivoting,
let Sll be the pivot, then, for all u > l and v > l, let t = normal(Sul/Sll) and update
Suv with normal(Suv − t · Slv), where normal is Maple’s normalizing function that
cancels common factors in the numerators and denominators of rational expressions.
When running the computation, the determinant of S is obtained incrementally from
the pivots Sll . Initially the partial determinant is set to 1 and after each elimination
step the pivot Sll is factored and multiplied with the partial determinant.

Lewis [13] observed that for certain polynomial systems of fi during Gaussian
elimination the row gcds, gcd(Sul, Su (l+1), . . . ) for u ≥ l, and the column gcds,
gcd(Slv, S(l+1) v, . . . ) for v ≥ l, are often non-trivial and dividing out these gcds
before performing the Gaussian elimination step sometimes dramatically speeds up
Dixon Resultant computation. He named this heuristic EDF (Early Detection of
Factors) and provided an implementation in the computer algebra system Fermat
[15]. This strategy does not perform as well when implemented in Maple because
the implementation of polynomial gcds seems to be faster in Fermat [14].

Therefore, I propose a variation of the EDF heuristic, called PRDF (Pivot Row
Detection of Factors) which requires fewer gcd computations than EDF and is imple-
mented by the Maple package DR. The timing results of Sect. 4 indicate that PRDF
is more efficient than EDF for a large number of polynomial systems.

Definition 2 (PRDF (pivot row detection of factors)) Let Sll be the pivot, at the lth
elimination step after row pivoting. Before computing normal(Suv − t · Slv), with
t = normal(Sul/Sll), in Gaussian elimination, divide out the gcd of the pivot row,
gcd(Sll , Sl (l+1), . . . ), from the entries ulv , for v ≥ l, of the pivot row and update the
partial determinant with this gcd.

Accordingly, the command

DRES := DR:-DixonExtract(RS)

computes the determinant of the maximal-rank submatrix S using PRDF and assigns
the pair e, R to the Maple symbol DRES. The string e is an error message if the
maximal-rank submatrix RS does not have the expected full rank, and otherwise e is
empty. Furthermore, R is the Dixon resultant, if e is empty.
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3.2 Additional Features

The package DR provides various additional features whose documentation can be
accessed through the Maple command Describe(DR). Subsequently, a few main
items are surveyed.

Timing and memory usage The Dixon resultant command

DR:-DixonResultant([ f0, . . . , fn], [x1, . . . , xn], t)

allows an optional output parameter, here denoted by t. After execution, the unas-
signed symbol t is assigned a table with timing and memory usage information of
all the steps carried out when computing the Dixon Resultant.

Detection of factors duringGaussian elimination: The submodule DR:-DF imple-
ments heuristics for detection of factors during Gaussian elimination (see Sect. 3.1.4)
and the submodule DR:-DRes provides front-end functions employing these heuris-
tics for computing the Dixon Resultant. The matrix function DR:-DF:-ColRow
implements EDF [13] and DR:-DF:-PivotRow implements PRDF of Sect. 3.1.4.
While PRDF is run by the default command DR:-DixonResultant, EDF is used by
the Dixon resultant command DR:-DRes:-RankColRow. The DF submodule con-
tains additional heuristics such as extracting factors from all rows and no columns,
all columns and no rows, and all columns and the pivot row. During computational
test runs, it was found that PRDF usually surpasses all other tried heuristics and
therefore this paper will not address these heuristics any further. (See Sect. 4 for
comparisons of PRDF and EDF.)

Ignore factor detection: The command DR:-DRes:-MaxMinor computes the Dixon
resultant with Gaussian elimination without using any heuristics for factor detection.
This is the default in versions of the package DR prior to version 2.

Random polynomials: The submodule DR:-GenPoly contains the functions
RandParamTotalDeg and RandParamMultiDeg for creating random parametric mul-
tivariate total- and, respectively, multi-degree polynomials.

Sample polynomials: The submodule DR:-Samples provides sample polynomial
systems used for benchmarking in Sect. 4. These samples include random sys-
tems as well as systems found in the literature on resultants, documented in the
source code of the package DR. This repository is accessed via the functions
DR:-Samples:-Available and DR:-Samples:-Get. The function Available returns a
list of the names of all available polynomial systems and the command Get(s),
where s is a string, the name of a polynomial system, returns the corresponding
polynomial system, including its degree, variable, and parameter lists.
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4 Efficiency of Dixon Resultant Extraction

The dominating step in computing Dixon resultants is Sect. 3.1.4, computing the
determinant of a maximal-rank submatrix of the Dixon Matrix. The subsequent tim-
ing results illustrate the efficiency of the package DR employing the PRDF heuristic
on a set of benchmark polynomial systems, included in the submodule Samples of
DR. Some of these systems are sourced from research literature and others are ran-
domly generated as it is indicated in the column Source of Fig. 1. The first column in
the table in Fig. 1 assigns a label to each system which is used in the subsequent fig-
ures and the second column lists the name of the system used by DR. The following
columns list the number of variables and parameters of the systems and the number
of rows and columns and the rank of the systems’ Dixon Matrices. The rows of the
table have been sorted according to the number of rows of the Dixon matrices.

Figure2 shows the running times for Dixon resultant extraction using Maples’
built-in determinant function LinearAlgebra:-Determinant, Gaussian elimination

System DR Name Var. Param. Rows Col. Rank Source
S01 sparse 2v2 2p3 2 3 5 5 5 random
S02 Bricard 2 16 8 8 8 [14]
S03 sparse 3v2 2p2 2 2 9 9 9 random
S04 cubic 2 3 11 11 11 [10]
S05 Enneper 2 3 11 11 9 [10]
S06 sec11 2 2 2 3 12 12 5 [10]
S07 sphere 2 3 11 12 10 [10]
S08 sparse 3v2 1p2 2 2 12 12 11 random
S09 sparse 3v2 1p3 2 3 12 12 11 random
S10 sparse 3v2 2p3 2 3 12 12 11 random
S11 sparse 4v2 1p3 2 3 17 17 17 random
S12 bicubic 2 0 18 18 18 [10]
S13 sparse 4v2 1p2 2 2 21 21 19 random
S14 sparse 4v2 2p2 2 2 21 22 20 random
S15 sparse 4v2 2p3 2 3 22 21 20 random
S16 ParamElim 3 2 25 16 16 [15]
S17 sparse 5v2 1p2 2 2 25 25 24 random
S18 sparse 5v2 1p3 2 3 27 26 26 random
S19 sparse 5v2 2p2 2 2 34 31 27 random
S20 sparse 6v2 2p2 2 2 35 35 33 random
S21 sparse 6v2 1p2 2 2 44 44 40 random
S22 KK5 5 1 81 81 81 [16]
S23 Cyclic 6-Root 5 1 86 86 78 [16]
S24 SB L1 M5 K1 8 0 111 136 76 [16]
S25 KK6 6 1 193 193 193 [18], [16]
S26 Cyclic 7-Root 6 1 348 349 314 [16]
S27 KK7 7 1 449 449 449 [16]

Fig. 1 Benchmark systems
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Maple DR Prior Versions DR Version 2 Fermat
System Determinant Gaussian Elimination PRDF EDF
S08 0.016 0.015 0.014 0.03
S09 0.338 0.547 0.514 1.55
S10 11.061 11.086 11.516 NA
S11 24.087 14.947 14.335 NA
S12 0.0211 0.040883 0.0401 0.01
S13 0.252 0.139 0.137 0.46
S14 1.275 0.475 0.428 12
S15 5000 37.373 65.144 NA
S16 0.016667 0.009117 0.008333 0.00312
S17 1.02 0.769 0.753 13.36
S18 159.285 57.723 83.318 NA
S19 10.129 2.636 2.522 97.9
S20 22.656 8.189 6.839 753.8
S21 28.743 19.623 19.2 NA
S22 0.131767 0.025 0.023183 0.05
S23 0.60755 0.089333 0.081767 0.1
S24 3.139317 1.25 1.2547 3.31
S25 4.297133 0.411467 0.399483 2.05
S26 NA 17.486467 15.674217 NA
S27 153.448183 12.796883 11.147667 269.48

Fig. 2 Running times of Dixon resultant extraction in minutes

implemented byDR inMaple, DR’s PRDF run inMaple and EDF run in Fermat [15].
The computations were carried out on a computer with Intel Core i7-3770 CPU at
3.40GHz with 12 GB RAM running Windows 8.1, Maple 2015 and Fermat 3.9.999.
The benchmark systems from Fig. 1 have been chosen to allow computing Dixon
resultants within 3h, however, there were exceptions when some computations did
not finish within several hours which is indicated with NA in Fig. 2. Since computing
the Dixon resultant of each system among S01-S07 took much less than one second,
results from these computations are excluded from the figures.

Figures3, 4, and 5 compare the running times of A=DR’s Gaussian elimination,
DR’s PRDF and EDF in Fermat to the respective B=Maple’s built-in determinant
function, DR’s Gaussian elimination and DR’s PRDF. In each figure the height of the
bars is the percentage by which A is faster than B, that is 100 × (b − a)/a, where a
and b is the running time of A and, respectively, B shown in Fig. 2.

Figure3 shows thatDR’sGaussian elimination, themethod employed by default in
versions ofDRprior to the current version 2, is oftenmuch faster thanMaple’s built-in
determinant function when applied to submatrices of the Dixon matrix. The speed-
up of Gaussian elimination ranges from 6.6 to 1099.1% for S08 and, respectively,
S27. Furthermore, Maple’s determinant function was unable to finish for S15 and
S26 within 3h, whereas Gaussian elimination took 37.3 and, respectively, 17.4min.
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Fig. 3 Percentage by which DR’s Gaussian elimination is faster than Maple’s built-in determinant
function

Fig. 4 Percentage by which DR’s PRDF is faster than DR’s Gaussian elimination

There are three systems, S09, S10, and S12, with a performance decrease of 38.2,
0.2% and, respectively, 48.3%.

Figure4 shows that PRDF, the default in the current version 2 of DR, is faster than
Gaussian elimination for most systems by up to 19.7%. There are two systems, S10
andS24wherePRDF is slightly slower by3.7%and, respectively, 0.3%.Furthermore,
there are two outlier systems, S15 and S18, where PRDF is slower by 42% and,
respectively, 30%.

In Fig. 5, the bars below the x-axis show that PRDF is faster thanEDF in all but two
cases. The speed-up of PRDF ranges from 18.2 to 99% for S23 and, respectively,
S20. Furthermore, EDF was unable to finish within 3h for S10, S11, S15, S18,
S21, and S26, whereas PRDF took 11.5, 14.3, 65.1, 83.3, 19.2 and, respectively,
15.6min. There are only two systems, S12 and S16, where EDF is faster, by 170%
and, respectively, 167.3%.
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Fig. 5 Percentage by which EDF in Fermat is faster than DR’s PRDF

5 Discussion

The Maple package DR provides functions for computing the Dixon resultant
and has been designed for ease-of-use, minimizing user intervention. The pack-
age gives access to various Maple procedures implementing the steps in computing
the Dixon resultant, however, the simplest way of using the package is by invoking
DR:-DixonResultant([ f0, . . . , fn], [x1, . . . , xn]), which computes the Dixon resul-
tant of the parametric polynomials f0, . . . , fn with integer coefficients with respect
to the variables x1, . . . , xn .

The newest release 2 of DR includes the new heuristic PRDF for extracting the
Dixon resultant from a submatrix of the Dixonmatrix Sect. 3.1.4. Timings of compu-
tations with benchmark polynomial systems presented in Sect. 4 indicate that PRDF
is expected to be faster than Gaussian elimination implemented in prior versions of
DR, Maple’s built-in determinant function and EDF [15] implemented in Fermat.
It is also shown that there are some systems for which either one of these methods
surpasses the other. Studying these systems to find out why particular algorithms per-
form faster would be an interesting subject of future research. Begin able to classify
these systems efficiently, with little computational effort, would allow to automati-
cally choose the most efficient algorithm and therefore help further speed-up Dixon
resultant computation.

Algorithms for efficiently constructing the Dixon matrix have been proposed [2,
25]. Since Dixon resultant extraction, Sect. 3.1.4, is the computationally dominating
step in computing the Dixon resultant, these algorithms have not yet been imple-
mented in DR. However, future versions of DR may incorporate these algorithms.
Furthermore, future work on DR may include versions for other systems and lan-
guages, such as Sage [23], and interfacingwith the benchmarking framework SDEval
[8].
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Collaborative Computer Algebra

Manfred Minimair

Abstract A definition of Collaborative Computer Algebra as a field of research is
proposed. The significance of this field is examined and theoretical frameworks that
have the potential to form its foundation are surveyed. Furthermore, the state of the
art and open questions of Collaborative Computer Algebra are discussed.

Keywords Computer algebra · Symbolic computation · Collaborative computing ·
Social computing

1 Introduction

The paper’s objective is to propose a definition of Collaborative Computer Algebra
as a field of research, highlight the significance of this field, describe its foundations
and discuss its state of the art and potential open questions. Manfred Minimair has
informally introduced the concept of Collaborative Computer Algebra, without pro-
viding a definition, at the conference Applications of Computer Algebra (ACA) 2014
[53] and additionally elaborated at ACA 2015 [54]. Accordingly, this paper serves
to motivate, specify, and elaborate this concept.

Complex human endeavors are often beyond the reach of any single individual
and therefore require collaboration. The fields of engineering, natural sciences and
mathematics are ripe with examples, including designing some complex machines
such as space satellites or industrial robots, conducting scientific experiments and
analyzing data, and solving challengingmathematical problems. Collaborative Engi-
neering is a distinct field of academic inquiry studying collaboration processes and
designing systems to facilitate cooperative work in engineering [34, 43, 51, 55].
In recent years, scientific workflows of collaborative experimentation, data collec-
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tion, computation, and data analysis have been intensely studied and supporting
software has been designed [9, 15, 24]. In mathematics, blogs and online wikis sup-
port large-scale collaborations, such as the polymath blog [26] and, according to
[1], another blog focused on complexity theory [16]. Furthermore, the PlanetMath
community has prepared several thousand mathematical encyclopedia articles [63],
an accomplishment beyond an individual’s capabilities.

This paper suggests that collaboration is as central to the practice of computer
algebra as for the cited areas of engineering, natural sciences, andmathematics, how-
ever, independently and not only because computer algebra software is applied in
these areas. To substantiate this suggestion, Sect. 2 reviews domains of collaboration
in computer algebra and Sect. 3 surveys software tools supporting collaboration. Sub-
sequently, Sect. 4 proposes a formal definition of Collaborative Computer Algebra
and discusses its significance. Motivated by the definition, Sect. 5 reviews theoretical
frameworks from human-centered computing that have the potential for guiding soft-
ware design to facilitate collaboration in computer algebra. Section 6 concludes the
paperwith discussing the state of the art and potential open questions inCollaborative
Computer Algebra and addressing the wider context of computation in mathematics.

2 Domains of Collaboration

In the introduction, it has been pointed out that collaboration is quite common in
areas of engineering, natural sciences, and mathematics. Similarly, computer algebra
work is often cooperative. Accordingly, the following sections examine computer
algebra research and applications, system development, as well as eduction, and
give examples of collaboration.

2.1 Research and Applications

Several journals and conferences cover computer algebra research and applications,
such as Journal of Symbolic Computation, International Symposium on Symbolic
and Algebraic Computation and Applications of Computer Algebra. As an example,
examine the yearly conference Applications of Computer Algebra which has been
organized since 1995 [74]. To illustrate the quantitative development of working
groups over the course of several recent years, information about the submissions to
ACA conferences from 2001 to 2015 have been collected, whenever the conference
pages were available and listed the sessions and its submissions.

The findings can be summarized as:

• collaboration is common;
• collaboration seems to grow in prevalence;
• working groups are relatively small;
• and working groups seem to be growing.
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Fig. 1 Percentage of group submissions to ACA

Fig. 2 Average group size of ACA group submissions

To arrive at these conclusions, the number of submissions with published titles and
authors, for each conference session, and the number of authors, for each submission,
have been counted. Aggregates of the counts are shown in Figs. 1 and 2. Figure 1
shows the percentage of group submissions to ACA, that is, the percentage of sub-
missions with more than one author, and, respectively, Fig. 2 shows the average sizes
of groups. Figure 1 indicates that collaboration is common. The percentages of con-
tributions to ACA that are collaborative range between 20 and 70%. Furthermore, it
seems that the percentages have an upward trend. Figure 2 shows that average group
sizes are in the range 2–3, which is relatively small. Note that the maximal group
size has been found to be 11 in 2009. Additionally, in average of the sizes of groups
seem to be growing over the past years since 2001.
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2.2 Computer Algebra System Development

Computer algebra systems and libraries are often developed byworking groups orga-
nized as open source software development projects. These are multi-year efforts
involving numerous participants which frequently change. The number of contrib-
utors can range up to several hundreds, as the web sites of some projects, such as
[14, 19, 78, 81], report.

2.3 Education

In secondary and higher education, students are often encouraged to collaborate on
solving mathematical problems to prepare them for industry and academia where
team work is common. Furthermore, many students naturally tend to collaborate
forming study groups to complete assignments or to prepare for exams. During
collaboration, students may jointly use a computer algebra system installed on a
dedicated computer or rely on collaborative learning environments available online
that include access to a computer algebra system [72].

Furthermore, at the doctoral-level, collaboration is the norm because Ph.D.
students learn to conduct research by participating in research groups. A research
group in computer algebra, charged with doctoral education, at least consists of a
Ph.D. adviser and one Ph.D. student, if not several students and other research staff.

3 Software Supporting Collaboration in Computer Algebra

Collaboration in Computer Algebra usually relies on software to exchange ideas,
mathematical documents and code implementing algorithms and to coordinate work.
This section provides a list of software products that are used by computer algebra
teams to support this exchange and coordination. The list is intended to comprehen-
sively cover themajor needs that arise through collaboration, however, not necessarily
contains all currently available software.

At the software infrastructure level, protocols and mechanisms for communica-
tion and interoperability provide foundations for software and its users to cooperate.
For example, the Symbolic Computation Software Composability Protocol (SCSCP)
[50] allows to connect different mathematical software. For another example, the
SymbolicData project provides databases with mathematical information and sup-
ports benchmarking by employing Python to connect with different computer algebra
systems [35].

Collaborators need to share ideas, findings, and implementations of algorithms.
Worksheets, notebooks or active mathematical documents, user interfaces for com-
puter algebra systems, such as Maple [84], Mathematica [86], and Sage [73], which
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allow running computations and entering text annotations, support such exchange.
These electronic documents may be shared by e-mail or even edited collabora-
tively [73].

Furthermore, computer algebra work may require interactively executing mathe-
matical computations. Consequently, teammembersmay jointly use command shells
for interactive command execution which are often included in computer algebra
systems. A group may assemble around a computer display, and a dedicated group
member may use a keyboard to enter commands that conform with the decisions
made by the group.

Software development is part of computer algebra, as new algorithms are being
implemented or systems are being developed. Much computer algebra software is
being developed in the framework of open source projects, such as the projects for
GAP [77], Mathemagix [82], and Singular [13]. Such work arrangements typically
include bug trackers, wikis, blogs, and messaging systems which help the developers
to interact and design software collaboratively.

General-purpose features of groupware, including virtual whiteboard, online chat,
e-mail messages, wikis and blogs, also support computer algebra work. VirtualMath-
Teams, an online environment with virtual whiteboard and online chat for collabora-
tivemathematical problem solving provide access to a computer algebra system [72].
Blogs are being used to discuss mathematical and computational problems [26, 52].

4 Proposed Definition and Significance

Work in computer algebra uniquely involves mathematics and computer science by
being concerned “with the development, implementation, and application of algo-
rithms that manipulate and analyze mathematical expressions” [11]. (See also for
an equivalent statement and proposed variants in the German-language article [28]).
That is, the goal of activities in computer algebra is to compute representations of
mathematical objects and to extract information from them [28]. Consequently, col-
laboration in computer algebra has the same unique focus. Due to this particular
aim, collaborators rely on a diverse combination of particular tools which have been
surveyed in Sect. 3, besides basic objects such as paper and pencil. Humans and
their tools form systems as they engage in activities (solving problems of computer
algebra, conducting research, running computations, etc.) Communication in such
systems may occur through personal and direct physical interactions, however, is
often facilitated by computer networks. Emphasizing tools based on computing tech-
nology connected through computer networks, such systems are called cyber-human
systems (CHS) [58].

CHS, in general, are commonly studied in the field of Human–Computer Inter-
action, which is represented by well-known professional societies such as ACM
SIGCHI [71] and IEEEComputer Society [40]. CHSpotentially amplify the capabili-
ties of individuals by allowing people towork together and by allowing humans to off-
load challenging cognitive tasks onto software. These benefits motivate individuals
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to join CHS because they enable them to transcend their individual capabilities. This
feature also motivates CHS as a subject of research.

Hence, I propose the following definition of Collaborative Computer Algebra.

Definition: Collaborative Computer Algebra is concerned with designing, evaluat-
ing, and applying CHS for collaboratively conducting computer algebra. Such CHS
are called Collaborative Computer Algebra Systems.

Therefore, Collaborative Computer Algebra can be viewed as descending from
“symbolic and algebraic manipulation” and from “collaborative and social comput-
ing.” The latter is a sub-category of “Human-centered computing” in the 2012 ACM
Computing Classification System [76] and includes theory, concepts, and paradigms,
such as social networks and computer supported cooperative work, as well as design,
evaluation methods, systems and tools.

5 Human-Centered Computing

Various theoretical frameworks have been developed to study CHS, such as in [2, 6,
21, 29, 61, 62, 65, 85], considered in areas of human-centered computing, including
human–computer interaction. Accordingly, these frameworksmay also be applicable
to studying anddesigningCollaborativeComputerAlgebraSystems, and they include
Activity Theory [22, 49, 83], Actor-Network Theory [46, 56], Distributed Cognition
[37], and, recently, Connectivism [18, 70]. (The term connectivism has been used in
earlier literature [25] which refers to a different notion than [18, 70]).

The following sections survey the basic principles of Activity Theory, Actor-
Network Theory, Distributed Cognition and Connectivism. The surveys are brief
because these frameworks have been extensively reviewed in other works such as
[4, 5, 37, 45, 48, 57].

5.1 Activity Theory

Activity Theory uses the activity as the basic unit of analysis [45, 57]. An activity
is composed of subject, object, actions, and operations. The subject is a person or
group engaged in an activity. The term object represents the objectified motive of an
activity.Actions are conscious goal-directed processes to fulfill the object.Operations
describe the way actions are carried out and can become routinized and unconscious
in the course of an activity.

Activity Theory assumes an asymmetrical relationship between people and things
as the activity is mediated by artifacts, including instruments, signs, language, and
machines, with a particular culture and history which may persist across activities.
The internal context of people engaged in activities and the external context of medi-
ating artifacts are both considered as important and are seen as fused, not to be
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considered independently. Therefore the activity itself is regarded as the compre-
hensive context. The constituents of an activity can change dynamically and the
participating humans may be transformed through engaging in the activity.

Applications of Activity Theory include studies of Lotus Notes groupware [30],
hospital work [3], design of interactive systems [21], e-learning in corporate train-
ing [36], activity recognition in computing systems [68], computer-supported col-
laborative business process modeling [12], and learning analytics in Virtual Math
Teams [87].

5.2 Actor-Network Theory

The components of a network are called actants, which can be humans and non-
humans, including ideas and concepts [4, 48]. Unlike Activity Theory, human and
nonhuman actants are considered symmetrically and not assigned a presupposed role.
The notion of network is more general than computer network and current “social
networks” on the Internet. It encompasses the connectivity of the actants by arbitrary
means and also potential transformations of actants as they pass through the network.

In Actor-Network analyses, actants may be viewed as black boxes, consisting
of sub-networks (punctualization) and actants may be combined to sub-networks
(compartmentalization). Analyses usually identify important actants, uncover how
networks are created, identify how actors are enrolled in (added to) the network,
observe how actors move around the networks, trace interactions, associations, and
alliances between actors and investigate how individual parts come together to form
a whole network.

Applications of Actor-Network Theory include studies of scientific discovery in
research labs [47], e-government in developing countries [29], online communities
[62], online social networks [42], air traffic control [56], mobile media consumption
[44], and sustainable cyberinfrastructure [66].

5.3 Distributed Cognition

Following approaches from cognitive psychology, Distributed Cognition focuses
on representing and processing of information by social groups, including CHS
[37, 57]. It recognizes that, for analyzing cognitive processes, it is not enough to
focus on individuals and that social groups and their environments should be included
in the analysis. Processes may involve coordination between internal and external
(material or environmental) structure (including representation of information), and
may be distributed through time in such a way that the products of earlier events can
transform the nature of later events. Like Actor-Network Theory, people and things
are viewed symmetrically and considered equivalent as information processors.
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The tenets of Distributed Cognition are:

Socially distributed cognition: Cognitive phenomena emerge in social interactions
as well as interactions between people and structure in their environments.

Embodied cognition: The organization of mind is an emergent property of interac-
tions among internal and external resources.

Culture and cognition: The study of cognition is not separable from the study of
culture.

Ethnography of distributed cognitive systems: It is necessary to investigate how
people go about using what they know to do what they do.

Applications include studies of airline cockpit automation [39], air traffic con-
trol [32], laboratory research and learning [60], end-user software engineering [8],
healthcare technology [65], reuse process in collaboration [61], and collective intel-
ligence [31].

5.4 Connectivism

Connectivism [17, 18, 69, 70] aims at providing a theory of learning that is suit-
able for CHS. It studies how CHS learn, how learning of individuals is impacted by
participating in these systems, and how these systems are designed to support learn-
ing. The development of connectivism has been motivated by the desire to explain
learning in Massive Open Online Courses (MOOCs). Consequently, the Internet and
computer networking with their abilities to connect large numbers of individuals,
devices, and software systems are seen as the key technologies that motivate connec-
tivism. However, connectivist principles apply to any CHS of any scale and using any
type of communication mechanism, not necessarily exclusively relying on computer
networking. Accordingly, the main principles of connectivism [70] do not focus on
computer networks and rather talk about connecting, by some unspecified mecha-
nisms, nodes which are implied to include humans, devices, or, more generally, any
information sources.

The principles of connectivism are:

• Learning and knowledge rest in diversity of opinions.
• Learning is a process of connecting specialized nodes or information sources.
• Learning may reside in nonhuman appliances.
• Capacity to know more is more critical than what is currently known.
• Nurturing and maintaining connections is needed to facilitate continual learning.
• Ability to see connections between fields, ideas, and concepts is a core skill.
• Currency (accurate, up-to-date knowledge) is the intent of all connectivist learning
activities.

• Decision-making is itself a learning process. Choosingwhat to learn and themean-
ing of incoming information is seen through the lens of a shifting reality. While
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there is a right answer now, it may be wrong tomorrow due to alterations in the
information climate affecting the decision.

Connective knowledge is one of the theoretical pillars of connectivism which
is the kind of knowledge that emerges in a CHS through the connectedness of its
participants [17, 18]. In general, this knowledge is distributed across the CHS and,
as a whole, it does not necessarily reside in any single participant, whether human
or nonhuman. Downes [17] states that connective knowledge is knowledge of the
interaction among the participants. Therefore the nature of the connectivity and
the types of interactions of the participants, as the system evolves over time, can
also contribute to the system’s knowledge. One of the open questions relating to
connectivism is how precisely connective knowledge emerges in CHS [4], and it has
been postulated that learning of CHS is analogous to connectionist learning of neural
networks [4, 17, 18].

Connectivism and its principles have been studied and applied in various contexts,
such as distributed professional learning communities [67], workplace learning and
e-learning [75], use of theWEB in education [5], information literacy [20], and social
media [79].

5.5 Classification and Comparison

Activity Theory, Actor-Network Theory, Distributed Cognition and Connectivism
can be classified according to different properties, namely, date of emergence, sta-
tus of human participants of CHS and whether they are scientific theories. Activ-
ity Theory has the longest history of development going back to the 1920’s [57].
The emergence of Actor-Network Theory, Distributed Cognition and Connectivism
respectively date to the 1980’s [48], 1980’s [38] and 2000’s [18, 70]. Activity The-
ory assigns a special role to humans participating in CHS, whereas the other cited
frameworks, Distributed Cognition, Actor-Network Theory and Connectivism, do
not impose a special significance on human as opposed to nonhuman components
of CHS [48, 57, 70]. A scientific theory of a class of phenomena needs to be pre-
dictive, that is, allow to formulate testable hypotheses, and not only describe the
phenomena [64]. Distributed Cognition is a scientific theory of the organization of
cognitive systems [38]. Activity Theory is not a theory, that is, not a “fixed body
of accurately defined statements” [45]. Actor-Network Theory is only descriptive
and not a scientific theory despite its name [48]. There have been debates whether
Connectivism is a scientific theory [5] because it seems to lack testable hypotheses,
even though its foundational literature [18, 70] presents it as a theory.

These frameworks can be individually used to study CHS, and some promote
that combining some of them may lead to deeper insights for the functioning and
design of CHS, such as Activity Theory and Distributed Cognition [57], Actor-
Network Theory and Distributed Cognition [56], Activity Theory and Connectivism
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[7], or Actor-Network Theory and Connectivism [4]. Additionally, [33] argues that
both Activity Theory and Distributed Cognition are useful for, however, individually
insufficient as theoretical foundations of computer supported collaborative work.

6 Discussion

The proposed definition of Collaborative Computer Algebra in Sect. 4 naturally leads
to the questions:What is the state of the art of this area?What are the open problems?
What may be the impact of solutions? Let us consider theory, social networks, sys-
tems, tools, design and evaluation methods, sub-fields of the area of “Collaborative
and social computing” mentioned in Sect. 4 and, subsequently, address the wider
context of computation in mathematics.

Section 5 proposes several frameworks that have the potential to form the theo-
retical foundations, considering that they are widely employed in human-centered
computing. However, their practical applicability in the context of computer algebra
still needs to be demonstrated.

The SymbolicData project [27, 35], presented at ACA 2015, is developing a
social network for computer algebra, Computer Algebra Social Network (CASN).
It incorporates Semantic Web technology [23] to share data and to run benchmarks,
addressing important communal needs. Since this project has only emerged over
recent years, theCASN still needs to grow, andwork is ongoing to expand its features,
such as adding more data.

Section 3 reviews some systems and tools commonly used to collaborate in com-
puter algebra. Additionally, the formulae system [80], presented at ACA 2015, is
being designed to facilitate collaborative implementations of symbolic computa-
tion packages. However, to date, there is no integrated system that supports the
whole range of work in computer algebra, when people collaborate, frommathemat-
ical discoveries, algorithm design, implementation, evaluation and documentation to
applications.

Workflow management systems for natural science have been motivated by the
need to connect and coordinate large working groups and disparate groups of col-
laborators [9, 15, 24] and to document their work. So far, in symbolic computation,
workflow management has only been studied for distributed computations, that is,
symbolic grid services [9]. However, a system has yet to emerge to manage the work-
flows of human collaboration in computer algebra, which could potentially make
collaborations more efficient or make it easier to scale the number of collaborators
significantly beyond single digit numbers, illustrated in Sect. 2.1.

Evaluations of existing systems for collaboration can motivate improvements
and encourage and inform the design of new systems. To date, there have not been
any systematic evaluation studies of collaboration in computer algebra. Potentially,
methods from Computer Supported Collaborative Work [59] could be adopted to
evaluate Collaborative Computer Algebra Systems.
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Additionally, let us consider the wider context of mathematical computation.
Recognizing that other computational areas of mathematics are related to computa-
tional algebra, the term Computer Mathematics has emerged to denote a larger field
which includes Computer Algebra. In 1995, Grabmeier [28] proposed a definition of
ComputerMathematics by adding other computational domains such as numeric, sta-
tistical, combinatorial, and graph-theoretical computations. (This definition differs
from the usage by International Journal of Computer Mathematics [41], first pub-
lished in 1964, referring to computer systems theory and computational mathematics
and its applications). Furthermore, Conference on Intelligent ComputerMathematics
(CICM) which promotes the advancement of “machine-supported reasoning, com-
putation, and knowledge management in Science, Technology, Engineering, and
Mathematics” [10] implicitly expands Computer Mathematics by adding machine-
supported reasoning and knowledge management. By this extension, the need for
collaborative work arises in these areas as in Computer Algebra.

Definition: Basing on CICM’s notion of Intelligent Computer Mathematics, I define
Collaborative Computer Mathematics analogously to the definition of Collaborative
Computer Algebra from Sect. 4. (The adjective Intelligent has not been included in
the name for the sake of brevity). Therefore, Collaborative Computer Mathematics
relies on human-centered computing like Collaborative Computer Algebra and con-
sequently is expected to be impacted by analogous concerns and research problems.
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States and Channels in Quantum Mechanics
Without Complex Numbers

J.A. Miszczak

Abstract In the presented work, we aim at exploring the possibility of abandon-
ing complex numbers in the representation of quantum states and operations. We
demonstrate a simplified version of quantum mechanics in which the states are rep-
resented using real numbers only. The main advantage of this approach is that the
simulation of the n-dimensional quantum system requires n2 real numbers, in con-
trast to the standard case where n4 real numbers are required. The main disadvantage
is the lack of hermicity in the representation of quantum states. UsingMathematica
computer algebra system we develop a set of functions for manipulating real-only
quantum states. With the help of this tool, we study the properties of the introduced
representation and the induced representation of quantum channels.

Keywords Quantum states · Random density matrix · Quantum mathematics

1 Introduction

Quantum information theory aims at harnessing the behavior of quantum mechan-
ical objects to store, transfer and process information. This behavior is, in many
cases, very different from the one we observe in the classical world [8]. Quantum
algorithms and protocols take advantage of the superposition of states and require
the presence of entangled states. Both phenomena arise from the rich structure of
the space of quantum states [1]. Hence, to explore the capabilities of quantum infor-
mation processing, one needs to fully understand this space. Quantum mechanics
provides us also with much larger allowed operations than in classical case space. It
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can be used to manipulate quantum states. However, the exploration of the space of
quantum operations is fascinating, but a cumbersome task.

Functional programming is frequently seen as an attractive alternative to the tradi-
tionalmethods used in scientific computing,which are basedmainly on the imperative
programming paradigm [4]. Among the features of functional languages whichmake
them suitable for the use in this area is the easiness of execution of the functional
code in the parallel environments.

During the past few years Mathematica computing systems have become very
popular in the area of quantum information theory and the foundations of quantum
mechanics. Themain reason for this is its ability tomerge the symbolic and numerical
capabilities, both of which are often necessary to understand the theoretical and
practical aspects of quantum systems [3, 5, 10, 11].

In this paper, we utilize the ability tomerge symbolical and numerical calculations
offered byMathematica to investigate the properties of the variant of quantum theory
based on the representation of densitymatrices built using real-numbers only.We start
by introducing the said representation, including theMathematica required functions.
Next, we test the behavior of selected partial operations in this representation and
consider the general case of quantumchannels acting on the space of real-only density
matrices. In the last part, we provide some insight into the spectral properties of the
real-only density matrices. Finally, we provide the summary and the concluding
remarks.

1.1 Preliminaries

In quantum mechanics the state is represented by positive semidefinite, normalized
matrix. In the following, we focus on this property as it is crucial for the properties of
quantum states and channels. To be more specific, we aim at using symbolic matrix
which is Hermitian. Using the symbolic capabilities of Mathematica they can be
expressed as

SymbolicDensityMatrix[a_, b_, d_] := Array[
If[#1 < #2, a#1,#2 + I b#1,#2 , If[#1 > #2, a#2,#1 − I b#2,#1 , a#1,#2 ]] &, {d, d}]

In the above definition slots a_ and b_ are used to specify the symbols used to
denote the real and the imaginary parts of the matrix elements.

Additionally one has to take into account the fact that symbols a_{i, j} and b_{i, j}
represent real numbers. This fact is useful during the simplifications in the formulas
and can be expressed using the function

SymbolicDensityMatrixAssume [ a_ , b_ , d_ ] :=
$Assumptions = Map[Element [# , Reals ] &,

Flatten [ Join [
Table [ai, j , { i , 1 , d} , { j , i , d } ] , Table [bi, j , { i , 1 , d} , { j , i +1 , d}]

] ]
]
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It is easy to see that the normalization condition can be easily added to the list
of assumptions. However, the conditions for the positivity, e.g. in the form of the
positivity conditions for the principal minors, are more complicated [2, Chap. 1].

One should note that, in order to utilize the hermicity conditions for a matrix
defined using function SymbolicDensityMatrix, is it necessary to execute function
SymbolicDensityMatrixAssume with the same symbolic arguments.

Another function useful for the purpose of analyzing the operation on quantum
states is SymbolicMatrix function defined as

SymbolicMatrix[a_ , d1_, d2_] := Array[Subscript[a , #1, #2] &, {d1, d2}]

Using Flatten function in combination withMapwe can impose a list of assump-
tions on the elements of the symbolic matrix. For example, if one needs to ensure
that the elements of the matrix mA are real, this can be achieved as

mA = SymbolicMatrix [ a , 2 , 2 ] ;
$Assumptions = Map[Element [ # , Reals ] &, Fla t t en [mA] ]

2 Using Real Density Matrices

Clearly, the representation of the density used in Sect. 1.1 is redundant as the off-
diagonal element ai, j + ibi, j is conjugate to a j,i − ib j,i . Using this observation, we
can represent any density matrix as a real matrix with elements defined as

R[ρ]i j =
{

Reρi j i ≤ j
−Imρi j i > j

. (1)

The above definition can be translated into Mathematica code as

ComplexToReal[denMtx_] := Block[{d = Dimensions[denMtx][[1]]} ,
Array[ If[#1 <= #2, Re[denMtx[[#1 , #2]]] , − Im[denMtx[[#1 , #2]]]] &, {d, d}]]

Thus, for a given densitymatrix, describing d-dimensional systemwe get amatrix
with n2 real elements, instead of a matrix with n2 complex (or n4 real) elements.
Note, that these numbers can be reduced during the simulation due to the positivity
and normalization conditions, but this requires distinguishing between diagonal and
off-diagonal elements.

In the following, we denote the map defined by the ComplexToReal function as
R[·]. One should note that R : Mn(C) �→ Mn(R). However, we will only consider
multiplication by real numbers as it does not affect the hermicity of the density
matrix.

The real representation of a density matrix contains the same information as the
original matrix. As such it can be used to reconstruct the initial density matrix.

Assuming that realMtx represents a real matrix obtained as a representation of
the density matrix one can reconstruct the original density matrix as
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RealToComplex[realMtx_] := Block[{d = Dimensions[realMtx][[1]]} ,
Array[ If[#1 < #2, realMtx[[#1 , #2]] + I realMtx[[#2 , #1]] ,

If[#1 > #2, realMtx[[#2 , #1]] − I realMtx[[#1 , #2]] ,
realMtx[[#1 , #2]]]] &, {d, d}]

]

The map defined by the function RealToComplex will be denoted as C[·]. It is
easy to see that for any ρ we have R[C[ρ]] = ρ.

One can also see that mapsR and C are linear if one considers the multiplication
by real numbers only. Thus, it can be represented as a matrix on the Hilbert–Schmidt
space of density matrices. Using this representation one gets

R[ρ] = res−1 (MR res(ρ)) (2)

where res is the operation of reordering elements of the matrix into a vector [6].
The introduced representation can be utilized to reduce the amount of memory

required during the simulation. For the purpose of modelling the discrete time evo-
lution of quantum system, one needs to transform the form of quantum maps into
the real representation. For a map Φ given as a matrix MΦ one obtains its real
representation as

MR[Φ] = MRMΦMC (3)

One can see that this allows the reduction of the number of multiplication operations
required to simulate the evolution.

3 Examples

Let us now consider some examples utilizing maps R and C. We will focus on the
computation involving symbolic manipulation of states and operations. Only in the
last example, we use the statistical properties of density matrices which have to be
calculated numerically.

3.1 One-Qubit Case

In the simplest case of two-dimensional quantum system, the symbolic densitymatrix
can be obtained as

SymbolicDensityMatrix[a , b, 2]

which results in (
a1,1 a1,2 + ib1,2

a1,2 − ib1,2 a2,2

)
. (4)
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The list of assumptions required to forceMathematica to simplify the expressions
involving the above matrix can be obtained as

SymbolicDensityMatrixAssume[a , b, 2]

which results in storing the following list

{a1,1 ∈ Reals , a1,2 ∈ Reals , a2,2 ∈ Reals , b1,2 ∈ Reals}

in the global variable $Assumptions.
InMathematica the application of map R on the above matrix results in

(
Re

(
a1,1

)
Re

(
a1,2

) − Im
(
b1,2

)
Re

(
b1,2

) − Im
(
a1,2

)
Re

(
a2,2

)
)

, (5)

where Re and Im are the functions for taking the real and the imaginary parts of the
number. Only after using function FullSimplify one gets the expected form of the
output (

a1,1 a1,2
b1,2 a2,2

)
. (6)

In the one-qubit case, it is also easy to check that map R is represented by the
matrix

M (2)
R = 1

2

(
2 0 0 0
0 1 1 0
0 −i i 0
0 0 0 2

)
. (7)

The matrix representation of the map C reads

M (2)
C = (M (2)

R )−1 =
(

1 0 0 0
0 1 i 0
0 1 −i 0
0 0 0 1

)
. (8)

The above consideration can be repeated and in the case of three-dimensional
quantum system the matrix representation of theR map reads

M (3)
R = 1

2

⎛
⎜⎜⎜⎝

2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 −i 0 i 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 −i 0 0 0 i 0 0
0 0 0 0 0 −i 0 i 0
0 0 0 0 0 0 0 0 2

⎞
⎟⎟⎟⎠ . (9)

3.2 One-Qubit Channels

The main benefit of the real representation of density matrices is the smaller number
of multiplications required to describe the evolution of the quantum system.

To illustrate this, let us consider a bit-flip channel defined by Kraus operators
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{(√
1 − p 0
0

√
1 − p

)
,

(
0

√
p√

p 0

)}
, (10)

or equivalently as a matrix

M (2)
BF =

(
1−p 0 0 p
0 1−p p 0
0 p 1−p 0
p 0 0 1−p

)
. (11)

The form of this channel on the real density matrices is given by

M (2)
R M (2)

BFM
(2)
C =

(
1−p 0 0 p
0 1 0 0
0 0 1−2p 0
p 0 0 1−p

)
. (12)

This map acts on the real density matrix as

(
pa2,2 − (p − 1)a1,1 a1,2

(1 − 2p)b1,2 pa1,1 − (p − 1)a2,2

)
. (13)

One should note that in Mathematica the direct application of the map R on the
output of the channel, ie. MRMBF res ρ, results in

(
Re

(
pa2,2 − (p − 1)a1,1

)
a1,2 + 2Im(p)b1,2

(1 − 2Re(p))b1,2 Re
(
pa1,1 − (p − 1)a2,2

))
(14)

In order to get the simplified result, one needs to explicitly specify assumptions
p ∈ Reals. This is important if one aims at testing the validity of the symbolic
computation, as without these assumptionsMathematica will not be able to evaluate
the result.

3.3 Werner States

As the first example of the quantum states of the composite system, let us use the
Werner states defined for two-qubit systems as

W (a) =

⎛
⎜⎜⎝

a+1
4 0 0 a

2
0 1−a

4 0 0
0 0 1−a

4 0
a
2 0 0 a+1

4

⎞
⎟⎟⎠ . (15)

The partial transposition transforms W (a) as
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W (a)TA =

⎛
⎜⎜⎝

a+1
4 0 0 0
0 1−a

4
a
2 0

0 a
2

1−a
4 0

0 0 0 a+1
4

⎞
⎟⎟⎠ (16)

and this matrix has one negative eigenvalue for a > 1/3, which indicates a presence
of quantum entanglement.

In this case, the real representation of quantum states reduces one element from
the W (a) matrix and we get

R[W (a)] =

⎛
⎜⎜⎝

a+1
4 0 0 a

2
0 1−a

4 0 0
0 0 1−a

4 0
0 0 0 a+1

4

⎞
⎟⎟⎠ . (17)

This matrix has eigenvalues

{
1 − a

4
,
1 − a

4
,
a + 1

4
,
a + 1

4

}
(18)

and we have that the sum of smaller eigenvalues is greater than the larger eigenvalue
for a > 1/3.

3.4 Partial Transposition

Another important example related to the composite quantum systems is the case of
partial quantum operations. Such operations arise in the situation when one needs to
distinguish between the evolution of the system and the evolution of the same system
treated as a part of a bigger subsystem.

Let us consider the partial transposition of the two-qubit density matrix

ρ = SymbolicDensityMatrix[x, y, 4]

which is given by

ρTA =

⎛
⎜⎜⎝

x1,1 x1,2 + iy1,2 x1,3 − iy1,3 x2,3 − iy2,3
x1,2 − iy1,2 x2,2 x1,4 − iy1,4 x2,4 − iy2,4
x1,3 + iy1,3 x1,4 + iy1,4 x3,3 x3,4 + iy3,4
x2,3 + iy2,3 x2,4 + iy2,4 x3,4 − iy3,4 x4,4

⎞
⎟⎟⎠ (19)

One can easily check that in this case
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R[ρTA ] =

⎛
⎜⎜⎝

x1,1 x1,2 x1,3 x2,3
y1,2 x2,2 x1,4 x2,4

−y1,3 −y1,4 x3,3 x3,4
−y2,3 −y2,4 y3,4 x4,4

⎞
⎟⎟⎠ (20)

and

(R[ρ])TA =

⎛
⎜⎜⎝
x1,1 x1,2 y1,3 y2,3
y1,2 x2,2 y1,4 y2,4
x1,3 x1,4 x3,3 x3,4
x2,3 x2,4 y3,4 x4,4

⎞
⎟⎟⎠ (21)

and thus
R[ρTA ] �= (R[ρ])TA . (22)

For this reason one cannot change the order of operations. However, the explicit form
of the partial transposition on the real density matrices can be found by representing
operation of partial transposition as a matrix [6],

ChannelToMatrix[PartialTranspose[# , {2, 2}, {1}] &, 4]

and using Eq. (3).
One should note that this method can be used to obtain an explicit form of any

operation of the formΦ ⊗ 1, where1denotes the identity operation of the subsystem.

3.5 Partial Trace

The second important example of a partial operation is the partial trace. This operation
allows obtaining the state of the subsystem.

For two-qubit density matrix we have

trAρ =
(

x1,1 + x3,3 x1,2 + x3,4 + i
(
y1,2 + y3,4

)
x1,2 + x3,4 − i

(
y1,2 + y3,4

)
x2,2 + x4,4

)
. (23)

One can verify that the operation of tracing-out the subsystem commutes with the
map R and in this case we have

C[trAR[ρ]] = trAρ. (24)

Thus, one can calculate the reduced state of the subsystem using the real value
representation.
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3.6 Random Real States

In this section, we focus on the statistical properties of the matrices representing real
quantum states. The main difficulty here is that, in contrast to the random density
matrices, real representations can have complex eigenvalues.

Random density matrices play an important role in quantum information theory
and they are useful in order to obtain information about the average behavior of quan-
tum protocols. Unlike the case of pure states, mixed states can be drawn uniformly
using different methods, depending on the used probability measure [1, 7, 9].

One of the methods is motivated by the physical procedure of tracing-out a sub-
system. In a general case, one can seek a source of randomness in a given system,
by studying the interaction of the n-dimensional system in question with the envi-
ronment. In such situation, the random states to model the behaviour of the system
should be generated by reducing a pure state in N × K -dimensional space. In what
follows we denote the resulting probability measure by μN ,K .

Using Wolfram language, the procedure for generating random density matrices
with μN ,K can be implemented as

RandomState[n_ , k_] := Block [{gM} ,
gM = GinibreMatrix [n , k ] ;
Chop[# /Tr [# ] ] &@(gM.ConjugateTranspose [gM] )

]

where function GinibreMatrix is defined as

GinibreMatrix[n_, k_] := Block[{dist } ,
dist = NormalDistribution[0 ,1];
RandomReal[ dist ,{n,k}] + I RandomReal[ dist ,{n,k}]

]

3.7 Spectral Properties

In the special case of K = N we obtain the Hilbert–Schmidt ensemble. The distrib-
ution of eigenvalues for K = N = 4 (i.e. Hilbert–Schmidt ensemble for ququart) is
presented in Fig. 1.

The real representation for theHilbert–Schmidt ensemble for one ququart consists
of matrices having four eigenvalues. Two of these values are complex and mutually
conjugate (see Fig. 2).

3.7.1 Form of the Resulting Matrix Elements

Using SymbolicMatrix function one can easily analyze the dependency of the ele-
ments of the resulting matrix on the element of the Ginibre matrix.
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Fig. 1 Distribution of eigenvalues for 4-dimensional randomdensitymatrices distributed uniformly
with Hilbert–Schmidt measure for the sample of size 104. Each color (and contour style) correspond
to the subsequent eigenvalue, ordered by their magnitude
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Fig. 2 Distribution of eigenvalues for 4-dimensional randomdensitymatrices distributed uniformly
with Hilbert–Schmidt measure for the sample of size 104. Eigenvalues were ordered according to
their absolute value
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For the sakeof simplicitywedemonstrate this onone-qubit states from theHilbert–
Schmidt ensemble. In this case, the Ginibre matrix can be represented as

mA = SymbolicMatrix[a , 2, 2];
mB = SymbolicMatrix[b, 2, 2];
m2 = mA + I mB

The resulting density matrix has (up to the normalization) elements given by the
matrix

m2.ConjugateTranspose[m2] .

In this case, the real representation is given by

(
q1,1 q1,2
q2,1 q2,2

)
, (25)

with
q1,1 = a21,1 + a21,2 + b21,1 + b21,2,

q1,2 = a1,1a2,1 + a1,2a2,2 + b1,1b2,1 + b1,2b2,2,

q2,1 = a2,1b1,1 + a2,2b1,2 − a1,1b2,1 − a1,2b2,2,

q2,2 = a22,1 + a22,2 + b22,1 + b22,2.

(26)

Here ai, j and bi, j are independent random variables used in the definition of the
Ginibre matrix.

From the above, one can see that the elements of the density matrix resulting from
the procedure for generating random quantum states are obtained as a product and
a sum of the elements of real and imaginary parts of the Ginibre matrix. In the case
of density matrices, the normalization imposes the condition q1,1 = 1 − q2,2. Thus,
one can also see that the elements are not independent.

4 Final Remarks

In this work, we have introduced a simplified version of quantum states’ represen-
tation using the redundancy of information in the standard representation of density
matrices. Our aim was to the find out if such representation can be beneficial from
the point of view of the symbolic manipulation of quantum states and operations.

To achieve this goal we have usedMathematica computing system to implement
the functions required to operate on real quantum states and demonstrated some
examples where this representation can be useful from the computational point of
view. Its main advantage is that it can be used to reduce the memory requirements
for the representation of quantum states. Moreover, in some particular cases where
the density matrix contains only real numbers, the real representation reduces to the
upper triangular matrix.
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The real representation can be also beneficial for the purpose of modelling quan-
tum channels. Here, its main advantage is that it can be used to reduce the number of
multiplications required during the simulation of the discrete quantum evolution. As
a particular example, we have studied the form of partial quantum operations in the
introduced representation. In the case of the partial trace for the bi-bipartite system,
the introduced representation allows the calculation of the reduced dynamics using
the real representation only.

Unfortunately, the introduced representation poses some disadvantages. Themain
drawback of the introduced representation is the lack of hermicity of real density
matrices. This makes the analysis of the spectral properties of real quantum states
much more complicated.
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Double Hough Transform for Estimating
the Position of the Mandibular Canal
in Dental Radiographs

Darian Onchis-Moaca, Simone Zappalá, Smaranda Laura Goţia
and Pedro Real

Abstract In this work, amultiple generalized anisotropic Hough transform (AGHT)
is used to detect themandibular canal in dental panoramic radiographs. The proposed
method relies on a sequential application of the Hough transform that we call double
Hough transform. The recognition of the mandibular canal is based on a double
templatematching comparedwith the clinical detectionusing the fact that the shapeof
themandibular canal is usually the same and it is situated inside themandibular bone.
The experiments performed on real orthopantomographic images shown that the risk
of false detection is significantly decreased, while the recognition is not affected by
occlusion and by the presence of additional structures, e.g., teeth, projection errors.
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1 Introduction

From a clinical point of view, the marking of the mandibular canal is useful in
detecting the nerve for inferior teeth called inferior dental nerve,which is found inside
it. While there are many research studies trying to visually identify the mandibular
canal, e.g., [1, 7, 9] or to mark the canal by searching the whole image, like in [11],
in this paper, we propose a double application of the generalized anisotropic Hough
transform, first used to detect a part of the mandibular bone and to restrict the search
area, followed by second application in the detection for marking the mandibular
canal. This procedure decreases the risk of false detection of the mandibular canal
by focalizing on the exact area where the canal is situated. The method is based
on template matching of a shape which can be found in other zones of the dental
radiography, representing other anatomical features.

The the Hough transform is a popular technique to extract features from an
image. Themethodwas patented in 1962 [5] for the detection of lines in photographs.
The functioning of the algorithm lies in a proper choice of the parameters space for
the set of lines on the plane [6].

In order to develop amethod for the recognition of a generic template in an image,
[2] used the following parameters for a shape:

a = {y, S, θ} (1)

where y = (xr , yr ) is a reference point to represent the translations, S = (
Sx , Sy

)

are scale values for the orthogonal shearing deformations, and θ is an angle that
represents the rotations.

The reference point y is described in terms of a table, called the R-table of the
template, of possible edge pixel orientations. The other parameters are described in
terms of transformations of the aforementioned table.

The key for generalizing the Hough transform is to use the directional infor-
mation. Given a template, i.e., a set of boundary points {xB}, a reference point y
is chosen. After the discretization of the straight angle through a uniform partition
{0,Δt, 2Δt, . . . , NΔt}, for every boundary point the tangent directionφ(xB) is com-
puted, then r = y − xB is stored in the nth bin of the R-Table if mod (φ(xB), π) ∈
[(n − 1)Δt, nΔt) as in [11]. Given this simple structure, with the use of rotation and
shearing operators, i.e. rotθ and de fS, we can build the following procedure to detect
the template in the set of edge points of any image.
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Data: IMG: Image
R-T: R-Table of a template
{(S, θ)}: Set of scale and rotation parameters
WHERE:subregion of IMG
Result: Pattern Localization

Compute (xe, φ(xe)) edge points and their gradient;
for each (S, θ) do

for each xe do
Find nΔt s.t. de fS(rotθ (φ(xe))) ∈ nΔt ;
for each r ∈ nΔ do

Compute y′
(S,θ) = xe + de fS(rotθ (r)) ;

if y′ ∈WHERE then
Report an occurrence of y′

(S,θ).
end

end
end
Select y(S,θ) with higher occurrence ;

end
return y with higher occurrence;

Algorithm 1: Hough_Recognition
In this way, we find the edge point that satisfy the non-analytic version of

f (x, a) = 0 (2)

and

∂ f

∂x
(x, a) = 0 (3)

The space of occurrences for the reference point is called Accumulator Space.
Regarding complexity concerns of the algorithm, we point out that all of the 3 nested
for loops could be parallelised.

2 The Recognition Procedure

Problems with AGTH recognition may arise when we have to deal with real images
which could be corrupted by noise. That is the case of radiographywhere the structure
of a bone is not well defined and where some part of the bone which can be disguised
with unwanted details.

The position of the mandibular canal is described by medical indications as fol-
lows: the canal starts at the mandibular foramen in the middle part of the vertical
ramus. It continues through the mandibular bone and ends in the menton foramen
between apexes of the two inferior premolars.



320 D. Onchis-Moaca et al.

Fig. 1 Typical panoramic radiography

With this indicaton we can roughly compare the position of the canal against the
barycenter of the mandible. This is how the doctor’s mind work, by focusing on the
interest area representing the horizontal ramus of the mandibular bone (first Hough
transform) and recognizing a pattern which represents the mandibular canal (second
Hough recognition). This is the algorithm that we want to mimic.

As shown below, the shape of the canal can become misleading if we analyze
radiograph of a patient who has lost some teeth.

Any surgical intervention in the mandibular area must prevent any nerve injury.
The injury of the nerve would result in prolonged local and lower lip anesthesia for
a minimum period of six weeks. Estimating the position of the mandibular canal
means knowing the position of the nerve and by this the surgeon can estimate the
risks and to adapt the surgical procedure to the individual case.

In our test, we used Fig. 1 to extract the template of the canal. The recognition
performs well on the same panoramic radiography as it can be seen in Fig. 4, but the
aforementioned image is in a critical situation: the patient has only one molar on the
right part of the mandible.

When the mandible is edentated, without any further restriction, the canal could
not be recognized anymore because the AGHT algorithm matches the template in
Fig. 2 with the top part of the alveolar process, the part of the bone where the teeth
should be. It happens because the process is detected with a thicker edge than the
canal, but has the same gradient direction and shape, so in the recognition process it
will have more importance. This undesired, unavoidable, matching has been soften
by using the modulus-π direction of the gradient: the canal, as modeled in Fig. 2,
looks like the empty space in an edentated mouth; by using the modulus we remove
every information about the inside-outside of the model. This seems the best choice
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Fig. 2 Canal and its contour

for the case of themandibular canal, a poorly defined region of themandible enclosed
by a slightly brighter contour.

This problem is related to how the AGHT is implemented: one of the weakness of
this transform is that the accumulation space does not carry any information about
the position in space of the template nor the mutual relation of different shape in the
image. We identify two ways to overcome this problem:

• Manual solution: the user should restrict the area to be investigated manually
through anatomical information given beforehand.

• Double-automatic solution: after a first, coarse and less accurate search for the
mandible template through AGHT, the area to be investigated for the mandibular
canal is automatically restricted.

We used the second method as described in the sequel.

3 The Double Hough Transform Method

The canal template described in Sect. 2 has the following characteristics: it is a
connected, compact and simply connected region of the plane. Therefore, after the
binarization of the template, we can run a contour-following algorithm to detect the
boundary points. This way, one could reach the first purpose for the proposed pattern
recognition: to obtain an easy manipulable set of data samples.

The sorted array of boundary point that we obtain through a contour-following
algorithm is well suited for the double Hough transform. As mentioned before, we
do not need an accurate detection of the mandible, because this pattern belongs to
the high level set of structure in the hierarchy of the image. In this way we can easily

• Compute the gradient of a boundary point knowing its neighborhood
• Subsample the high level templates in a set of equally spaced point
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The same technique cannot be applied directly to a panoramic radiograph. Edge
points of are the result of an high pass filter applied to the image.

We find out that common edge detector filters such as Canny, Sobel, etc., fail.
Radiographs are spurious images which contain a great amount of unwanted details.
So, we concentrated our work on the choice of the good parameters for the detection
of the edges of the teeth (for a good survey see [4]). This means the proper choice
of the variance in the Gaussian filter and the threshold parameter [10].

The processes of low-pass filtering and thresholding, cancel the mandibular canal
from the image; so we have to create an ad hoc method for detecting the edges. It
can be seen from Fig. 1 that mandibular canals are drawn by two bright gray curved
lines in a darker gray background; the good point is that the orientation of the canal
is steady. Therefore, the natural idea is to use a high-pass anisotropic filter mask
adjusted on the shape of the mandibular canal.

To calculate the gradient needed in the implementation of the AGHT, we used
a Sobel mask for both the boundary and the edge points to have consistency in the
calculation.

After the calculation of the barycenter of the template, for the construction of the
R-table we chose to store r = y − xB in Cartesian coordinates to follow the natural
discretization introduced by an image. This also helps us to understand the worst-
case scenario: after the recognition process the accumulator space will be a matrix
with the same dimension of the image so we could print it on screen in grayscale
to understand how the error spread and which other shape can be disguised as a
mandibular canal.

We increment the accumulator space as in [11] and we use the Gabor transfrom
[3, 8] to rank it.

The last remark should be about the parameters expressed in (1). We have not
used the rotational parameter θ inasmuch as every panoramic radiography is taken
with the patient’s head fixed. The important parameter is S = (

Sx , Sy
)
which helps

us to reconstruct the anatomical difference among human beings. In this way, it is
possible to find the best deformed version of the template in Fig. 2 that matches the
canal in the panoramic radiography under analysis.

We sum up in Algorithm 2 all the remarks we expressed in the previous section.
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Data: IMG: Image
TMP_C: Mandibular Canal
TMP_M: Mandible
{(SCx , SCy )} Possible Canal Scales
{(SM

x , SM
y )} Possible Mandible Scales

Result: Template Localization

{xM
B }=Contour-Following(TMP_M);

R-T_M = R-Table_Build(subsample({xM
B }));

yM=Hough_Recognition(IMG,R-T_M,{(SM
x , SM

y )},IMG);
Select A_M an Area around yM ;

{xCB}=Contour-Following(TMP_C);
R-Table_C = R-Table_Build({xCB});
yC=Hough_Recognition(IMG,R-T_C,{(SCx , SCy )},A_M);
return yC

4 Results

In this section, we present the experimental results of the proposed algorithm.
The first test is to search for the template extracted from Fig. 1 in the same image.

The overlapping is perfect evenwithout the double technique. The same argument can
be brought forward for the flipped template, since there is no significant anatomical
difference between the left and the right side of the same patient.

Fig. 3 Accumulator space for canal recognition
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Fig. 4 Perfect matching of the template on the original image. Optimal matching of the flipped-left
template

Fig. 5 Accumulator space for mandibular canal. Restriction to bottom-left part of picture 6

The approach proposed in this paper is based on a Double Hough transform,
named in this way because it searches for the whole mandible to find the area of
interest, then the AGHT recognition process for the canal is performed.

This process is possible because the canal lies in the center of the mandible,
so their reference points (their barycenters) are really close. After the detection of
reference points for the mandible yM = (xM , yM), we force the reference points of
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Fig. 6 Hough recognition without area restriction

Fig. 7 Accumulator space for mandibular canal. Double Hough restriction

the canal to be in the square window [xM − 50, xM + 50] × [xM − 50, xM + 50],
with underlining unit of measure the pixel (Figs. 6, 8).

It is easily observed in the Fig. 9 that if the patient has all his teeth, the area-
restriction process is not mandatory for the canal recognition.
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Fig. 8 Double Hough solution through area restriction

Fig. 9 Recognition of the template in Fig. 2 with scale parameters
(
Sx , Sy

) = (1.1, 1.15)

5 Conclusions

In this work, we used the double AGHT for the detection of the mandibular canal in
a panoramic radiograph. We had to deal with different shapes which can be mistaken
with each other, such as the top of the mandible and the mandibular canal (Figs. 3,
4, 5, 6, 7, 8, 9).

We wanted to restrict the area to be analyzed using medical information with an
automatic strategy.
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Therefore, we used an automatic selection based on the mutual relation of different
patterns in an image.
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Simple and Nearly Optimal Polynomial
Root-Finding by Means of Root Radii
Approximation

Victor Y. Pan

Abstract We propose a new simple but nearly optimal algorithm for the approxi-
mation of all sufficiently well isolated complex roots and root clusters of a univariate
polynomial. Quite typically the known root-finders at first compute some crude but
reasonably good approximations to well-conditioned roots (that is, those well iso-
lated from the other roots) and then refine the approximations very fast, by using
Boolean time which is nearly optimal, up to a polylogarithmic factor. By combining
and extending some old root-finding techniques, the geometry of the complex plane,
and randomized parametrization, we accelerate the initial stage of obtaining crude
approximations to all well-conditioned simple and multiple roots as well as to all
isolated root clusters. Our algorithm performs this stage at a Boolean cost dominated
by the nearly optimal cost of the subsequent refinement of these approximations,
which we can perform concurrently, with minimum processor communication and
synchronization. Our techniques are quite simple and elementary; their power and
application range may increase in their combination with the known efficient root-
finding methods.

Keywords Polynomials · Root-finding · Root isolation · Root radii
1 Introduction

1.1 The Problem and Our Progress

We seek the roots x1, . . . , xn of a univariate polynomial of degree n with real or
complex coefficients,
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p(x) =
n∑

i=0

pi x
i = pn

n∏

j=1

(x − x j ), pn �= 0. (1)

This classical problem is four millennia old, but is still important, e.g., for Geomet-
ric Modeling, Control, Robotics, Global Optimization, Financial Mathematics, and
Signal and Image Processing (cf. [8, Preface]).

Quite typically a fast root-finder consists of two stages. At first one computes
some crude but reasonably good approximations to well-conditioned roots (that is,
those well isolated from the other roots) and then refines the approximations very
fast, within nearly optimal Boolean time. Here and hereafter “nearly optimal” means
“optimal up to a polylogarithmic factor”, and we measure the isolation of two roots
xg and xh from one another by the ratio |xg − xh |/max1≤i, j≤n |xi − x j |.

We obtain substantial progress the initial stage of computing crude but reasonably
close initial approximations to all well-conditioned and possibly multiple roots. The
Boolean cost of performing our algorithmcan be complemented by the nearly optimal
Boolean cost of refining our initial approximation by means of the algorithms of
[16–19]. By combining them with our present algorithm, we approximate all well-
conditioned roots of a polynomial bymatching the record and nearly optimal Boolean
complexity bound of [11] and [14]. Our present algorithm, however, is much less
involved, more transparent and more accessible for the implementation (see the next
subsection).

Approximation of the well-conditioned roots is already an important sub-problem
of the root-finding problem, but can also facilitate the subsequent approximation of
the ill-conditioned roots. E.g., having approximated thewell-conditioned roots 1,−1,√−1, and −√−1 of the polynomial p(x) = (x4 − 1)(x4 − 10−200), we can deflate
it explicitly or implicitly (cf. [15]) and more readily approximate its ill-conditioned
roots 10−50, −10−50, 10−50

√−1, and −10−50
√−1 as the well-conditioned roots of

the deflated polynomial x4 − 10−200 (cf. the first paragraph of Sect. 5).
Moreover, our algorithm can be readily extended to computing crude approxima-

tions of small discs covering all isolated root clusters (cf. Remark 3). Then again the
Boolean cost of this computation is dominated by the cost of the refinement of the
computed approximations to the clusters.

Clearly, the refinement of well-conditioned roots and root clusters can be per-
formed concurrently, with minimum communication and synchronization among
the processors. The existence of non-isolated roots and root clusters little affects our
algorithm; our cost estimate does not depend on the minimal distance between the
roots and includes no terms like log(Discr(p)−1).

1.2 Our Technical Means

We achieve our progress by means of exploiting the geometry of the complex plane,
randomized parametrization, and an old algorithm of [21], which approximates all
root radii of a polynomial, that is, the distances from all roots to the origin, at a low
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Boolean cost.We refer the reader to [1, 3, 6], and [10] on the preceding works related
to that algorithm and cited in [21, Section 14] and [12, Section 4], and one can also
compare the relevant techniques of the power geometry in [1] and [2], developed
for the study of algebraic and differential equations. By combining the root-radii
algorithm with a shift of the origin, one readily extends it to fast approximation of
the distances of all roots to any selected point of the complex plane (see Corollary 1).

Computations of our algorithm amount essentially to approximation of the root
radii of three polynomials obtained from a polynomial p(x) by means of three shifts
of the variable x , versus many more computations of this kind and application of
many other nontrivial techniques in the algorithm of [11] and [14]. This makes it
much harder to implement and even to comprehend than our present algorithm.

Schönhage in [21] used only a small part of the potential power of his root-radii
algorithm by applying it to the rather modest auxiliary task of the isolation of a single
complex root, and we restricted ourselves to similar auxiliary applications in [11]
and [14]. The algorithm and its basic concept of Newton’s polygon, however, deserve
greater attention of the researchers in univariate polynomial root-finding.

In the next two subsections we outline our algorithms of [20] and the present
paper, which should demonstrate the power of our approach.

1.3 Approximation of Well-Conditioned Real Roots:
An Outline

It is instructive to recall the algorithm of [20], which approximates all simple and
well-conditioned real roots in nearly optimalBoolean time.At first it approximates all
the n root radii. They define n narrow annuli at the complex plane, all of themcentered
at the origin and each of them containing a root of the polynomial p(x). Multiple
roots define multiple annuli. Clusters of roots define clusters of overlapping annuli.
The intersections of at most n narrow annuli with the real axis define at most 2n small
intervals, which contain all real roots. By applying to these intervals a known efficient
real root-refiner, e.g., that of [17, 19], we readily approximate all well-conditioned
real roots within a desired precision at a nearly optimal Boolean cost.

In [20] the resulting real root-finder was tested for some benchmark polynomials,
each having a small number of real roots. The tests, performed numerically, with the
IEEE standard double precision, gave encouraging results; in particular the number
of the auxiliary root-squaring iterations (3) grew very slowly as the degree of input
polynomials increased from 64 to 1024.

1.4 Approximation of Well-Conditioned Complex Roots:
An Outline

Next we outline our main algorithm, which we specify in some detail and analyze
in Sect. 4. The algorithm approximates the well-conditioned complex roots of a
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polynomial by means of incorporating the root-radii algorithm into a rather sophis-
ticated construction on the complex plane.

At first we compute a sufficiently large positive value r+
1 such that the disc D =

{x : |x | ≤ r+
1 } on the complex plane contains all roots of p(x). Thenwe approximate

the distances to the roots from the two points, ηr+
1 on the real axis and ηr+

1

√−1
on the imaginary axis, for a reasonably large value of η, so that these two points lie
reasonably far from the disc D.

Having the distances approximated, we obtain two families of narrow annuli
centered at the latter pair of points. Each family is made up of n annuli that contain
the n roots of a polynomial p(x), all lying in the disc D. Its intersections with
the annuli are closely approximated by n narrow vertical and n narrow horizontal
rectangles on the complex plane. Every root lies in the intersection of two rectangles
of the vertical and horizontal families, and there are N ≤ n2 intersections overall,
each approximated by a square.

Atmost n squares contain all n− ≤ nwell-conditioned roots of a polynomial p(x),
and we can identify these squares by evaluating p(x) or applying proximity tests at
the centers of N candidate squares (and then we would discard the other N − n−
squares). The cost of these computations would be prohibitively large, however,
and so instead we identify the desired n− squares probabilistically, by applying the
root-radii algorithm once again.

This time we approximate the distances to all the n roots from a complex point
ηr+

1 exp( γ
√−1
2π ) where we choose the angle γ at random in a fixed range. Having the

distances approximated, we obtain at most n− narrow rectangles that contain all the
n roots. The long sides of the rectangles are directed at the angle γ to the real axis.We
choose the range for γ such that with a probability close to 1 each rectangle intersects
a single square. Then we readily compute the centers of all these squares in a nearly
optimal randomized Boolean time and notice that all the well-conditioned roots are
expected to be closely approximated by some of these centers. We can refine these
approximations readily by applying the efficient algorithms of [7] or [19].

1.5 Organization of Our Paper

We organize our presentation as follows. In the next two sections we recall some
auxiliary results. In Sect. 4 we describe our main algorithm. In Sect. 5 we briefly
comment on some directions to its strengthening and extension.

2 Some Definitions and Auxiliary Results

Hereafter “flop” stands for “arithmetic operation”, and “lg” stands for “log2”.
OB(·) and ÕB(·) denote the Boolean complexity up to some constant and poly-

logarithmic factors, respectively.
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||p(x)|| = maxni=0 |pi | and τ = lg
(
||p(x)|| + 1

||p(x)||
)
for a polynomial p(x) of

(1).

Definition 1 D(z, ρ) = {x : |x − z| ≤ ρ} denotes the closed disc with a complex
center z and a radius ρ. Such a disc is γ-isolated, for γ > 1, if the disc D(z, γρ)

contains no other roots of a polynomial p(x) of Eq. (1). Its root x j is γ-isolated if
no other roots of the polynomial p(x) lie in the disc D(x j , (γ + 1)|x j |).

Suppose that crude but reasonably close approximations to the set of well-isolated
roots of a polynomial are available. Then, by applying the algorithms of [7] or [17],
[19], one can refine these approximations to these roots at a low Boolean cost. In
the rest of our paper we present and analyze our new algorithm for computing such
crude initial approximations to the well-isolated roots.

3 Approximation of Root Radii and Distances to Roots

Definition 2 List the absolute values of the roots of p(x) in non-increasing order,
denote them r j = |x j | for j = 1, . . . , n, r1 ≥ r2 ≥ · · · ≥ rn , and call them the root
radii of the polynomial p(x).

The following theorem bounds the largest root radius r1, and then we bound the
Boolean cost of the approximation of all root radii.

Theorem 1 (See [22].) For a polynomial p(x) of (1) and r1 = maxnj=1 |x j |, it holds
that

0.5r+
1 /n ≤ r1 ≤ r+

1 for r+
1 = 2

n
max
i=1

|pn−i/pn|. (2)

Theorem 2 Assume that we are given a polynomial p = p(x) of (1) and θ > 1.
Then, within the Boolean cost bound ÕB(τn + n2), one can compute approximations
r̃ j to all root radii r j such that 1/θ ≤ r̃ j/r j ≤ θ for j = 1, . . . , n, provided that
lg( 1

θ−1 ) = O(lg(n)), that is, |r̃ j/r j − 1| ≥ c/nd for a fixed pair of constants c > 0
and d.

Proof This is [21, Corollary 14.3].

Let us sketch this proof and the supporting algorithm. At first approximate the n
root radii at a dominated cost in the case where θ = 2n (see [21, Corollary 14.3] or
[12, Section 4]). In order to extend the approximation to the case where θ = (2n)1/2

k

for any positive integer k, apply k Dandelin’s root-squaring iterations to the monic
polynomial q0(x) = p(x)/pn (cf. [5]), that is, compute recursively the polynomials

qi (x) = (−1)nqi−1(
√
x )qi−1(−√

x ) =
n∏

j=1

(
x − x2

i

j

)
, for i = 1, 2, . . . (3)
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Then approximate the root radii r (k)
j of the polynomial qk(x) by applying Theorem

2 for θ = 2n and for p(x) replaced by qk(x). Finally approximate the root radii r j
of the polynomial p(x) as r j = (r (k)

j )1/2
k
.

Having isolation ratio 2n for qk(x) is equivalent to having isolation ratio (2n)1/2
k

for p(x), which is 1 + c/nd = 1 + 2O(lg(n)) for k = O(lg(n)) and any fixed pair
of constants c > 0 and d. Each Dandelin’s iteration amounts to convolution, and
Schönhage in [21] estimates that the Boolean cost of performing k = O(lg(n)) iter-
ations is within the cost bound of Theorem 2.

Corollary 1 Assume that we are given a polynomial p(x) of (1) and a complex
z. Then, within the Boolean cost bound ÕB((τ + n(1 + β))n), for β = lg(2 + |z|),
one can compute approximations r̃ j ≈ r̄ j to the distances r̄ j = |z − x j | from the
point z to all roots x j of the polynomial p(x) such that 1/θ ≤ r̃ j/r̄ j ≤ 1 < θ, for
j = 1, . . . , n, provided that lg( 1

θ−1 ) = O(lg(n)).

Proof The root radii of the polynomial q(x) for a complex scalar z are equal to the
distances |x j − z| from the point z to the roots x j of p(x). Let r̄ j for j = 1, . . . , n
denote these root radii listed in the non-increasing order. Then, clearly, r̄ j ≤ r j + |z|
for j = 1, . . . , n.

Furthermore, the coefficients of the polynomial q(x) = p(x − z) = ∑n
i=0 qi x

i

have bit-size Õ(τ + n(1 + β)) for β = lg(2 + |z|). By applying Theorem 2 to the
polynomial q(x), extend the cost bounds from the root radii to the distances.

To complete the proof, recall that, for a polynomial p(x) of (1) and a complex
scalar z, one can compute the coefficients of the polynomial q(x) = p(x + z) by
using O(n lg(n)) flops (cf. [13]) and at a dominated Boolean cost (cf. [4]).

4 Approximation of Well-Conditioned Complex Roots
by Using Root-Radii Algorithm

4.1 Approximation of Well-Conditioned Roots: An Algorithm

Let us specify our new algorithm.

Algorithm 1 Approximation of Well-Conditioned Complex Roots.
Input: two positive numbers ρ and ε and the coefficients of a polynomial p(x) of (1).
Output: A set of approximations to the roots of the polynomial p(x) within ρ/

√
2

such that with a probability at least 1 − ε this set approximates all roots that have
δ-neighborhoods containing no other roots of the polynomial p(x) for

δ = n2(n2 − 1)
4ρ

πε
.
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Initialization: Fix a reasonably large scalar η, say, η = 100. Generate a random
value φ under the uniform probability distribution in the range [π/8, 3π/8].
Computations:

1. (Three Long Shifts of the Variable.) Compute the value r+
1 = 2maxni=1 | pn−i

pn
| of

(2). Then compute the coefficients of the three polynomials

q(x) = p
(
x − ηr+

1

)
,

q−(x) = p
(
x − ηr+

1

√−1
)
,

qφ(x) = p

(
x − ηr+

1 exp

(
φ
√−1

2π

))
.

2. Compute approximations to all the n root radii of each of these three polynomials
within the error bound ρ/2.
This defines three families of large thin annuli havingwidth atmost ρ. Each family
consists ofn annuli, and each annulus contains a root of p(x).Multiple roots define
multiple annuli. Clusters of roots define clusters of overlapping annuli.
At most 2n coordinates on the real and imaginary axis define the intersections of
all pairs of the annuli from the first two families and of the disc D = D(0, r+

1 ).
We only care about the roots of p(x), and all of them lie in the disc D.
We have assumed that the value η is large enough and now observe the following
properties.

– The intersection of each annulus with the disc D is close to a vertical or
horizontal rectangle on the complex plane.

– Every rectangle has width about ρ or less because every annulus has width at
most ρ.

– The intersection of any pair of annuli from the two families is close to a square
having vertical and horizontal edges of length about ρ or less. We call such a
square a node.

– The disc D contains a grid made up of N such nodes, for N ≤ n2.
– The center of the (i, j)th node has real part r (1)

i − ηr+
1 and imaginary part

r (2)
j − ηr+

1 , for i, j = 0, 1, . . . , n. Here r (1)
i and r (2)

j denote the distances of
the roots xi and x j , respectively, from the real point ηr+

1 and the complex point
ηr+

1

√−1, respectively.

3. For each annulus of the third family, determine whether it intersects only a single
node of the grid. If so, output the center of this node.
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Fig. 1 The discs D(z, ρ) and D(z, ρ) are from the proof of Lemma 1. The parameter Δ = |z − z|
is used in Theorems 3 and 4

4.2 Approximation of Complex Roots: Correctness
of Algorithm 1

Let us prove correctness of Algorithm 1.
For simplicity assume that the annuli computed by it and the nodes of a grid are

replaced by their approximating rectangles and squares, respectively.
At first readily verify the following lemma.

Lemma 1 Suppose that z and z′ are two complex numbers, ρ′ is a positive number,
and a straight line passes through a disc D(z, ρ′) under an angle β with the real
axis where we choose β at random under the uniform probability distribution in the
range [α,α + γ] for 0 < γ ≤ 2π and 0 < α ≤ 2π. Then the line intersects a disc
D(z′, ρ′) with a probability at most P = 2

γ
sin( 2ρ′

|z−z′ | ).

Proof (See Fig. 1.) Consider the two tangent lines common for the discs D(z, ρ′)
and D(z′, ρ′) and both passing through the complex point z+z′

2 . Then any straight

line intersects both discs if and only if it lies in the angle 2 sin( 2ρ′
|z−z′ | ), formed by

these two lines. This implies the lemma.

Next apply it to a pair of nodes of the grid having centers z and z′, α = π
8 , and

γ = π
4 . Let the two nodes lie in the two discs D(z, ρ′) and D(z′, ρ′) for ρ′ = ρ/

√
2

and |z − z′| > 2ρ′, and obtain

ρ′

|z − z′| − 1

6

(
ρ′

|z − z′|
)3

< sin

(
ρ′

|z − z′|
)

<
ρ′

|z − z′| .

Then the lemma implies the strict upper bound 4
π

ρ′
|z−z′ | on the probability P . Substitute

ρ′ = ρ
√
2 and obtain

P <
4ρ

√
2

π |z − z′| . (4)
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Theorem 3 Let the grid of Algorithm 1 have Nρ nodes overall, Nρ ≤ n2. Define the
smallest superscribing disc for every node of a grid. Fix Δ > 2ρ and call a node of
the grid Δ-isolated if the Δ-neighborhood of its center contains no centers of any
other node of the grid. Suppose that a rectangle of the third family intersects a fixed
Δ-isolated node. Then

(i) this rectangle intersects the smallest superscribing disc of another node of the

grid with a probability less than 4ρ
√
2

πΔ
(Np − 1),

(ii) the probability that any fixed rectangle of the third family intersects the smallest

superscribing discs at least twoΔ-isolated nodes is less than 2ρ
√
2

πΔ
(Np − 1)Np,

and
(iii) if

2ρ
√
2

πΔ
(Np − 1)Np ≤ ε, (5)

then Algorithm 1 outputs the claimed set of the roots of a polynomial p(x) with a
probability more than 1 − ε.

Proof Apply bound (4) to the fixed node and obtain part (i). Apply bound (4) to
all (Np − 1)Np/2 pairs of distinct nodes of the grid and obtain part (ii). Substitute
bound (5) and obtain part (iii).

Now correctness of the algorithm follows because every root of the polynomial
p(x) lies in some annulus of each of the three families.

4.3 Approximation of Complex Roots: Complexity
of Performing Algorithm 1 and Further Comments

Remark 1 The estimates of Theorem 3 are pessimistic because, for any integer k >

1, every k-tuple of nodes intersected by a single straight line contributes to the
probability count of Theorem 3 just as much as a single pair of nodes, but we count
the contribution of such a k-tuple as that of (k − 1)k/2 pairs of nodes.

Theorem 4 Suppose that we are given the coefficients of a polynomial p(x) of equa-
tion (1) and two constants ρ andΔ such that 0 < ρ < Δ. Then (i) with a probability of
success estimated in Theorem 3, the algorithm approximates all roots in Δ-isolated
nodes within the error bound ρ, and (ii) the algorithm performs at the Boolean cost
within the randomized cost bound of Corollary 1.

Proof Both claims of the theorem are readily verified as soon as we ensure that
the Boolean complexity of Stage 3 of Algorithm 1 is within the claimed bound. To
achieve this, apply a bisection process as follows. At first, for a fixed rectangle of
the third family, determine whether it intersects any node of the grid below or any
node of the grid above its mean node. If the answer is “yes” in both cases, then the
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rectangle must intersect more than one node of the grid. Otherwise discard about
one half of the nodes of the grid and apply similar bisection process to the remaining
nodes. Repeat such computation recursively.

Every recursive step either determines that the fixed rectangle intersects more
than one node of the grid or discards about 50% of the remaining nodes of the grid.
So in O(lg(n)) recursive applications we determine whether the rectangle intersects
only a single node of the grid or not.

Application of this process to every rectangle of the third family (made up of n
rectangles) requires only O(n lg(n)) tests of the intersections of rectangles with a
mean node in the set of the remaining nodes of the grid. Clearly the overall cost of
these tests is dominated.

Remark 2 Suppose that wemodify Algorithm 1 by collapsing every chain ofm pair-
wise overlapping or coinciding root radii intervals, for m ≤ n, into a single interval
that has a width at most mρ and by assigning multiplicity m to this interval. Such
extended root radius defines an annulus having multiplicity m ≥ 1 and width in the
range from ρ to mρ. Suppose that a pair of such new annuli of a vertical and hori-
zontal families and the disc D = D(0, r+

1 ) has multiplicity m1 and m2, respectively.
Then the intersection of these two annuli defines a node of a new grid, to which we
assign multiplicity min{m1,m2}, and then at Stage 3 of the modified algorithm an
output node of multiplicity m contains at most m roots of the polynomial p(x), each
counted according to its multiplicity. The probability of success of the algorithm does
not decrease and typically increases a little, although the estimation of the increase
would be quite involved.

Remark 3 Suppose that Algorithm 1 modified according to the previous remark
outputs a node that covers an isolated root or an isolated cluster of the roots of
an input polynomial p(x). Then the algorithms of [7, 17, 19] would compress the
superscribing disc of this node at a nearly optimal Boolean cost.

Remark 4 We can decrease a little the precision of computing by applying the algo-
rithm with a smaller value of η, although in that case our proof of Theorem 3 would
be invalid, and the algorithm would become heuristic.

Remark 5 Suppose that we apply our algorithm as before, but fix an angle φ instead
of choosing it at random in the range [π/8, 3π/8]. Then for almost all such choices,
the algorithm (at its Stage 4) would correctly determine at most n nodes of the grid
intersected by the rectangles-annuli of the third family, but finding any specific angle
φ with this property deterministically would be costly because we would have to
ensure that the angle of the real axis with neither of up to (n2 − 1)n2/2 straight
lines passing through the (n2 − 1)n2/2 pairs of the nodes of the grid approximates
φ closely. Clearly, this could require us to perform up to (n2 − 1)n2/2 flops.
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5 Conclusions

Algorithm 1 approximates all the isolated single and multiple roots of a polynomial,
and its modification of Remark 3 enables us to approximate also all the isolated root
clusters. Having specified a modified node containing such a cluster, we can split out
a factor f (x) of the polynomial p(x) whose root set is precisely this cluster. Based
on the algorithms [7] or [19], we can approximate the factor f (x) at a nearly optimal
Boolean cost. Then we can work on root-finding separately for this factor and for the
complementary factor p(x)

f (x) , both having degrees smaller than n and possibly having
better isolated roots.

We plan to work on enhancing the power of this algorithm by means of its com-
bination with various efficient techniques known for root-finding. In particular, the
coefficient size of an input polynomial grows very fast in Dandelin’s root-squaring
iterations, thus requiring high precision computations. We can avoid this growth by
applying the algorithm of [9], which uses the tangential representation of the coef-
ficients, but then the Boolean cost bound would increase by a factor of n. So we are
challenged to explore alternative techniques for root-radii approximations.Wewould
be interested even in heuristic algorithms, as long as they produce correct outputs for
a large input class and perform the computations by using a small number of flops
and bounded precision.
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A Fast Schur–Euclid-Type Algorithm
for Quasiseparable Polynomials

Sirani M. Perera and Vadim Olshevsky

Abstract In this paper, a fastO(n2) algorithm is presented for computing recursive
triangular factorization of a Bezoutianmatrix associatedwith quasiseparable polyno-
mials via a displacement equation. The new algorithm applies to a fairly general class
of quasiseparable polynomials that includes real orthogonal, Szegö polynomials, and
several other important classes of polynomials, e.g., those defined by banded Hes-
senberg matrices. While the algorithm can be seen as a Schur-type for the Bezoutian
matrix it can also be seen as a Euclid-type for quasiseparable polynomials via factor-
ization of a displacement equation. The process, i.e., fast Euclid-type algorithm for
quasiseparable polynomials or Schur-type algorithm for Bezoutian associated with
quasiseparable polynomials, is carried out with the help of a displacement equation
satisfied by Bezoutian and Confederate matrices leading to O(n2) complexity.

Keywords Quasiseparable matrices · Bezoutians · Euclid algorithm · Schur algo-
rithm · Fast algorithms · Displacement structure

1 Introduction

It is known that the Euclidean algorithm is one of the oldest algorithms which appear
in the computation of the greatest common divisor (GCD). Although the original
Euclidean algorithm was presented to compute the positive greatest common divisor
of two given positive integers, later it was generalized to polynomials in one variable
over a field, and further to polynomials in any number of variables over any unique
factorization domain in which the greatest common divisor can be computed.
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1.1 GCD Computing Algorithms

TheEuclidean algorithm for computing polynomialGCDevolvedwith the earlywork
of Brown (see, e.g., [14, 15]) and thereafter several other authors studied: the degree
of the greatest common divisor of two polynomials in connection to a companion
matrix [2], stable algorithms to compute polynomial ε-GCD using the displacement
structure of Sylvester and Bezout matrices [10], generalization of the Euclidean
algorithm (determining the greatest common left divisor) to polynomial matrices
[1], estimation of the degree of ε-GCDs at a low computational cost [41], approx-
imate factorization of multivariate polynomials with complex coefficients contain-
ing numerical noise [35], generalized Euclidean algorithm of the Routh–Hurwitz
type [19], a numeric parameter for determining two prime polynomials under small
perturbations with the help of an inversion formula for Sylvester matrices [5, 6],
algorithms to approximate GCD for polynomials with coefficients of floating-point
numbers [39], and so on. Our intention is not to consider the Euclidean algorithm
via the above methods but to see it via the Hessenberg displacement structure of
a Bezoutian over a system of polynomials {Q} = {Qk(x)}nk=0 satisfying recurrence
relations having degQk(x) = k and to derive a fast algorithmbased on quasiseparable
polynomials.

1.2 Connection to Bezoutian

Given a pair of polynomials a(x) and b(x) with deg a(x) = n and deg b(x) ≤ n, the
classical Bezoutian of a(x) and b(x) is the bilinear form given by

a(x)b(y) − a(y)b(x)

x − y
=

n−1∑

i=0

n−1∑

j=0

sijx
iyj

and the Bezoutian matrix of a(x) and b(x) is defined by the n × n symmetric matrix
Bez(a, b) = [

sij
]n−1
i,j=0.

In the eighteenth century, the Bezoutian was invented in order to build a bridge
between polynomial and linear algebra. As it was remarked in [23, 44], the Bezoutian
concept in principle already evolves from Euler’s work in elimination theory for
polynomials. Hermite was the first who studied Bezoutians in more detail to solve
root localization problems for polynomials (Routh–Hurwitz), which are important
in particular for the investigation of the stability of linear systems. Note that in the
early stages of work related to Bezoutians, the language of quadratic forms was more
common than matrix language. After the first observation of inversion of Bezoutians
as Toeplitz or Hankel by L.T. Lander in 1974, there were significant results published
to show that the inverse of Toeplitz is T-Bezoutian and Hankel is H-Bezoutian (see,
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e.g., [23, 26, 27, 30, 43]). These works show us great examples on the importance of
matrix representations for the inverses of Hankel, Toeplitz, and more general types
of structured matrices in the construction of fast algorithms for solving structured
systems of equations and interpolation problems.

As this paper connects the generalized Bezoutian with confederate matrices via
a Hessenberg displacement structure, we should remark heavily on Barnett’s result
[3] on showing the important relationship between a Bezoutian matrix and a matrix
polynomial associated with the companion matrix. Apart from this, several oth-
ers studied connections of Bezoutians to GCD including: computing the greatest
common right divisor using Sylvester and generalized Bezoutian resultant matrices
[13], matrix representations for generalized Bezoutians via generalized compan-
ion matrices [43], Bezoutians of Chebyshev polynomials of first and second kind
[20], generalized Barnett factorization formula for polynomial Bezoutian matrices
and reduction of Bezoutian via polynomial Vandermonde matrix [45], computation
of polynomial GCD and coefficients of the polynomials generated in the Euclid-
ean scheme via Bezoutian [11], computation of the GCD of two polynomials using
Bernstein–Bezoutian matrix [12], and so on.

1.3 Connection to Displacement Structure

This paper describes a fast Euclid-type algorithm for quasiseparable polynomials
via a fast Schur-type algorithm for a Bezoutian matrix preserving a Hessenberg
displacement structure. The structured matrices like Toeplitz, Hankel, Toeplitz plus
Hankel, Vandermonde, Cauchy, etc. belong to amore general family of matrices with
low rank displacement structure and that can be used to design fast algorithms.

Definition 1 A linear displacement operator ΘΩ,M,F,N (.) : Cn×n → Cn×n is a func-
tion which transforms each matrix R ∈ Cn×n to the matrix given by the displacement
equation

ΘΩ,M,F,N (R) = Ω RM − FRN = GB (1)

where Ω,M,F,N ∈ Cn×n are given matrices and G ∈ Cn×α, B ∈ Cα×n. The pair
{G,B} on last right in (1) is called a minimal generator of R and

rank
{
ΘΩ,M,F,N (R)

} = α. (2)

Example 1 Toeplitz matrix T = [ti−j]1≤i,j≤n satisfies the displacement equation
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T − Z · T · ZT =

⎡

⎢⎢⎢⎣

t0 t−1 · · · t−n+1

t1 0 · · · 0
...

...
. . .

...

tn−1 0 · · · 0

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

t0
2 1
t1 0
...

...

tn−1 0

⎤

⎥⎥⎥⎦

[
1 0 · · · 0
t0
2 t−1 · · · t−n+1

]

where Z is a lower shift matrix. Thus, rank
{
ΘI,I,Z,ZT (T)

} = 2.

Example 2 Hankel matrix H = [hi+j−2]1≤i,j≤n satisfies the displacement equation

Z · H − H · ZT =

⎡

⎢⎢⎢⎣

0 −h0 −h1 · · · −hn−2

h0 0 0 · · · 0
...

...
...

. . .
...

hn−2 0 0 · · · 0

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 0
0 h0
...

...

0 hn−2

⎤

⎥⎥⎥⎦

[
0 −h0 · · · −hn−2

1 0 · · · 0

]

where Z is a lower shift matrix. Thus, rank
{
ΘZ,I,I,ZT (H)

} = 2.

A fast algorithm for the structured matrices which preserve displacement structure
first appeared in Morf’s Thesis [38]. Thus the crucial shift-low-rank updating prop-
erty was recognized by the author as the proper generalization of the Toeplitz and
Hankel structured matrices. The algorithm was called Fast Cholesky decomposi-
tion. In June 1971, computer programs were successfully completed by the author.
In the same Thesis he announced a divide-and-conquer algorithm but it was not
shown how to design a super fast algorithm. Such an algorithm was obtained in
Brent-Gustafson-Yun in 1979. Moreover the paper of Kailath et al. [31] proved cru-
cial results demonstrating that the Schur complement inherits the displacement rank.
This idea was the opening of a new chapter, as it filled in the missing link of proving a
super fast complexity inMorf’s Thesis. Delosme in [17] obtained formulas for gener-
ator updates for the Toeplitz case and claimed that those coincided with the classical
Schur algorithm. Furthermore one can find (e.g., in [18, 32–34]) algorithms that
connect structured matrices with displacement equations to derive fast algorithms.
Many polynomial computations can be reduced to structured matrix computations.
In this way, the matrix interpretation of many classical polynomial algorithms for
determining GCD can be expressed.
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The displacement equations of the structured matrices are used to design fast
Schur-type algorithms having complexity O(n2). The existence of fast Schur-type
algorithms for Toeplitz and Toeplitz-like matrices having low displacement rank was
shown in [31, 38]. It was shown in [25] that the low displacement rankVandermonde-
like and Cauchy-like matrices can be used to derive fast Schur-type algorithms.
We should also recall the fast O(n2) algorithm for Cauchy-like displacement struc-
tured matrices via Gaussian elimination with partial pivoting and fast algorithms for
Toeplitz-like, Toeplitz-plus-Hankel-like,Vandermonde-likematrices via transferring
those matrices to Cauchy-like matrices in [21]. Moreover in [40] a fast Schur-type
algorithm with stability criteria was presented for the factorization of Hankel-like
matrices. Finally, the crucial result of the Schur-type algorithm was presented by
Heinig and Olshevsky [24] for the matrices with Hessenberg displacement structure.

While the displacement structure is considered we should recall some results
on Schur-type algorithms in connection to the Bezoutian. At this point, we should
mention the results on: computing Schur type and hybrid (Schular type and Levin-
son type) algorithms to solve the system of equations involving Toeplitz-plus-Hankel
matrices [29], computing a Schur-type algorithm for LDU-decomposing the strongly
regular Toeplitz-plus-Hankel matrix [46], solving a system of equations by split algo-
rithms for skewsymmetric Toeplitz matrices, centrosymmetric Toeplitz-plus-Hankel
matrices, and general Toeplitz-plus-Hankel matrices [28], and more importantly,
Olshevsky’s claim on Schur-type algorithms in connection to Euclid-type algorithms
via the Bezoutian in the 10th ILAS Conference in 2002 and 16th International Sym-
posium on Mathematical Theory of Networks and Systems in 2004.

1.4 Main Results

In [24], a Schur-type algorithm was presented to compute a recursive triangular
factorization R = LDU for a strongly nonsingular n × n matrix R satisfying the
displacement equation:

RY − VR = GHT

with upper and lower Hessenberg matrices Y and V , respectively, and n × α matrices
G and H where α is small compared to n. The Schur–Hessenberg algorithm in
[24] will have complexity O(n3) in general for dense and unstructured Hessenberg
matrices Y and V . However, one can explore the structures of Y and V to derive a
O(n2) algorithm. Thus in this paper, we explore the structures of Y and V to derive a
fast hybrid of Schur-type and Euclid-type algorithms in connection with Bezoutian
and confederate matrices over the system of quasiseparable polynomials.

We observe a displacement equation of a Bezoutian matrix associated with the
reverse polynomials in connection to a companion matrix over the system of mono-
mial basis (this displacement equation (14) is a variant of the Lancaster–Tismenetsky
equation in [36]). We then use this to derive and generalize a displacement equation
for a generalized Bezoutian matrix with confederate matrix respect to the system of
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polynomials {Q} = {Qk(x)}nk=0 satisfying recurrence relations having degQk(x) = k.
Then, the displacement equation for a generalizedBezoutianwith confederatematrix,
and characteristics of the Schur complement of the generalized Bezoutian and gen-
erator updates for confederate and generalized Bezoutian matrices are used to derive
the Schur–Euclid–Hessenberg algorithm. Finally, to derive a fast O(n2) complex-
ity Schur–Euclid–Hessenberg algorithm we take quasiseparable polynomials as the
main tool.

Definition 2 A matrix A = [
aij

]
is called (H, 1)-quasiseparable (i.e., Hessenberg-

1-quasiseparable) if (i) it is strongly upper Hessenberg (ai+1,i �= 0 for i = 1, 2, · · · ,

n − 1 and ai,j = 0 for i > j + 1), and (ii) max (rank A12) = 1 where the maximum is
taken over all symmetric partitions of the form

A =
[

� A12

� �

]

• Let A = [aij] be a (H, 1)-quasiseparable matrix. For αi = 1
ai+1,i

, then the system of
polynomials related to A via

rk(x) = α1α2 · · ·αkdet(xI − A)(k×k)

is called a system of (H, 1)-quasiseparable polynomials. In the classification paper
[9], the characterization of orthogonal polynomials (orthogonal with respect to a
weighted inner product (definite or indefinite) on the real line) andSzegö polynomials
(orthogonal on the unit circlewith respect to aweighted inner product) via tridiagonal
and unitaryHessenbergmatrices, respectively, are observed to belong to awider class
of (H, 1)-quasiseparable polynomials and matrices, respectively. Hence once a fast
O(n2) Schur–Euclid-type algorithm for quasiseparable polynomials is established,
weanalyze the complexity ofSchur–Euclid-type algorithms for orthogonal andSzegö
polynomials.

1.5 Structure of the Paper

The structure of the paper is as follows. In the next Sect. 2, we state polynomial divi-
sion in a matrix form, arithmetic complexity, and see the connection to the Euclidean
algorithm in matrix forms. In Sect. 3, we express displacement equations and char-
acterizations of the Bezoutian matrix in connection to the Schur complement and
reverse polynomials. Then in Sect. 4, we generalize the displacement equation in
the former section via generalized Bezoutians and confederate matrices over the
system of polynomials {Q} = {Qk(x)}nk=0 satisfying recurrence relations having deg
Qk(x) = k. At the end of the section,we present a hybrid of Euclid-type algorithmand
Schur-type algorithm using the Hessenberg displacement structure of the Bezoutian
and call it the Schur–Euclid–Hessenberg algorithm. Finally in Sect. 5, we establish
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a fast O(n2) Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials
while addressing the complexity of the algorithm for its subclasses: orthogonal and
Szegö polynomials.

2 One Way to Express Polynomial Division in Matrix Form

In this section, we state polynomial division in a matrix form. In the meantime, we
discuss the arithmetic cost of computing the polynomial division and the matrix form
of the Euclidean algorithm in connection to polynomials. Similar to this approach
one can see the results in [42] to compute polynomial division efficiently. We first
give the Euclidean algorithm for computing the GCD of polynomials.

Let a(x) and b(x) be given with deg a(x) ≥ deg b(x); then the Euclidean algorithm
applies to a(x) and b(x) and generates a sequence of polynomials r(i)(x), q(i−1)(x),
such that

r(0)(x) = a(x), r(1)(x) = b(x)
r(i−2)(x) = q(i−1)(x)r(i−1)(x) + r(i)(x), i = 2, 3, · · · , t + 1

(3)

where r(i)(x) is the remainder of the division of r(i−2)(x) by r(i−1)(x). The algorithm
stops when a remainder r(t+1)(x) = 0 is found; then r(t)(x) is the desired GCD of
a(x) and b(x). Note that since the deg r(0)(x) > deg r(1)(x) > · · · > deg r(t+1)(x),
the algorithm must terminate in a finite number of steps. If r(t)(x) is a constant then
r(0)(x) and r(1)(x) are said to be relatively prime.

The following results showpolynomial division (one step of a variant of Euclidean
algorithm) in matrix form. Here we have considered −c(x) as the remainder of the
polynomial division of a(x) by b(x) just to be compatible with future discussions.

Lemma 1 Let a(x) = anxn + an−1xn−1 + · · · + a0 and b(x) = bn−kxn−k +
bn−k−1xn−k−1 + · · · + b0 where k ≥ 1. Then the polynomial division of a(x) by b(x)
can be seen via:

−

⎡

⎢⎢⎢⎢⎢⎣

0
cn−k−1

cn−k−2
...

c0

⎤

⎥⎥⎥⎥⎥⎦
+ q0

⎡

⎢⎢⎢⎢⎢⎣

bn−k

bn−k−1

bn−k−2
...

b0

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

an−k

an−k−1

an−k−2
...

a0

⎤

⎥⎥⎥⎥⎥⎦
− B̂k B

−1
k

⎡

⎢⎢⎢⎣

an
an−1

...

an−k+1

⎤

⎥⎥⎥⎦ (4)

where −c(x) = −cn−k−1xn−k−1 − cn−k−2xn−k−2 − · · · − c0 is the remainder, q0 is
the constant term of the quotient of polynomial division,

Bk := toeplitz ([bn−k : bn−2k+1], [bn−k, zeros(1, k − 1)]) ,



348 S.M. Perera and V. Olshevsky

and

B̂k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 bn−2k+2 · · · bn−k−1

bn−2k−1 bn−2k bn−2k+1 · · · ...

bn−2k−2 bn−2k−1 bn−2k
...

...
...

...

b0 b1
...

0 b0 b1

0 0
. . .

. . .
...

. . .
. . .

... 0 b0 b1
0 b0

0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof If q(x) = qkxk + qk−1xk−1 + · · · + q0 and−c(x) are the quotient and remain-
der of the polynomial division of a(x) by b(x) then we can say

anx
n + an−1x

n−1 + · · · + a0 = (qkx
k + qk−1x

k−1 + · · · + q0)

·(bn−kx
n−k + bn−k−1x

n−k−1 + · · · + b0)

−(cn−k−1x
n−k−1 + cn−k−2x

n−k−2 + · · · + c0) (5)

By equating the coefficients of xn to xn−k+1 in (5);

⎡

⎢⎢⎢⎢⎢⎣

an
an−1

...

an−k+2

an−k+1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

bn−k 0 · · · · · · 0

bn−k−1 bn−k
. . .

...

bn−k−2 bn−k−1 bn−k
. . .

...
...

. . .
. . . 0

bn−2k+1 bn−2k+2 . . . bn−k−1 bn−k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

...

q2
q1

⎤

⎥⎥⎥⎥⎥⎦
(6)

Note that the first matrix in the RHS of (6) is a lower Toeplitz matrix (say Bk

where Bk := toeplitz ([bn−k : bn−2k+1], [bn−k, zeros(1, k − 1)]) so qk’s (except q0)
can be recovered from:

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

...

q2
q1

⎤

⎥⎥⎥⎥⎥⎦
= [Bk]

−1 ·

⎡

⎢⎢⎢⎢⎢⎣

an
an−1

...

an−k+2

an−k−1

⎤

⎥⎥⎥⎥⎥⎦
(7)

Equating coefficients of xn−k to the constant term in (5);
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−

⎡

⎢⎢⎢⎢⎢⎣

0
cn−k−1

cn−k−2
.
.
.

c0

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

an−k

an−k−1
.
.
.

a0

⎤

⎥⎥⎥⎦ −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 bn−2k+2 · · · bn−k

bn−2k−1 bn−2k bn−2k+1 · · · bn−k−1
.
.
.

.

.

.
.
.
.

.

.

.

b1
.
.
.

.

.

.
.
.
.

b0 b1
.
.
.

0 b0 b1
.
.
.

0 0 b0 b1
.
.
.

.

.

.
. . .

. . .
. . .

. . .

.

.

.
. . .

. . .
. . . b1

0 · · · · · · 0 0 b0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

qk−2
.
.
.

q0

⎤

⎥⎥⎥⎥⎥⎦

By rearranging the above system we get

−

⎡

⎢⎢⎢⎢⎢⎣

0
cn−k−1

cn−k−2
...

c0

⎤

⎥⎥⎥⎥⎥⎦
+ q0

⎡

⎢⎢⎢⎣

bn−k

bn−k−1
...

b0

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

an−k

an−k−1
...

a0

⎤

⎥⎥⎥⎦ −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 bn−2k+2 · · · bn−k−1

bn−2k−1 bn−2k bn−2k+1 · · · bn−k−2
...

...
...

...

b1
...

...
...

b0 b1
...

0 b0 b1
...

0 0 b0 b1
...

...
. . .

. . .
. . .

. . .

...
. . .

. . .
. . . b1

0 · · · · · · 0 0 b0
0 · · · · · · 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

qk−2
...

q1.

⎤

⎥⎥⎥⎥⎥⎦

However we can now use (7) to rewrite the right side of the above equation andwhich
yields the result (4).

Corollary 1 Let a(x) and b(x) be two polynomials such that deg a(x) = deg b(x) + 1
with deg a(x) = n. Then the polynomial division of a(x) by b(x) can be seen via:
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−

⎡

⎢⎢⎢⎢⎢⎣

0
cn−2

...

c1
c0

⎤

⎥⎥⎥⎥⎥⎦
+ q0

⎡

⎢⎢⎢⎣

bn−1

bn−2
...

b0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

an−1

an−2
...

a0

⎤

⎥⎥⎥⎦ − q1Z
T

⎡

⎢⎢⎢⎢⎢⎣

bn−1

bn−2
...

b1
b0

⎤

⎥⎥⎥⎥⎥⎦

where q1 = an b
−1
n−1, and Z is the lower shift matrix.

The following gives the Toeplitz matrix-based calculation of the quotient of the
polynomial division and its arithmetic cost.

Corollary 2 If a(x) and b(x) are two polynomials such that deg a(x) = n and deg
b(x) = n − k where k ≥ 1, then the arithmetic cost of computing the quotient of the
polynomial division is O(n log n) operations.

Proof Let q(x) be the quotient of the polynomial division of a(x) by b(x) stated via
(5). Then the coefficients of quotient, qk , can be recovered via

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

...

q1
q0

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

bn−k 0 · · · · · · 0

bn−k−1 bn−k
. . .

...

bn−k−2 bn−k−1 bn−k
. . .

...
...

. . .
. . . 0

bn−2k bn−2k+1 . . . bn−k−1 bn−k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

−1

·

⎡

⎢⎢⎢⎢⎢⎣

an
an−1

...

an−k+1

an−k

⎤

⎥⎥⎥⎥⎥⎦

= B−1
k+1 ·

⎡

⎢⎢⎢⎢⎢⎣

an
an−1

...

an−k+1

an−k

⎤

⎥⎥⎥⎥⎥⎦
(8)

Note that Bk+1 = bn−kI + bn−k−1Z + · · · + bn−2kZk = b̄(Z) where Z is the lower
shift matrix and Zk+1 = 0. Thus B−1

k+1 = b̄(Z)−1mod Zk+1. Note that B−1
k+1 is also

a lower triangular Toeplitz matrix which is defined by its first column. Now by
following [42], one can apply a divide-and-conquer technique for the block form of
the B−1

k+1 to calculate the first column of B−1
k+1. This yields the cost of computing B−1

k+1
and also a Toeplitz matrix times a vector is of order O(n log n).

The following shows the cost of computing sequences of remainder polynomials
via a variant of the Euclidean algorithm which corresponds to polynomial division
in matrix form.

Corollary 3 If the sequence of remainders of the polynomial division is computed
via Lemma 1, then the cost of computing one division isO(n log2 n) andO(n t log2 n)
for generating the full sequencewhere n is the degree of the divisor and t is the number
of steps.
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Proof As stated in Corollary 2, the cost of computing the quotient of the polynomial
division isO(n log n). Thus computingB−1

k āwhere ā = [
an an−1 · · · an−k+1

]T
costs

O(n log n) operations. Now the multiplication of B−1
k ā by a tall sparse matrix B̂k

together with vector subtraction yields O(n log2 n) operations for one division or
one step in calculating the remainder. Thus to generate t steps or for a full sequence
it costs O(n t log2 n) operations.

The next section shows the displacement equations of Bezoutian and Schur com-
plement in connection to reverse polynomials.

3 Displacement Structures and Characterizations
of Bezoutian

This section describes two types of displacement equations of the Bezoutian while
introducing characterization of the Bezoutian via Gaussian elimination and Schur
complement. These displacement equations of Bezoutians are elaborated in connec-
tion to a lower shift matrix and a companion matrix but associated with the reverse
polynomials.

Definition 3 Let a(x) = anxn + an−1xn−1 + · · · + a0. Then, the reverse polynomial
of a(x) is defined as a�(x) = xna(x−1) = a0xn + a1xn−1 + . . . + an−1x + an.

We define the Bezoutian associated with the reverse polynomials as follows.

Definition 4 Let P = {1, x, x2, ..., xn} be a monomial basis and let a(x) and b(x) be
polynomials of degree not greater than n. Then a matrix S� = [sij] is the Bezoutian
associated with the reverse polynomials a�(x) and b�(x), say S� = BezP(a�, b�), if

S(a�, b�) = a�(x) · b�(y) − b�(x) · a�(y)

x − y
=

n−1∑

i,j=0

sijx
iyj

= [
1 x x2 · · · xn−1

]
S�

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn−1

⎤

⎥⎥⎥⎥⎥⎦
. (9)

3.1 Displacement Structures of Bezoutian

Here we obtain two types of displacement equations of the Bezoutian associated with
the reverse polynomials. Once we establish the displacement structures, we state
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connections of the displacement equations to the Gohberg, Kailath, and Olshevsky
algorithm (GKO algorithm) [21] and the Heinig and Olshevsky algorithm (HO algo-
rithm) [24].

Belowwe give the GKO algorithm for matrix R1 satisfying the Sylvester displace-
ment equation.

Lemma 2 Let matrix R1 =
[
r1 R12

R21 R22

]
satisfy:

ΔF1,A1(R1) =
[
f1 0
∗ F2

]
· R1 − R1 ·

[
a1 ∗
0 A2

]
= G(1)B(1) =

[
g1
G1

] [
b1 B1

]

If r1 (i.e., (1,1) entry of R1) �= 0, then the Schur complement R2 = R(1)
22 − R21

1
r1
R12

satisfies the Sylvester type displacement equation

F2 · R2 − R2 · A2 = G(2)B(2)

with

G(2)
2 = G1 − R21

1

r1
g1, B(2)

2 = B1 − b1
1

r1
R12

where g1 and b1 are the first row of G(1) and the first column of B(1) respectively.

The Lemma 2 shows that if R1 satisfies a Sylvester type displacement equation
then so does its Schur complement. Thus the displacement equation of the Schur
complement of the matrix will also yield the factorization. One can recover the first
row and column of R1, and R2, by using generator updates. Proceeding recursively
one finally obtains the LU factorization of R1. Moreover authors in [21] note that one
can obtain a fast Gaussian elimination algorithm with partial pivoting for Cauchy-
like, Vandermonde-like, and Chebyshev-like displacement structures.

Lemma 3 Let the matrix R1 satisfy:

ΔF1,A1(R1) = F1 · R1 − R1 · A1 = G(1)B(1)

and let the matrices be partitioned as

R1 =
[
R11 R12

R21 R22

]
, F1 =

[
F11 F12

F21 F22

]
, A1 =

[
A11 A12

A21 A22

]
,

G(1) =
[
G1

G2

]
, B(1) = [

B1 B2
]
.

If R11 is nonsingular, then the Schur complement of R1, i.e., R2 = R22 − R21R
−1
11 R12

satisfies
F2 · R2 − R2 · A2 = G(2)B(2)
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with
G(2) = G2 − R21R

−1
11 G1, B(2) = B2 − B1R

−1
11 R12

A2 = A22 − A21R
−1
11 R12, F2 = F22 − R21R

−1
11 F12.

From the Lemma 3, one can observe that a Schur-type algorithm can be designed
for nontriangular matrices {F1,A1}. Authors in [24] specialize this crucial result by
deriving a Gaussian elimination algorithm for matrices with Hessenberg displace-
ment structure. Although the algorithm has complexity O(n3), in general one can
explore the structures of F1 and A1 to derive fast algorithms.

We first observe a Sylvester type displacement equation for the Bezoutian asso-
ciated with reverse polynomials in connection to the lower shift matrix and see it as
a GKO-type displacement equation, but in our case it is for the Bezoutian.

Lemma 4 Let S� = BezP(a�, b�) be the Bezoutian associated with the reverse poly-
nomials where a(x) = anxn + an−1xn−1 + · · · + a0 and b(x) = bnxn + bn−1xn−1 +
· · · + b0 then S� satisfies the displacement equation:

ZS� − S�ZT = GJGT (10)

where G =

⎡

⎢⎢⎢⎣

an bn
an−1 bn−1

...
...

a1 b1

⎤

⎥⎥⎥⎦, J =
[

0 1
−1 0

]
and Z is the lower shift matrix.

Proof By following the Definition 4 of the Bezoutian associated with the reverse
polynomials, we get:

(x − y)S(a�, b�) = a�(x) · b�(y) − b�(x) · a�(y). (11)

Observing the RHS:

a�(x)b�(y) − b�(x)a�(y) = [
1 x · · · xn ]

⎡

⎢⎢⎢⎣

an bn
an−1 bn−1
...

...

a0 b0

⎤

⎥⎥⎥⎦

[
bn bn−1 · · · b0

−an −an−1 · · · −a0

]
⎡

⎢⎢⎢⎣

1
y
...

yn

⎤

⎥⎥⎥⎦

= [
1 x x2 · · · xn ]

G̃JG̃T

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn

⎤

⎥⎥⎥⎥⎥⎦
(12)



354 S.M. Perera and V. Olshevsky

where G̃ =

⎡

⎢⎢⎢⎣

an bn
an−1 bn−1
...

...

a0 b0

⎤

⎥⎥⎥⎦ and J =
[

0 1
−1 0

]
. Let’s pad S� with zeros such that

[
S� 0
0 0

]
= S̃. We can always use S̃ instead of S� because

[
1 x x2 · · · xn−1

]
S�

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn−1

⎤

⎥⎥⎥⎥⎥⎦
= [

1 x x2 · · · xn ]
S̃

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn

⎤

⎥⎥⎥⎥⎥⎦

By following (9) together with S̃ we get:

(x − y)S(a�, b�) = [
x x2 · · · xn+1

]
S̃

⎡

⎢⎢⎢⎣

1
y
...

yn

⎤

⎥⎥⎥⎦ − [
1 x · · · xn ]

S̃

⎡

⎢⎢⎢⎣

y
y2

...

yn+1

⎤

⎥⎥⎥⎦

= [
1 x x2 · · · xn ]

(ZS̃ − S̃ZT )

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn

⎤

⎥⎥⎥⎥⎥⎦

Following the immediate result with (11) and (12)

ZS̃ − S̃ZT = G̃JG̃T . (13)

In the relation (13) one can peel off the last row of the generator G̃, and peel off
the last row and column of S̃ resulting in S�, hence the result.

The following result is an immediate consequence of the Bezoutian satisfying the
displacement equation (10) in connection to the displacement rank.

Corollary 4 If the Bezoutian S� satisfies the displacement equation (10), then
rank

{
ΘZ,I,I,ZT (S�)

} = 2.

By following the GKO algorithm [21], one can claim that the displacement equation
(10) is of GKO-type but for the Bezoutian having low displacement rank.

Next, we see the second displacement equation of the Bezoutian associated with
the reverse polynomials satisfying Hessenberg displacement structure.
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Lemma 5 A matrix S� is a Bezoutian for reverse polynomials a�(x) and b�(x) if and
only if it satisfies the equation

CT
a S

� − S�Ca = 0. (14)

for a matrix Ca of the form

Ca =

⎡

⎢⎢⎢⎢⎢⎢⎣

− an−1

an
− an−2

an
− an−3

an
· · · − a0

an
1 0 0 · · · 0

0 1 0
...

...
. . .

. . .
. . . 0

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
(15)

where a(x) = anxn + an−1xn−1 + · · · + a0 and b(x) = bnxn + bn−1xn−1 + · · · + b0.

Proof Let S� be the Bezoutian associated with the reverse polynomials a�(x) and
b�(x) and Ca have the above structure (entries in the first row are extracted from the
coefficients of a(x)) then it can easily be seen by matrix multiplication that

CT
a S

� − S�Ca = 0. (16)

Notice that this is a variant of the Lancaster–Tismenetsky equation in [36].
Now let CT

a S
� − S�Ca = 0 where S� = [sij] and Ca is the matrix of the given form

so one can recover the columns of S� as follows.
the second column of S� by:

CT
a si,1 + an−1

an
si,1 − si,2 = 0 ⇒ si,2 = CT

a si,1 + an−1

an
si,1

si,2 = s1,1 a +
(
ZT + an−1

an

)
si,1

the third column of S� by:

CT
a si,2 + an−2

an
si,1 − si,3 = 0 ⇒ si,3 = CT

a si,2 + an−2

an
si,1

si,3 = s1,2 a + ZTsi,2 + an−2

an
si,1

= (
ZT s1,1 + s1,2In

)
a +

((
ZT

)2 + an−1

an
ZT + an−2

an

)
si,1
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proceeding recursively the kth column of S� by:

si,k =
((
ZT

)k−2
s1,1 + (

ZT
)k−3

s1,2 + · · · + s1,k−1In
)

a

+
((

ZT
)k−1 + an−1

an

(
ZT

)k−2 + an−2

an

(
ZT

)k−3 + · · · + an−k+1

an

)
si,1

where a = [− an−1

an
− an−2

an
· · · − a0

an

]T
and In is the identity matrix. Hence once all

columns are recovered it should be clear that since S� satisfies (16) there is no other
matrix satisfying (16) and having the same first column si1. Thus S� = BezP(a�, b�).

The displacement equation (16) is of HO-type but for the Bezoutian associated
with reverse polynomials satisfyingHessenberg displacement structure in connection
to the companion matrix Ca.

3.2 Characterization of Bezoutian

In this section, we perform Gaussian elimination on a Bezoutian satisfying displace-
ment structure (10) and then elaborate on the relationship between a Bezoutian with
its Schur complement.

Before we see the Schur complement of a Bezoutian as a Bezoutian, let us provide
a supportive result to see how the displacement equation (13) helps us to address the
rank of a Bezoutian as it is padded with zeros.

Lemma 6 A matrix S� = BezP(a�, b�) ∈ Rn,n is a Bezoutian if and only if S̃ =[
S� 0
0 0

]
has displacement rank 2.

Proof Lemma 4 suggests that if S� is a Bezoutian then S̃ has displacement rank
2. Conversely, if S̃ has displacement rank 2, then ZS̃ − S̃ZT = G̃JG̃T for some
G̃ ∈ Rn+1,2. Now, assume we have two polynomials and we wish to compute the
Bezoutian associated with them. Lemma 4 suggests that we can do this by writing the
polynomials as the columns of the generator and recovering S� from the displacement
equation ZS̃ − S̃ZT = G̃JG̃T . Let a�(x) and b�(x) be the polynomials defined by the
first and second columns of G̃, respectively. Then, the Bezoutian generated by these
two polynomials will be exactly S�.

Lemma 7 If we perform Gaussian elimination on a Bezoutian, then the result will
still be a Bezoutian.

Proof First, it is easy to see that Gaussian elimination on the matrix S� corresponds
to Gaussian elimination on its generator. Second, if we performGaussian elimination
on S� and then pad the resultant matrix with a row and a column of zeros, the result
will be the same as the result of padding S� first to obtain S̃ and performing the
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same steps of Gaussian elimination on S̃. This is because the corresponding steps
of Gaussian elimination will not alter a column or a row of zeros. Therefore, if we
have an arbitrary Bezoutian S�, we know that S̃ has displacement rank 2. Let us say
Gaussian elimination is performed on S� to obtain a different matrix S(1). From the
discussion above, we can infer that the same steps of Gaussian elimination performed

on S̃ will result in

[
S(1) 0
0 0

]
. Let G̃ be the generator of S̃ and G(1) be the result after

applying steps of Gaussian elimination to G̃. It is clear that G(1) is the generator of[
S(1) 0
0 0

]
, which in turn implies S(1) is a Bezoutian, hence the result.

The above result immediately implies the following statement.

Corollary 5 The Schur complement of a Bezoutian is a Bezoutian.

Proof This follows because Schur complementation is equivalent to Gaussian elim-
ination.

4 Schur–Euclid-Type Algorithm via Bezoutian Having
Hessenberg Structure

This section describesHessenberg displacement structure of theBezoutian associated
with reverse polynomials expanded in a monomial P = {1, x, · · · , xn} basis and
then generalizes it to the basis Q = {Q0,Q1, · · · ,Qn} where deg Qk(x) = k. The
main idea is to explore the transformation of Hessenberg displacement structure
of a Bezoutian from a monomial basis P and to the generalized basis Q. Once it
is established we see the connection of the Schur complement of a Bezoutian to
the Schur–Euclid–Hessenberg algorithm via generator updates of the generalized
Bezoutian and confederate matrix.

4.1 Hessenberg Displacement Structure of Bezoutian Over
Monomial Basis

Here we use the displacement equation of a Bezoutian (14) associated with reverse
polynomials over a monomial basis to address the connection among generator
updates of the companion matrix, the Schur complement of the Bezoutian, and poly-
nomial division.

Definition 5 A matrix R1 is said to have Hessenberg displacement structure if it
satisfies

F1R1 − R1A1 = G(1)B(1) (17)

where A1 is an upper Hessenberg matrix and F1 is a lower Hessenberg Matrix.
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In Lemma 5, we have seen the connection of the Bezoutian S� = BezP(a�, b�) to
the displacement equation CT

a S
� − S�Ca = 0 and vice-versa. Since Ca is an upper

Hessenberg matrix, by following the Definition 5, we can say that the Bezoutian has
the Hessenberg displacement structure associated with reverse polynomial over a
monomial basis.

In the following, we use the Hessenberg displacement structure of a Bezoutian
over a monomial basis to see a connection to generator updates of the companion
matrix to polynomial division.

Lemma 8 Let Ca (15) be the companion matrix of the polynomial a(x) satisfying
CT
a S

� − S�Ca = 0 where S� = BezP(a�, b�) and deg a(x) > deg b(x). Then the gen-
erator update of Ca is the companion matrix of the polynomial b(x).

Proof Let deg a(x) = n and deg b(x) = n − k. Since the Bezoutian satisfies the
Hessenberg displacement structure CT

a S
� − S�Ca = 0 one can apply Lemma 3 to

update the generators. Thus the updated companion matrix results in:

Cnew =

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎣

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤

⎥⎥⎥⎦ · R−1
11 · R12 (18)

However, from another displacement equation of the Bezoutian, i.e., following the
formula (13) one can state:

ZR − RZT = G(1)J̄G(1)T (19)

where R =
[
Bez(b�, a�) 0

0 0

]
= −

[
S� 0
0 0

]
, J̄ =

[
0 −1
1 0

]
, Z is the lower shift matrix,

and G(1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

an 0
...

...

an−k+1 0
an−k bn−k

...
...

a0 b0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With the help of the above equation one can obtain the following equations by
considering the first k columns of R:
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[
Zr1| Zr2 − r1| Zr3 − r2| . . . |Zrk − rk−1

] = [
anb| an−1b| an−2b| . . . |an−k+1b

]

(20)

From these it is possible to obtain the following relations:

Zr1 = anb

Zr2 = r1 + an−1b = ZTanb + an−1b

Zr3 = r2 + an−2b = (ZT )2anb + ZTan−1b + an−2b
.
.
.

Zrk = rk−1 + an−k+1b = (ZT )k−1anb + (ZT )k−2an−1b + . . . + ZTan−k+2b + an−k+1b

Let R11 be the k × k upper block of R. Then, from the above equations it is possible
to express R11 as:

⎡

⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 anbn−k

0 · anbn−k anbn−k−1 + an−1bn−k

.

.

. ·
.
.
.

0 anbn−k

anbn−k anbn−k−1 + an−1bn−k · · · anbn−(2k−1) + an−1bn−(2k) + . . . + an−k+1bn−k .

⎤

⎥⎥⎥⎥⎥⎥⎦

Let Ĩ be the antidiagonal matrix. Multiplying the above (R11) by Ĩ from the right:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

anbn−k 0 · · · 0 0

anbn−k−1 + an−1bn−k anbn−k 0
.
.
. 0

.

.

. · 0
.
.
.

anbn−k 0
anbn−(2k−1) + an−1bn−2k + . . . + an−k+1bn−k · · · anbn−k−1 + an−1bn−k anbn−k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

However this can easily be factored as:

R11 · Ĩ =

⎡

⎢⎢⎢⎢⎢⎢⎣

bn−k

bn−k−1 bn−k
... bn−k−1

. . .

. . .
. . .

bn−(2k−1) · · · bn−k−1 bn−k

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

an
an−1 an

... an−1
. . .

. . .
. . .

an−k+1 · · · an−1 an

⎤

⎥⎥⎥⎥⎥⎥⎦

(21)

So, R11 · Ĩ = BkAk where we denote the Toeplitz matrix composed of the coefficients
of a(x) on the lower diagonals in the above Eq. (21) as Ak and similarly for Bk .
Therefore, R−1

11 = ĨA−1
k B−1

k .
Let R21 be the (n − k + 1) × k block of R right below R11, i.e.,
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R21 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

anbn−k−1 anbn−k−2 + an−1bn−k−1 . . . anbn−2k + an−1bn−2k+1 + . . . + an−k+1bn−k−1

anbn−k−2 anbn−k−3 + an−1bn−k−2 . . .
.
.
.

.

.

.
.
.
.

anb2 anb1 + an−1b2 . . . an−k+3b0 + an−k+2b1 + an−k+1b2
anb1 anb0 + an−1b1 . . . an−k+2b0 + an−k+1b1
anb0 an−1b0 . . . an−k+1b0
0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us compute R21 · Ĩ:

R21 · Ĩ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

anbn−2k + an−1bn−2k+1 + . . . + an−k+1bn−k−1 . . . anbn−k−2 + an−1bn−k−1 anbn−k−1

.

.

. . . . anbn−k−3 + an−1bn−k−2 anbn−k−2

.

.

.
.
.
.

an−k+3b0 + an−k+2b1 + an−k+1b2 . . . anb1 + an−1b2 anb2
an−k+2b0 + an−k+1b1 . . . anb0 + an−1b1 anb1

an−k+1b0 . . . an−1b0 anb0
0 . . . 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is possible to factor the above as follows:

R21 · Ĩ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 bn−2k+2 . . . bn−k−1

bn−2k−1 bn−2k bn−2k+1 . . . bn−k−2
...

b0
...

0
. . .

. . .
...

...
. . .

. . . b0
0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎣

an
an−1 an

... an−1
. . .

. . .
. . .

an−k+1 . . . an−1 an

⎤

⎥⎥⎥⎥⎥⎥⎦

From this it follows that R21 = B̂k · Ak · Ĩ where B̂k is the first matrix in the RHS
of the above equation. Therefore

R21R
−1
11 = (̂BkAk̃I) · (̃IA−1

k B−1
k ) = B̂k · B−1

k .

Moreover one can say that (R−1
11 R12)

T = R21R
−1
11 . Thus
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(R−1
11 R12)

T

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 · · · bn−k−1
bn−2k−1 bn−2k · · · bn−k−2
bn−2k−2 bn−2k−1 · · · bn−k−3

.

.

.

b0

.

.

.

0
. . .

. . .

.

.

.
. . .

. . . b0
0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎣

bn−k
bn−k−1 bn−k
bn−k−2 bn−k−1 bn−k

.

.

.
. . .

bn−(2k−1) bn−(2k−2) . . . bn−k−1 bn−k

⎤

⎥⎥⎥⎥⎥⎥⎦

−1

(22)

Since the generator update of Ca in Eq. (18) uses only the last row of R−1
11 R12, one

has to consider only the last column of its transpose (after peeling off the last entry)

which is

⎡

⎢⎢⎢⎢⎢⎢⎣

bn−k−1

bn−k
bn−k−2

bn−k
bn−k−3

bn−k

...
b0
bn−k

⎤

⎥⎥⎥⎥⎥⎥⎦
. Thus the updated matrix Cnew in (18) is given by:

⎡

⎢⎢⎢⎢⎢⎣

− bn−k−1

bn−k
− bn−k−2

bn−k
· · · − b1

bn−k
− b0

bn−k

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

...

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎦

which is the companion matrix for b(x) and hence the result.

Corollary 6 The first column of the Bezoutian S� = BezP(a�, b�) where deg a(x) >

deg b(x) contains scalar multiples of the coefficients of b(x).

Proof This result is trivial as the first column of R, i.e., r1 = ZTanb where

b = [
bn−k bn−k−1 · · · b0

]T
and R = −

[
S� 0
0 0

]
.

The next result shows the updated first column of the Schur complement of a
Bezoutian in the kth step.

Corollary 7 The first column of the Schur complement of S� = BezP(a�, b�) where
deg a(x) > deg b(x), contains scalar multiples of the coefficients of the polynomial
−c(x) which is the remainder of the polynomial division of a(x) by b(x).
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Proof Let us partition the generator G(1) in (19) as G(1) =
[
G1

G2

]
where G1 =

⎡

⎢⎢⎢⎣

an 0
an−1 0

...
...

an−k+1 0

⎤

⎥⎥⎥⎦ andG2 =

⎡

⎢⎢⎢⎣

an−k bn−k

an−k−1 bn−k−1
...

...

a0 b0

⎤

⎥⎥⎥⎦. Since S� satisfies the displacement equa-

tion (19) with lower shift matrix Z , one can apply the block form of Lemma 2 to
update the generator G(1) via:

⎡

⎢⎢⎢⎣

dn−k bn−k

dn−k−1 bn−k−1
...

...

d0 b0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

an−k bn−k

an−k−1 bn−k−1
...

...

a0 b0

⎤

⎥⎥⎥⎦ − R21R
−1
11

⎡

⎢⎢⎢⎣

an 0
an−1 0

...
...

an−k+1 0

⎤

⎥⎥⎥⎦

which results in the formula:
⎡

⎢⎢⎢⎣

dn−k

dn−k−1
...

d0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

an−k

an−k−1
...

a0

⎤

⎥⎥⎥⎦ − R21R
−1
11

⎡

⎢⎢⎢⎣

an
an−1

...

an−k+1

⎤

⎥⎥⎥⎦

The matrices R11 and R21 in the above system are expressed explicitly in Lemma 8
and are the same as the matrices Bk and B̂k respectively defined in Lemma 1. Thus
combining both Lemmas results in:

⎡

⎢⎢⎢⎢⎢⎣

dn−k

dn−k−1

dn−k−2
...

d0

⎤

⎥⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎢⎣

0
cn−k−1

cn−k−2
...

c0

⎤

⎥⎥⎥⎥⎥⎦
+ q0

⎡

⎢⎢⎢⎢⎢⎣

bn−k

bn−k−1

bn−k−2
...

b0

⎤

⎥⎥⎥⎥⎥⎦

where from Lemma 1, −c(x) = −
n∑

i=k+1

cn−ix
n−i is the remainder and q0 is the con-

stant term in the quotient of the polynomial division of a(x) by b(x). Thus the gen-
erator update of G(1) via the Bezoutian BezP(a�, b�) corresponds to the polynomial
division of a(x) by b(x). Moreover following Lemma 2, the Schur complement of the
Bezoutian, which is the new Bezoutian BezP(b�, c�), also satisfies the displacement
equation (19)with the above generator updates. Thus, as in Lemma 8, one can recover
the scalar multiple of the coefficients of c(x) from the first column of BezP(b�, c�).

Theorem 1 Let the Bezoutian S� = BezP(a�, b�) where deg a(x) > deg b(x) and Ca

is the companion matrix defined via (15). Then the generator update of the Bezoutian



A Fast Schur–Euclid-Type Algorithm for Quasiseparable … 363

S� over the displacement equation CT
a S

� − S�Ca = 0 coincides with the polynomial
division of a(x) by b(x).

Proof Lemma 5 shows that the Bezoutian S� satisfies CT
a S

� − S�Ca = 0. Since Ca

has upper Hessenberg structure one can apply Lemma 3 to update S�,Ca and CT
a .

Here there is no need to updateG(1) and B(1) since they are both 0.Moreover, updates
forCa andCT

a via Lemma 3 will preserve the upper and lower Hessenberg structures.
As we know the Bezoutian S� is completely determined by polynomials a�(x) and
b�(x). By Lemma 8 the polynomial b(x) can be recovered from the generator update
of the companion matrix Ca, i.e., after generator updates the companion matrix of
the polynomial a(x) becomes the companion matrix of the polynomial b(x). Now by
Corollary 7, one can recover the scalar multiple of the coefficients of −c(x) which
is the remainder of the polynomial division of a(x) by b(x) via the first column of
the Schur complement of the Bezoutian BezP(b�, c�). Hence the result.

Thenext sectiongeneralizes the result in this sectionhavingpolynomials expanded
over the basis {Qk(x)}nk=0 where degQk(x) = k.

4.2 Hessenberg Displacement Structure of Bezoutian Over
Generalized Basis

In this section, we first generalize Hessenberg displacement structure of a Bezoutian
over monomial basis P = {xk}nk=0 to an arbitrary basis Q = {Qk(x)}nk=0 where
degQk(x) = k. As a result of this, we will have a new displacement equation with
the generalized Bezoutian and confederate matrix. Next we elaborate the Schur com-
plement of the generalized Bezoutian over {Q} and use this to analyze the generator
updates of a generalized Bezoutian with the polynomial division over {Q}. Finally,
we state the Schur–Euclid–Hessenberg algorithm.

Definition 6 Let {Q} = {Q0(x),Q1(x), · · · ,Qn(x)} be a system of polynomials sat-
isfying deg Qk(x) = k and, a(x) and b(x) be polynomials of degree not greater than
n. Then a matrix SQ = [ŝij] is the generalized Bezoutian associated with the reverse
polynomials a�(x) and b�(x) over {Q} say SQ = BezQ(a�, b�) if

a�(x) · b�(y) − b�(x) · a�(y)

x − y
=

n−1∑

i,j=0

ŝijQi(x)Qj(y)

= [
Q0(x) Q1(x) · · · Qn−1(x)

]
SQ

⎡

⎢⎢⎢⎣

Q0(y)
Q1(y)

...

Qn−1(y)

⎤

⎥⎥⎥⎦ (23)
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The next result shows a relationship between a Bezoutian for polynomials over
the monomial basis {P} and the generalized basis {Q} = {Q0(x),Q1(x), · · · ,Qn(x)}
having deg Qk(x) = k.

Lemma 9 Let BPQ be uni upper triangular basis transformation matrix correspond-
ing to passing basis {P} = {xk}nk=0 to basis {Q} = {Qk(x)}nk=0 where degQk(x) = k
via: [

Q0(x) Q1(x) · · · Qn−1(x)
]
BPQ = [

1 x · · · xn−1
]
.

Then
SQ = BPQ S� BT

PQ (24)

where S� = BezP(a�, b�) and SQ = BezQ(a�, b�).

Proof Recall from the Definition 4 of the Bezoutian associated with the reverse
polynomials over basis {P}

a�(x) · b�(y) − b�(x) · a�(y)

x − y
= [

1 x x2 · · · xn−1
]
S�

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn−1

⎤

⎥⎥⎥⎥⎥⎦

We can revise the RHS of the above system:

a�(x) · b�(y) − b�(x) · a�(y)

x − y
= [

1 x · · · xn−1
]
B−1
PQ BPQ S� BT

PQ B−T
PQ

⎡

⎢⎢⎢⎣

1
y
.
.
.

yn−1

⎤

⎥⎥⎥⎦

= [
Q0(x) Q1(x) · · · Qn−1(x)

]
BPQ S� BT

PQ

⎡

⎢⎢⎢⎣

Q0(y)
Q1(y)

.

.

.

Qn−1(y)

⎤

⎥⎥⎥⎦ .

Following Definition 6 gives the result.

To generalize the displacement equation for a Bezoutian we have to explore the
Hessenberg structured confederate matrix. Thus we will give the definition of a
confederate matrix introduced in [37] next.

Definition 7 Let polynomials {Q} = {Q0(x),Q1(x),Q2(x), ...,Qn(x)} with deg
Qk(x) = k be specified by the recurrence relation

Qk(x) = αkxQk−1(x) − rk−1,kQk−1(x) − rk−2,kQk−2(x) − . . . − r0,kQ0(x), αk �= 0
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for k > 0 and Q0(x) is a constant. Define for the polynomial

a(x) = a0Q0(x) + a1Q1(x) + . . . + anQn(x)

its confederate matrix (with respect to the polynomial system Q) by

CQ(a) =

⎡

⎢⎢⎢⎢⎢⎢⎣

r0,1
α1

r0,2
α2

r0,3
α3

· · · r0,n
αn

− a0
αnan

1
α1

r1,2
α2

r1,3
α3

· · · r1,n
αn

− a1
αnan

0 1
α2

r2,3
α3

· · · r2,n
αn

− a2
αnan

...
...

. . .
...

0 0 · · · 1
αn−1

rn−1,n

αn
− an−1

αnan
.

⎤

⎥⎥⎥⎥⎥⎥⎦

In the special case where a(x) = Qn(x), we have a0 = a1 = · · · = an−1 = 0. We
refer to [37] for many useful properties of the confederate matrix and only recall
here that

Qk(x) = α0α1 · · ·αk · det(xI − [CQ(a)]k×k),

and
a(x) = α0α1 · · · αnan · det(xI − [CQ(a)]),

where [CQ(a)]k×k denotes the k × k leading submatrix of CQ(a).
As we have seen the generalized Bezoutian associated with reverse polynomi-

als and confederate matrix capturing recurrence relations over {Q}, we will next
generalize the displacement equation CT

a S
� − S�Ca = 0 passing BezP(a�, b�) to the

generalized Bezoutian SQ = BezQ(a�, b�) and companion matrix Ca to the confed-
erate matrix CQ.

Theorem 2 Let {Q} = {Q0(x),Q1(x),Q2(x), ...,Qn(x)} where deg Qk(x) = k be
the system of polynomials satisfying recurrence relations

Q0(x) = 1

Qk(x) = xQk−1(x) − rk−1,kQk−1(x) − rk−2,kQk−2(x) − . . . − r0,kQ0(x) (25)

a(x) = a0Q0(x) + a1Q1(x) + . . . + anQn(x) and similarly for b(x). Then a matrix
SQ = BezQ(a�, b�) is a Bezoutian associated with reverse polynomials a�(x) and
b�(x) if and only if SQ satisfies the equation

CT
Q SQ − SQ CQ = 0 (26)

for some confederate matrix
CQ = ĨCT

Q′ Ĩ (27)

where
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CQ′ =

⎡

⎢⎢⎢⎢⎢⎣

r0,1 r0,2 r0,3 · · · r0,n − a0
an

1 r1,2 r1,3 · · · r1,n − a1
an

0 1 r2,3 · · · r2,n − a2
an

...
...

. . .
...

0 0 · · · 1 rn−1,n − an−1

an
.

⎤

⎥⎥⎥⎥⎥⎦
(28)

Proof In the monomial basis {P} it has been proven that

CT
a S

� − S�Ca = 0

where S� = BezP(a�, b�) and Ca =

⎡

⎢⎢⎢⎢⎢⎣

− an−1

an
− an−2

an
− an−3

an
· · · − a0

an
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

...

0 0 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎦
. Thus it is pos-

sible to rewrite the above system as

S1C
T
1 − C1S1 = 0 (29)

where S1 = ĨS�Ĩ = BezP(a, b) and C1 = ĨCT
a Ĩ . Now with the help of the structure

of the uni upper triangular basis transformation matrix BPQ together with the result
[32] one can revise the above system as

SQ′ CT
Q′ − CQ′ SQ′ = 0

where SQ′ = BPQ S1 BT
PQ = BezQ(a, b) and CQ′ = BPQ C1 B

−1
PQ is the confederate

matrix given by (28). By rearranging the above system we get

(ĨSQ′ Ĩ)(ĨCT
Q′ Ĩ) − (ĨCQ′ Ĩ)(ĨSQ′ Ĩ) = 0

yields the result:
CT
Q SQ − SQ CQ = 0.

Conversely if CT
Q SQ − SQ CQ = 0 and SQ = [ŝij] then the second column of SQ is

given by:

CT
Q ŝi,1 −

(
rn−1, n − an−1

an

)
ŝi,1 − ŝi,2 = 0 ⇒ ŝi,2 = CT

Q ŝi,1 −
(
rn−1, n − an−1

an

)
ŝi,1

the third column of SQ is given by:

CT
Q ŝi,2 −

(
rn−2, n − an−2

an

)
ŝi,1 − rn−2, n−1 ŝi,2 − ŝi,3 = 0
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ŝi,3 = CT
Q ŝi,2 −

(
rn−2, n − an−2

an

)
ŝi,1 − rn−2, n−1 ŝi,2

proceeding recursively the kth column of SQ is given by:

ŝi,k = CT
Q ŝi,k−1 −

(
rn−k+1, n − an−k+1

an

)
ŝi,1 − rn−k+1, n−1 ŝi,2 − · · · − rn−k+1, n−k+2 ŝi,k−1.

Thus one can recover all columns of SQ and it should be clear that since SQ satisfies
(26) there is no other matrix which satisfies (26) and has the same first column ŝi,1.
Thus SQ = BezQ(a�, b�). 
�

It has been shown in Lemma 7 and Corollary 5 that the Schur complement of a
Bezoutian is Bezoutian. Thus in the following result, we will generalize the result
obtained in Sect. 3. We show that the Schur complement of a Bezoutian SQ with
respect to the generalized basis {Q} is congruent to the Schur complement of the
Bezoutian S� with respect to the monomial basis {P}.
Theorem 3 The Schur complement of the generalized Bezoutian SQ over the basis
{Q} = {Qk(x)}nk=0 where deg Qk(x) = k is congruent to the Schur complement of the
Bezoutian S� over monomials {P} = {xk}nk=0.

Proof Let us partition the Bezoutian matrix: S� =
[
S11 s12
sT12 s22

]
. From Lemma 9, we

know that SQ = BPQ S� BT
PQ so the basis transformation matrix which is an upper tri-

angularmatrix having 1’s along the diagonal can be partitioned asBPQ =
[
U11 u12
0 1

]
.

Now analyze the block products of SQ = BPQ S� BT
PQ to find its Schur complement.

SQ =
[
U11 u12
0 1

] [
S11 s12
sT12 s22

] [
UT

11 0
uT12 1

]

=
[
U11 u12
0 1

] [
I 1

s22
s12

0 1

] [
S11 − 1

s22
s12sT12 0

0 s22

] [
I 0

1
s22
sT12 1

] [
UT

11 0
uT12 1

]

=
[ ∗ s12u11 + s22u12
sT12u

T
11 + s22uT12 s22

]

where ∗ := U11

(
S11 − 1

s22
s12sT12

)
UT

11 + (s12u11 + s22u12)
(

1
s22
sT12u

T
11 + uT12

)
. Thus

Schur complement of SQ say SQs is given by:

SQs =
(
U11

(
S11 − 1

s22
s12s

T
12

)
UT

11 + (s12u11 + s22u12)

(
1

s22
sT12u

T
11 + uT12

))

− 1

s22
(s12u11 + s22u12)

(
sT12u

T
11 + s22u

T
12

)

= U11

(
S11 − 1

s22
s12s

T
12

)
UT

11
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Hence the result.

The next result shows the connection of generator updates of the generalized
Bezoutian to polynomial division over basis {Q}.
Theorem 4 Let {Q} = {Q0,Q1,Q2, ...,Qn} where deg Qk(x) = k be the system of
polynomials satisfying recurrence relations (25) and SQ = BezQ(a�, b�) = [ŝij]. If
a(x) = a0Q0(x) + a1Q1(x) + . . . + anQn(x)andb(x)= b0Q0(x) + b1Q1(x) + . . . +
bn−kQn−k(x) then the coefficients of the remainder −c(x) of the polynomial division
a(x) by b(x) can be recovered from:

−

⎡

⎢⎢⎢⎣

cn−k−1

cn−k−2
...

c0

⎤

⎥⎥⎥⎦ =
[[

CT
Q −

(
rn−1, n − an−1

an

)
In

]
ŝi,1

]′
− ŝ12

ŝ11

[
ŝi,1

]′
(30)

where

CQ =

⎡

⎢⎢⎢⎢⎢⎣

rn−1, n − an−1

an
rn−2, n − an−2

an
rn−3, n − an−3

an
· · · r0, n − a0

an
1 rn−2, n−1 rn−3, n−1 · · · r0, n−1

0 1 rn−3, n−2 · · · r0, n−2
...

. . .
. . .

0 · · · 0 1 r0, 1

⎤

⎥⎥⎥⎥⎥⎦
(31)

and prime means peeling off the first k components.

Proof We have shown in Theorem 2 that CT
QSQ − SQCQ = 0 and it is the same as

SQCQ − CT
QSQ = 0. One can clearly see that CQ is an upper Hessenberg matrix,

so with that said, SQ has Hessenberg displacement structure. Hence we can apply
Lemma 3 to update CQ. As deg b(x) is n − k let us partition matrices: CQ =[

Cq(k, k) Cq(k, n − k)
Cq(n − k, k) Cq(n − k, n − k)

]
and SQ =

[
Sq(k, k) Sq(k, n − k)

Sq(n − k, k) Sq(n − k, n − k)

]
where

Sq(n − k, k) = [
Sq(k, n − k)

]T
and apply the block form of Lemma 3

Cnew = Cq(n − k, n − k) − Cq(n − k, k)
[
Sq(k, k)

]−1
Sq(k, n − k)

=

⎡

⎢⎢⎢⎢⎢⎣

rn−k−1, n−k rn−k−2, n−k rn−k−3, n−k · · · r0, n−k

1 rn−k−2, n−k−1 rn−k−3, n−k−1 · · · r0, n−k−1

0 1 rn−k−3, n−k−2 · · · r0, n−k−2
...

. . .
. . .

...

0 · · · 0 1 r0, 1

⎤

⎥⎥⎥⎥⎥⎦

−

⎡

⎢⎢⎢⎣

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤

⎥⎥⎥⎦
[
Sq(k, k)

]−1
Sq(k, n − k).
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Thus when updating CQ only the first row of Cq(n − k, n − k) changes with respect

to the last row of the product
[
Sq(k, k)

]−1
Sq(k, n − k). Let us restate the (1,1) block

of Cnew and (1,1), (1,2) blocks of SQ in terms of a basis transformation matrix which

can be partitioned as BPQ =
[

Bpq(k, k) Bpq(k, n − k)
Bpq(n − k, k) B̂PQ

]
. Thus the above system

can be seen as:

Cnew = Ĩ

⎡

⎢⎢⎢⎢⎢⎣

r0, 1 r0, 2 r0, 3 · · · r0, n−k

1 r1, 2 r1, 3 · · · r1, n−k

0 1 r2, 3 · · · r2, n−k
...

. . .
. . .

...

0 · · · 0 1 rn−k−1, n−k

⎤

⎥⎥⎥⎥⎥⎦

T

Ĩ

−

⎡

⎢⎢⎢⎣

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤

⎥⎥⎥⎦
[
Sq(k, k)

]−1 [
Bpq(k, k)

]T [
Bpq(k, k)

]−T
Sq(k, n − k)

= B̂PQ

⎡

⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎣

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤

⎥⎥⎥⎦ · R−1
11 · R12

⎤

⎥⎥⎥⎥⎥⎦

[̂
BPQ

]−1
.

Hence going back to the block form of the Bezoutian (22) we get

Cnew =
⎡

⎢⎢⎢⎢⎢⎣

rn−k−1, n−k − bn−k−1

bn−k
rn−k−2, n−k − bn−k−2

bn−k
rn−k−3, n−k − bn−k−3

bn−k
· · · r0, n−k − b0

bn−k

1 rn−k−2, n−k−1 rn−k−3, n−k−1 · · · r0, n−k−1

0 1 rn−k−3, n−k−2 · · · r0, n−k−2
...

. . .
. . .

0 · · · 0 1 r0, 1.

⎤

⎥⎥⎥⎥⎥⎦

Thus when a generalized Bezoutian SQ satisfies the displacement equation CT
QSQ −

SQCQ = 0 with an upper Hessenberg matrix CQ, the generator update of the con-
federate matrix CQ corresponding to polynomial a(x) over {Q} results in a con-
federate matrix Cnew (say CQb) and that corresponds to the polynomial b(x) =
b0Q0(x) + b1Q1(x) + . . . + bn−kQn−k(x).

Now following Lemma 3, one can see a new system with generator updates as

SQsCQb − CT
QbSQs = 0
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where CQb is the confederate matrix of b(x) over basis {Q} and SQs is the Schur
complement of SQ. We have shown in Theorem 3 that the Schur complement of SQ,
which is SQs, is congruent to the Schur complement of S�, which is S(1), i.e.,

SQs = U11S
(1)UT

11 (32)

where U11 is the (1,1) block of the uni upper triangular basis transformation matrix
BPQ.Moreover fromCorollary7,we have shown that the coefficients of the remainder
over monomials can be retrieved from the first column of the Schur complement of
S� which is S(1). This together with the system (32) tells us that coefficients of the
remainder over basis {Q} can be retrieved from the first column of the SQs, the Schur
complement of SQ.

Before computing the coefficients of the remainder over {Q} let us observe the
second column of SQ. This can be seen directly following Theorem 2 so the second
column of SQ is given by:

ŝi,2 =
[
CT
Q −

(
rn−1, n − an−1

an

)]
ŝi,1.

The coefficients of the remainder −c(x) over {Q} can be retrieved from the first
column of the Schur complement SQs = [s̃ij] so those can be retrieved from:

si,1 = [
ŝi,2

]′ − ŝ12

[
1

ŝ11
ŝi,1

]′

where prime means peeling off the first k components. Hence the result.

Remark 1 The aboveTheorem further shows that the generator update of aBezoutian
SQ satisfying displacement equation CT

QSQ − SQCQ = 0 coincides with polynomial
division over basis {Q}.
As we have the generalized result for the Bezoutian satisfying Hessenberg displace-
ment structure CT

QSQ − SQCQ = 0 let us state the Schur–Euclid–Hessenberg algo-
rithm to recover the coefficients of the remainder c(x) of the polynomial division of
a(x) by b(x) over basis {Q} = {Qk}nk=0 where degQk(x) = k. In themeantimewewill
be providing triangular factorization of the Bezoutian (SQ = [ŝij] = LDU ) over basis

{Q}. The k-th row uk of U and the k-th column lk of L are given by uk = 1
ŝk11

[
0 ŝ(k)1,·

]

and lk = uTk where "0" stands for a zero vector of appropriate length. The diagonal
factor is given by D = diag [ŝ(k)11 ]nk=1.

The Schur–Euclid–Hessenberg Algorithm

Input: Coefficients of a(x) and b(x), say a0, a1, · · · , an and b0, b1, · · · , bn−1, and if
the degree of b(x) is n − k < n − 1 then list its coefficients as b0, b1, · · · , bn−k, 0.
Here “0" means a zero vector of appropriate length up to n − 1.
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Initialization: ŝ(1)1,· = ŝ1,·, ŝ(1)·,1 = ŝT1,·, C(1)
Q = CQ in (27)

Recursion: For k = 1, · · · , n − 1 compute

1. The k-th entry D, the k-th row of U , and k-th column of L by

d(k) = ŝ(k)11 , u(k) = 1
d(k) ŝ

(k)
1,· , l(k) = [u(k)]T

2. The second row and column of S(k)
Q by

If k = 1

ŝ(k)2,· = ŝ(k)1,· ·
[
C(1)
Q −

(
rn−1, n − an−1

an

)
I
]
, ŝ(k)·,2 = [ŝ(k)2,· ]T

else

ŝ(k)2,· = ŝ(k)1,· ·
[
C(k)
Q − rn−k, n−k+1I

]
, ŝ(k)·,2 = [ŝ(k)2,· ]T

3. The first row and column of S(k+1)
Q which is the Schur complement of S(k)

Q by

ŝ(k+1)
1,· = ŝ(k)

′
2,· − ŝ(k)21

(
1
ŝ(k)11

ŝ(k)1,·
)′
, ŝ(k+1)

·,1 = [ŝ(k+1)
1,· ]T

Here the prime means the first component is peeled off. (If deg b(x) = n − k peel
off the first k components for the first step).

4. Coefficients of the remainder c(x) by
c(k+1)
.,1 = 1

ŝ(k+1)
11

ŝ(k+1)
·,1

5. New Confederate matrix generated by

C(k+1)
Q = C(k)′′

Q − (e1)′
(

1
ŝ(k)11

ŝ(k)
′

1,·
)

Here double prime means peel off the top row and the first column of the matrix.
(If deg b(x) = n − k peel off the first k rows and columns of the matrix for the first
step).
Output: Coefficients of the remainder and triangular factorization of the generalized
Bezoutian

Proposition 1 The arithmetic cost of computing the Schur–Euclid–Hessenberg
algorithm for a generalized Bezoutian is O(M(n)n) where M(n) is the cost of mul-
tiplying the confederate matrix CQ by vectors (k = 1, 2, · · · , n).

Due to the upper Hessenberg structure of the confederate matrix CQ in the above
scenario M(n) = n2. Thus to derive a fast Schur–Euclid–Hessenberg algorithm one
has to analyze the confederate matrices based on quasiseparable polynomials or their
subclasses as orthogonal and Szegö polynomials as defined in the next section.

5 A Fast Schur–Euclid Algorithm for Quasiseparable
Polynomials

We have seen the Schur–Euclid–Hessenberg algorithm for generalized Bezoutian
associated with the polynomials expanded over the basis {Qk(x)}nk=0 where deg
Qk(x) = k and its arithmetic complexity. The cost of Schur–Euclid–Hessenberg
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algorithm is determined by the cost of the multiplication of the confederate matrix
by vectors. Thus the arithmetic complexity of the algorithm can be reduced hav-
ing sparse, banded, or structured confederate matrices. Hence in this section, we
discuss the complexity of Schur–Euclid–Hessenberg algorithm for quasiseparable
polynomials and therefore its sub classes [7]: orthogonal and Szegö polynomi-
als while elaborating a fast Schur–Euclid–Hessenberg algorithm for quasiseparable
polynomials.

5.1 Schur–Euclid–Hessenberg Algorithm for Quasiseparable
Polynomials

In this section, we analyze the matrix decomposition for the confederate matrix
over quasiseparable polynomials and use the decomposition to derive a fast Schur–
Euclid–Hessenberg algorithm for a Bezoutian associated with the quasiseparable
polynomials. The ultimate idea is to explore the confederate matrix over quasisepa-
rable polynomials to reduce the cost of computing M(n) in Proposition 1.

Let us start with the generator definition of (H, 1)-quasiseparable matrix which
is equivalent to the rank Definition 2. We use quasiseparable generators to define a
system of quasiseparable polynomials.

Definition 8 A matrix A is called (H, 1)-quasiseparable if (i) it is strongly upper
Hessenberg, and (ii) it can be represented in the form

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

d1
q1 d2 gib

×
ij hj

0 q2
. . .

...
. . .

. . .
. . .

0 · · · 0 qn−1 dn

⎤

⎥⎥⎥⎥⎥⎥⎦

where b×
ij = bi+1bi+2 · · · bj−1 for j > i + 1 and b×

ij = 1 for j = i + 1. The scalar ele-
ments {qk, dk, gk, bk, hk} are called the generators of the matrix A.

The results of [7, 37] allow one to observe a bijection between the set of strongly
upper Hessenberg matricesH (say A = [aij] ∈ H ) and the set of polynomials sys-
tem P (say R = {rk(x)} ∈ P with deg rk(x) = k) via

f : H → P,where rk(x) = 1

a2,1a3,2 · · · ak,k−1
det(xI − A)k×k . (33)

The following lemma is given in [7, 8] and is a consequence of Definition 8 and [37].

Lemma 10 Let A be an (H, 1)-quasiseparable matrix specified by its generators as
inDefinition 8. Then a system of polynomials {rk(x)} satisfies the recurrence relations
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rk(x) = 1

qk

⎡

⎣(x − dk)rk−1(x) −
k−2∑

j=0

gj+1b
×
j+1,khk rj(x)

⎤

⎦ (34)

if and only if {rk(x)} is related to A via (33).

With the help of the system of quasiseparable polynomials {rk(x)}nk=0 satisfying
k-term recurrence relations (34), we will define a confederate matrix for the polyno-
mial

a(x) = a0r0(x) + a1r1(x) + · · · + anrn(x) (35)

by

CR(a) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1h2 g1b2h3 · · · · · · g1b
×
1,nhn − a0

an
q1 d2 g2h3 · · · · · · g2b

×
2,nhn − a1

an
0 q2 d3 · · · · · · g3b

×
3,nhn − a1

an
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . qn−2 dn−1 gn−1hn − an−2

an
0 · · · · · · 0 qn−1 dn − an−1

an
.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

Thematrix (36) is an upper Hessenbergmatrix so following Theorem 4 theBezoutian
associated with quasiseparable polynomials satisfies CT

RSR − SRCR = 0, where R
is the system of quasiseparable polynomials satisfying recurrence relations (34),
CR = Ĩ[CR(a)]T Ĩ , and a(x) is defined via (35). Though one can state a Schur–Euclid–
Hessenberg algorithm for a Bezoutian associated with quasiseparable polynomials
using the Schur–Euclid–Hessenberg algorithm in Sect. 4.2 it is not cheap because
the structure of the confederate matrixCR is not sparse. Thus to reduce the cost of the
Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with quasiseparable
polynomials one has to explore the structure of the confederate matrix CR via matrix
decomposition.

Theorem 5 Let CR be the matrix specified by generators {qk, dk, gk, bk, hk} and
coefficients ak via

CR =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn − an−1

an
gn−1hn − an−2

an
gn−2bn−1hn − an−3

an
· · · · · · g1b×

1,nhn − a0
an

qn−1 dn−1 gn−2hn−1 · · · · · · g1b
×
1,n−1hn−1

0 qn−2 dn−2 · · · · · · g1b
×
1,n−2hn−2

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . q2 d2 g1h2
0 · · · · · · 0 q1 d1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

then the following decomposition holds:

CR =
[
θ̃n

(
· · ·

(
θ̃3

(
θ̃2θ̃1 + Δ̃2

)
+ Δ̃3

)
· · ·

)
+ Δ̃n

]
+ 1

an
· Ã1Ã2 · · · Ãn (38)
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where

θ̃1 =
⎡

⎣
In−2

d2 g1
q1 d1

⎤

⎦ , θ̃k =

⎡

⎢⎢⎣

In−k−1

dk+1 bk
qk hk

Ik−1

⎤

⎥⎥⎦ , θ̃n =
[
hn

In−1

]

Δ̃k =

⎡

⎢⎢⎣

0n−k−1

0 gk − dkbk
0 dk − dkhk

0k−1

⎤

⎥⎥⎦ , Δ̃n =
[
dn − dnhn

0n−1

]
(39)

and

Ãk =

⎡

⎢⎢⎣

Ik−1

−an−k 1
0 0

In−k−1

⎤

⎥⎥⎦ , Ãn =
[
In−1

−a0.

]
(40)

Proof Let us split the matrix CR into CR = H̃ + 1
an
C where

H̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn gn−1hn gn−2bn−1hn · · · · · · g1b
×
1,nhn

qn−1 dn−1 gn−2hn−1 · · · · · · g1b×
1,n−1hn−1

0 qn−2 dn−2 · · · · · · g1b×
1,n−2hn−2

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . q2 d2 g1h2
0 · · · · · · 0 q1 d1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C =

⎡

⎢⎢⎢⎢⎣

−an−1 −an−2 · · · −a1 −a0
0 0 · · · 0 0
0 0 · · · 0 0
· · · · ·
0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎦
. One can easily show by matrix multiplica-

tion that the latter matrix admits the factorization C = Ã1Ã2 · · · Ãn with the given Ãk

for k = 1, 2, · · · , n. Thus we only have to prove the decomposition for H̃ in terms
of θ̃k’s and Δ̃k’s.

Showing the decomposition for H̃ = θ̃n

(
· · ·

(
θ̃3

(
θ̃2θ̃1 + Δ̃2

)
+ Δ̃3

)
· · ·

)
+ Δ̃n

is equivalent to showing that the matrix H̃ satisfies the iteration:

H̃0 = In, H̃k = θ̃kH̃k−1 + Δ̃k, k = 1, 2, · · · , n, H̃ = H̃n. (41)

Let us show by induction that for every k = 3, 4, · · · , n :

H̃k−1(n − k + 1 : n, n − k + 1 : n) = H̃(n − k + 1 : n, n − k + 1 : n) (42)
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The basis of induction (k=3) is trivial

H̃(n − 2 : n, n − 2 : n) =
[
d2 g1h2
q1 d1

]
= H̃2(n − 2 : n, n − 2 : n).

Assume that (42) holds for all indices up to k. Consider the matrix H̃k(n − k + 2 :
n, n − k + 2 : n) :

⎡

⎣
dk+1 bk
qk hk

Ik−1

⎤

⎦

⎡

⎢⎢⎢⎣

1 0 · · · 0
0
... H̃k−1(n − k + 1 : n, n − k + 1 : n)
0

⎤

⎥⎥⎥⎦ +
⎡

⎣
0 gk − dkbk
0 dk − dkhk

0k−1.

⎤

⎦

(43)
The first row of the matrix H̃k−1(n − k + 1 : n, n − k + 1 : n) equals the first row of
thematrix H̃(n − k + 1 : n, n − k + 1 : n). Therefore, performing thematrix product
in (43) we get:

⎡

⎢⎢⎢⎢⎢⎣

dk+1 dkbk + (gk − dkbk) H̃k−1(n − k − 2, n − k : n)bk
qk dkhk + (dk − dkhk) H̃k−1(n − k − 1, n − k : n)hk
0
... H̃k−1(n − k : n, n − k − 1) H̃k−1(n − k : n, n − k : n)
0

⎤

⎥⎥⎥⎥⎥⎦

which is equal to H̃(n − k + 2 : n, n − k + 2 : n). By induction we get H̃n−1(1 :
n, 1 : n) = H̃(1 : n, 1 : n). Substituting this into recursion (41) we get

H̃n =
[
hn

In−1

]
H̃n−1 +

[
dn − dnhn

0n−1

]
= H̃.

Now we have the decomposition of the confederate matrix CR (38) over quasisep-
arable polynomials and Hessenberg-1-quasiseparable displacement structure of the
Bezoutian CT

RSR − SRCR = 0. Thus the following Schur–Euclid–Hessenberg algo-
rithm for a Bezoutian associated with quasiseparable polynomials can be used to
recover coefficients of the remainder c(x) of the polynomial division a(x) by b(x)
over the basis {R} = {rk}nk=0 where deg rk(x) = k and {R} satisfies the recurrence
relations (34), and also to obtain the triangular factorization of Bezoutian over the
system of quasiseparable polynomials {R}.
The Schur–Euclid–Hessenberg Algorithm for Bezoutian Over Quasiseparabale
polynomials

Input: Generators {qk, dk, gk, bk, hk}. Coefficients of a(x) and b(x), say a0, a1, · · · ,

an and b0, b1, · · · , bn−1, and if the degree of b(x) is n − k < n − 1 then list its
coefficients as b0, b1, · · · , bn−k, 0 here "0" means a zero vector of appropriate length
up to n − 1.



376 S.M. Perera and V. Olshevsky

Initialization: Set θ̃k and Δ̃k in terms of generators {qk, dk, gk, bk, hk}, and Ãk in
terms of ak and C(1)

R = CR via (38). Set ŝ(1).,1 = ŝ.,1 .

Recursion: For k = 1, · · · , n − 1 compute

1. The k-th entry D, the k-th row of U , and k-th column of L by

d(k) = ŝ(k)11 , u(k) = 1
d(k) ŝ

(k)
1,· , l(k) = [u(k)]T

2. The second row and column of S(k)
R by

If k = 1

ŝ(k)2,· = 1
qn−1

ŝ(k)1,·
[
C(1)
R −

(
dn − an−1

an

)
I
]
, ŝ(k)·,2 = [ŝ(k)2,· ]T

else

ŝ(k)2,· = 1
qn−k

ŝ(k)1,·
[
C(k)
R − dn−k+1I

]
, ŝ(k)·,2 = [ŝ(k)2,· ]T

3. The first row and column of S(k+1)
R which is the Schur complement of S(k)

R by

ŝ(k+1)
1,· = ŝ(k)

′
2,· − ŝ(k)21

(
1
ŝ(k)11

ŝ(k)1,·
)′
, ŝ(k+1)

·,1 = [ŝ(k+1)
1,· ]T

Here the prime means the first component is peeled off. (If deg b(x) = n − k,
then peel off the first k components for the first step).

4. Coefficients of the remainder c(x) by
c(k+1)
.,1 = 1

ŝ(k+1)
11

ŝ(k+1)
·,1

5. Confederate matrix after peeling off row(s) and column(s) by

C̃(k)
R = θ̃ ′′

n−k

(
· · ·

(
θ̃ ′′
3

(
θ̃ ′′
2 θ̃ ′′

1 + Δ̃′′
2

)
+ Δ̃′′

3

)
· · ·

)
+ Δ̃′′

n−k

Here the double primemeans peel off the top row and the first column ofmatrices.
(If deg b(x) = n − k, then peel off the first k rows and columns of the matrix for
the first step).

6. New confederate matrix generated by

C(k+1)
R = C̃(k)

R − qn−k(e1)′
(

1
ŝ(k)11

ŝ(k)
′

1,·
)

Output: Coefficients of the remainder and triangular factorization of the Bezoutian
associated with quasiseparable polynomials.

As we have seen in Proposition 1, the cost of the Schur–Euclid–Hessenberg algo-
rithm is dominated by M(n) which is the cost of multiplication of a confederate
matrix by vectors and this occurs in step 2 of the algorithm. Also note that for the
multiplication of C(k)

R by vectors, i.e., for k = 1 we have to multiply n factors of θ̃k ,
n − 1 factors of Δ̃k , and n factors of Ãk together with the scaling factor 1

an
(note

that we do not have to scale for the monic polynomial case) by a vector and for
k = 2, 3, · · · , n − 1 we have to multiply at most n − k factors of θ̃ and n − k − 1
factors of Δ̃ by a vector. Thus the most expensive step in the recursion is when
k = 1. Now for k = 1 in step 2 of the Schur–Euclid–Hessenberg algorithm in the
quasiseparable case, we have at most 4multiplications and 2 additions corresponding
to multiplication of θ̃k , at most 2 multiplications corresponding to multiplication of
Δ̃k , and at most 1 multiplication and 1 addition corresponding to multiplication of
Ãk by the first row of the Bezoutian. Thus the arithmetic cost of computing C(1)

R by a
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vector is at most 11n − 2 operations as opposed to Hessenberg structured matrix CR

(37) by a vector, which is n2 − 2 operations. Hence ∀n > 11, one can design a fast
Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials.

Proposition 2 The arithmetic cost of computing the Schur–Euclid–Hessenberg
algorithm for the Bezoutian associated with the quasiseparable polynomials sat-
isfying recurrence relations (34) is O(n2).

5.2 Cost of Schur–Euclid–Hessenberg Algorithm
for Orthogonal Polynomials

In this section, we observe the cost of computing the Schur–Euclid–Hessenberg
Algorithm for aBezoutian associatedwith the orthogonal polynomials. Themain idea
here is to explore the confederate matrix with respect to the orthogonal polynomial
system to reduce the cost of computing M(n) in Proposition 1.

It is well known [16] that systems of polynomials R = {rk(x)}nk=0 orthogonal with
respect to an inner product of the form

< p(x), q(x) >=
∫ b

a
p(x)q(x)w2(x)dx

satisfy a three-term recurrence relation of the form

rk(x) = 1

qk
(x − dk)rk−1(x) − gk−1

qk
· rk−2(x), qk �= 0. (44)

Define for the polynomial

a(x) = a0r0(x) + a1r1(x) + · · · + an−1rn−1(x) + anrn(x) (45)

its confederate matrix, given by

C(a) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1 0 · · · 0 − a0
an

q1 d2 g2
. . .

... − a1
an

0 q2 d3
. . . 0 − a2

an
...

. . .
. . .

. . .
. . .

...

0 · · · 0 qn−2 dn−1 gn−1 − an−2

an
0 0 · · · 0 qn−1 dn − an−1

an

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

which has been called a comrade matrix in [4].
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The matrix (46) is an upper Hessenberg matrix so by Theorem 4 the Bezoutian
associated with orthogonal polynomials satisfies CT

RSR − SRCR = 0, where R is
the system of orthogonal polynomials satisfying recurrence relations (44), CR =
ĨC(a)T Ĩ , and a(x) is defined via (45). Moreover orthogonal polynomials are a sub
class of quasiseparable polynomials [7] so to express Schur–Euclid–Hessenberg
algorithm for a Bezoutian associated with the orthogonal polynomials one has to
revise the Schur–Euclid–Hessenberg Algorithm in the quasiseparable case in Sect.
5.1. To do so one has to consider the Bezoutian associated with orthogonal poly-
nomials and initialize the algorithm with the comrade matrix CR = ĨC(a)T Ĩ having
generators {qk, dk, gk} with the coefficients ak . Due to the sparse structure of the
comrade matrix, we could ignore step 5 of the Schur–Euclid–Hessenberg Algorithm
in the quasiseparable case and revise the first matrix in the RHS of step 6 to be the
comrade matrix CR = ĨC(a)T Ĩ .

The matrix CR is almost tridiagonal. Thus the cost of multiplication of CR by
vectors is onlyM(n) = O(n) operations. Hence one can design a fast Schur–Euclid–
Hessenberg algorithm for a Bezoutian associated with orthogonal polynomials hav-
ing complexity O(n2) operations.

Proposition 3 The arithmetic cost of computing the Schur–Euclid–Hessenberg
algorithm for the Bezoutian associated with the orthogonal polynomials satisfying
(44) is O(n2).

5.3 Cost of Schur–Euclid–Hessenberg Algorithm for Szegö
Polynomials

In this section, we observe the cost of computing the Schur–Euclid–Hessenberg
Algorithm for a Bezoutian associated with the Szegö polynomials. The main idea
here is to explore the confederate matrix with respect to the Szegö polynomial system
to reduce the cost of computing M(n) in Proposition 1.

Szegö polynomials S = {φ�

k(x)}nk=0 or polynomials orthonormal on the unit circle
with respect to an inner product of the form

< p(x), q(x) >= 1

2π

∫ π

−π

p(eiθ )[q(eiθ )]∗w2(θ)dθ,

for any such inner product, it is known [22] that there exist a set of reflection coeffi-
cients {ρk} satisfying

ρ0 = −1, |ρk| < 1, k = 1, 2, · · · , n − 1, |ρn| ≤ 1,

and complementary parameters {μk} defined by the reflection coefficients via
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μk =
{√

1 − |ρk|2, |ρk| < 1
1, |ρk| = 1

such that the corresponding Szegö polynomials satisfying the two-term recurrence
relations

[
φk(x)
φ

�

k(x)

]
= 1

μ0

[
1
1

]
,

[
φk(x)
φ

�

k(x)

]
= 1

μk

[
1 −ρ�

k−ρk 1

] [
φk−1(x)
x φ

�

k−1(x)

]
(47)

where {φk(x)} is a system of auxiliary polynomials. Define for the polynomial

a(x) = a0φ
�
0(x) + a1φ

�
1(x) + · · · + an−1φ

�
n−1(x) + anφ

�
n(x) (48)

its confederate matrix is given by

CS(a) =

⎡

⎢⎢⎢⎢⎢⎣

−ρ∗
0ρ1 −ρ∗

0μ1ρ2 −ρ∗
0μ1μ2ρ3 · · · −ρ∗

0μ1μ2 · · · μn−1ρn − a0
an

μ1 −ρ∗
1ρ2 −ρ∗

1μ2ρ3 · · · −ρ∗
1μ2μ3 · · · μn−1ρn − a1

an
0 μ1 −ρ∗

2ρ3 · · · −ρ∗
2μ3μ4 · · · μn−1ρn − a1

an
. . .

. . .
. . .

. . .
...

0 · · · 0 μn−1 −ρ∗
n−1ρn − an−1

an
.

⎤

⎥⎥⎥⎥⎥⎦
(49)

Thematrix (49) is an upper Hessenbergmatrix so following Theorem 4 theBezoutian
associated with Szegö polynomials satisfiesCT

S SS − SSCS = 0 where S is the system
of Szegö polynomials satisfying recurrence relations (47),CS = Ĩ[CS(a)]T Ĩ , and a(x)
is defined via (48). The matrix CS is not sparse like the orthogonal polynomial case
so to reduce the cost of multiplication of CS by vectors one has to use the nested
factorization of CS .

Lemma 11 LetCS be thematrix specified by generators {ρ∗
k , ρk, μk} and coefficients

ak via
CS = Ĩ[CS(a)]T Ĩ (50)

then the following decomposition holds:

CS = Γ̃0Γ̃1Γ̃2 · · · Γ̃n + 1

an
· Ã1Ã2 · · · Ãn (51)

where

Γ̃0 =
[−ρn

In−1

]
, Γ̃k =

⎡

⎢⎢⎣

Ik−1

ρ∗
n−k μn−k

μn−k −ρn−k

In−k−1

⎤

⎥⎥⎦ , Γ̃n =
[
In−1

ρ∗
0

]
(52)
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and

Ãk =

⎡

⎢⎢⎣

Ik−1

−an−k 1
0 0

In−k−1

⎤

⎥⎥⎦ , Ãn =
[
In−1

−a0.

]

Proof The matrix CS can be split into CS = Ũ + 1
an
C where

Ũ =

⎡

⎢⎢⎢⎢⎢⎣

−ρ∗
n−1ρn −ρ∗

n−2μn−1ρn −ρ�
n−3μn−2μn−1ρn · · · −ρ∗

0μ1μ2 · · · μn−1ρn

μn−1 −ρ�
n−2ρn−1 −ρ�

n−3μn−2ρn−1 · · · −ρ∗
0μ1μ2 · · · μn−2ρn−1

0 μn−2 −ρ�
n−3ρn−2 · · · −ρ∗

0μ1μ2 · · · μn−3ρn−2

. . .
. . .

. . .
. . .

...

0 · · · 0 μ1 −ρ�
0ρ1

⎤

⎥⎥⎥⎥⎥⎦

andC =

⎡

⎢⎢⎢⎢⎣

−an−1 −an−2 · · · −a1 −a0
0 0 · · · 0 0
0 0 · · · 0 0
· · · · ·
0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎦
. LetU be the unitary Hessenbergmatrix [9]

corresponding to Szegö polynomials {φ�

k(x)} satisfying 2-term recurrence relations
(47), then we can see that

Ũ = ĨUT Ĩ

It is well known that unitary Hessenberg matrix U can be written as the product
U = Γ0Γ1Γ2 · · ·Γn where

Γ0 =
[
ρ∗
0
In−1

]
, Γk =

⎡

⎢⎢⎣

Ik−1

−ρk μk

μk ρ∗
k
In−k−1

⎤

⎥⎥⎦ , Γn =
[
In−1

−ρn

]
.

Thus Ũ has the factorization
Γ̃0Γ̃1Γ̃2 · · · Γ̃n

where Γ̃k = ĨΓ T
k Ĩ for k = 0, 1, · · · , n.

One can see clearly by the matrix multiplication that the matrix C admits the
factorization

C = Ã1Ã2 · · · Ãn

where Ãk =

⎡

⎢⎢⎣

Ik−1

−an−k 1
0 0

In−k−1

⎤

⎥⎥⎦ , Ãn =
[
In−1

−a0

]
, hence the result.
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Szegö polynomials are a sub class of quasiseparable polynomials [7] so to express
the Schur–Euclid–Hessenberg algorithm for the Bezoutian associated with the Szegö
polynomials one has to revise the Schur–Euclid–Hessenberg Algorithm in the qua-
siseparable case, in Sect. 5.1. To do so one has to consider the Bezoutian associated
with Szegö polynomials and initialize the algorithmwith the confederate matrix (51)
having generators {ρ∗

k , ρk, μk} with the coefficients ak . But to reduce the complexity
M(n) one has to revise step 5 of the Schur–Euclid–Hessenberg Algorithm for the
quasiseparable case with the decomposition C̃(k)

S = Γ̃ ′′
k Γ̃ ′′

k+1 · · · Γ̃ ′′
n where Γ̃k’s are

given in (52) and the double prime means peel off the top k column(s) and row(s) if
deg b(x) = n − k where deg a(x) = n while revising the first matrix in the RHS of
step 6 to be the confederate matrix C̃(k)

S in step 5.
Due to the decomposition of CS , in step 2 of the Schur–Euclid–Hessenberg algo-

rithm for Szegö polynomials, we have at most 4 multiplications and 2 additions
corresponding to multiplication of Γ̃k by the first row of the Bezoutian, and at most
1 multiplication and 1 addition corresponding to multiplication of Ãk by the first row
of the Bezoutian. Thus the total cost of multiplication of n + 1 factors of Γ̃k which is
Ũ by the vector is 6(n + 1) operations, and n factors of Ãk which is C by the vector
costs 2n operations. Together with the multiplication of C by quantity 1

an
gives the

overall cost of multiplication of CS by vectors as M(n) = O(n) complexity. Hence
one can design a fast Schur–Euclid–Hessenberg algorithm for Szegö polynomials.

Proposition 4 The arithmetic cost of computing the Schur–Euclid–Hessenberg
algorithm for a Bezoutian associated with the Szegö polynomials satisfying recur-
rence relations (47) is O(n2).

6 Conclusion

In this paper, we have derived a Schur–Euclid–Hessenberg algorithm to compute
the triangular factorization of a generalized Bezoutian. In this case, it is associated
with the system of polynomials {Q} = {Qk(x)}nk=0, where deg Qk(x) = k and satis-
fies k-term recurrence relations while recovering the coefficients of the remainder of
the polynomial division over basis {Q}. Once the generalization results were estab-
lished, we explore a fast Schur–Euclid–Hessenberg algorithm for quasiseparable
polynomials. This algorithm generalizes the result for fast Schur–Euclid–Hessenberg
algorithm for orthogonal polynomials and Szegö polynomials. To derive the fast
algorithm we exploit the decomposition of confederate matrices over quasiseparable
and Szegö polynomials and use the sparse comrade matrix for orthogonal polynomi-
als. The presented Schur–Euclid–Hessenberg algorithm enables us to compute a fast
triangular factorization of the Bezoutian associated with quasiseparable, Szegö, and
orthogonal polynomials, and to recover coefficients of the remainder in polynomial
division over quasiseparable, Szegö, and orthogonal basis with complexity O(n2)
operations.
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The Use of CAS Piranha for the Construction
of Motion Equations of the Planetary
System Problem

A.S. Perminov and E.D. Kuznetsov

Abstract In this paper, we consider the using of the computer algebra system
Piranha as applied to the study of the planetary problem. Piranha is an echeloned
Poisson series processor, which is written in C++ language. It is new, specified, high-
efficient program for analytical transformations of polynomials, Fourier and Poisson
series. We used Piranha for the expansion of the Hamiltonian of four-planetary prob-
lem into the Poisson series and the construction of motion equations by the Hori–
Deprit method. Both of these algorithms are briefly presented in this work. Different
properties of the series representation of the Hamiltonian and motion equations are
discussed.

Keywords Planetary problem · Motion equations · Second system of Poincare
elements · Echeloned series · Poisson series processor · Hori-Deprit method

1 Introduction

The investigation of the orbital evolution of planetary systems is one of the funda-
mental problems of celestial mechanics. For the simple case of two-body problem
(the Sun and one planet), the planetary orbit can be described as an ellipse, which
is usually named a Keplerian orbit. Planetary orbits are perturbed if we have more
than one planet around the Sun. The perturbed motion is described using of time-
dependent osculating orbital elements. Here the osculating orbit of the planet is the
Keplerian orbit that it would have around the Sun if perturbations were not present.
As is known from celestial mechanics, the planetary problem of three or more bodies
(two or more planets around the Sun) does not have the exact analytical solution.
Methods of the perturbation theory are used to find an approximate solution of the
problem of the planetary motion.
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Using of the perturbation theory, we can start with a simplified form of the original
problem. In our case, the gravitational interaction between planets is excluded. Plan-
etary orbits are Keplerian. Perturbation methods set the iterative process in which
the previous solution is improved on each step. So, the perturbation theory leads to
the solution in the form of a power series in a small parameter of the problem. The
small parameter quantifies the deviation from the exactly solved problem and it is
proportional to the ratio of the sum of planet masses and the mass of the Sun. As
showed Poincare in [1] series of perturbation methods are asymptotic expansions
and not convergent in common case.

Our main objective is the construction of semi-analytical motion theory of the
second order of planetary masses. In this paper, we consider the construction of
equations of themotion theory. Further these equations can be numerically integrated
for the investigation of the orbital evolution of various planetary systems. The first
stage of our work is the expansion of the planetary system Hamiltonian into the
Poisson series. The second stage is the construction of motion equations in time-
averaged elements by the Hori–Deprit method. We consider the problem for the case
of planetary systems with four planets. It is sufficient to study the orbital evolution
of giant-planets of the Solar system and the most of extrasolar systems also.

For our purposes, the Hamiltonian of four-planetary system is written in Jacobi
coordinates [2]. It is the hierarchical coordinate system which is more preferable
for the study of the planetary motion. The position of each following body in these
coordinates is determined relative to the center of themass of the previously including
bodies set.

We used the second system of Poincare elements for the construction of the
Hamiltonian expansion. It allows simplify the angular part of the series. In this case
only one angular element—the mean longitude—is defined [3]. Elements of the
second Poincare system are defined through classical Keplerian orbital elements by
the following way

Li = Mi

√
κ2i ai , λi = Ωi + ωi + li ,

ξ1i =
√
2Li (1 −

√
1 − e2i ) cos (Ωi + ωi ), ξ2i =

√
2Li

√
1 − e2i (1 − cos Ii ) cosΩi ,

η1i = −
√
2Li (1 −

√
1 − e2i ) sin (Ωi + ωi ), η2i = −

√
2Li

√
1 − e2i (1 − cos Ii ) sinΩi ,

whereMi is normalizedmass, κ2
i is normalized gravitational parameter,ai is the semi-

major axis of the orbital ellipse, ei is the eccentricity of this ellipse, Ii is the inclination
of the orbital plane relative to the reference plane of the coordinate system, quantities
Ωi , ωi , li are longitude of the ascending node of the orbit, argument of the pericenter
of the orbit andmean anomaly of the planet on the orbit respectively. The longitude of
the ascending node and inclination define position of the orbital plane. The argument
of the pericenter defines position the ellipse in the orbital plane. The mean anomaly
defines position of the planet on the orbital ellipse. Index i is a sequence number of the
planet. Six classical Keplerian elements or canonical Poincare elements completely
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define the position and the velocity of the planet relative to the origin of the coordinate
system.

It should be noted that Poincare elements ξ1 and η1 are called eccentric; it means
that these elements are proportional to the eccentricity of the orbit. Elements ξ2 and
η2 are called oblique because they are proportional to the inclination of the orbit. Due
to Poincare elements are canonical, three pairs of these are canonical conjugated as
the momentum and its the corresponding coordinate, namely L and λ, ξ1 and η1, ξ2
and η2.

We need to obtain motion equations in time-averaged elements. The use of these
elements allows to eliminate short-periodic perturbations in the planetary motion
and to construct the motion theory for a long-time period. In this case, only secular
and long-periodic perturbations are taken into account. Short-periodic perturbations
are excluded. Therefore we can increase the step of integration with respect to time.
We used the Hori–Deprit method [4, 5] for the construction of these equations. This
method is based on the Poisson brackets formalism and it is characterized by effi-
ciency and very ease for the computer implementation. The first the Hamiltonian of
the problem is averaged and the second the generating function of the transformation
between osculating and averaging elements is constructed. After that, right hands of
motion equations are calculated in averaged elements.

All analytical transformations performed by means of the computer algebra sys-
tem Piranha [6]. Let us explore its main features and possibilities.

2 Overview of Piranha

The computer algebra system Piranha is new, specified, high-efficient program for
analytical manipulations with different series. It is an echeloned Poisson series
processor, which written in C++ programming language. This program was writ-
ten by Francesco Biscani from Max Planck Institute for Astronomy (Heidelberg,
Germany). Piranha is freeware, object-oriented, and cross-platform software. For
the convenience Piranha has Python user-interface which is the set of some Python
libraries and called Pyranha. Standard Python environment can be used for Pyranha
access through the terminal or executable scripts.

Piranha can works with different series types, such as

1. Multivariable polynomials.
2. Poisson series.
3. Echeloned Poisson series (Poisson series with denominators).

It is possible to use various types of series coefficients and powers of variables.
Real types with different precision and rational type are available for series coeffi-
cients. Powers of series variables can be chosen as integer or rational types. Using
of rational coefficients in series eliminates rounding errors and provides arbitrary
precision of resulting series. In this work, we used echeloned Poisson series with
rational coefficients and powers.
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Let us consider the basic functionality of Piranha.

1. The summation and the multiplication of series by using of standard operators
‘+,’ ‘−,’ and‘∗’ in Python-terminal or scripts.

2. The automatically calculation of binomial expansions up to terms of the chosen
order. For example, if at the input of Python-terminal we have some expression
like (1 + x)q , at the output we will obtain its representation as the series truncated
up the chosen order. Here q is an arbitrary rational number, x is a symbol variable
or another series.

3. The truncation of the series up to terms with given order of powers of the
series variables. The function truncate_degree(arg, max_degree,
names) is used for the degree-based truncation of the series arg. All items
which degree is greater than max_degree will be eliminated. The argument
names is a list of names of variables which are chosen for the truncation.

4. The substitution into the series of some numerical values or another series. The
function subs(arg, name, x) is used for the substitution of the quantity x
in the variable name of the series arg.

5. The estimation of the series by different numerical values using of the function
evaluate(arg, eval_dict). All symbolic variable of the series argwill
be replaced by corresponding numerical values. The argument eval_dict is the
evaluation dictionary consisting of pairs (the nameof the variable—corresponding
numerical value).

6. It is possible to save/load of the resulting series in/from text file or zipped text
file by functions save(arg, path_to_file)/load(path_to_file).
Using of this functions, the series arg will be saved or loaded.

7. The functions integrate(arg, name) and partial(arg, name) cal-
culate the integral and the partial derivative of the series arg with respect to the
variable name.

8. The Poisson bracket of arguments f and g can be calculated using of the function
pbracket(f, g, p_list, q_list), where p_list and q_list are
lists of names of momentum and coordinates correspondingly.

9. Such functions as cos(x) and sin(x) are implemented in Piranha also and
they can be used for the construction of the angular part of Poisson series. The
argument x can be any numerical or series type.

We implemented the simplePoincare processor for the constructionof the classical
celestial mechanics expansions, which are needed for our transformations. It can be
used for the calculation of following the base series.

• xk , yk , zk are rectangular coordinates of k-th planet.
• rk , 1/rk are the distance to the k-th planet and its inverse value.
• Next, using of the previously mentioned series it is possible to take the expansion
of cos Hi j , where Hi j is the angle between radius vectors ri and r j .

• The ratio ri/r j can be obtained from expansions of ri and 1/r j .
• The inverse absolute value of radius vectors difference, which is denoted below
as 1/Δi j , can be expanded into the series as follows.



The Use of CAS Piranha for the Construction of Motion Equations … 389

1/Δi j = |ri − r j |−1 = 1

r j

∞∑
n=0

( ri
r j

)n
Pn(cos Hi j ), (1)

where 1 ≤ j < i ≤ 4, Pn is Legendre polynomial of n-th degree, Hi j is the angle
between two radius vectors. The series in Legendre polynomials absolutely con-
verges when |ri/r j | < 1. Then we expressed each Legendre polynomials through
cosine of the angle.

All expansions are expressed through the second system of Poincare elements.
Algorithms for the construction of these expansions are available in our work [7]
and implemented as Python scripts. It is important to note that in [7] we used the old
version of Piranha system and Legendre polynomials are saved as symbol variables.
The current version of Piranha has more performance and it more efficiently uses
operating memory.

In the process, Piranha showed a high speed of calculations. Calculations were
performed on Quad-core PC with 3400 MHz Core i5 processor and 32 Gb available
memory. Unix-like OS Ubuntu 14 and Python 2.7 is used. Table1 presents a time
of the series calculation, a number of its items and a series truncation error for base
series. The series truncation error is determined as the relative difference between the
series expansion and the exact expression. Parameter n in the first column is the limit
of degrees of eccentric and oblique Poincare elements. Results in the last column are
correspond to the series for 1/Δi j with maximum degree of cosines is equal to 25.

The accuracy estimation of the base series is determined for giant-planets of the
Solar System. Indexed quantities were calculated for all planetary pairs. The value

Table 1 Calculation time, the number of terms and the series truncation error for the base series

n Feature x/a, y/a z/a r/a a/r ri/r j cos θi j 1/Δi j

5 Length 96 116 46 41 400 2438 79688

Error 10−7 10−7 10−8 10−8 10−8 10−7 10−6–
10−11

Time 0.1s 0.1s 0.1s 0.1s 0.1s 0.8s 2s

6 Length 154 516 66 61 847 6342 168984

Error 10−9 10−9 10−9 10−9 10−9 10−9 10−8–
10−10

Time 0.1s 0.1s 0.1s 0.1s 0.1s 1.4s 4s

8 Length 333 616 132 127 3004 32035 595450

Error 10−10 10−10 10−11 10−11 10−11 10−11 10−10–
10−13

Time 0.2s 0.2s 0.2s 0.2s 0.2s 4s 14s

9 Length 460 966 178 173 5158 64691 1021422

Error 10−10 10−10 10−11 10−11 10−11 10−11 10−11–
10−14

Time 0.3s 0.3s 0.2s 0.2s 0.2s 7s 110s
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of 1/Δi j for the planetary pair ‘Uranus–Neptune’ has the lowest accuracy due to the
ratio ri/r j has the largest value for this pair. The highest accuracy gives the planetary
pair ‘Jupiter–Neptune.’

3 The Expansion of the Hamiltonian

The algorithm of the Hamiltonian expansion is discussed more detail in [7]. Let us
briefly review here the basic formulas of the algorithm. The Hamiltonian can be
expressed as the sum of the undisturbed Hamiltonian and the disturbing part

h = −
4∑

i=1

Miκ
2
i

2ai
+ μ × Gm0

{ 4∑
i=2

mi (2riRi + μR2
i )

ri R̃i (ri + R̃i )
−

4∑
i=1

i−1∑
j=1

mim j

|ρi − ρ j |
}
. (2)

Here

Ri =
i∑

k=1

mk

m̄k
rk, R̃i =

√
r2i + 2μriRi + μ2R2

i , (3)

and

|ρi − ρ j | = ri − r j + μ

i−1∑
k= j

mk

m̄k
rk, (4)

where numbers i and j satisfy a condition 1 ≤ j < i ≤ 4; ρk is the barycentric radius
vector of k-th planet, rk is Jacobi radius vector of the same planet; μmk is the
mass of the planet in items of the Sun mass m0, m̄k = 1 + μm1 + · · · + μmk , Mi =
mim̄i−1/m̄i , κ2

i = Gm0m̄i/m̄i−1μ, G is the gravitational parameter and μ is the
small parameter. If we take into account the Solar system then the value of μ can
take equal to 0.001.

The first sum in (2) is the undisturbed part of the Hamiltonian, which describes
the Keplerian motion of planets around the Sun. The expression in figure brackets is
the disturbing function. Double sum in (2) is the main part of the disturbing function.
The main part describes the interaction between planets.

The Hamiltonian of the planetary problem can be expressed as

h = h0 + μh1 = h0 +
∑
k,n

Aknx
k cos(nλ), (5)

where h0 is the undisturbed Hamiltonian, μh1 is the disturbing function, Akn is
numerical coefficients, xk is the product of Poincare elements with corresponding
degrees, cosine is represent the angular part of the series, nλ is the linear combination
of mean longitudes of planets.
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Common form of the expansion of the main part up to the second degree of the
small parameter is shown here

1

|ρi − ρ j | = 1

Δi j
− μ

Ai j

Δ3
i j

+ μ2
(3
2

A2
i j

Δ5
i j

− 1

2

Bi j

Δ3
i j

)
+ . . . , (6)

and here for items of the second part of the disturbing function

2riRi + μR2
i

ri R̃i (ri + R̃i )
= Ci

r3i
+ μ

(
−3

2

C2
i

r5i
+ 1

2

Di

r3i

)
+ μ2

(5
2

C3
i

r7i
− 3

2

Ci Di

r5i

)
+ . . . , (7)

where

Ai j = (ri − r j )
i−1∑
k= j

mk

m̄k
rk, Bi j =

( i−1∑
k= j

mk

m̄k
rk

)2
, Ci = ri

i−1∑
k=1

mk

m̄k
rk, Di = Bi1.

(8)
Scalar products are expressed here through cosines of angles. Such quantities as

the small parameter μ and masses ratio mk/m̄k are used as symbol variables also.
We have two expansions of the Hamiltonian into the Poisson series up to the

second and the third degrees of the small parameter. The properties of these series
are presented in Tables2 and 3. For items of the disturbing function and the Hamil-
tonian are given the following properties: maximum degrees of eccentric and oblique
Poincare elements (n1, n2, n3), maximum degrees of cosines of angles (p1, p2, p3),
and the number of terms (N1, N2, N3) for various degrees of the small parameter. The
total number of terms in each groups is showed. For the length of the Hamiltonian
expansion four terms from the undisturbed Hamiltonian are taken into account also.

Table 2 Properties of the Hamiltonian expansion up to the second degree of the small parameter

Indexes
of items

Terms with μ1 Terms with μ2 Length
of seriesn1, p1 N1 n2, p2 N2

i, j The main part of the disturbing function

2, 1 5, 25 79688 3, 10 20347 100035

3, 2 5, 25 79688 3, 10 20347 100035

4, 3 5, 25 79688 3, 10 20347 100035

3, 1 5, 20 52787 2, 10 30112 82899

4, 2 5, 20 52787 2, 10 30112 82899

4, 1 5, 15 31178 2, 5 14782 45960

i The second part of the disturbing function

2, 3, 4 5, – 2646 3, – 2436 5082

The Hamiltonian

5, 25 375816 3, 10 141129 516949
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Table 3 Properties of the Hamiltonian expansion up to the third degree of a small parameter

indexes
of items

Terms with μ1 Terms with μ2 Terms with μ3 Length
of seriesn1, p1 N1 n2, p2 N2 n3, p3 N3

i, j The main part of the disturbing function

2, 1 8, 32 947908 4, 20 197168 3, 10 55279 1200355

3, 2 8, 32 947908 4, 20 197168 3, 10 55279 1200355

4, 3 8, 32 947908 4, 20 197168 3, 10 55279 1200355

3, 1 6, 20 111949 3, 10 121488 2, 5 51320 284757

4, 2 6, 20 111949 3, 10 121488 2, 5 51320 284757

4, 1 6, 10 32474 3, 5 61046 1, 5 22141 115661

i The second part of the disturbing function

2, 3, 4 8, – 19542 4, – 8076 3, – 7140 34758

The Hamiltonian

8, 40 3119638 5, 15 903602 3, 15 297758 4321002

Table 4 The estimation accuracy of the Hamiltonian expansion for the Solar system

Indexes The expansion up to μ2 Error The expansion up to μ3 Error

i, j The main part of the disturbing function

2, 1 −7.00587 · 10−2 3 · 10−6 −7.00588747 · 10−2 9 · 10−9

3, 2 −6.6832878 · 10−4 6 · 10−9 −6.68328783 · 10−4 1 · 10−12

4, 3 −1.876166 · 10−4 2 · 10−6 −1.87616949 · 10−4 3 · 10−8

3, 1 −2.31483506 · 10−3 5 · 10−9 −2.31483505 · 10−3 3 · 10−10

4, 2 −4.92903269 · 10−4 1 · 10−10 −4.92903269 · 10−4 1 · 10−13

4, 1 −1.65422172 · 10−3 2 · 10−10 −1.65422172 · 10−3 7 · 10−10

i The second part of the disturbing function

2, 3, 4 1.7504193 · 10−5 1 · 10−7 1.75041953 · 10−5 1 · 10−11

The Hamiltonian in general

−4.56917912 · 10−5 1 · 10−9 −4.56917913 · 10−2 4 · 10−12

The approximation accuracy for both Hamiltonian was calculated for the Solar
system. Poincare elements for the Solar system are taken on 01/01/2000 and cor-
respond to the mean ecliptic of the Solar system. The estimation accuracy of the
series approximation is presented in Table4 for the whole Hamiltonian. Columns
’Error’ consist of absolute values of relative differences between the series expan-
sion and the exact expression. The estimation was carried out for Poincare elements
corresponding to the elements of giant-planets of the Solar system.
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4 The Hori–Deprit Method

The averagedHamiltonianwas constructed by theHori–Depritmethod. Let us denote
slow variables of the problem as x = (L , ξ1, η1, ξ2, η2) and fast variables as λ. Rate
of change for slow variables is much less than rate of change for fast variables. The
rates of slow variables are proportionally the small parameter while the rates of fast
variables are in proportion to the mean motions. Averaged variables are denoted as
X and Λ. After averaging transformation with respect to the mean longitudes λ, the
Hamiltonian is written as the series of the small parameter

H(X) = H0 +
∞∑

m=1

μmHm(X), (9)

where quantities Hm are obtained from the main equation of the Hori–Deprit method

Hm(X) = hm +
∑ 1

r ! {Tjr , {· · · , {Tj1 , h j0}}}. (10)

The summation is over the domain 0 ≤ j0 ≤ m − 1; j1, j2, · · · , jr ≥ 1;
∑k

s=0 js =
m; 1 ≤ r ≤ m. The figure brackets is Poisson brackets with respect to the Poincare
elements. hm are items of not averaged Hamiltonian h, and the generating function
of the transformation to averaging elements is defined as

T (X,Λ) =
∞∑

m=1

μmTm(X,Λ). (11)

On each step of the method the Eq. (10) can be written in the next form

Hm(X) = {Tm, h0} + Φm, (12)

or, as it is shown in [4]

Φm = Hm +
4∑

k=1

νk
∂Tm
∂Λm

, (13)

where Φm is defined on the previous step of the method. In the general case Φm is
the echeloned Poisson series

Φm(X,Λ) =
∑

Bpn X
p cos nΛ, (14)

where Bpn are the coefficients of the echeloned Poisson series (it includes the denom-
inator as the linear combination of frequencies νk of fast variables).

If Hm(X) = ∑
Bpn X p, n ∈ {n1 = · · · = n4 = 0} then the solution of the Eq. (13)

can be written as Tm(X,Λ) = ∑ Bpn

nν
X p sin nΛ, n /∈ {n21 + · · · + n24 �= 0}.
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Averaged motion equations can be obtained using Poisson brackets

dX

dt
= {H, X}, dΛ

dt
= {H,Λ}. (15)

The transformation from osculating to averaged elements gives by functions for
the change of variables um , vm

X = x +
∞∑

m=1

(−1)mμmum(x, λ), um =
∑ 1

r ! {Tjr , {· · · , {Tj1 , X}}} (16)

Λ = λ +
∞∑

m=1

(−1)mμmvm(x, λ), vm =
∑ 1

r ! {Tjr , {· · · , {Tj1 ,Λ}}} (17)

where the summation over the domain j1, j2, · · · , jr ≥ 1;
∑k

s=0 js = m; 1 ≤ r ≤ m.
We have constructed two sets of motion equations for the motion theory based on

both expansions of the Hamiltonian in osculating elements.
The averaged Hamiltonian of the problem and the generating function of the

transformation are constructed up to terms with the second (the first) degree of the
small parameter for the first (the second) expansion of the Hamiltonian in osculating
elements. Motion equations and functions for the change of variables are given on
the second (the first) approximation of the Hori–Deprit method.

Table 5 The number of terms of the averaged Hamiltonian and the generating function

H0 H1 H2 T1 T2

The first expansion 4 6 393 379 859 2 774 983 2 926 631 639

The second expansion 4 207 258 6 607 811

Table 6 The number of terms of motion equations and functions for the change of variables for
the motion theory of the first order (based on the first expansion of the Hamiltonian in osculating
elements)

Motion equations Functions for the change

El. Length El. Length El. Length El. Length

L1 0 ξ11, η11 906 L1 1155789 ξ11, η11 490889

L2 0 ξ12, η12 1063 L2 1515779 ξ12, η12 639527

L3 0 ξ13, η13 1060 L3 1516684 ξ13, η13 639647

L4 0 ξ14, η14 897 L4 1158504 ξ14, η14 491129

λ1 2936 ξ21, η21 911 λ1 2357878 ξ21, η21 444825

λ2 3452 ξ22, η22 1071 λ2 3085823 ξ22, η22 582066

λ3 3453 ξ23, η23 1071 λ3 3087298 ξ23, η23 582061

λ4 2939 ξ24, η24 911 λ4 2362303 ξ24, η24 444810
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Table 7 The number of terms of motion equations and functions for the change of variables for the
motion theory of the first order (based on the second expansion of the Hamiltonian in osculating
elements)

Motion equations Functions for the change

El. Length El. Length El. Length El. Length

L1 0 ξ11, η11 126588 L1 6629954 ξ11, η11 6254429

L2 0 ξ12, η12 140799 L2 7801278 ξ12, η12 7171783

L3 0 ξ13, η13 140835 L3 7801342 ξ13, η13 7171812

L4 0 ξ14, η14 126696 L4 6630146 ξ14, η14 6254516

λ1 147362 ξ21, η21 105814 λ1 6824308 ξ21, η21 4896428

λ2 175749 ξ22, η22 105814 λ2 8131632 ξ22, η22 4896428

λ3 175786 ξ23, η23 105814 λ3 8133236 ξ23, η23 4896428

λ4 147473 ξ24, η24 105814 λ4 6829120 ξ24, η24 4896428

Table 8 The number of terms of motion equations and functions for the change of variables for the
motion theory of the second order (based on the first expansion of the Hamiltonian in osculating
elements)

Motion equations Functions for the change

El. Length El. Length El. Length El. Length

L1 0 ξ11, η11 33269 L1 108 · 106 ξ11, η11 116 · 106
L2 0 ξ12, η12 42130 L2 144 · 106 ξ12, η12 145 · 106
L3 0 ξ13, η13 42386 L3 144 · 106 ξ13, η13 145 · 106
L4 0 ξ14, η14 33627 L4 108 · 106 ξ14, η14 116 · 106
λ1 301702 ξ21, η21 21538 λ1 138 · 106 ξ21, η21 53 · 106
λ2 360535 ξ22, η22 27549 λ2 176 · 106 ξ22, η22 71 · 106
λ3 346285 ξ23, η23 27841 λ3 176 · 106 ξ23, η23 71 · 106
λ4 254644 ξ24, η24 22216 λ4 138 · 106 ξ24, η24 53 · 106

The number of terms of the averaged Hamiltonian and the generating function is
shown in Table5. The number of terms of motion equations and functions for the
change of variables for the first order motion theory is given in Tables6 and 7 for
all Poincare elements. The number of terms of motion equations and functions for
the change of variables for the second order motion theory is given in Table8 for all
Poincare elements.

5 Conclusion

The expansion of the Hamiltonian of the four-planetary problem into the Poisson
series is constructed for two cases—up to the second and the third degree of the
small parameter. The error estimation of series truncation is 10−9 for the Hamiltonian
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expansion in the first case. The second expansion was constructed with error of series
truncation is 10−12.

The averaged Hamiltonian and the generating function of the transformation are
constructed up to termswith the first degree of the small parameter.Motion equations
and functions for the change of variables are obtained on the first step of the Hori–
Deprit method. The number of terms of resulting series are given.

In the process of our calculations Piranha shows the ability to work with very
large series.
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Abstract The security of public-key cryptosystems is mostly based on number-
theoretic problems like factorization and the discrete logarithm. There exists an
algorithm which solves these problems in polynomial time using a quantum com-
puter. Hence, these cryptosystems will be broken as soon as quantum computers
emerge. Code-based cryptography is an alternative which resists quantum computers
since its security is based on an NP-complete problem, namely decoding of random
linear codes. The McEliece cryptosystem is the most prominent scheme to realize
code-based cryptography. Many code classes were proposed for the McEliece cryp-
tosystem, but most of them are broken by now. Sendrier suggested to use ordinary
concatenated codes, however, he also presented an attack on such codes. This work
investigates generalized concatenated codes to be used in the McEliece cryptosys-
tem. We examine the application of Sendrier’s attack on generalized concatenated
codes and present alternative methods for both partly finding the code structure and
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1 Introduction

Public-key cryptography was introduced in 1976 by [10]. The advantage in com-
parison to classical cryptosystems is that sender and receiver do not have to share a
common secret key, since two different keys are used for encryption and decryption.
The receiver (Bob) publishes a public key, which is used by the sender (Alice) to
encrypt messages she wants to send to Bob. When Bob receives an encrypted mes-
sage, he uses his private key for decryption. Nowadays, the security of public-key
cryptosystems is usually based on number theoretic problems, like factorization of
large numbers (RSA [24]) or the discrete logarithm (Elgamal [11]). For solving these
two problems there are no efficient algorithms known so far. However, Shor’s algo-
rithm solves these problems in polynomial time on quantum computers [27]. As soon
as quantum computers will exist in the future, the aforementioned cryptosystems are
broken and will become useless. Hence, there is a need for so-called post-quantum
cryptography, i.e., new methods which resist the quantum computer. One candidate
for this purpose is code-based cryptography.

The first code-based cryptosystem was proposed by McEliece only 2years after
the emerge of public-key cryptography. The security of this system is based on
the NP-complete problem of decoding random linear codes [3]. Using the McEliece
cryptosystem, encryption and decryption can be performed very efficiently. Themain
problem is the large size of the public key. For this reason, code-based cryptography
was forgotten for a long time and now becomes interesting again due to quantum
computer resistance. Initially, McEliece suggested to use binary Goppa codes in
his cryptosystem. Later, other code classes were suggested. However, in most cases
it was also shown that there are attacks which break them. This work investigates
generalized concatenated codes for use in the McEliece cryptosystem.

This paper is structured as follows. In Sect. 2, we summarize the McEliece cryp-
tosystem and recall a general attack on the system. In Sect. 3, we present coding
theory fundamentals, such as ordinary and generalized concatenated codes. Fur-
thermore, we discuss the use of generalized concatenated codes in the McEliece
cryptosystem in Sect. 4 and describe some generalized concatenated codes that are
not ordinary concatenated codes. Section5 is about Sendrier’s attack, which recovers
the structure of an ordinary concatenated code used in the McEliece cryptosystem.
We examine under which conditions the attack can be modified in order to work
also with generalized concatenated codes. In Sect. 6, we give alternatives for parts of
Sendrier’s attack in order to apply it on GC codes. Also, an attack which recovers the
plaintext from a cryptogram instead of finding the structure of the underlying code
is explained. Section7 presents methods which can be used in order to prevent the
attacks explained before. Finally, Sect. 8 concludes the paper.
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2 McEliece Cryptosystem

The McEliece cryptosystem, introduced in [19], is the first public-key cryptosystem
based on coding theory. For generating private and public key, Bob first selects
an error-correcting code of length n and dimension k which can correct up to t
errors. He then computes a (k × n) generator matrix G for this code. Furthermore,
he randomly produces two matrices, S, which is a (k × k) invertible matrix and P,
which is a (n × n) permutation matrix. These matrices are used in order to obfuscate
G and hence to hide the structure of the code. Therefore he calculates G̃ = S · P and
publishes the pair (G̃, t) as public key. The code as well as the matrices G, S and
P he keeps secret as private key. In order to send a message to Bob, Alice makes
use of Bob’s public key to encrypt her message. She breaks her message into k-bit
blocks and multiplies each of these blocks to the obfuscated generator matrix G̃.
To each of the blocks, she then adds a random vector e of length n and weight ≤ t ,
which can be interpreted as error. Hence, the calculation r = m · G̃ + e can directly
be compared to the mapping of information blocks to codewords in a typical channel
coding scenario. In order to decrypt the cipher r, Bob needs the matrices P and S
and a decoding algorithm for the used code. He calculates

r̂ = r · P−1 = (m · G̃ + e) · P−1

= (mS · G · P + e) · P−1

= m · S · G · P · P−1 + e · P−1

= m · S · G + e · P−1.

In analogy to channel coding, r̂ has the form of a received word consisting of the
information word m · S and the error e · P−1. Bob uses the decoding algorithm on r̂
to obtain m̂ = m · S. Finally he can multiply m̂ with S−1 to retrieve m.

In order to be used in the McEliece cryptosystem, a code class needs to fulfill
two requirements. An efficient decoding algorithm has to exist for the used code
class, and the code has to be indistinguishable from a random code. In the original
proposal, binary Goppa codes were used. For suitable parameters they are unbroken
until today, since they fulfill both requirements. Other code classes were suggested
(cmp. Table1).

Encryption and decryption in the McEliece scheme is competitive with number-
theoretic methods like RSA in terms of complexity and easiness of implementation.
Since the security is based on the NP-complete problem of decoding random linear
codes, the McEliece cryptosystem is a candidate for post-quantum cryptography.
The system’s main drawback is a large key size because generator matrices are used
as keys. For this reason the cryptosystem was not applicable for a long time.

Another code-based cryptosystem similar to McEliece is the Niederreiter cryp-
tosystem introduced in [22]. In contrast to the McEliece cryptosystem, which uses
a codeword with an added error as ciphertext, the Niederreiter cryptosystem repre-
sents the ciphertext as a syndrome and the error vector is the message. Instead of a
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Table 1 Proposed code classes for the McEliece cryptosystem and suggested attacks

Code class Proposal Attacks

GRS codes 1986: Niederreiter [22] 1992: Sidelnikov and
Shestakov [29]

Ordinary concatenated codes 1995: Sendrier [25] 1998: Sendrier [26]

Reed–Muller codes 1994: Sidelnikov [28] 2007: Minder and Shokrollahi
[21]

2013: Chizhov and Borodin [6]

Algebraic geometry codes 1996: Janwa and Moreno [14] 2008: Faure and Minder [14]

2014: Couvreur et al. [8]

Subcodes of GRS codes 2005: Berger and Loidreau [2] 2010: Wieschebrink [31]

generator matrix, Niederreiter uses a parity check matrix as public key, and hence is
also called a dual version of McEliece. It was shown in [17] that the cryptosystems
of McEliece and Niederreiter are equivalent when set up for corresponding choices
of parameters. This means, that an attack on McEliece cryptosystem also breaks the
Niederreiter cryptosystem and vice versa.

There are two kinds of possible attacks to the McEliece cryptosystem. In a struc-
tural attack, the adversary tries to retrieve the code structure and hence to recover
S′, G′, P′, or an efficient decoder of the code generated by S′ · G′ · P′. Structural
attacks were for example successfully applied to (subcodes of) generalized Reed–
Solomon codes, Reed–Muller codes, Algebraic geometry codes, and ordinary con-
catenated codes. A nonstructural attack tries to recover the message from the cryp-
togram r and the public-key (G̃, t). This is equivalent to the problem of decoding
random linear codes.

Information Set Decoding Attack

In the following, we give an example for a message attack called information set
decoding, as described in [1, 16, 19], of which we present an efficient modification
for concatenated codes in Sect. 6.2.

Given a codewith parameters (n, k, d) and generator matrix G̃. In order to recover
m in r = m · G̃ + e we randomly choose δ coordinates of r and G̃. With rδ we
denote the vector we get by only taking the δ chosen coordinates from the vector r.
Similarly, G̃δ denotes thematrix obtained from G̃ by extracting the δ chosen columns.
Restricting our vectors to the δ chosen coordinates we obtain rδ = m · G̃δ + eδ . If
we are lucky and choose δ error-free coordinates, eδ is the zero vector. Thus, the
system of linear equations rδ = m · G̃δ , with known G̃δ , rδ and unknown m, has a
solution, which is unique as long as G̃δ has rank k.

Obviously, we must choose δ ≥ k. For MDS codes, we know that any set of k
columns of G̃ is linearly independent [20]. Other codes do not have this property,
however, to our knowledge, this has been an open problem for many years. For most
practically good codes, a linearly independent set of columns is obtained with high
probability already for values of δ slightly larger than k.
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Algorithm 1: Information Set Decoding Attack

Input: G̃ and r = m · G̃ + e with wtH(e) = t
Output: m

1 do
2 Choose δ many coordinates at random // O(1)

3 Solve rδ = m̂ · G̃δ for m̂ // O(k3)

4 while �m̂ or dH(m̂ · G̃, r) ≥ d
2

5 return m̂

Theorem 1 If t < d
2 , the algorithm is correct. Its expected complexity is

(n
δ

)

(n−t
δ

) · O(δ3).

Proof From coding theory we know that if t < d
2 , there is a unique m̂ such that the

Hamming distance of m̂ · G̃ and r is dH(m̂ · G̃, r) ≥ d
2 . This m̂ is also the unique

solution of r − e = m̂ · G̃. If δ is chosen large enough, a random submatrix G̃δ of
rank k with error-free positions is found in a step with a nonzero probability, and
thus, by the lemma of Borel–Cantelli, the algorithm terminates in finite time with
probability 1.

Concerning the complexity, we assume that δ is chosen sufficiently large such
that the probability that a submatrix G̃δ has rank <k can be neglected. Thus, the
number of loops required to terminate the algorithm is geometrically distributed
with parameter

p =
(n−t

δ

)

(n
δ

) ,

which is exactly the probability of choosing δ out of n − t correct positions in Line 2
of Algorithm 1. Thus, the expected number of loops required is 1

p and together with
the complexity of Line 3, which is O(δ), we obtain the expected complexity

(n
δ

)

(n−t
δ

) · O(δ3).

�
We can thus conclude that in case of practical codes, where δ ≈ k, we obtain an

upper bound on the work factor1 of

1Estimation of the complexity up to a constant factor which is not depending on the parameters of
the system.
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(n
k

)

(n−t
k

) · O(k3),

where t = � d−1
2 �. According to [13] the parameters have to be chosen such that a

work factor of 2128 (formid-term security) or 2256 (for long-term security) is obtained.
There are several speed-ups [1, 7, 23], and generalizations [16] of the information
set decoding attack.

3 Coding Theory Fundamentals

In this section, we present notations and known results which we do not assume all
readers to know.

3.1 Basics

TheHamming weight wtH(c) of c ∈ Fn
q is defined as the number of nonzero positions

of c. The Hamming distance of c1, c2 ∈ Fn
q is dH(c1, c2) := wtH(c1 − c2). An Fq -

linear code C (qm; n, k, d) of length n, dimension k and minimum distance d =
minc1 	=c2{dH(c1, c2)} over Fqm is a k-dimensional Fq -subspace of Fn

qm . Often, the
field is clear from the context, so we write C (n, k, d).

We will need the following lemma in Sect. 5.1. More precisely, we require the
slightly weaker statement that for any linear code C with dual distance d⊥, for any
r < d⊥ positions,we can find a codeword inC inwhichwe can choose the r positions
arbitrarily.

Lemma 1 [20] Any set of r ≤ d⊥ − 1 columns of [C ] contains each r-tuple exactly
2k

2r times, and d
⊥ is the largest number with this property, where [C ] is a 2k × n array

of codewords of the code C (n, k, d).

Definition 1 (Support and Connection of Vectors [26, Definition 9–11]). The
following notation will be used in Sect. 5.1.

• The support of a vector c is given as supp(c) = {i : ci 	= 0}.
• The support of a set is the union of the supports of its elements.
• A codeword c ∈ C is called minimal support codeword if there is no other code-
word c′ ∈ C with supp(c′) ⊆ supp(c).

• The set of all minimal support codewords in C is called P(C )

• Two vectors c, c′ are called connected if their supports intersect.
• Positions i, j are connected in a set S ∈ C if there is a sequencewords c1, . . . , cr ∈

S such that

– i ∈ supp(c1) and j ∈ supp(cr )
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– ck and ck+1 are connected ∀ k = 1, . . . , r − 1.

• A set S ∈ C connects a set of positions I if any two elements in I are connected
in S.

3.2 Concatenated Codes

We distinguish between ordinary concatenated codes (OC codes or OCC) introduced
by [12]), and generalized concatenated codes (GC codes or GCC) introduced by [5].
Concatenated codes can be used to construct long codes by only using short codes.
The main advantage of such a construction is a comparatively short decoding time,
since we only have to decode short codes.

3.2.1 Ordinary Concatenated Codes

We describe OC codes as in [25, 26]. The following codes and mappings uniquely
determine an OC code.

• Linear inner code B(q; nB, kB, dB).
• Linear outer code A (qkB ; nA, kA, dA).
• Fq -linear map θ : FqkB → A .

We define the mapping

Θ : FnA

qkB
→ BnA

⎡

⎢
⎣

a1
...

anA

⎤

⎥
⎦ �→

⎡

⎢
⎣

θ(a1)
...

θ(anA)

⎤

⎥
⎦ .

Definition 2 (Ordinary Concatenated Code) Let nA, Θ , A and B be as above.
Then, the corresponding ordinary concatenated (OC) code, or OCC, is given as

COC = Θ(A ) ⊆ BnA

Due to its construction, an OCC is Fq -linear since A is FqkB -linear, implying
Fq -linearity, and θ is Fq -linear. The code has (qkB )kA = qkB ·kA codewords, each of
it consisting of nA many codewords from B, resulting in a codelength of nA · nB

elements of Fq . Thus, the code has parameters

COC(q; nOC = nA · nB, kOC = kB · kA, dOC),

where dOC is the minimum distance, whose value we do not consider here.
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3.2.2 Generalized Concatenated Codes

GC codes are a generalization of OC codes, introduced by [5]. Here, we give a
definition which is similar to the above-mentioned definition of OC codes by [25],
which was not given in this form before. A comprehensive overview of GC codes
can be found in [4] and we explain in Appendix A why our definition matches [4].
Similar to OC codes, we require the following parameters, codes and mappings.

• k1, k2, . . . , k� ∈ N with kB = ∑�
i=1 ki .

• Fqki -linear outer codes A (i)(qki ; nA, k
(i)
A , d(i)

A ) for i = 1, . . . , �
• Fq -linear inner code B(q; nB, kB, dB).
• Fq -linear map θ : ⊕�

i=1 Fqki → B.

Again, we define a mapping

Θ :
�⊕

i=1

(Fqki )
nA → BnA

⎛

⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

a1,1
a1,2
...

a1,nA

⎤

⎥⎥⎥
⎦

,

⎡

⎢⎢⎢
⎣

a2,1
a2,2
...

a2,nA

⎤

⎥⎥⎥
⎦

, . . . ,

⎡

⎢⎢⎢
⎣

a�,1

a�,2
...

a�,nA

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

�→

⎡

⎢⎢⎢
⎣

θ(a1,1, . . . , a�,1)

θ(a1,2, . . . , a�,2)
...

θ(a1,nA , . . . , a�,nA)

⎤

⎥⎥⎥
⎦

.

Definition 3 (Generalized Concatenated Code) Let nA,Θ ,A (i) andB be as above.
Then, the corresponding generalized concatenated (GC) code, or GCC, is given by

CGC = Θ

(
�⊕

i=1

A (i)

)

⊆ BnA

with parameters CGC(q; nGC = nA · nB, kGC =
�∑

i=1
k(i)
A , dGC), see Appendix A.

In our definition, CGC ⊆ BnA , which is often written as an nA × nB matrix over
Fq . We can also write it as an nA · nB vector over Fq and the information words from
the set

⊕�
i=1 Fqki as vectors of dimension kGC = ∑�

i=1 k
(i)
A over Fq , which we need

in order to define a generator matrix G of the code. The advantage of GC compared
to OC codes is that we allow several outer codes with different dimensions and are
hence able to obtain better codes, cf. Appendix A. Bounds on the minimum distance
dGC of GC codes can also be found in Appendix A.
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4 The McEliece Cryptosystem Using GCC

The motivation to use concatenated codes in the McEliece cryptosystem has the big
advantage of very low decoding complexity, which is retained when going from OC
to GC codes. OC codes have the drawback of possibly larger key sizes at the same
security level compared to codeswithout concatenated structure. This disadvantage is
not present in the GCC case since its construction admits larger overall dimension at
the sameminimum distance, or a better decoding performance at the same dimension
compared to OC codes [4].

4.1 Assumption that θ Is Linear

In the McEliece cryptosystem, only the use of linear codes is reasonable because the
existence of a generator matrix is required. In the original definition of GC codes,
it was not assumed that the mapping θ is Fq -linear. However, θ : ⊕�

i=1 Fqki → B
must be bijective and thus, its image is a linear subspace of FnB

q .
One can now ask the question whether a GC code with a nonlinear θ can be a

linear code. And if yes, is there an alternative GCC construction using a linear θ ′
and possibly different other outer codes, yielding the same code. Both questions are
open problems. If the first one is true and the second one is not, these codes might
resist the attacks presented in this paper.

However, since most good GC code constructions having low decoding complex-
ity, which motivated the use of GC codes here, use an Fq -linear θ (cf. Appendix A),
we make the assumption that θ is linear.

4.2 Some GC Codes that Are No OC Codes

In general, it is well known that GC codes are a generalization of OC codes [4].
Obviously, any OCC is a GCC, given by only one outer code. On the other hand, it is
mentioned in [9] that any GCC can be viewed as an OCC. However, in general, one
must admit nonlinear inner and outer codes in the definition of OCC to make this
statement become true. Since there is a known structural attack on OCC [25, 26],
we would like to know which GCC cannot be constructed as OCC. We are not able
to give a complete classification of the set of GC codes not containing OC codes.
However, we are able to prove the following statement for the special case of

k1 = k2 = · · · = k�,

which is a very important sub-class of GC codes as described in Appendix A.

Theorem 2 If k1 = k2 = · · · = k�, a GCC is an OCC ⇔ A (i) = A ( j) ∀i, j .
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Proof This proof can be found in Appendix B due to its technicality. �

Theorem 2 provides an exact statement which GC codes can be constructed as
OC codes in this case. In particular, it shows that only for very few choices of the
outer codes A (i), we obtain an OC code. For instance, it follows directly that the
dimensions of the outer codesmust all be the same, whichwould correspond to rather
suboptimal GC codes, see Appendix A.

Hence, we see that the set of linear GC codes has a much larger cardinality than
the set of linear OC codes. Note, that Theorem 2 can be used to practically estimate
the number of linear GC codes which Alice can choose from, namely by counting
the possible choices of outer codes A (i).

It is an open problem to prove a similar statement as in Theorem 2 for the general
case where the ki ’s are not all the same.

5 Applying Parts of Sendrier’s Attack

Sendrier’s attack [25, 26] was proposed to find the structure of a concatenated code
from a given obfuscated generator matrix. In this section, we deal with the question
how we have to modify the attack to work also with GC codes. We generally divide
Sendrier’s attack into three steps, where the first two try to revert the permutations
done to the generator matrix up to a certain level, and the third step attempts to find
possible generator matrices of the inner and outer codes.

It turns out that the first two steps and the first half of the third step can be directly
applied to GC codes without modification, partly under different conditions (see
Corollary 1).

5.1 First Step

The first step aims to find the inner blocks of a GC code, which are the positions
corresponding to the same setB in c ∈ CGC ⊆ BnA . Recall Definition 1. As in [26],
we can formally define an inner block as

Definition 4 The i-th inner block of a GCC is the support supp({Θ(a · ei ) : a ∈
FqkB }), where ei is the i-th unit vector.

Let now CGC be a given GCC. Similar to the statement of [26, Proposition 16],
we can prove the following well-known result.

Theorem 3 The support of every c ∈ P(C ⊥
GC) with wtH(c) < min(d(1)

A

⊥
, . . . ,

d(�)
A

⊥
, 2 · dB⊥) is contained in a single inner block of CGC.
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Proof Let c ∈ P(C ⊥
GC) with wtH(c) < min(d(1)

A

⊥
, . . . , d(�)

A

⊥
, 2 · dB⊥). Then the

support of c is contained in r ≤ wtH(c) inner blocks. We want to show that r < 2.

Since wtH(c) < d(i)
A

⊥
, the positions of A (i) corresponding to these inner blocks

can be chosen arbitrarily fromFr
qki

due to Lemma 1. Thus, the positions of
⊕�

i=1 A
(i)

corresponding to these inner blocks can be chosen arbitrarily from
⊕�

i=1 Fr
qki
.

Due to θ(
⊕�

i=1 Fqki ) = B, CGC contains codewords that have any element ofBr

in the r inner blocks. Any element of C ⊥
GC with support contained in these r inner

blocks must have codewords of B⊥ in all its inner blocks because for any of the r
inner blocks j , one can construct a codeword that has an arbitrary element of B in
inner block j and the zero codewords in the other r − 1 blocks. Hence, r < 2 due to
wtH(c) < 2 · dB⊥ and the pigeonhole principle. �

The following statement is taken from [26].

Lemma 2 [26, Proposition 15] Let C be a linear code.P(C ) connects supp(C ) iff
C is not the direct sum of two disjoint support codes.

Using Theorem 3 and Lemma 2, we can prove the following corollary.

Corollary 1 IfB is not the direct sum of two disjoint support codewords, the set

Ξ =
{

c ∈ P(C ⊥
GC) : wtH(c) < min(d(1)

A

⊥
, . . . , d(�)

A

⊥
, 2 · dB⊥)

}

connects the inner blocks of CGC.

Proof Due to Theorem 3, every minimal support vector c ∈ P(C ⊥
GC) with weight

wtH(c) < min(d(1)
A

⊥
, . . . , d(�)

A

⊥
, 2 · dB⊥) is contained in a single inner block. This

imples, that c, restricted to this inner block, is in aminimal support vector ofP(B⊥).
Since B is not the direct sum of two disjoint support codes, by Lemma 2, P(B)

connects supp(B), which corresponds to the entire inner block. Hence, if we find
enough c ∈ Ξ , we obtain the supports of all inner blocks. �

Corollary 1 gives us the tools for finding the supports of the inner blocks of CGC.
We simply exploit [26, Propositions 13 and 14] to find as many minimal support
codewords as necessary to identify the inner blocks, as described in [26]. However,
the sufficient condition that this method works is a bit more strict compared to
the OC case since we can only use minimal support words c of weight wtH(c) <

min(d(1)
A

⊥
, . . . , d(�)

A

⊥
, 2 · dB⊥).

If the method works, we obtain the supports of the inner blocks from which we
can construct a permutation matrix PStep 1 which re-orders the columns of G̃ such
that columns corresponding to the same inner bock are grouped together, meaning
that they form a kGC × nB submatrix of G̃ · PStep 1.
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5.2 Second Step

Codewords of CGC are elements of BnA , exactly as codewords of OC codes. In
Sect. 5.1, we saw how to identify the inner blocks of the code, which are the positions
that correspond to the same B in BnA . However, in order to identify the structure
of the code, we also need to know the permutations between the inner blocks. That
means, wewant to re-order the positions such that we obtain a codeword in [σ(B)]nA ,
where σ(B) = {σ(c) := (cσ(1), cσ(2), . . . , cσ(n) : c ∈ B}.

This part of Sendrier’s attack only depends on properties of the inner code B.
To be exact, Sendrier uses the i-th signature of a code B [26], which is the weight
distribution of B punctured at position i , to identify the permutations between two
codes B and B′. Thus, it is directly applicable to GC codes.

Using thismethod, it is possible to extract the relative permutations of the different
inner blocks and to re-order them to be in the same order as one specific block, which
is permuted from the original codeB by some permutation σ . It is mentioned in [25]
that this part of the attack only works if the automorphism group ofB is reduced to
the identity element, which, if this condition is not fulfilled would yield a bad overall
code.

Figure1 illustrates how the first two steps of Sendrier’s attack recover the structure
of the permutation matrix P used in the obfuscated generator matrix G̃ = S · G ·
P. Here, PStep 1 and PStep 2 denote the matrices that we obtain by Steps 1 and 2,
respectively, and which we can multiply to G̃ from the right to structure the inner
blocks. The Pi, j ’s are nB × nB submatrices of a permutation matrix and the Pi ’s are
nB × nB permutation matrices. P1 is the permutation matrix that transformsB into
σ(B).

Note, that after applying Step 2, the effective permutation matrix G̃ · PStep 1 ·
PStep 2 is still in a form in which inner blocks are permuted among each other and
within the inner blocks, positions are permuted.However, thefirst kindof permutation
simply corresponds to a permutation of the outer codes (all the same) and the latter
is a permutation of the inner code.

Thus, we recovered the permutations such that G̃ · PStep 1 · PStep 2 is a generator
matrix of aGCcodewith outer codes equivalent to the original outer codes (equivalent
by the same permutation τ ) and with the inner code (or equivalently, the image of θ )
being permuted by σ .

Fig. 1 Illustration of permutation recovery in Steps 1 and 2 of Sendrier’s attack
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5.3 Third Step

The subsequent steps are applied after obtaining the permutation matrices PStep 1 and
PStep 2 of the first two steps of Sendrier’s attack. This step, we subdivide into two
Substeps 3.1 and 3.2.

Step 3.1

By transforming the matrix G̃ · PStep 1 · PStep 2 into reduced row echelon form, the
first kB × nB submatrix is a generator matrix of a permuted version σ(B) of the
code B. This part of Sendrier’s attack is directly applicable to GC codes since the
first kB × nB submatrix of the reduced row echelon form of G̃ · PStep 1 · PStep 2 is a
basis of the row spaceV of G̃ · PStep 1 · PStep 2, restricted to the first nB columns. This
subspace equals the span of all codewords restricted to an inner block j , permuted
by a permutation σ , and thus the image of

σ
(
θ
({[

a j,1 . . . a j,�
] : a j,i is j-th position of ai ∈ A (i)

}))
.

Due to Theorem 1, it holds that

{[
a j,1 . . . a j,�

] : a j,i is j-th position of ai ∈ A (i)
} =

�⊕

i=1

Fqki

and we obtain

V = σ

(

θ

(
�⊕

i=1

Fqki

))

= σ (B) .

Step 3.2

The remaining part of the third step of Sendrier’s attack on OC codes is responsible
for obtaining the structure of the outer code up to a permutation and a Frobenius
field automorphism applied componentwise [26]. This method works because the
generator matrix of obtained by row-reducing G̃ · PStep 1 · PStep 2 is highly structured
in the OC case. However, it remains an open problem whether similar arguments can
be used to find ways of utilizing the structure of this matrix in the GC case.

6 Alternatives to Parts of Sendrier’s Attack

In Sect. 5, we saw that parts of Sendrier’s structural attack onOC codes can be applied
toGCCdirectly. However, it remains an open problem to recover a complete structure
of the code. Also, the steps of the attacks are not always guaranteed to work since
the sufficient conditions of the steps are not always fulfilled. Thus, we are interested
in replacing as many parts of Sendrier’s attack as possible by an alternative.
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6.1 Sendrier’s Second and First Part of Third Step

Assume that Step 1 of Sendrier’s attack was successful and we obtained the per-
mutation matrix PStep1 such that the code generated by the matrix G̃ · PStep1 is a
subset of

nA⊕

i=1

σi (B),

so we know which positions correspond to the same inner block, although the blocks
are in a different order than in the original code and also within the blocks, positions
are permuted arbitrarily (by a permutation σi ). By computing r · PStep1, we also know
which positions of the cipher r correspond to the same inner blocks.

We can find generator matrices Gσi (B) of all codes given by the positions of
the i-th inner block by the following method, which is similar to Sendrier’s Step 3.1
(Sect. 5.3) butmore general: Restrict G̃ to the columns corresponding to the i-th inner
block and just extract a linearly independent subset vectors in the row span, e.g., by
Gaussian elimination in O(nB

3) time. This method works because the positions of
the outer codes corresponding to the j-th inner block attain all values of

⊕�
i=1 Fqki ,

cf. Lemma 1 with k(i)
A < nA for all i , and thus, the span of the rows of G̃ restricted

to the j-th inner block are equal to θ(
⊕�

i=1 Fqki ) = B, with positions permuted by
the permutation σi .

The advantage of this approach is that the second step of Sendrier’s attack is not
required. Also, we can replace σi (B) by a code Bi and the method will still work.
This fact is important in Sect. 7.

6.2 Nonstructural Attack

Let r = mG̃ + e. In this section, we present an attack that does not find a structure
of the code, but is able to recover the message m from the received word r if not too
many errors wtH(e) occurred. Such attacks are called nonstructural.2 The method
works for both OC and GC codes.

We need to know the positions of the inner blocks, which we can obtain by Step 1
of Sendrier’s attack. Thus, we also knowwhich positions of r correspond to the same
inner blocks (by compuing r · PStep 1). The number of errors is not changed by this
operation since wtH(e · PStep 1) = wtH(e). Also, we require that either Step 3.1 of
Sendrier’s attack or our alternative presented in Sect. 6.1 worked. This means that
we know generator matrices Gσi (B) of the codes in the inner blocks i .

2With “nonstructural”, we do not mean “generic”. The method assumes that there is a specific
structure, but it does not try to recover it. Therefore, it is not applicable to a McEliece cryptosystem
using an arbitrary code class.
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We can divide our nonstructural attack into two parts:

6.2.1 Part 1

The goal of this part is to decode the positions of r that correspond to the i-th inner
block of CGC in the code σi (B). In general, there are several possible methods to
decode in σi (B), e.g.,

• If we know a structural attack on the McEliece cryptosystem using the inner code
B, we can use this attack in combination with the known generator matrix Gσi (B)

of σi (B) to obtain an efficient decoder of the code σi (B) for any i . Since B has
much smaller length than the entire code CGC (in most cases, nB ∈ Θ(

√
nGC)),

such structural attacks have much smaller work factors than direct attacks on a
code of length nGC.

• We can apply the information set decoder described in Sect. 2 on the generator
matrix Gσi (B) and the corresponding part of r. Due to Theorem 1, the attack finds
the correct part of the codeword c = r − e if the number of errors in this block does
not exceed half the minimum distance of the inner code. Otherwise, the decoding
result is wrong (another codeword is found) or decoding fails (for instance, after
some finite time without result, one aborts the algorithm).

In both cases, we can3 obtain decoders that find a codeword c̃i from a received
word ri = ci + ei if and only if wtH(ri − c̃i ) < dB

2 , where ci ∈ σi (B) is the part
of c · PStep 1 corresponding to the i-th inner block. This type of decoder is called
bounded minimum distance decoder [4].

If ci = c̃i , we say that decoding is correct. If ci 	= c̃i decoding is wrong and if the
decoder does not have a result, decoding failed. Suppose that nc inner blocks were
correctly and nw were wrongly decoded, and in nf inner blocks, decoding failed.

6.2.2 Part 2

The second part of our nonstructural attack can be seen as a speed-up of the informa-
tion set decoding attack (cf. Sect. 2) utilizing the results of Part 1. As in information
set decoding, we are looking for δ error-free positions of r, where δ ≥ kGC. We make
use of the fact that inner blocks which were decoded correctly in Part 1 do not con-
tain errors. Thus, instead of finding δ single error-free positions in r, we simply try
to find τ ≥ δ

nB
inner blocks that were correctly decoded in Part 1 and thus obtain

τ · nB ≥ δ error-free positions. Also, we can ignore blocks in which decoding failed.
These tricks reduce the overall complexity of the attack significantly. The method is
illustrated in Fig. 2. Here, the received word, which is an element of (FnB

q )nA , is seen

3If the obtained algorithms that can correct more than half the minimum distance of errors, we can
simply declare a decoding failure if the distance of codeword to received word is greater than half
the minimum distance.
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Fig. 2 Illustration of nonstructural attack

as an nA × nB matrix over Fq , where each inner block corresponds to a row of the
matrix.

We denote by rτ , eτ and G̃τ the parts of r, e and G̃ restricted to the columns
corresponding to the τ chosen inner blocks. If we find τ of the nc correctly decoded
blocks, the system

rτ = m̂ · G̃τ + eτ︸︷︷︸
=0

= m̂ · G̃τ

has a solution m̂. If τ is chosen large enough, G̃τ has full rank kOC, the solution m̂ is
unique and fulfills dH(m̂ · G̃, r) < dGC

2 . For most practical codes, we conjecture that
it is not necessary to choose τ much larger than δ

nB
≈ kB

nB
.

The entire nonstructural attack is summarized in Algorithm 2.

Algorithm 2: NonStructural Attack

Input: r = m · G̃ + e with wtH(e) = t , PStep 1 and Gσi (B) for all i = 1, . . . , nA.
Output: m

1 Decode inner blocks of r as described in Part 1, using PStep 1 and Gσi (B).
2 do
3 Choose τ out of nA − nf inner blocks, in which decoding did not fail.

4 Solve rτ = m̂ · G̃τ for m̂.

5 while �m̂ or dH(m̂ · G̃, r) ≥ dGC
2

6 return m̂

Theorem 4 If t < dGC
2 , Algorithm 2 is correct with high probability.
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Proof Line 1 corresponds to Part 1 of the nonstructural attack. Its correctness follows
from the arguments in Sect. 6.2.1. Due to t < dGC

2 , τ ≤ nA − nf with high probability.
Thus, Line 3 finds τ correct blocks with nonzero probability in any loop and hence, it
must find them in finite time with probability 1. When τ correct blocks are found and
τ is chosen large enough, the system rτ = m̂ · G̃τ has a unique solution, again with
high probability. Since the number of errors is less than half the minimum distance, it
holds that m = m̂ and c = m̂ · G̃. Thus, dH(m̂ · G̃, r) = wtH(e) = t < dGC

2 and the
algorithm terminates. �

6.2.3 Complexity of the Nonstructural Attack

In general, the work factor of the nonstructural attack is the sum of the work factors
of the two parts:

W = W1 + W2

Assume that in the first part, the decoding was done using the information set
decoding attack. Thus, we have to apply nA many small attacks, each of work factor

kB3 · (nB

kB

)

(n−tB
kB

) ,

where tB = � dB−1
2 � is half the minimum distance of B. Thus,

W1 = nA · kB
3 · (nB

kB

)

(n−tB
kB

)

In the second part, the probability of choosing a subset of τ correctly decoded
inner blocks is

p =
(nc

τ

)

(nc+nw
τ

) .

Solving the system of linear equations can be done in kGC3 operations, yielding an
expected work factor of

W2 = kGC3

p
= kGC

3 ·
(nc+nw

τ

)

(nc
τ

) .

In Appendix C, it is shown that for the parameters proposed for an OC code
construction by [25], we obtain a work factor of
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W ≈ 229.7,

which is considered to be insecure [13]. We conclude that we have found a nonstruc-
tural attack whose work factor is significantly reduced compared to a naive structural
attack on CGC directly. Thus, parameters of a GCC or OCC construction must be
chosen much larger than nonconcatenated codes in order to compensate the security
level. This increases the size of the public key considerably and probably implies that
GC codes are not practically relevant to the McEliece cryptosystem, which already
struggles with the disadvantage of large key sizes.

7 Methods of Preventing Parts of the Attacks

In the previous sections, we saw that Sendrier’s attack for OC codes is partially
applicable to GC codes. Also, we were able to give a nonstructural attack which is
efficient for practical GC codes. In this section, we present methods for preventing
parts of these attacks.

7.1 Preventing the Second Step of Sendrier’s Attack

Sendrier’s second step tries to synchronize the permutations of the inner blocks. As
already mentioned in Sect. 5.2, this method only works if the permutation group of
the code B is reduced to the identity element. Thus, one possibility would be to
choose B with a nontrivial permutation group. However, it is already mentioned in
[26] that such codes yield bad OC codes, implying that also GC codes would not be
good.

Another possibility would be to change the definition of OC or GC codes such
that we use different codes in each inner block. This corresponds to having several
mappings

θi :
�⊕

i=1

→ Bi

with i = 1, . . . , nA and Bi (q; nB, kBi , dBi ) pairwise distinct, such that
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Θ :
�⊕

i=1

(Fqki )
nA →

nA⊕

i=1

Bi

⎛

⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

a1,1
a1,2
...

a1,nA

⎤

⎥⎥⎥
⎦

,

⎡

⎢⎢⎢
⎣

a2,1
a2,2
...

a2,nA

⎤

⎥⎥⎥
⎦

, . . . ,

⎡

⎢⎢⎢
⎣

a�,1

a�,2
...

a�,nA

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

�→

⎡

⎢⎢⎢
⎣

θ1(a1,1, . . . , a�,1)

θ2(a1,2, . . . , a�,2)
...

θnA(a1,nA , . . . , a�,nA)

⎤

⎥⎥⎥
⎦

in the definition of OC or GC codes. This construction is similar to the one used
to define Justesen codes [15], which are certain OC codes with different inner
codes. If the codes Bi have pairwise different j-th signatures (cf. Sect. 5.2) for
all j = 1, . . . , nB , Step 2 of Sendrier’s attack does not work for either modified OC
or modified GC codes. However, it can easily be seen that the alternative method
described in Sect. 6.1 still works for different inner codes and thus, also the nonstruc-
tural attack can be applied in this case.

7.2 Preventing the First Step of Sendrier’s Attack

Any attack described in this paper relies on the success of the first step of Sendrier’s
attack. Therefore, it is an important question whether we can find a large sub-class
of GC codes which are resistant against this part of the attack.

The necessary condition for this method to work is that the inner codeB is not the
union of two disjoint support codewords. Sendrier [26] already mentioned that codes
violating this condition are rather bad code. Also, if the inner code was exactly the
union of r disjoint support codes which cannot be further splitted, the attack would
give us r · nA connected disjoint subsets of the code positions. We thus need to try
the subsequent parts of the attack for all combinations of r subsets grouped to an
inner block each. For small r and nA, the number of possibilities might still be small
enough to not increase the overall work factor much.

As proven in Sect. 5.1, a sufficient condition that Sendrier’s attack works is that
the set

Ξ :=
{

c ∈ P(C ⊥
GC) : wtH(c) < min(d(1)

A

⊥
, . . . , d(�)

A

⊥
, 2 · dB⊥)

}

is not empty. Every c ∈ Ξ is in C ⊥
GC and thus, wtH(c) ≥ dGC⊥ ≥ dB⊥. Therefore, it

follows that

Ξ 	= ∅ ⇒ dB
⊥ < min(d(1)

A

⊥
, . . . , d(�)

A

⊥
, 2 · dB⊥).

Hence, if any of the outer codes A (i) has dual distance d(i)
A

⊥ ≤ dB
⊥, Ξ = ∅ and

Sendrier’s first step is not guaranteed to work. It needs to be mentioned that Ξ 	= ∅
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is a sufficient condition and someone might find a modification of the first step that
can handle the case Ξ = ∅. This problem needs further investigation.

In the OC case, if dA
⊥ is decreased, the dimension kA is also decreased and thus,

the OC code might become bad. The advantage of GC codes is that only one of
the outer codes needs to have this property and we can still obtain a good GC code
satisfying Ξ = ∅. This fact makes us believe that there is the possibility of a large
sub-class of practically relevant GC codes that resist the first step of Sendrier’s attack.

8 Conclusion

In this work, we studied the suitability of generalized concatenated codes in the
McEliece cryptosystem, motivated by the advantage of faster decoding than codes
without concatenated structure. First, we gave a partial classification of GC codes
that cannot be described as OC codes, for which a complete structural attack is
known [26]. We analyzed Sendrier’s structural attack on OC codes for applicability
in the GC case. Step 1 of this attack can be directly applied, however with a stricter
sufficient condition. Steps 2 and 3.1 were proven to work in exactly the same cases as
for OC codes. However, it remains an open problem whether Step 3.2 of Sendrier’s
attack can be modified to work with GC codes.

We further gave an alternative method of obtaining the result of Step 3.1, only
requiring the output of Step 1 of Sendrier’s attack. In contrast to Step 2, this method
works for all outer codes and can be performed in polynomial time. We were able to
improve the complexity of the information set decoding attack significantly, using the
result of Step 1. This gives us a nonstructural attack which we showed to be efficient
for code parameters similar to the original McEliece Goppa codes construction.
Hence, we can conclude that if Sendrier’s first step works, this nonstructural method
forces code parameters to be chosen so large that key sizes become impractical
compared to other code constructions. Figure3 summarizes the attacks discussed in
the paper.

We proposed several methods which have the potential to prevent parts of
Sendrier’s attack, especially Step 1, and which only work in the GC case. This fact
shows that GC codes, in contrast to OC codes, are still candidates for the use in the
McEliece cryptosystem. It needs to be studied whether the methods of preventing
Sendrier’s first step cannot be circumvented by any efficient method. Other open
problems are finding a necessary condition for Sendrier’s first step to work. Also,
Step 3.2 requires further studies in order to give a complete structural attack on GC
codes.
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Fig. 3 Summary of attacks

Appendix

A GCC Construction and Decoding

Generalized concatenated (GC) codeswere introduced by [5]. This appendix presents
construction and decoding ofGCcodes according to [4, Chap. 9]. Code concatenation
is used in order to obtain long codes with low decoding complexity. The advantage
of a GC code in comparison to an OC code with same length and dimension is, that
the GC code can correct more errors, see [4]. A GC code consists of one inner and
several outer codes of different dimensions. If we only use one outer code, we obtain
an OC code.

The idea of generalized code concatenation is to partition the inner code into
several levels of subcodes. We generate a partition tree as follows. The inner code
becomes the root of the tree. We partition the inner code into subcodes which form
the second level of the tree. We again partition each of the subcodes and continue
until we end up at a level in which each subcode consists of only one codeword.
These subcodes become the leaves of the tree. Let B( j)

i

(
q; nB, kB

( j)
i , dB

( j)
i

)
denote

the inner codes at level j . The partitioning should be done such that the minimum
distance of the subcodes increases strictly monotonically from level to level in the
partition tree. Each codeword can be uniquely identified by enumerating the branches
of the partition tree and following this enumeration from the root to the correspond-
ing leaf. The numeration from level j to level j + 1 is protected by an outer code
A ( j)

(
qk j ; nA, k

( j)
A , d( j)

A

)
. This encoding scheme matches the definition of GC codes
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in Sect. 3.2.2 by simply taking θ as the function that maps the enumeration of a code-
word from the root to a leaf to the codeword ofBwhich is contained in this leaf. Note,
that formany linear codesB, there is a partitioningwhich corresponds to anFq -linear
mapping θ [4]. Also, most practically good GC codes fulfill k1 = k2 = · · · = k� = 1
due to the existence of many linear subcodes ofB (e.g., Reed–Muller codes), which
helps constructing many partitionings. An example of the encoding and transmission
process is visualized in [4, Fig. 9.10].

To obtain a good GC code, the dimensions of the outer codes have to be differ-
ent. Also, the minimum distances of the outer codes should decrease from level to
level. Keeping the product d( j)

A · dB ( j)
i for all i, j roughly constant also leads to good

properties. The latter follows from a decoding procedure that reduces the problem of
decodingGC codes to a sequence of � decoders of OC codeswithminimumdistances
d( j)
A · dB ( j)

i j
for some sequence of i j ’s for all j = 1, . . . , �. We refer to the example

presented in [4, Fig. 9.11]. The length of the constructed GC code is nGC = nA · nB ,
the dimension is k = ∑�

i=1 k
(i)
A , and the minimum distance is lower bounded by

dGC ≥ mini, j
(
d( j)
A · dB ( j)

i

)
.

B Proof of Theorem 2

In this appendix, we prove Theorem 2. We first recall some useful and well-known
facts about vector and matrix representations of extension fields.

Every finite field Fqm is an Fq -vector space of dimension m. Thus, there is a basis
B = {β1, . . . , βm} ⊆ Fqm in which every element a ∈ Fqm has a unique representa-
tion a = ∑m

i=1 aiβi with ai ∈ Fq . Define the vector space isomorphism

extB : Fqm → Fq
m, a �→ a = [a1, . . . , am].

We call extB(a) the vector representation of a with respect to the basis B. It is
well known that the set {extB(·) : Bbasis of FqmoverFq} is equal to all vector space
isomorphisms (= Fq -linear maps) Fqm → Fm

q . This implies that for any b ∈ Fqm and
b ∈ Fm

q , there is a basis B such that extB(b) = b.

Lemma 3 Some facts about vector and matrix representation of finite extensions of
finite fields Fqm/Fq :

(i) Every finite field Fqm is isomorphic to a subfieldMqm of the matrix ring Fm×m
q .

We write mr(a) ∈ Mqm to denote the matrix representation of an element a ∈
Fqm .

(ii) Every column or row of a matrix representation of Fqm can be used to uniquely
represent elements of Fqm . We denote the vector representation of an element
a ∈ Fqm , given by this column or row, by vr(a) ∈ Fm

q . vr(·) = extB(·) for some
basis B.

(iii) If a specific column or row as in (ii) is chosen, the set of representative vectors
of all elements in Fqm is equal to Fm

q .
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(iv) If a specific rowas in (ii) is chosen, themultiplication of two elements a, b ∈ Fqm

corresponds to vr(a · b) = vr(a) · mr(b).
(v) If a specific column as in (ii) is chosen, the multiplication of two elements

a, b ∈ Fqm corresponds to vr(a · b) = mr(a) · vr(b).
(vi) For a specific row or column as in (ii) and an arbitrary basis B of Fqm over Fq ,

Mqm can be chosen such that the vector representation of a ∈ Fqm is extB(a).

Proof (i) This statement is well known and can be found in [18] or [30].
(ii) Since the operations multiplication, addition and inversion in Fqm correspond to

the same operations of matrices inMqm , all matrices except for the zero matrix
inMqm are invertible. Now choose an arbitrary row (column) index i . We show
that the rows (columns) of matrices in Mqm of this index are distinct. Choose
two matrices M1, M2 ∈ Mqm . Assume that their i-th rows (columns) are the
same. Then the i-th row (column) of M1 − M2 ∈ Mqm is the zero vector. Thus,
M1 − M2 is not invertible and must be the zero matrix, implying that M1 = M2.
Let φ(a) be the operation of extracting a specific row (column) from a ∈ Mqm .
Since

φ(mr(α · a + β · b)) = φ(α · mr(a) + β · mr(b))

= α · φ(mr(a)) + β · φ(mr(b))

for all α, β ∈ Fq and a, b ∈ Fqm , φ(mr(·)) is a vector space isomorphism and is
therefore equal to extB(·) for some basis B.

(iii) This follows from a simple counting argument. Due to (ii), a specific row (col-
umn) represents all elements from Mqm , thus also from Fqm , uniquely. Hence,
|{mr(a) : a ∈ Fqm }| = |Fqm | = qm = |Fm

q |. Since {mr(a) : a ∈ Fqm } ⊆ Fm
q ,

{mr(a) : a ∈ Fqm } = Fm
q .

(iv) It is clear by mr(a · b) = mr(a) · mr(b) and by looking at the operations nec-
essary to calculate the i-th column (= vr(a · b)) of the result on the right-hand
side.

(v) Analog statement as in (iv).
(vi) The statement is clear since we can simply change the basis of the matrix

representation, by setting mrnew(a) = B · mr(a) · B−1 for all a ∈ Fqm .
�

Using these definitions and statements, we are able prove Theorem 2. We also
recall its statement.

Theorem 2 If k1 = k2 = · · · = k�, a GCC is an OCC ⇔ A (i) = A ( j) ∀i, j .
Proof “⇒”: Let CGC = Θ(

⊕�
i=1 A

(i)), with θ Fq -linear, be a GC code. Assume
that CGC is an OCC. Then, there are an Fq -linear θ ′ and an FqkB -linear codeA such

that Θ ′(A ) = Θ
(⊕�

i=1 A
(i)
)
and thus,
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A = Θ ′−1

(

Θ

(
�⊕

i=1

A (i)

))

.

Hence, Θ ′−1
(
Θ
(⊕�

i=1 A
(i)
))

must be an FqkB -linear code. The mapping Θ ′−1

(Θ(·)) : ⊕�
i=1 FnA

qki
→ FnA

qkB
is componentwise Fq -linear, i.e., there is an Fq -linear

mapping θ̃ : ⊕�
i=1 Fqki → FqkB such that

Θ ′−1 (Θ (a1, a2, . . . , a�)) := Θ ′−1

⎛

⎜⎜⎜
⎝

Θ

⎛

⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

a1,1
a1,2
...

a1,nA

⎤

⎥⎥⎥
⎦

,

⎡

⎢⎢⎢
⎣

a2,1
a2,2
...

a2,nA

⎤

⎥⎥⎥
⎦

, . . . ,

⎡

⎢⎢⎢
⎣

a�,1

a�,2
...

a�,nA

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

=

⎡

⎢⎢⎢
⎣

θ̃ (a1,1, . . . , a�,1)

θ̃(a1,2, . . . , a�,2)
...

θ̃ (a�,nA , . . . , a�,nA)

⎤

⎥⎥⎥
⎦

=:

⎡

⎢⎢⎢
⎣

ã1
ã2
...

ãnA

⎤

⎥⎥⎥
⎦

∈ FnA

qkB

for all ai ∈ Fqki . Due to kB = ∑�
i=1 ki = ∑�

i=1 k1 = � · k1, ki = k1|kB and FqkB can
be seen as an extension field of Fqk1 with extension degree [FqkB : Fqk1 ] = �.

⎡

⎢
⎢⎢
⎣

a1

a2
...

a�

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

a1,1 a1,2 . . . a1,nA

a2,1 a2,2 . . . a2,nA

...
...

. . .
...

a�,1 a�,2 . . . a�,nA

⎤

⎥
⎥⎥
⎦

= extB
([
ã1 ã2 . . . ãnA

])
.

Choosing the corresponding matrix representation of α ∈ FqkB over Fqk1 as in
Lemma 3, we can write

extB
(
α · [ã1 ã2 . . . ãnA

]) = mr(α) · extB
([
ã1 ã2 . . . ãnA

]) = mr(α) ·

⎡

⎢⎢⎢
⎣

a1

a2
...

a�

⎤

⎥⎥⎥
⎦

Since ai ∈ A (i),
[
ã1 ã2 . . . ãnA

] ∈ A also α · [ã1 ã2 . . . ãnA

]
must be in A for all

α ∈ FqkB and thus, extB
(
α · [ã1 ã2 . . . ãnA

]) ∈ ⊕�
i=1 A

(i). Due to Lemma 3, we can
choose α such that the i-th row of mr(α) is can be an arbitrary

[
α1 α2 . . . α�

] ∈ F�
qki

and thus, the i-th row of extB
(
α · [ã1 ã2 . . . ãnA

])
is
∑�

j=1 αiai . This implies that
A ( j) ⊆ A (i) for all j, i = 1, . . . , � and thus all outer codes A (i) are the same.

“⇐” : If A ( j) = A (i) for all i, j , we can choose any basis B of FqkB over Fqki .

Since multiplying elements of ext−1
B (

⊕�
i=1 A

(i)) by FqkB scalars corresponds to a
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left multiplication by a matrix inMqkB , and any Fqki -linear combination of elements

of different A (i)’s again is contained in any A (i), the set A := ext−1
B (

⊕�
i=1 A

(i))

is an FqkB -linear code. The Fq -linear map is given by θ ◦ extB . �

C Work Factor of Nonstructural Attack on Code Ex. in [25]

This appendix computes the work factor of our nonstructural attack presented in
Sect. 6.2 when applied to the OC code example which was proposed by Sendrier in
[25] with parameters (2048, 308,≥ 425).

The inner code is a random code B(16, 7, 5) over F2 and the outer code is a
GRS code A (128, 44, 85) over F27 . A simulation was performed using Matlab on
1500 random codes (B(16, 7, 5)) by adding errors with a probability of 212

2048 to
each codeword ofB and then decoding it. 1,000,000 codewords for each code were
used. The estimations for the probabilities of correct decoding, wrong decoding and
failure in decoding are pc = 0.7741, pw = 0.0441 and pf = 0.1818, respectively.
The corresponding standard deviation values are 0.00042, 0.0043 and 0.0043. The
expected number of correctly and wrongly decoded, and failed inner blocks are then
given by

nc = nA · pc = 128 · 0.7741 ≈ 99,

nw = nA · pw = 128 · 0.0441 ≈ 6,

nf = nA · pf = 128 · 0.1818 ≈ 23.

By choosing m = kA = 44 inner blocks, we obtain the work factor

W2 = 3083

p
≈ 3083

0.0345
≈ 8.4686 · 108 ≈ 229.7.

With

W1 = 128 · 73 · (167
)

(16−� 5−1
2 �

7

) ≈ 1.4635 · 105,

W1 � W2, and the overall work factor is then equal to

W ≈ 229.7.

This work factor is considered to be insecure [13].
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Univariate Real Root Isolation over a Single
Logarithmic Extension of Real Algebraic
Numbers

Adam Strzeboński and Elias P. Tsigaridas

Abstract We present algorithmic, complexity, and implementation results for the
problem of isolating the real roots of a univariate polynomial B ∈ L[x], where L =
Q[lg(α)] and α is a positive real algebraic number. The algorithm approximates
the coefficients of B up to a sufficient accuracy and then solves the approximate
polynomial. For this we derive worst-case (aggregate) separation bounds. We also
estimate the expected number of real roots when we draw the coefficients from a
specific distribution and illustrate our results experimentally. A generalization to
bivariate polynomial systems is also presented. We implemented the algorithm in C
as part of the core library of mathematica for the case B ∈ Z[lg(q)][x] where q is
positive rational number and we demonstrate its efficiency over various data sets.

Keywords Real root isolation · Logarithm · Algebraic number · Separation bound

1 Introduction

We consider the problem of isolating the real roots of a univariate polynomial the
coefficients of which are polynomials in the logarithm of a positive real algebraic
number. We consider two variants of the problem. In the first variant the argument
of the logarithm is a positive real algebraic number. In the second the argument is
a bivariate homogeneous polynomial evaluated at two real algebraic numbers. The
reader can refer to the end of the introduction for a detailed presentation of the
notation that we use. The first problem that we consider is the following:

Problem 1 Consider the square-free polynomial
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Bα =
d∑

i=0

bi x
i , where bi =

νi∑

j=0

bi, j (lg(α)) j ,

bi, j ∈ Z, the bitsize ofbi, j is boundedby τ , andα is a positive real root of a polynomial
A ∈ Z[x] of degree m and maximum coefficient bitsize τ . Finally, let ν = maxi νi .
What is the Boolean complexity of isolating the real roots of Bα?

The problem of isolating the real roots of a univariate polynomial is a well-
studied problem. However, most of the results focus on polynomials with rationals
or algebraic numbers as coefficients. We are not aware of any complexity results
that consider polynomials with transcendental numbers as coefficients. We present
the first complexity bounds for the real solving problem for a family of polynomials
with coefficients involving logarithms of algebraic numbers.

In addition, our implementation is the first complete one for solving exactly poly-
nomial with such transcendental numbers as coefficients.

We tackle the problem by approximating the coefficients of Bα up to a sufficient
precision. In this way we relate it to numerical univariate real solving algorithms
[30, 34], see also [21, 32], and to algorithms based on the bitstream model, e.g.,
[15, 26, 33]. For a detailed treatment of numerical solvers we refer the reader to [25,
Chapter 15]. Problem1 is a generalization of the problemof solving polynomialswith
coefficients in an extension field, [22, 35, 36], see also [9, 23, 39, 40] and references
therein.We also refer to the recent work of Bates and Sottile [4] onKhovanskii–Rolle
continuation algorithm that exploits logarithms of polynomial expressions. For the
close-related problem of computing the zeros of analytic functions using inclusion
and exclusion predicates we refer the reader to [11, 20, 41, 42].

To obtain the various bounds we have to combine several algebraic techniques
in a novel way and to provide new evaluation and perturbation bounds; the latter
turn out to be useful in other applications as well. Our analysis is based on effec-
tive lower bounds of linear forms in two logarithms; a result due to Mignotte and
Waldschmidt (Theorem 3). We combine this bound with univariate and multivariate
separation and evaluation bounds of polynomials and polynomial systems. The idea
is to approximate the coefficients of Bα up to a sufficient precision and then isolate
the real roots of the approximate polynomial. The precision is such that the number
of the real roots remains the same and from the isolated intervals of the approximate
polynomial we can derive isolating intervals for the real roots of Bα.

First, we need to quantify “sufficient accuracy”. We treat the logarithm as a para-
meter and the separation bound of Bα turns out to be a univariate polynomial in this
parameter. We estimate a lower bound on this evaluation by proving that it depends
only on the closest root and the separation bound of the polynomial (Lemma 2)
and combining it with Theorem 3. This approach saves us a factor compared to the
straightforward one of factoring the polynomial in linear factors and bounding the
separation using Theorem 3 directly.

This approach turns out to be applicable for tackling a more general problem,
Problem 2, where the argument of the logarithm is a homogeneous bivariate polyno-
mial evaluated at two real algebraic numbers. It is a simplified version of Problem 1.
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However, while the resolution of the latter depends on combinations of univariate
separation bounds, Problem 2 depends on successive applications of aggregate mul-
tivariate separation bounds and applications of Theorem 3. For this and for making
the presentation easier for the reader we present both approaches.

We also estimate the expected number of real roots of Bα in the case where all
the polynomials bi have the same degree ν and their coefficients, bi, j , are Gaussian
random variables with mean zero and variance

(d
i

)
. In this case the expected number

of real roots is
√
d. We implemented our algorithms in C as part of the core library

of mathematica for the case B ∈ Z[lg(q)][x] where q is positive rational number
and we demonstrate its efficiency over various data sets. Our results support experi-
mentally the

√
d bound for the number of roots of random polynomials of this kind.

Finally, we generalize our bounds to handle bivariate polynomial systems. We prove
a perturbation bound for the roots of a bivariate polynomial system that is applicable
to a broader context.

The rest of the paper is structured as follows. First we introduce our notation
and in Sect. 2 we present the main tools that we will use throughout the paper. In
Sect. 3 we present an algorithm for tackling Problem 1 as well as its complexity
analysis, experimental results and the bound for the expected number of real roots.
We present a more general version of Problem 1 in Sect. 5 and the extension to
bivariate polynomial systems in Sect. 6.

Notation. In what follows OB , resp. O, means bit, resp. arithmetic, complexity
and the ÕB , resp. Õ, notationmeans that we are ignoring logarithmic factors, see [38,
Definition 25.8]. For a polynomial A = ∑d

i=0 ai x
i ∈ Z[x], deg(A) = d denotes its

degree and L (A) = τ the maximum bitsize of its coefficients, including a bit for
the sign. For a ∈ Q, L (a) ≥ 1 is the maximum bitsize of the numerator and the
denominator. We write �α(A) to denote the minimum distance between a root α
of a polynomial A and any other root; we also use �(α) where A is clear from
the context; We also use �i instead of �(αi ), where αi is a root of A and 1 ≤ i ≤
deg(A).�(A) = minα �α(A) is the separation bound, that is theminimum distance
between all the roots of A, and�(A) = −∑n

i=1 lg�i (A). TheMahler measure of A
isM (A) = ad

∏
|α|≥1 |α|, whereα runs through the complex roots of A. If A ∈ Z[x]

andL (A) = τ , thenM (A) ≤ ‖A‖2 ≤ √
d + 1‖A‖∞ = 2τ

√
d + 1 [28, p. 152].We

denote by lg(·), resp. ln(·), the logarithmwith base 2, resp. e. Let Lα = lg(α),whereα
is a positive algebraic number, and LH = lg A(γ1, γ2), where γ{1,2} are real algebraic
and A is a bivariate homogeneous polynomial and A(γ1, γ2) > 0.

2 Preliminaries

Real algebraic numbers are the real roots of univariate polynomials with integer
coefficients; we denote their set by Ralg. We represent them using the isolating
interval representation. If α ∈ Ralg then the representation consists of a square-free
polynomial with integer coefficients, A ∈ Z[x], that has α as a real root, and an
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isolating interval with rational endpoints, I = [a1,a2], that contains α and no other
root of the polynomial. We write α ∼= (A, I). Such a representation could be also
used to represent the real roots of polynomials with real numbers as coefficients,
provided that there is an algorithm for isolating them.

The following proposition provides upper and aggregate bounds for the roots of a
univariate polynomial. Various versions of the proposition could be found, e.g. [10,
13, 37]. The aggregate version of Eq. (2) comes from a simplified version of [19,
Theorem 11].

Proposition 1 (DMM1) Let f = ∑d
i=0 ai x

i ∈ R[x] be a univariate polynomial of
degree d such that ada0 	= 0. The distinct roots of f are α1, . . . ,αr . For any root αk

it holds |a0|
2 ‖ f ‖∞

≤ |αk | ≤ 2
‖ f ‖∞
|ad | . (1)

Let K be any subset of {1, . . . , r} with cardinality |K |. Then
∏

k∈K
�k ≥ 2−4d lg d M ( f )−2(r−1) |srr ( f, f ′)| , (2)

where srr ( f, f ′) is the r-th subresultant coefficient of the subresultant sequence of
f and its derivative f

′
.

The following lemma provides a lower bound on the evaluation of a polynomial
that depends on the closest root and on the aggregate separation bound of the poly-
nomial. For another proof with slightly different bounds, suggested by one of the
reviewers, we refer the reader to the appendix.

Lemma 2 Let L ∈ C and γ1 the root of the square-free polynomial f that is closest
to L. Then

| f (L)| ≥ |ad |7 |L − γ1|6 M ( f )−6 2lg
∏

i �i−6 .

Proof There are at most six roots of f such that |L − γi | ≤ |γi − γci | = �i , where
γci is the root closest to γi . This is a consequence of the vertex degree of planar
nearest neighbor graphs [18]. Wlog let them be the first six ones. Then

| f (L)| = |ad |
d∏

i=1

|L − γi | = |ad |
6∏

i=1

|L − γi |
d∏

j=7

|L − γ j |

≥ |ad ||L − γ1|6 1
∏6

i=1 �i

d∏

j=1

� j

≥ |ad |7|L − γ1|6M ( f )−6 2lg
∏

i �i−6 .

For the last inequality we use �i ≤ 2M ( f ) /|ad |, that in turn relies on �i = |γi −
γci | ≤ |γi | + |γci | ≤ 2M ( f ) /|ad |. �
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In the sequel we will use the previous lemma in conjunction with Theorem 3 and
almost always L will be the logarithm of an algebraic number. It might be the case
that L is a root of f and thus the evaluation f (L) is zero. However, we omit this case
as it can be detected rather easily and does not affect in any case the complexity of
the algorithms that we consider.

Wewill also need the following theorem, due toMignotte andWaldschmidt [29]. It
provides an effective lower bound on a homogeneous linear formwith two logarithms
of (real) algebraic numberswith algebraic coefficients. This result generalizes a result
by Gel’fond. A generalization that handles general linear forms is due to Baker, e.g.
[3]. In what follows by the height of an algebraic number, α, we mean the height of
the minimum polynomial of α.

Theorem 3 [29] Let � = β log(α1) − log(α2), where log is any determination
of the logarithm, and β,α1,α2 are three nonzero algebraic numbers of degrees
D0, D1, D2, respectively. Let Ai beaboundon theheight ofαi such that exp(|log(αi )|)
≤ Ai , for i ∈ {1, 2}. B is an upper bound on the height of β and eD0 . If D is the degree
over Q of the field Q(β,α1,α2), and T = ln(B) + ln ln(A1) + ln ln(A2) + ln(D),
then if � 	= 0, then |�| > exp(−5 · 1010 · D4 · ln(A1) · ln(A2) · T 2).

3 An Algorithm for Bα

In what follows we assume that Lα is indeed a transcendental number. This could
be tested using Lindemann–Weierstrass theorem. The following lemma is based on
arguments in [2].

Lemma 4 Letα be a positive real root of a univariate polynomial A ∈ Z[x] that has
degree m and maximum coefficient bitsize τ . Then 2−2τ−m−2 ≤ |lg(α)| ≤ τ + 1 .

Proof The right inequality follows from Cauchy’s bound, since |α| ≤ 2τ+1.
For the left inequality, first we need to bound |α − 1|. Notice that α − 1 is a root

of Ā(x) = A(x + 1). The coefficients of Ā(x) are bounded by 2m+τ . Using Cauchy’s
bound

|α − 1| ≥ 2−τ−m−1 .

Using the inequality |ez − 1| ≤ |z|e|z|, we get

|α − 1| ≤ |eln(α) − 1| ≤ |lg(α)|
lg(e)

|α| ,

and thus |lg(α)| ≥ 2−2τ−m−2, which concludes the proof. �

Lemma 5 Let bi be as in Problem 1. If bi (Lα) 	= 0, then

2−Õ(m4 ν4 τ (τ 2+ν2)) ≤ |bi (Lα)| ≤ 2Õ(ν+τ ).
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Proof To bound bi we proceed as follows:

|bi (Lα)| = |
ν∑

j=0

bi, j L
j
α| ≤ 2τ

ν∑

j=0

|Lα| j ≤ 2τ
ν∑

j=0

(τ + 1) j

≤ 2τ+ν+1τν+1 ≤ 2τ+2ν lg(2τ ) .

(3)

To compute a lower bound for |bi (Lα)|we assume that βi,1 is the root of bi (y) closest
to Lα and we apply Lemma 2, i.e.,

|bi (Lα)| > |bi,ν |7 |Lα − βi,1|6 M (bi )
−6 2lg

∏
j � j (bi )−6 .

It holds |bi,ν | ≥ 1; Theorem 3 implies

|Lα − βi,1| ≥ exp(c1 m
4 ν4 τ (τ + ν + ln(mτν))2) ,

where c1 is constant that can be computed explicitly.
Landau’s inequality gives M (bi ) ≤ (ν + 1)‖bi‖∞ ≤ 2τ+lg ν+1. Finally, using

Proposition 1 we have lg
∏

j � j (bi ) ≥ −O(ν2 + ντ + ν lg ν). Combining all the
inequalities we get

|bi (Lα)| ≥ exp(c2 m
4 ν4 τ (τ + ν + ln(mτν))2) ,

or |bi (Lα)| ≥ exp(−Õ(m4 ν4 τ (τ 2 + ν2))) ,

where c2 is constant that can be computed explicitly. �

The previous lemma allows us to bound ‖Bα‖2. Using Eq. (3) from the proof of
the previous lemma we get ‖Bα‖22 = ∑d

i=0|bi (Lα)|2 ≤ (d + 1) 22τ+2 τ 2ν+2, which
results to

‖Bα‖2 ≤ d 2τ+1 τν+1 . (4)

Lemma 6 Let Bα be as in Problem 1, then

2−Õ(d6ν4m4τ (ν2+τ 2)) ≤ |disc(Bα)| ≤ 2Õ(dν+dτ+m4 ν4 τ (τ 2+ν2)) .

Proof We consider Bα as a bivariate polynomial in Z[Lα, x]. To bound |disc(Bα)|
we consider the identity

|disc(Bα)| =
∣∣∣∣

1

bd(Lα)
resx (Bα(Lα, x), ∂Bα(Lα, x)/∂x)

∣∣∣∣

=
∣∣∣∣

1

bd(Lα)
RB(Lα)

∣∣∣∣ ,

(5)
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where the resultant, RB ∈ Z[Lα], can be computed as the determinant of the Sylvester
matrix of Bα(Lα, x) and ∂Bα(Lα, x)/∂x , evaluated at Lα.

The Sylvestermatrix is of size (2d − 1) × (2d − 1), the elements ofwhich belong
to Z[Lα]. The determinant consists of (2d − 1)! terms. Each term is a product of
d − 1 polynomials in Lα of degree at most ν and bitsize at most τ , times a product
of d polynomials in Lα of degree at most ν − 1 and bitsize at most τ + lg d. The
first product results a polynomial of degree (d − 1)ν and bitsize (d − 1)τ + (d −
1) lg d. The second product results polynomials of degree d(ν − 1) and bitsize dτ +
d lg(d(ν − 1)). Thus, any term in the determinant expansion is a polynomial in Lα

of degree less than 2dν and bitsize at most 2dτ + 6d lg(dν). The determinant itself
is a polynomial in Lα of degree at most 2dν and of bitsize 2dτ + 10d lg(dν).

We compute an upper bound of |RB(Lq)| as follows:

|RB(Lq)| ≤ 22dτ+10d lg(dν)

2dν∑

k=0

|Lα|k ≤ 22dτ+10d lg(dν)τ 2dν+1 .

For the lower bound, we consider RB as a univariate polynomial, say in z, and let
r be its leading coefficient. By ρk we denote its roots. If apply Lemma 2, by assuming
that ρ1 is closest root to Lα, then

|RB(Lα)| > |r |7 |Lα − ρ1|6 M (RB)−6 2lg
∏

k �k (RB )−6 .

It holds |r | ≥ 1, M (RB) ≤ 2Õ(dτ ), and − lg
∏

k �k(RB) = O(d2ντ + d2ν
lg(dν)). We also use Theorem 3

|Lα − ρ1| ≥ exp(−O(d4ν4m4τ (dν + dτ + lg(dνmτ ))2)) .

By combining all the inequalities we get

|RB(Lα)| ≥ exp(−O(d4ν4m4τ (dν + dτ + lg(dνmτ ))2)) .

Equation (5) with the previous inequality and Lemma 5 imply

2−Õ(d6ν4m4τ (ν2+τ 2)) ≤ |disc(Bα)| ≤ 2Õ(dν+dτ+m4 ν4 τ (τ 2+ν2)) ,

which concludes the proof. �
We combine Lemma 5, 6, and Eq. (4) with Proposition 1 to derive the following

(separation) bounds for Bα.

Lemma 7 Let Bα be as in Problem 1 and βi be its roots. Let K be any subset of the
roots of Bα, then

2−Õ(m4 ν4 τ (τ 2+ν2)) ≤ |βi | ≤ 2Õ(m4 ν4 τ (τ 2+ν2)) ,
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�(Bα) = − lg
∏

i∈K
�(βi ) = Õ(d6ν4m4τ (ν2 + τ 2)) .

3.1 Isolating the Real Roots of Bα

Themain idea behind the algorithm for isolating the real roots of Bα is to approximate
its coefficients up to a specified accuracy so that the resulting approximate polyno-
mial, B̃α, has real roots that are close to the real roots of Bα. We isolate the real roots
of B̃α and the approximation is such that it guarantees that the resulting isolating
intervals are also isolating intervals for the real roots of Bα. Several approaches are
known in this context [26, 30, 33, 34], we follow [27, Theorem 3].

We divide by the leading coefficient to make the polynomial monic. As stated in
Problem 1, the polynomials bi ∈ Z[y] have coefficients ofmaximumbitsize bounded
by τ and degree bounded by ν.

Let σ be such that
∣∣∣ bi (Lα)

bd (Lα)

∣∣∣ ≤ 2σ and ρ such that ρ = max j {1,max{1, |log|β j ||}},
that is a logarithmic root bound for the roots of Bα.

If we approximate the coefficients of Bα up to accuracy O(dρ + �(Bα)), then
we can approximate the roots (of B̃α) in ÕB(d3 + d2σ + d�(Bα)). In this way the
number of real roots of B̃α is the same as the number of real roots of Bα. Moreover,
from the isolating intervals of B̃α we can derive isolating intervals for the roots of
Bα. We refer the reader to [27] for a comprehensive treatment.

We bound the various quantities. Lemma 7 indicates that

�(Bα) = Õ(d6ν4m4τ (ν2 + τ 2)) . (6)

To bound σ we use Lemma 5 and so, for all i ,
∣∣∣ bi (Lα)

bd (Lα)

∣∣∣ ≤ 2Õ(m4 ν4 τ (τ 2+ν2)). And thus

σ = Õ(m4 ν4 τ (τ 2 + ν2)) . (7)

The same bound holds for ρ. Hence we need to approximate the coefficients of Bα

up to accuracy

Õ(dρ + �(Bα)) = Õ(d6ν4m4τ (ν2 + τ 2)) .

We can isolate the real roots in Õ(d3 + d7ν4m4τ (ν2 + τ 2)).
It remains to estimate the cost of obtaining the approximation on the coefficients

of Bα, that is successive approximations of bi (Lα)/bd(Lα) up to accuracy ofO(dρ +
�(Bα)) bits after the binary point. Since |bi (Lα)/bd(Lα)| ≤ 2σ , to approximate each
fraction, for 0 ≤ i ≤ d − 1, to desired accuracy �, it is sufficient to approximate
bi (Lα), for 0 ≤ i ≤ d, up to precision O(� + σ).
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The algorithm requires approximation of bi (Lα), for 0 ≤ i ≤ d, to precision
O(dρ + �(Bα) + σ). Hence, it is sufficient to approximate bi (Lq) to accuracy
Õ(d6ν4m4τ (ν2 + τ 2)).

Approximation of Lα to accuracy of t > 0 bits yields an approximation of bi, j L j
α

to accuracy of at least

t − lg|bi, j | − lg( j) − ( j − 1) lg|2Lα| ≥ t − τ − lg(ν) − ν(lg(τ ) + 1)

bits and an approximation of bi (Lα) to accuracy of at least t − τ − 2 lg(ν) −
ν(lg(τ ) + 1) bits. Therefore,we need an approximation of lg(α) up to t = Õ(d6ν4m4

τ (ν2 + τ 2)) bits.
For this we need to approximate α up to this accuracy and then evaluate lg(α).

The cost of the first operation is ÕB(m2τ + m t) [31]. The cost of approximating the
logarithm up to t bits is quasi-linear ÕB(t) [7], see also [8] and references therein.

After we have obtained the approximation of Lα, say L̃ we need construct the
approximated coefficients of Bα by evaluating the polynomials bi (of degree ν) at
L̃; there are d + 1 polynomials. Each evaluation costs ÕB(νt) [5] and so the overall
cost is ÕB(dνt) = ÕB(d7ν5m4τ (ν2 + τ 2)).

Theorem 8 The Boolean complexity of isolating the real roots of Bα of Problem 1
is Õ(d7ν5m4τ (ν2 + τ 2)).

If we want to drop the assumption that the polynomial Bα is square-free, then
we can apply a subresultant-based algorithm to compute its square-free part, or
its square-free factorization [38]. To apply such algorithms we need to check if the
leading coefficient of the polynomial in the subresultant sequence is zero or not. These
coefficients are polynomials in Z[Lα]. Therefore, the basic operation needed is to
compute the sign of a univariate polynomial evaluated at the logarithmof an algebraic
number. To accomplish such an operation we need the bounds of Lemma 5. The exact
complexity of the complete algorithm for square-free factorization of polynomials
in Z[Lα][x] is beyond the scope of this paper.

4 Experiments

We present experimental results for an implementation of the algorithm isolating
roots of the polynomial in Problem 1 in the special case where the algebraic number
α is a rational. The algorithm has been implemented in C as a part of theMathematica
system. We have implemented the modified version of Descartes’ algorithm due to
Sagraloff [33], that applies to polynomials with bitstream coefficients, see also [15,
26], and we adapted our bounds to it. The theoretical complexity of the algorithm is
worse by factor than the complexity the algorithm that we presented in the previous
section, but its implementation is much easier.
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Table 1 Uniformly distributed coefficients, τ = 10

d ν

10 20 50 100 200 500 1000

10 0.006 0.011 0.027 0.060 0.122 0.358 0.857

20 0.015 0.025 0.058 0.110 0.235 0.678 1.53

50 0.042 0.068 0.142 0.272 0.581 1.61 3.56

100 0.116 0.164 0.339 0.640 1.19 3.14 7.65

200 0.496 0.516 0.900 1.65 2.76 6.41 16.7

500 3.43 4.53 5.30 6.52 10.4 21.5 54.6

1000 25.5 23.1 27.7 36.8 45.7 79.9 173

Table 2 Uniformly distributed coefficients, τ = 1000

d ν

10 20 50 100 200 500 1000

10 0.006 0.011 0.028 0.054 0.120 0.362 0.883

20 0.015 0.026 0.060 0.116 0.237 0.809 1.65

50 0.045 0.072 0.157 0.299 0.671 1.74 3.98

100 0.136 0.200 0.356 0.759 1.37 3.41 7.78

200 0.442 0.605 0.985 1.62 2.84 7.25 17.9

500 4.30 4.48 5.95 7.55 12.6 25.4 60.1

1000 20.5 30.4 30.4 34.8 44.7 81.4 183

The experiments have been run on a 64-bitWindows virtual machinewith a 3GHz
Intel Core i7 processor and 6 GB of RAM. The timings are given in seconds. The
mathematica code that we used to perform the experiments is publicly available.1

Example 9 (Random polynomials with uniformly distributed coefficients) For given
values of d, ν, and τ each instance (polynomial) was generated by selecting integer
coefficients bi, j randomly w.r.t. the uniform distribution in Z∩[−2τ−1, 2τ−1] and a
positive rational number α 	= 1 with L (α) ≤ τ . Each timing is an average for 10
randomly generated problems. The results are in Tables1 and 2.

Applying a least squares fit to the experimental data yields proportionality of the
computation time to d1.4ν0.8. There is very little dependence of the computation time
on the value of τ (see also the next section).

Example 10 (Random polynomials with Gaussian distribution of coefficients) For
given values of d and ν, each problem was generated by setting α = 3 and select-
ing coefficients bi, j as nearest integers to real numbers selected randomly w.r.t. the
Gaussian distribution with mean 0 and variance

(d
i

)
. Each result is an average for 100

1http://members.wolfram.com/adams/LogRootIsolExamples.txt.

http://members.wolfram.com/adams/LogRootIsolExamples.txt
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Table 3 Gaussian distribution of coefficients

d ν

10 20 50 100 200 500 1000

10 0.004 0.005 0.013 0.028 0.072 0.290 0.992

3.20 3.06 3.28 3.14 3.30 3.10 3.22

20 0.013 0.022 0.050 0.109 0.239 0.902 2.07

4.40 4.18 4.56 4.48 4.66 4.28 4.14

50 0.080 0.118 0.191 0.406 0.794 2.34 5.33

7.46 7.22 6.74 6.96 7.12 7.06 6.86

100 0.309 0.384 0.596 0.477 1.06 2.03 5.07

9.92 10.12 9.98 10.12 9.90 10.44 10.02

200 1.75 2.19 2.49 4.10 6.56 9.42 18.8

13.98 14.02 13.78 14.36 13.98 14.24 13.92

500 32.4 32.9 34.4 35.9 39.9 51.7 88.5

22.92 22.50 22.46 22.10 21.92 22.72 22.80

randomly generated problems. For each value d and ν the upper section gives the
computation time and the lower section gives the number of real roots. The results
are in Table3.

Applying a least squares fit to the experimental data yields proportionality of the
computation time to d1.7ν0.8. The average number of roots is, as expected, close to√
d .

4.1 Random Polynomials

We were not able to construct polynomials that achieve the separation bounds of
Lemma 7. It is not clear whether the effective lower bounds of Theorem 3 are tight.
Our experimental results of the previous section suggest that this is not the case for
random polynomials. In addition, this observation triggers the question of estimat-
ing the average behavior of the separation bounds. The first step is to estimate the
expected number of real roots of Bq , when its coefficients are random variables.

Proposition 11 [14] Let v(t) = ( fo(t), . . . , fn(t))� be a vector of differentiable
functions and c0, . . . , cn elements of a multivariate normal distribution with zero
mean and covariance matrix C. The expected number of real zeros on an interval
(or a measurable set) I of the equation c0 f0(t) + · · · + cn fn(t) = 0, for w(t) =
C1/2v(t), is ∫

I

1

π
‖w′(t)‖dt, w = w(t)/‖w(t)‖.
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In logarithmic derivative notation it is

1

π

∫

I

√
∂2

∂x ∂y
log (v(x)�Cv(y))|x=y=t dt .

Wefix a logarithm L . For example L = lg(q) for a (fixed) positive rational number
q, different from 0 and 1, or L = lg(α), where α is a positive real algebraic number.
Consider the polynomials bi = ∑ν

j=0 bi, j L
j where each of bi, j is a Gaussian random

variable with mean zero and variance
(d
i

)
. We denote this by bi, j ∼ N (0,

(d
i

)
). Then

bi ∼ N (0,

(
d

i

) ν∑

j=0

L2 j ) = N (0,

(
d

i

)
�) .

In our case v(x)�Cv(y) = �(1 + x y)d , and the integral of Proposition 11 yields

1

π

∫ ∞

−∞

√
∂2

∂x ∂y
log �(1 + x y)d |x=y=t dt = √

d .

This leads to the following lemma:

Lemma 12 Let Bα as in Problem 1 with a fixed α. Let all bi have the same degree
ν and bi, j ∼ N (0,

(d
i

)
). Then the expected number of real roots of Bq is

√
d.

Following, mutatis mutandis, the analysis of [16, Lemma 3.2] the previous lemma
allows us to compute the distribution of the real roots and eventually to estimate the
expected separation bound, which is E[− lg�(Bα)] = O(lg d) (for the aforemen-
tioned distribution of the coefficients), for the real roots. This is far from the worst
case proved in Lemma 7 but agrees with the running times of our implementation in
Sect. 4. The bigger the (actual) separation bound, the less bits we need to isolate the
real roots, and so the faster the algorithms perform. For estimating the expected sep-
aration bounds for the complex roots, we need to compute (expected) lower bounds
on the discriminant. We are not aware of such bounds.

5 A Generalization

We present a generalization of Problem 1 where the argument of the logarithm is a
homogeneous bivariate polynomial evaluated at two real algebraic numbers. As in
the case of Problem 1 we rely on Theorem 3 for computing the various upper and
lower bounds.
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The precise problem definition is as follows:

Problem 2 Consider the square-free BH = ∑d
i=0 bi x

i , where bi = ∑ν
j=0 bi, j

(lg(A(γ1, γ2)))
j , bi, j ∈ Z, L (

bi, j
) ≤ τ , A ∈ Z[y1, y2] is a homogeneous polyno-

mial of degree m and L (A) = τ and γ1, resp. γ2, is a real root of a polynomial
C1 ∈ Z[y], resp.C2 ∈ Z[y], of degree n andL (

C{1,2}
) = τ .We assume A(γ1, γ) > 0

and A(γ1, γ2) 	= 1.What is the Boolean complexity of isolating the real roots of BH?

We should warn the reader that the constants in the various bounds in the sequel
are not the best possible.

Lemma 13 Let A ∈ Z[y1, y2] be a homogeneous polynomial of degree m and
L (A) = τ and γ1, resp. γ2, be the positive real root of a polynomial C1 ∈ Z[y],
resp. C2 ∈ Z[y], that is of degree n and L (C) = τ . Then 2−3n2τ−5n2 lg(mn)−4mτ ≤
|lg A(γ1, γ2)| ≤ 4mτ .

Proof Assume for the moment that we know positive integers t and T such that
|A(γ1, γ2)| ≤ 2T and |A(γ1, γ2) − 1| ≥ 2−t . Then from the inequality |ez − 1| ≤
|z|e|z| we deduce

|A(γ1, γ2) − 1| ≤ |ln A(γ1, γ2)|e|ln A(γ1,γ2)| ⇒
|A(γ1, γ2) − 1| ≤ |lg A(γ1, γ2)|

lg(e)
|A(γ1, γ2)| ⇒

2−t−1 ≤ |A(γ1, γ2) − 1| ≤ |lg A(γ1, γ2)| 2T ⇒
2−t−T−1 ≤ |lg A(γ1, γ2)| .

It remains to specify t and T . For the real algebraic numbers γ1 and γ2 it holds

2−τ−1 ≤ |γ{1,2}| ≤ 2τ+1.

We bound T as follows:

|A(γ1, γ2)| ≤ |
m∑

i=0

aiγ
i
1γ

m−i
2 | ≤

m∑

i=0

2τ 2m τ ,

and so
|lg A(γ1, γ2)| ≤ (m + 1)τ + lg(m + 1) = T .

We choose T = 4mτ = O(mτ ) to simplify the calculations.
To compute a bound for t we consider the polynomial Ā(y1, y2) = A(y1, y2) − 1

and the following polynomial system:

⎧
⎪⎨

⎪⎩

F1 = z − [A(y1, y2) − 1] = 0

F2 = C1(y1) = 0

F3 = C2(y2) = 0
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We will use a similar system in the sequel so we present various quantities that are
related to it. For further details on DMM we refer the reader to [17].

A lower bound on z provides us with a lower bound for t . To compute a bound
for z we use the DMM bound from [17, Theorem 3].

Let D be the mixed volume of the system, MVi the mixed volume of the system
if we discard the i-th polynomial, and #(Qi ) the number of integer points of the
Newton polytope of the i-th polynomial, for 1 ≤ i ≤ 3, � = ∏3

i=1(#Qi )
MVi , and

C = ∏3
i=1 ‖Fi‖MVi∞ .

The univariate polynomial that has the z-coordinates of the solution set of the
system as roots, we call them ζ, has degree D and maximum coefficient bitsize
� 2D C. It holds |ζ| ≥ (� 2D C)−1. In our case

D = n2,MV1 = n2,MV2 = MV3 = n,

(#Q1) = m + 1, (#Q2) = (#Q3) = n + 1,

� = (m + 1)n
2
(n + 1)2n, C ≤ 2τ (n2+2n).

Notice that it is exactly the use of mixed volume that allows us to takeD = n2 instead
of mn2 which is the Bézout bound.

The lower bound for ζ becomes

|ζ| ≥ 2−(n2+n2 lg(m+1)+2n lg(n+1)+τ (n2+2n)) ,

and hence

t = n2 + n2 lg(m + 1) + 2n lg(n + 1) + τ (n2 + 2n) .

We choose t = 3n2τ + 5n2 lg(mn) = Õ(n2τ ). �

Lemma 14 Let bi be as in Problem 2. If bi (LH ) 	= 0, then 2−Õ(n10ν4τ (τ 2+ν2)) ≤
|bi (LH )| ≤ 2Õ(ν+τ ).

Proof For all i it holds

|bi (LH )| = |
ν∑

j=0

bi, j L
j
H | ≤

ν∑

j=0

2τ (4mτ ) j ≤ (ν + 1)2τ (4mτ )ν ,

and so
|bi (LH )| ≤ 2τ+8ν lg(mτ ) .

We consider bi as a univariate polynomial in y and so bi = ∑ν
j=0 bi, j y

i =
bi,ν

∏ν
j=1(y − βi, j ), where βi, j are its roots. Let βi,1 be the root closest to LH ;

we apply Lemma 2

|bi (LH )| > |bi,ν |7 |LH − βi,1|6 M (bi )
−6 2lg

∏
j �(bi )−6 .
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It holds |bi,ν | ≥ 1, M (bi ) ≤ 2τ+lg ν+1, and − lg
∏

j �(bi ) = O(ν2 + ντ ).
To bound |LH − βi,1| we use Theorem 3. For this we need to identify the real

algebraic number A(γ1, γ2) represents. Consider the following polynomial system:

⎧
⎪⎨

⎪⎩

F1 = z − A(y1, y2) = 0

F2 = C1(y1) = 0

F3 = C2(y2) = 0

The system is almost identical to the one in the proof of Lemma 13 and so we get
all the (worst case) bounds from that system. If we eliminate y1 and y2, then we
get a univariate polynomial in z among the solutions of which is the real algebraic
number A(γ1, γ2). The polynomial has degree n2 and maximum coefficient bit-
size n2 + n2 lg(m + 1) + 2n lg(n + 1) + τ (n2 + 2n) = Õ(n2τ ). Then, Theorem 3
implies that

|LH − βi, j | ≥ exp(−O(n10 ν4 τ (τ + ν + lg(nντ ))2) .

By combining all the bounds we obtain the bound |bi (LH )| > 2−O(n10 ν4 τ (τ+ν+lg(nντ ))2),
which concludes the proof. �

Anupper bound for ‖BH ‖2 is ‖BH‖22=
∑d

i=0|bi (LH )|2 ⇒ ‖BH‖2 ≤ 2τ+8ν lg(mτ )+lg(d).

Lemma 15 Let BH be as in Problem 2, then

2−Õ(d6n8ν4τ (ν2+τ 2)) ≤ |disc(BH )| ≤ 2Õ(dν+dτ+n10ν4τ (τ 2+ν2)).

Proof As in the proof of Lemma 6 we consider BH as a bivariate polynomial in
Z[LH , x], and

|disc(BH )| =
∣∣∣∣

1

bd(LH )
resx (BH (LH , x), ∂BH (LH , x)/∂x)

∣∣∣∣

=
∣∣∣∣

1

bd(LH )
RB(LH )

∣∣∣∣ .

The resultant RB ∈ Z[LH ] is a univariate polynomial of degree at most 2dν and
maximum coefficient bitsize 2dτ + 10d lg(dν). Therefore

|RB(LH )| ≤ 22dτ+10d lg(dν)

2dν∑

k=0

|LH |k

≤ 22dτ+10d lg(dν)(4mτ )2dν+1 .

For the lower bound, let r be the leading coefficient of RB and ρk its roots. Let ρ1
be the root closest to LH . Then |r | ≥ 1,M (RB) ≤ 22dτ+12d lg(dν),− lg

∏
k �(RB) =

O(d2ν2 + d2ντ ). The application of Theorem 3 gives us
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|LH − ρ1| ≥ exp(−Õ(d6n8ν4τ (ν2 + τ 2))) .

Using Lemma 2 we get

|RB(LH )| > |r |7 |LH − ρ1|6 M (RB)−6 2lg
∏

k �k (RB )−6 ,

and thus
|RB(LH )| ≥ exp(−Õ(d6n8ν4τ (ν2 + τ 2))) .

Combining Eq. (5) with the previous inequality and Lemma 14 we get

2−Õ(d6n8ν4τ (ν2+τ 2)) ≤ |disc(BH )| ≤ 2Õ(dν+dτ+n10ν4τ (τ 2+ν2)) ,

that concludes the proof. �

Lemma 16 Let BH be as in Problem 2 and let β j be its roots. Then

2−Õ(n10ν4τ (τ 2+ν2)) ≤ |β j | ≤ 2Õ(n10ν4τ (τ 2+ν2)) ,

�(BH ) = − lg
∏

(i, j)∈�

|βi − β j |Õ(d6n8ν4τ (ν2 + τ 2)) .

When we have two or more logarithms and the polynomials are not homogeneous
or if we have homogeneous polynomials and three or more logarithms then we are
not able to compute separation bounds. In this case the separation bounds are closely
connected to major open problems in number theory, like the four exponentials
conjecture. For example, no effective lower bounds are known for the expression
|lg(α1) lg(α2) − lg(α3) lg(α4)|, where α{1,2,3,4} are (real) algebraic numbers.

5.1 Isolating the Real Roots of BH

We proceed as in Sect. 3.1 and we use the same notation. We approximate the coeffi-
cients of BH up to accuracyO(dρ + �(BH )) andwe isolate the real roots in ÕB(d3 +
d2σ + d�(BH )). From Lemma 16 we get �(BH ) = Õ(d6n8ν4τ (ν2 + τ 2)). More-
over, ρ = Õ(n10ν4τ (τ 2 + ν2)) and σ = Õ(n10ν4τ (τ 2 + ν2)).

We need to estimate the cost of approximating bi (LH )/bd(LH ) up to accuracy of
O(dρ + �(BH )) bits after the binary point. Working as in Sect. 3.1 we deduce that
we should approximate LH = lg A(γ1, γ2) up to precision 2−t , where t = O(dρ +
�(BH )). The cost of this approximation is quasi-linear ÕB(t) [7].

In addition, we should also approximate A(γ1, γ2) up to this accuracy. Assume
that we have isolating intervals [γ1], resp. [γ2], for the real algebraic number γ1, resp.
γ2. Let their widths be 2−s , where s is a positive integer that we should determine.
That is wid[γ1] = wid[γ2] = 2−s .
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Recall that 2−τ ≤ |γ{1,2}| ≤ 2τ and that A = ∑m
i=0 ai y

i
1y

m−i
2 is a homogeneous

bivariate polynomial of degree m.
For an expression E , let [E] be its evaluation using interval arithmetic. Using

the properties of interval arithmetic [1] we get that wid[aiγi
1γ

m−i
2 ] ≤ m2τ (m−1)2−s,

and wid[A(γ1, γ2)] ≤ m22mτ2−s ≤ 2−t , which leads to s = t + mτ + 2 lg(m) =
Õ(n8ν5τ 3(n2 + d8)).

We approximate γ1 and γ2 up to this accuracy in ÕB(n2τ + ns) = ÕB(n2τ +
nmτ + nt) [31].

It remains to estimate the cost of computing the approximated coefficients of
BH . After we have computed a approximation of LH , say L̃ H , we need perform
the evaluation bi (L̃ H ); there are d + 1. Each costs ÕB(νs) and the overall cost is
ÕB(dνs).

Combining all the bounds we have the following theorem.

Theorem 17 The Boolean complexity of isolating the real roots of BH of Problem 2
is ÕB(n9ν4d2τ (τ 2 + ν2)(n2 + d5) + mτ (n + dν)).

6 An Extension to Bivariate Polynomial Systems

In this section we consider bivariate polynomial systems. Let L = Lq or L = LH

(Sects. 3, 5, respectively). The problem statement is as follows:

Problem 3 Consider the zero-dimensional, polynomial system (SL) F1(x, y) =
F2(x, y) = 0, where F1,2 ∈ (Z[L])[x1, x2] and their total degree is bounded by d.
Let L = Lq = lg(q), resp. L = LH = lg A(γ1, γ2), be as in Problem 1, resp. Prob-
lem 2. The coefficients of F1 and F2 are polynomials in L of degree ν and maximum
coefficient bitsize at most τ . What is the Boolean complexity of isolating the real
roots of (SL)?

The complexity of the algorithms for solving bivariate polynomial systems
depends heavily on the separation bound of the system. We present the separation
bounds and we sketch the analysis of isolation process. We use the DMM bound [17].
Consider the polynomial system

(S0) F1(x1, x2) = F2(x1, x2) = u − x1 = 0,

where u is a parameter. If we eliminate x1 and x2 from (S0), then we get a univariate
polynomial in u, R1 ∈ (Z[L])[u], which is called the u-resultant. The DMM bound
bounds the separation of SL using the separation bound of R1. Asymptotically, the
latter depends on a lower bound on the discriminant of its square-free part [17,
Theorem 3]. Hence, it suffices to estimate this bound.

The coefficients of R1 are of the form �k cd1 c
d
2 u

k , where 0 ≤ k ≤ d2, c{1,2} denotes
a monomial in the coefficients of F{1,2} of total degree d, and �k is an integer that
depends on the integer points of the Newton polytopes of the polynomials and in our
case is bounded by |�k | ≤ (d2 + 2)2d . The degree of R1 wrt u is O(d2).
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Recall that the coefficients of F{1,2} are polynomials in L . Thus, the coefficients
of R1 are also polynomials in L of degree at most 2dν and maximum coefficient
bitsize Õ(dτ ). If we compute the square-free part of R1, then its coefficients are
polynomials of degree bounded by 2dν and of maximum coefficient bitsize bounded
by 2dτ + 10d lg(d) = Õ(dτ ) [43]. If L = Lα then we apply Lemma 6 and the
logarithm of the separation bound of the system is Õ(d7ν10m4τ (ν2 + d2τ 2)). We
can obtain a similar bound if L = LH = lg A(γ1, γ2) and we apply Lemma 15. In
both cases, it seems that the bounds are quite pessimistic. We can also obtain the
bounds by modifying accordingly the DMM bound [17].

To compute R1 (or R2 if we choose to eliminate x2) we treat L as a new variable.
The projection on x1, that is the computation of R1 costs ÕB(d5ντ ) [12, Prop. 8 and
Lemma 9]. The cost is the same for projection on the x2-axis. Using the previous
bounds and the results of Sects. 3.1 and 5.1 we can isolate the roots of the two pro-
jections. For the Lα case this cost is ÕB(d2ν4 + d8ν12m4τ (ν2 + d2τ 2)). It remains
to match the x1 and x2 coordinates. For example, we can use one of the three strate-
gies in [12]. The main operation needed is the computation of sign of a univariate
polynomial like Bα evaluated at a real algebraic number. We postpone the detailed
analysis for a future communication

Another way to solve the system is to approximate L up to an accuracy, substitute
this value to the polynomials F{1,2}, and then solve the system. We need a pertur-
bation bound for the roots of a bivariate system, similar to the one(s) for univariate
polynomials [34, Theorem 19.1].

Theorem 18 Consider a zero-dimensional polynomial system F = 0, where F =
(F1, F2) and F{1,2} are bivariate polynomials of degree d. The roots of system are
contained in a disc with center the origin and radius r . Let F̃ = (F̃1, F̃2) be a λ
approximation of F, that is ‖Fi − F̃i‖∞ ≤ 2−λ. Then the zeros of F, α1, . . . ,αd2 ,
and the zeros of F̃ , α̃1, . . . , α̃d2 , could be numbered such that, for j ∈ [n],

|α j − α̃ j | ≤ 2η+1,

where η = −λ/d2 + 2τ/d2 + 12 lg(2d))/d + 4 lg(d)/d2 + lg(r) + 2.

Proof We consider the polynomial system (S0) and its resultant, R, after eliminating
x1 and x2. The coefficients of R are of the form �k cd1 c

d
2 u

k , where 0 ≤ k ≤ d2,
c{1,2} denotes a monomial in the coefficients of F{1,2} of total degree d, and |�k | ≤
(d2 + 2)2d . The degree of R wrt u is O(d2).

If we replace the polynomials F{1,2} by it approximations F̃{1,2} and compute the
resultant of the perturbed system, R̃, this is also a polynomial in u of degree O(d2).
Its terms are of the form �k c̃d1 c̃

d
2 u

k , where 0 ≤ k ≤ d2, c̃{1,2} denotes a monomial in
the coefficients of F̃{1,2} of total degree d, and �k is as before.

The inequality ‖Fi − F̃i‖∞ ≤ 2−λ implies ‖R − R̃‖∞ ≤ 2−λ+2dτ+12d lg(2d).
Letα j,1, for j ∈ [d2], be the roots of R, and respectively α̃ j,1 the roots of R̃. Recall

that the roots of R are the x1 coordinates of the system. Using [34, Theorem 19.1]
we have the following inequality: |αi,1 − α̃i,1| ≤ 2η where η = −λ/d2 + 2τ/d2 +
12 lg(2d))/d + 4 lg(d)/d2 + lg(r) + 2.
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We obtain the same bound if we replace u − x1 with u − x2 in (S0). Thus, for any
root α j of F and α̃i of F̃ we have |αi − α̃i | ≤ 2η+1. �

Using the previous theorem we can mimic the procedure of the univariate case.
We estimate the separation bound of (S0) as presented in the beginning of the section.
Next, we approximate L to an accuracy of this order, and we obtain two approximate
polynomials, and thus a perturbed system. We solve the approximate system using a
numerical subdivision solver, e.g., [24], and from the isolating boxes of the perturbed
system we can derive isolating boxes for the roots of (S0) by applying Theorem 18.

A possible alternative way of solving the bivariate polynomial systems of Prob-
lem 3 could be based on the recent work [6] on solving bivariate polynomial system
of polynomials having integer coefficients.

The following is an alternative version of Lemma 2.

Lemma 19 Let L ∈ C and γ1 the root of the square-free polynomial f that is closest
to L. Then

| f (L)| ≥ |ad |2 |L − γ1| 2−d M ( f ) 2lg
∏

j � j .

Proof As γ1 is the root closest to L it holds |L − γi | ≥ |γ1 − γi |/2. Then

| f (L)| = |ad |
d∏

j=1

|L − γ j | = |ad ||L − γ1|
∏

j 	=1

|L − γ j |

≥ |ad ||L − γ1|
∏

j 	=1

|γ1 − γ j |/2

≥ |ad | |L − γ1| 21−d
∏

j 	=1

|γ1 − γ j |

≥ |ad | |L − γ1| 21−d
∏

j 	=1

� j

≥ |ad | |L − γ1| 21−d 1

�1

∏

j

� j

≥ |ad | |L − γ1| 21−d |ad |
2M ( f )

2lg
∏

j � j .

For the last inequality we use �i ≤ 2M ( f ) /|ad |, that in turn relies on �i = |γi −
γci | ≤ |γi | + |γci | ≤ 2M ( f ) /|ad |. �
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On the Complexity of Multivariate
Polynomial Division

Joris van der Hoeven

Abstract In this paper, we present a new algorithm for reducing a multivariate
polynomial with respect to an autoreduced tuple of other polynomials. In a suitable
sparse complexity model, it is shown that the execution time is essentially the same
(up to a logarithmic factor) as the time needed to verify that the result is correct.

Keywords Sparse reduction · Complexity · Division · Algorithm
A.M.S. Subject Classification: 68W30 · 12Y05 · 68W40 · 13P10

1 Introduction

Sparse interpolation [1, 2, 5, 13] provides an interesting paradigm for efficient com-
putations with multivariate polynomials. In particular, under suitable hypothesis,
multiplication of sparse polynomials can be carried out in quasi-linear time, in terms
of the expected output size. More recently, other multiplication algorithms have also
been investigated, which outperform naive and sparse interpolation under special cir-
cumstances [12, 14]. An interesting question is how to exploit such asymptotically
faster multiplication algorithms for the purpose of polynomial elimination. In this
paper, we will focus on the reduction of a multivariate polynomial with respect to an
autoreduced set of other polynomials and show that fast multiplication algorithms
can indeed be exploited in this context in an asymptotically quasi-optimal way.

Consider the polynomial ring K[x] = K[x1, . . . , xn] over an effective field K
with an effective zero test. Given a polynomial
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P =
∑

i∈Nn

Pi x
i =

∑

i1,...,in∈N
Pi1,...,in x

i1
1 · · · xinn ,

we call supp P = {i ∈ Nn : Pi �= 0} the support of P . The naive multiplication
of two sparse polynomials P, Q ∈ K[x] requires a priori O(| supp P|| supp Q|)
operations inK. This upper bound is sharp if P and Q are very sparse, but pessimistic
if P and Q are dense.

Assuming that K has characteristic zero, a better algorithm was proposed in [2]
(see also [1, 5] for some background). The complexity of this algorithm can be
expressed in the expected size s = | supp P + supp Q| of the output (when no can-
cellations occur). It is shown that P and Q can bemultiplied using onlyO(M(s) log s)
operations in K, where M(s) = O(s log s log log s) stands for the complexity of
multiplying two univariate polynomials in K[z] of degrees <s. Unfortunately, the
algorithm in [2] has two drawbacks:

1. The algorithm leads to a big growth for the sizes of the coefficients, thereby
compromising its bit complexity (which is often worse than the bit complexity of
naive multiplication).

2. It requires supp PQ ⊆ supp P + supp Q to be known beforehand. More pre-
cisely, whenever a bound supp PQ ⊆ supp P + supp Q ⊆ S is known, then we
really obtain a multiplication algorithm of complexity O(M(|S|) log |S|).

In practice, the second drawback is of less importance. Indeed, especially when
the coefficients in K can become large, then the computation of supp P + supp Q
is often cheap with respect to the multiplication PQ itself, even if we compute
supp P + supp Q in a naive way.

Recently, several algorithms were proposed for removing the drawbacks of [2].
First of all, in [13] we proposed a practical algorithm with essentially the same
advantages as the original algorithm from [2], but with a good bit complexity and a
variant which also works in positive characteristic. However, it still requires a bound
for supp PQ and it onlyworks for special kinds of fieldsK (which nevertheless cover
the most important cases such as K = Q and finite fields). Even faster algorithms
were proposed in [9, 14], but these algorithms only work for special supports. Yet
another algorithmwas proposed in [7, 12]. This algorithm has none of the drawbacks
of [2], but its complexity is suboptimal (although better than the complexity of naive
multiplication).

At any rate, these recent developments make it possible to rely on fast sparse
polynomial multiplication as a building block, both in theory and in practice. This
makes it natural to study other operations on multivariate polynomials with this
building block at our disposal. One of the most important such operations is division.

The multivariate analogue of polynomial division is the reduction of a polynomial
A ∈ K[x] with respect to an autoreduced tuple B = (B1, . . . , Bb) ∈ K[x]b of other
polynomials. This leads to a relation

A = Q1B1 + · · · + QbBb + R, (1)
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such that none of the terms occurring in R can be further reduced with respect to
B. In this paper, we are interested in the computation of R as well as Q1, . . . , Qb.
We will call this the problem of extended reduction, in analogy with the notion of an
“extended g.c.d.”.

Now in the univariate context, “relaxed power series” provides a convenient tech-
nique for the resolution of implicit equations [6–8, 10]. One major advantage of this
technique is that it tends to respect most sparsity patterns which are present in the
input data and in the equations. The main technical tool in this paper (see Sect. 3) is
to generalize this technique to the setting of multivariate polynomials, whose terms
are ordered according to a specific admissible ordering on the monomials. This will
make it possible to rewrite (1) as a so-called recursive equation (see Sect. 4.2), which
can be solved in a relaxed manner. Roughly speaking, the cost of the extended reduc-
tion then reduces to the cost of the relaxed multiplications Q1B1, . . . , QbBb. Up to
a logarithmic overhead, we will show (Theorem 4) that this cost is the same as the
cost of checking the relation (1).

In order to simplify the exposition, we will adopt a simplified sparse complexity
model throughout this paper. In particular, our complexity analysis will not take into
account the computation of support bounds for products or results of the extended
reduction. Bit complexity issues will also be left aside in this paper. We finally
stress that our results are mainly of theoretical interest since none of the proposed
algorithms have currently been implemented. Nevertheless, practical gains are not
to be excluded, especially in the case of small n, high degrees and dense supports.

2 Notations

Let K be an effective field with an effective zero test and let x1, . . . , xn be indeter-
minates. We will denote

K[x] = K[x1, . . . , xn]
Pi = Pi1,...,in
x i = xi11 · · · xinn

i � j ⇔ i1 � j1 ∧ · · · ∧ in � jn,

for any i, j ∈ Nn and P ∈ K[x]. In particular, i � j ⇔ xi |x j . For any subset
E ⊆ Nn we will denote by Fin (E) = { j ∈ Nn : ∃i ∈ E, i � j} the final segment
generated by E for the partial ordering �.

Let� be a total ordering onNn which is compatible with addition. Two particular
such orderings are the lexicographical ordering �lex and the reverse lexicographical
ordering �rlex :

i <lex j ⇔ ∃k, i1 = j1 ∧ · · · ∧ ik−1 = jk−1 ∧ ik < jk
i <rlex j ⇔ ∃k, ik < jk ∧ ik+1 = jk+1 ∧ · · · ∧ in = jn.
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In general, it can be shown [16] that there exist real vectors λ1, . . . ,λn ∈ Rm with
m � n, such that

i � j ⇔ (λ1 · i, . . . ,λm · i) �lex (λ1 · j, . . . ,λm · j). (2)

Inwhat follows,wewill assume thatλ1, . . . ,λn ∈ Nn and gcd((λi )1, . . . , (λi )n) = 1
for all i . We will also denote

λ · i = (λ1 · i, . . . ,λn · i).

For instance, the graded reverse lexicographical ordering�grlex is obtained by taking
λ1 = (1, . . . , 1), λ2 = (0, . . . , 1), λ2 = (0, . . . , 0, 1, 0), . . ., λn = (0, 1, 0, . . . , 0).

Given P ∈ K[x], we define its support by

supp P = {i ∈ Nn : Pi �= 0}.

If P �= 0, then we also define its leading exponent lP and coefficient cP by

lP = max
�

supp P

cP = PlP .

Given a finite set E , we will denote its cardinality by |E |.

3 Relaxed Multiplication

3.1 Relaxed Power Series

Let us briefly recall the technique of relaxed power series computations, which is
explained inmore detail in [7]. In this computational model, a univariate power series
f ∈ K[[z]] is regarded as a stream of coefficients f0, f1, . . .. When performing an
operation g = Φ( f1, . . . , fk) on power series, it is required that the coefficient gn
of the result is output as soon as sufficiently many coefficients of the inputs are
known, so that the computation of gn does not depend on the further coefficients. For
instance, in the case of a multiplication h = f g, we require that hn is output as soon
as f0, . . . , fn and g0, . . . , gn are known. In particular, we may use the naive formula
hn = ∑n

i=0 fign−i for the computation of hn .
The additional constraint on the time when coefficients should be output admits

the important advantage that the inputs may depend on the output, provided that
we add a small delay. For instance, the exponential g = exp f of a power series
f ∈ zK[[z]] may be computed in a relaxed way using the formula



On the Complexity of Multivariate Polynomial Division 451

g =
∫

f ′g.

Indeed, when using the naive formula for products, the coefficient gn is given by

gn = 1

n
( f1gn−1 + 2 f2gn−2 + · · · + n fng0),

and the right-hand side only depends on the previously computed coefficients
g0, . . . , gn−1. More generally, equations of the form g = Φ(g)which have this prop-
erty are called recursive equations and we refer to [11] for a mechanism to transform
fairly general implicit equations into recursive equations.

The main drawback of the relaxed approach is that we cannot directly use fast
algorithms on polynomials for computations with power series. For instance, assum-
ing that K has sufficiently many 2p-th roots of unity and that field operations in
K can be done in time O(1), two polynomials of degrees <n can be multiplied
in time M(n) = O(n log n), using FFT multiplication [3]. Given the truncations
f;n = f0 + · · · + fn−1zn−1 and g;n = g0 + · · · + gn−1zn−1 at order n of power series
f, g ∈ K[[z]], we may thus compute the truncated product ( f g);n in time M(n) as
well. This is much faster than the naive O(n2) relaxed multiplication algorithm for
the computation of ( f g);n . However, the formula for ( f g)0 when using FFT multi-
plication depends on all input coefficients f0, . . . , fn−1 and g0, . . . , gn−1, so the fast
algorithm is not relaxed (we will say that FFT multiplication is a zealous algorithm).
Fortunately, efficient relaxed multiplication algorithms do exist:

Theorem 1 [4, 6, 7] LetM(n) be the time complexity for the multiplication of poly-
nomials of degrees< n inK[z]. Then there exists a relaxed multiplication algorithm
for series inK[[z]] at order n of time complexity R(n) = O(M(n) log n).

Remark 1 In fact, the algorithm from Theorem 1 generalizes to the case when
the multiplication on K is replaced by an arbitrary bilinear “multiplication” M1 ×
M2 → M3, where M1,M2 and M3 are effective modules over an effective ring A.
If M(n) denotes the time complexity for multiplying two polynomials P ∈ M1[z]
and Q ∈ M2[z] of degrees <n, then we again obtain a relaxed multiplication for
series f ∈ M1[[z]] and g ∈ M2[[z]] at order n of time complexity O(M(n) log n).

Theorem 2 [10] If K admits a primitive 2p-th root of unity for all p, then there
exists a relaxed multiplication algorithm of time complexity

R(n) = O(n log ne2
√
log 2 log log n).

In practice, the existence of a 2p+1-th root of unity with 2p � n suffices for multipli-
cation up to order n.



452 J. van der Hoeven

3.2 Relaxed Multivariate Laurent Series

Let A be an effective ring. A power series f ∈ A[[z]] is said to be computable if
there is an algorithm which takes n ∈ N on input and produces the coefficient fn
on output. We will denote byA[[z]]com the set of such series. ThenA[[z]]com is an
effective ring for relaxed addition, subtraction and multiplication.

A computable Laurent series is a formal product f zk with f ∈ A[[z]]com and
k ∈ Z. The set A((z))com of such series forms an effective ring for the addition,
subtraction and multiplication defined by

f zk + gzl = ( f zk−min(k,l) + gzl−min(k,l))zmin(k,l)

f zk − gzl = ( f zk−min(k,l) − gzl−min(k,l))zmin(k,l)

( f zk)(gzl) = ( f g)zk+l .

IfA is an effectivefieldwith an effective zero test, thenwemayalsodefine an effective
division on A((z))com , but this operation will not be needed in what follows.

Assume now that z is replaced by a finite number of variables z = (z1, . . . , zn).
Then an element of

A((z))com := A((zn))
com · · ·((z1))com

will also be called a “computable lexicographical Laurent series”. Any nonzero f ∈
A((z)) has a natural valuation v f = (v1, . . . , vn) ∈ Zn , by setting v1 = val z1 f , v2 =
val z2([zv1

1 ] f ), etc. The concept of recursive equations naturally generalizes to the
multivariate context. For instance, for an infinitesimal Laurent series ε ∈ A((z))com

(that is, ε = f zk , where v f >lex −k), the formula

g = 1 + εg

allows us to compute g=(1 − ε)−1 using a single relaxedmultiplication inA((z))com .
Now takeA=K[x] and consider a polynomial P ∈ A. Thenwe define theLaurent

polynomial P̂ ∈ K[xz−λ] ⊆ A((z))com by

P̂ =
∑

i∈Nn

Pi x
i z−λ·i .

Conversely, given f ∈ K[xz−λ], we define f̌ ∈ K[x] by substituting z1 = · · · =
zn = 1 in f .Wewill call the transformations P �→ P̂ and P̂ �→ P = ˇ̂P tagging resp.
untagging; they provide us with a relaxed mechanism to compute with multivariate
polynomials in K[x], such that the admissible ordering � on Nn is respected. For
instance, we may compute the relaxed product of two polynomials P, Q ∈ K[x]
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by computing the relaxed product P̂ Q̂ and substituting z1 = · · · = zn = 1 in the
result. We notice that tagging is an injective operation which preserves the size of
the support.

3.3 Complexity Analysis

Assumenow thatweare given P, Q ∈ K[x] and a setR ⊆ Nn such that supp (PQ) ⊆
R. We assume that SM(s) is a function such that the (zealous) product PQ can be
computed in time SM(|R|). We will also assume that SM(s)/s is an increasing
function of s. In [2, 15], it is shown that we may take SM(s) = O(M(s) log s).

Let us now study the complexity of sparse relaxed multiplication of P and Q.
We will use the classical algorithm for fast univariate relaxed multiplication from [6,
7], of time complexity R(s) = O(M(s) log s). We will also consider semi-relaxed
multiplication as in [8], where one of the arguments P̂ or Q̂ is completely known in
advance and only the other one is computed in a relaxed manner.

Given X ⊆ Nn and i ∈ {1, . . . , n}, we will denote

δi (X) = max{λi · k : k ∈ X} + 1

δ(X) = δ1(X) · · · δn(X).

We now have the following:

Theorem 3 With the above notations, the relaxed product of P and Q can be com-
puted in time

O (SM(|R|) log δ(R)) .

Proof In order to simplify our exposition, we will rather prove the theorem for a
semi-relaxed product of P̂ (relaxed) and Q̂ (known in advance). As shown in [8], the
general case reduces to this special case. We will prove by induction over n that the
semi-relaxed product can be computed using at most 3SM(|R|) log δ(R) operations
in K if R is sufficiently large. For n = 0, we have nothing to do, so assume that
n > 0.

Let us first consider the semi-relaxed product of P̂ and Q̂with respect to z1. Setting
l = �log2 δ1(R), the computation of this product corresponds (see the right-hand
side of Fig. 1) to the computation of�2 zealous 2l−1 × 2l−1 products (i.e. 2 products
of polynomials of degrees <2l−1 in z1), �4 zealous 2l−2 × 2l−2 products, and so on
until �2l zealous 1 × 1 products. We finally need to perform 2l semi-relaxed 1 × 1
products of series in z2, . . . , zn only.

More precisely, assume that P̂ and Q̂ have valuations p resp. q in z1 and let P̂i
stand for the coefficient of zi1 in P . We also define

R̂ = {(a1, . . . , an, b1, . . . , bn) ∈ Nn × Zn : (a1, . . . , an) ∈ R ∧ (∀i, bi = −λi · a)}.
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Fig. 1 Illustration of a fast relaxed product and a fast semi-relaxed product

Now consider a block size 2k . For each i , we define

P̂[i] = P̂p+2k i z
p+2k i
1 + · · · + P̂p+2k (i+1)−1z

p+2k (i+1)−1
1

Q̂[i] = Q̂q+2k i z
q+2k i
1 + · · · + Q̂q+2k (i+1)−1z

q+2k (i+1)−1
1

R̂[i] = {(a1, . . . , an, b1, . . . , bn) ∈ R̂ :
2ki � a1 − p − q � 2k(i + 1) − 1},

and notice that the R̂[i] are pairwise disjoint. In the semi-relaxed multiplication, we
have to compute the zealous 2k × 2k products P̂[i] Q̂[1] for all i � �(δ1(R) + 1)/2k�.
Since

supp P̂[i] Q̂[1] ⊆ R̂[i+1] � R̂[i+2],

we may compute all these products in time

SM(|R̂[1] � R̂[2]|) + · · · + SM(|R̂[2l−k ] � R̂[2l−k+1]|)
= (|R̂[1] � R̂[2]|)SM(|R̂[1]�R̂[2]|)

|R̂[1]�R̂[2]| + · · · +

(|R̂[2l−k ] � R̂[2l−k+1]|)SM(|R̂[2l−k ]�R̂[2l−k+1]|)
|R̂[2l−k ]�R̂[2l−k+1]|

� (|R̂[1] � R̂[2]| + · · · + |R̂[2l−k ] � R̂[2l−k+1]|)SM(|R̂|)
|R̂|

� 2SM(|R̂|) = 2SM(|R|).

The total time spent in performing all zealous 2k × 2k block multiplications with
2k < 2l is therefore bounded by 2SM(|R|) log δ1(R).
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Let us next consider the remaining 1 × 1 semi-relaxed products. If n = 1, then
these are really scalar products, whence the remainingwork can clearly be performed
in time SM(|R|) log δ1(R) if R is sufficiently large. If n > 1, then for each i , we
have

supp P̂[i] Q̂[0] ⊆ R̂[i].

By the induction hypothesis, we may therefore perform this semi-relaxed product in
time 3SM(|R̂[i]|)(log δ(R) − log δ1(R)). A similar argument as above now yields
the bound 3SM(|R|)(log δ(R) − log δ1(R)) for performing all 1 × 1 semi-relaxed
block products. The total execution time (which also takes into account the final
additions) is therefore bounded by 3SM(|R|) log δ(R). This completes the induction.

Remark 2 In practice, the computation of zealous products of the form P̂[i] Q̂[ j] is
best done in the untagged model, i.e. using the formula

Proceeding this way allows us to use any of our preferred algorithms for sparse
polynomial multiplication. In particular, we may use [14] or [12].

4 Polynomial Reduction

4.1 Naive Extended Reduction

Consider a tuple B = (B1, . . . , Bb) ∈ K[x]b.We say that B is autoreduced if Bi �= 0
for all i and lBi |� lB j and lB j |� lBi for all i �= j . Given such a tuple B and an arbitrary
polynomial A ∈ K[x],we say that A is reducedwith respect to B if lBi |� k for all i and
k ∈ supp A. An extended reduction of Awith respect to B is a tuple (Q1, . . . , Qb, R)

with

A = Q1B1 + · · · + QbBb + R, (3)

such that R is reduced with respect to B. The naive algorithm extended-reduce
below computes an extended reduction of A.

Algorithm extended-reduce
Input: A ∈ K[x] and an autoreduced tuple B ∈ K[x]b
Output: an extended reduction of A with respect to B

Start with Q := (0, . . . , 0) and R := A
While R is not reduced with respect to B do

Let i be minimal and such that lBi � k for some k ∈ supp R
Let k ∈ supp R be maximal with lBi � k
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Set Qi := Qi + (Rk/cBi )x
k−lBi and R := R − (Rk/cBi )x

k−lBi Bi

Return (Q1, . . . , Qb, R)

Remark 3 Although an extended reduction is usually not unique, the one computed
by extended-reduce is uniquely determined by the fact that, in our main loop, we
take i minimal with lBi � k for some k ∈ supp R. This particular extended reduction
is also characterized by the fact that

supp Qi + lBi ⊆ Fin ({lBi })\Fin ({lB1, . . . , lBi−1})

for each i .

In order to compute Q1, . . . , Qb and R in a relaxed manner, upper bounds

supp Qi ⊆ Qi

supp Qi Bi ⊆ Qi + supp Bi

supp R ⊆ R

need to be known beforehand. These upper bounds are easily computed as a function
ofA = supp A,B1 = supp B1, . . . ,Bb = supp Bb by the variant supp-extended-
reduce of extended-reduce below. We recall from the end of the introduction that
we do not take into account the cost of this computation in our complexity analysis.
In reality, the execution time of supp-extended-reduce is similar to the one of
extended-reduce, except that potentially expensive operations in K are replaced
by boolean operations of unit cost. We also recall that support bounds can often be
obtained by other means for specific problems.

Algorithm supp-extended-reduce
Input: subsets A and B1, . . . ,Bb of Nn as above
Output: subsets Q1, . . . ,Qb and R of Nn as above

Start with Q := (∅, . . . , ∅) and R := A
While R ∩ Fin ({maxB1, . . . ,maxBb}) �= ∅ do

Let i be minimal with lmaxBi � k for some k ∈ R
Let k ∈ R be maximal with lmaxBi � k
Set Qi := Qi ∪ {k − maxBi } and

R := R ∪ (Bi + (k − maxBi ))\{k}
Return (Q1, . . . ,Qb,R)

4.2 Relaxed Extended Reduction

Using the relaxed multiplication from Sect. 3, we are now in a position to replace
the algorithm extended-reduce by a new algorithm, which directly computes
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Q1, . . . , Qb, R using the Eq. (3). In order to do this, we still have to put it in a
recursive form which is suitable for relaxed resolution.

Denoting by ei the i-th canonical basis vector of K[x]b+1, we first define an
operator Φ : xN1 · · · xNn → K[x]b+1 by

Φ(xk) =
⎧
⎨

⎩

c−1
Bi
xk−lBi ei if k ∈ Fin({lBi , . . . , lBb}) and

i is minimal with lBi � k
eb+1xk otherwise

By linearity, this operator extends toK[x]

Φ(P) =
∑

i∈supp P

PiΦ(xi ).

In particular, Φ(cAxlA) yields the “leading term” of the extended reduction
(Q1, . . . , Qb, R). We also denote by Φ̂ the corresponding operator from K[xz−λ]
toK[xz−λ]b+1 which sends P̂ to Φ̂(P).

Now let B∗
i = Bi − cBi x

lBi for each i . Then

(Qi Bi )k = (Qi B
∗
i )k + (Qi )k−lBi

cBi

for each i ∈ {1, . . . , b} and k ∈ Nn . The equation

(Q1B1 + · · · + QbBb + R)k = Ak

can thus be rewritten as

(Q1)k−lB1
cB1 + · · · + (Qi )k−lBb

cBb

= (A − Q1B
∗
1 − · · · − QbB

∗
b )k

Using the operator Φ this equation can be rewritten in a more compact form as

(Q1, . . . , Qb, R) = Φ(A − Q1B
∗
1 − · · · − QbB

∗
b ).

The tagged counterpart

(Q̂1, . . . , Q̂b, R̂) = Φ̂( Â − Q̂1 B̂
∗
1 − · · · − Q̂b B̂

∗
b )

is recursive, whence the extended reduction can be computed using b multivariate
relaxed multiplications Q̂1 B̂∗

1 , . . . , Q̂b B̂∗
b . With A,Bi ,Qi and R as in the previous

section, Theorem 3 therefore implies:

Theorem 4 We may compute the extended reduction of A with respect to B in time



458 J. van der Hoeven

O (SM(|B1 + Q1|) log δ(B1 + Q1) + · · · +
SM(|Bb + Qb|) log δ(Bb + Qb) + |R|).

Remark 4 Following Remark 1, we also notice that A, the Qi and Rmay be replaced
by vectors of polynomials in K[x]m (regarded as polynomials with coefficients in
Km), in the case that several polynomials need to be reduced simultaneously.
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Preserving Syntactic Correctness While
Editing Mathematical Formulas

Joris van der Hoeven, Grégoire Lecerf and Denis Raux

Abstract GNU TEXmacs is a free software for editing scientific documents with
mathematical formulas, which can also be used as an interface for many computer
algebra systems. We present the design of a new experimental mathematical editing
modewhichpreserves the syntactic correctness of formulas during the editing process
(i.e. all formulas can be parsed using a suitable, sufficiently rich grammar). The main
constraint is to remain as closely as possible to the existing presentation-oriented
formula editor, which has the advantage of being very user friendly.

Keywords Mathematical editing · Syntactic correctness · Packrat parsing ·
TEXmacs

A.M.S. Subject Classification 68U15 · 68U35 · 68N99

1 Introduction

Most mathematical formulas in current scientific papers only carry very poor
semantics. For instance, consider the two formulas f (x + y) and a(b + c). Peo-
ple typically enter these formulas using the LATEX pseudo-code $f(x+y)$ and
$a(b+c)$. Doing so, we do not transmit the important information that we prob-
ably meant to apply f to x + y in the first formula and to multiply a with b + c in
the second one. The problem to automatically recover such information is very hard
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in general. For this reason, it would be desirable to have mathematical authoring
tools in which it is easy to write formulas which systematically carry this type of
information.

One important application where semantics matters is computer algebra. Popular
computer algebra systems such as Mathematica and Maple contain formula edi-
tors in which it is only possible to input formulas which can at least be understood
from a syntactical point of view by the system. However, these systems were not
really designed for writing scientific papers: they only offer a suboptimal typeset-
ting quality, no advanced document preparation features, and no support for more
informal authoring styles which are typical for scientific papers.

The GNU TEXmacs editor was designed to be a fully fledged wysiwyg alternative
for TEX/LATEX, as well as an interface for many computer algebra systems. The
software is free and can be downloaded from http://www.texmacs.org. Although
formulas only carried barely more semantics than LATEX in old versions of TEXmacs,
we have recently started to integrate more and more semantic editing features. Let us
briefly discuss some of the main ideas behind these developments; we refer to [11]
for more details and historical references to related work.

First of all, we are only interested in what we like to call “syntactical semantics”.
In the formula 2 + 3, this means that we wish to capture the fact that + is an infix
operator with arguments 2 and 3, but that we are uninterested in the fact that +
stands for addition on integers. Such syntactical semantics can bemodeled adequately
using a formal grammar. Several other mathematical formula editors are grammar-
based [1–3, 6, 8, 9], and they make use of various kinds of formal grammars. In
TEXmacs, we have opted for so-called packrat grammars [4, 5], which are particularly
easy to implement and customize.

A second question concerns the precise grammar that we should use to parse
formulas in scientific documents. Instead of using different grammars for various
areas with different notations, we were surprised to empirically find out that a well-
designed “universal” mathematical grammar is actually sufficient for most purposes;
new notations can still be introduced using a suitable macro-mechanism.

The last main point concerns the interaction between the editor and the grammar.
So far, we implemented a packrat parser for checking the correctness of a formula.
While editing a formula, its correctness is indicated using colored boxes. It is also
possible to detect and visualize the scopes of operators through the grammar. In
addition to the parser, we implemented a series of tools which are able to detect and
correct the most common syntactical mistakes and enhance existing documents with
more semantics.

In the present paper, we wish to go one step further and enforce syntactic correct-
ness throughout the editing process. Ideally speaking, the following requirements
should be met:

• As far as user input is concerned, there should be no essential difference between
editing formulas with or without the new mechanism for preserving syntactic
correctness. For instance, we do not wish to force users to provide additional
“annotations” for indicating semantics. It should also be possible to perform any
editing action which makes sense from the purely visual point of view.

http://www.texmacs.org
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• The implementation should be as independent as possible from the actual grammar
being used. In other words, we strive for a generic approach, not one for which
specific editing routines are implemented for each individual grammar symbol.

The main technique that we will use for sticking as close as possible to the old,
presentation-oriented editing behavior is to automatically insert “transient” markup
for enforcing correctness during the editing process. For instance, when typing
x + , TEXmacs will display

x + �

The transient box is used to indicate a missing symbol or subexpression and will be
removed as soon as the user enters the missing part.

The use of transient boxes for missing symbols or subexpressions is common in
other editors [7]. The question which interests us here is how to automatically insert
suchmarkupwhenneeded in away that is essentially independent fromspecific gram-
mars. In this paper, wework out the following approach which was suggested in [11]:
before and after each editing operation, subject the formula to suitable “correction”
procedures that are only allowed to add or remove transient markup. Correcting all
errors in a general formula is a very difficult problem, but the power of our approach
comes from the fact that the editing process is incremental: while typing, the user
only introduces small errors—mostly incomplete formulas—which are highly local-
ized; we may thus hope to deal with all possible problems using a small number of
“kinds of corrections”.

Obviously, the simplest kinds of corrections are adding or removing a transient box
at the current cursor position. This is indeed sufficient when typing simple formulas
such as x + y + z, but additional mechanisms are needed in other situations. For
instance, in the formula α + |β (with the cursor between the “+” and the “β”),
entering another + results in α + � + β (instead of α + +�β or a + +b). Hitting
backspace in the same formula α + |β yields α+β; in this case, the transient “+”
should be parsed as an infix addition, and not as an ordinary symbol (as was the case
for a transient box).

The appropriate corrections are not always so simple. For instance, consider the
quantified expression ∀x, ∃y, P(x, y). Just after we entered the existential quantifier
“∃”, the formula will read ∀x, ∃�,�, i.e. it was necessary to add three transient
symbols in order to make the expression syntactically correct. The fact that our
approach should apply to general scientific documents with mathematical formulas
raises several further problems. For instance, in the formula

a2 + b2 = c2,

the trailing punctuation “,” is incorrect from amathematical point of view, but needed
inside the surrounding English sentence. Similarly, more work remains to be done on
the most convenient way to include English text inside formulas while maintaining
syntactic correctness.
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Yet another difficulty stems from the implementation: one needs to make sure that
the necessary corrections take place after any kind of editing operation. However,
for efficiency reasons, it is important to only run the correction procedures on small
parts of the document. Inside an existing editor such as TEXmacs, these requirements
turn out to be quite strong, so some trade-offs may be necessary.

In what follows, we report on our first implementation of these ideas inside
TEXmacs. We describe and motivate the current design, discuss remaining prob-
lems, and outline directions for future improvements. Of course, more user feedback
will be necessary in order to make the new mechanisms suitable for widespread use.

2 Survey of Formula Editing with TEXMACS

In this section, we briefly recall the main design philosophy behind the TEXmacs
formula editor. We start with the description of the original, purely presentation-
orientedmathematical editingmode.We pursuewith themore recent grammar-based
editing features, which are presented in more detail in [11].

2.1 Presentation-Oriented Editing

The original goal behind TEXmacs was to provide a user friendly editor for mathe-
matical papers with a similar typesetting quality as TEX. The challenge was to design
a real-timeWYSIWYG editor for complex, structured documents. Some early inspi-
ration came from the idea [1] that graphically oriented math editors achieve the
highest level of user friendliness. For instance, when pressing the right arrow key,
the cursor should move to the right if possible (instead of moving forward in some
abstract document tree, as was the case in some other existing editors). Early ver-
sions of TEXmacs used algorithms for the cursor movement which achieved this in a
systematic way [10], while still making sure that all possible cursor positions in the
corresponding document tree could be reached.

Another aspect of user friendliness concerned the efficiency ofmathematical input
methods. We designed highly efficient (and easy to memorize) keyboard shortcuts
for entering common mathematical symbols, such as - > for →, < = for �,
< Tab / for /∈, R R for R, etc. TEXmacs also implements many “structured
editing operations”, so as to fully exploit the structure of documents. For instance,
adding a row or column to a matrix can be done by pressing a single key or keyboard
combination. Similarly, it is easy to change a matrix into a determinant or vice versa.
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2.2 Grammar-Based Editing

The next challenge for TEXmacs is to ensure that we can only enter syntactically
correct formulas, while keeping a presentation-oriented interface, which proved to
be most user friendly. The first steps of this program were made in [11]. Now syn-
tactic correctness is usually modeled as “parsability against a suitable grammar”.
Before anything else, one should decide on the grammar. In particular, does a single
“universal grammar” suffice, or do we need many different grammars, depending on
the preferred notations of authors?

For reasons that are explained in detail in [11], we opted for the development of a
universal packrat grammar [4, 5] for parsing all our mathematical formulas. In order
to conserve a sufficient degree of flexibility for the introduction of new notations,
we rely on a combination of two techniques: on the one hand, TEXmacs comes
with a powerful macro-language for introducing new markup elements. On the other
hand, we introduced a special construct which allows a symbol or expression to be
behave (i.e. be parsed) as an arbitrary other symbol or expression. This allows you
for instance to annotate the symbol ∨ to behave as +, which implies that a = b ∨ c
will be parsed as a = (b ∨ c) instead of (a = b) ∨ c.

One of the major difficulties of semantic editing is a clean treatment of homo-
glyphs, i.e. symbols with the same graphical shape, but a different syntactical mean-
ing. The most annoying homoglyph is the multiplication/function-application ambi-
guity mentioned in the introduction. Another good example concerns the wedge
product dx ∧ dy and logical conjunction a = b ∧ x = y, which admit different bind-
ing forces. Fortunately, there are not that many mathematical homoglyphs; for this
reason, we advocate the introduction of separate symbols for them into the Unicode
standard.

3 Preservation of Correctness

In this section, we describe several strategies that can be used to preserve the syntactic
correctness of formulas under editing operations. TEXmacs currently implements the
“multiple correction schemes” strategy from Sects. 3.2 and 3.3. The reader may try
this implementation by downloading version �1.99.3 or SVN revision �9718. The
new editing mode is still experimental and can be enabled inside math mode by
clicking on the icon and checking Semantic correctness.

3.1 The Ideal Strategy for Preserving Correctness

Ideally speaking, maintaining the syntactic correctness of mathematical formulas
throughout the editing process can be done by
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1. Writing a “formula correction” procedure which takes any (correct or incorrect)
formula on input and which inserts or removes transient markup in order to make
it correct.

2. Run the correction procedure on all modified formulas in the document(s) after
every editing operation.

This ideal strategy is simple and robust; it trivially guarantees the correctness of
all formulas throughout the editing process. However, it does not take into account
the specific nature of certain editing operations. In particular, it does not exploit the
locality of many editing actions.

Example 1 Consider the strict application of the ideal strategy to the creation of a
subscript in the formula x + �|. Since � is a valid symbol, the main editing action
would create an empty subscript for it. We next launch the correction procedure,
which replaces the empty subscript by a transient box, yielding x + ��|. However,
the � being transient, the user would rather expect to endow the “+” operator with
a subscript: this is indeed what happens in the old presentation-oriented editing
mode when ignoring all transient markup. In other words, we rather expect to obtain
x +�| �.

The above example shows that an indiscriminate global correction procedure does
not provide enough control. In fact, there are usually many ways to correct a formula
by adding or removing transient markup. In order to determine the “best” solution,
one typically needs to take into account the precise editing operation and the current
cursor position.

Another constraint is that we would like the editor to behave as closely as possible
as the old presentation-oriented editing mode when ignoring all transient markup.
The above example shows that a global correction procedure does not necessarily
respect this constraint. One theoretic solution to this problem is to remove all transient
markup before performing the editing action and then put it back in when running
the correction procedure. However, this approach may lead to non local changes in
the document for every editing action, which is obviously not desirable.

Remark 1 For the above reasons, we have not implemented the correction strategy
from this section yet. The idea nevertheless remains interesting for future research.
Indeed, on the one hand side it raises the interesting theoretical question of correcting
a string so as to make it parsable by a given (packrat) grammar. From the practical
point of view, the ideal strategy has the important advantage of trivially guaranteeing
syntactic correctness all along. In cases where this is hard to achieve using other
means, it thereby remains a good fallback strategy.

3.2 Multiple Correction Schemes

Instead of implementing one global correction procedure, our current TEXmacs
implementation relies on multiple “correction schemes”. Each correction scheme
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is allowed to add or remove transient markup both before and after the actual editing
operation. In other words, it really encapsulates the editing action into a semantically
enhanced editing action. Furthermore, the correction scheme is allowed to fail (i.e.
to produce an incorrect formula at the end). For this reason, we try multiple correc-
tion schemes in a row (the set of “eligible” schemes depends on the specific editing
action), and stop as soon as we managed to obtain a correct formula.

In summary, we proceed as follows:

1. Depending on the editing action, determine a list of eligible correction schemes.
2. Try each eligible correction scheme in the list until wemanaged to obtain a correct

formula.
3. If none of the correction schemes succeeded, then cancel the editing action.

For the actual implementation, it is clearly crucial to be able to undo editing actions
whenever necessary, and in away that is orthogonal to the usual undo/redo operations
in TEXmacs.

Example 2 When inserting a mathematical symbol, the first correction scheme we
try is the following: first remove all transient markup around the cursor, then insert
the symbol, and finally insert a transient box at the cursor position (if needed). For
instance, typing a + b in an empty mathematical formula successively yields
|�, a|, a + |�, and a + b|.
Example 3 The basic correction scheme from the previous example sometimes fails.
For instance, assume that we are in the situation a ∧ |�, and that we add a second
“∧”. When applying the basic correction scheme, we need to correct a ∧ ∧| through
the insertion of a single transient box. However, the formula a ∧ ∧� is still incorrect.
For this particular case, we therefore use the following correction scheme: first add
a transient box (a ∧ �|�), then perform the editing action (a ∧ � ∧ |�), and finally
correct (nothing needs to be done at this step).

In Step 3, we simply canceled the editing action if all correction schemes failed.
Several other fallback strategies can be considered. If we do not aim to maintain cor-
rectness at all costs, then we may apply the editing action without any corrections,
and temporarily tolerate incorrect formulas. We might also implement an uncondi-
tionally successful fallback strategy as in Remark 1; by always adding such a strategy
at the end of our list of eligible correction schemes, we will never reach Step 3. Yet
another idea is to introduce a correction scheme which annotates subexpressions
with exotic notations in such a way that they become correct.

3.3 Quick Survey of Some of the Implemented Correction
Schemes

Our approach of using multiple correction schemes allows for fine-grained control,
but also requires an increased amount of manual labor. Indeed, we both have to cover
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the complete set of editing actions, and for each editing action, we have to implement
at least one correction scheme that will succeed in all possible situations.

Fortunately, the most common editing operations fall into four main categories:
insertions and deletions that operate either on selections or not. Someother operations
such as “search and replace” have not yet been adapted (see also the next section).
Ultimately, the idea would be to provide manual support for the most common
operations and to implement a suitable fallback strategy for the other ones.

Correction schemes for insertions Let us briefly list how we perform the most
prominent correction schemes for insertions, in the absence of active selections. For
each of the schemes, we show the successive states of the formula for a simple
example.

• The basic scheme from Example 2.
• “Starting a prime or right script after a transient box” (e.g. inserting a new subscript
in the formula x + �| from Example 1): first jump over the box with the cursor
(x + |�), then perform the action (x +| �), and finally add a transient box if
necessary (x +|� �).

• “Inserting a pure infix operator after a transient box” (e.g. inserting the infix oper-
ator “◦” in x + �|): perform the editing action (x + � ◦ |) and add a transient box
if necessary (x + � ◦ |�).

• The scheme from Example 3 for inserting two infix operators in a row.
• “Starting an extensible arrow with a script” (e.g. in the situation E |): remove all

transient markup around the cursor (E |), perform the operation (E
|−→), add a

transient box after the arrow (E
|−→ �), as well as a transient box at the cursor

position (E
|�−→ �).

• “Insert content after an ordinary symbol” (e.g., entering ψ after ϕ|): remove all
transient markup around the cursor (ϕ|), insert a transient “explicit space” (ϕ |),
perform the editing action (ϕ ψ|), insert further transient boxes if needed (ϕ ψ|).

• “Insert content before an ordinary symbol” (e.g. entering ψ before |ϕ): remove all
transient markup around the cursor (|ϕ), insert a transient “explicit space” after
the cursor (| ϕ), perform the editing action (ψ| ϕ), insert further transient boxes if
needed (ψ| ϕ).

• “Insert content in the middle of an operator” (e.g. starting a fraction in arc|sin):
remove all transient markup around the cursor (arc|sin), insert transient “explicit
spaces” before and after the cursor (arc | sin), perform the editing action (arc | sin),
insert further transient boxes if needed (arc |�

� sin).

The last three schemes also show that it is sometimes necessary to insert transient
markup with different semantics as an ordinary symbol in order to make the formula
correct.

Correction schemes for deletions For completion, we continue our list of examples
with the most prominent correction schemes for deletions.

• “The basic deletion scheme if there is transient markup around the cursor” (e.g.
hitting backspace in a + �| or in −�|�): remove the transient markup around the
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cursor (a + | resp. −|�), perform the editing action (a| resp. −|�), again remove
all transient markup around the cursor if we deleted any composite tag (a| resp.
−|), add transient box if needed (a| resp. −|).

• “The basic deletion scheme” (e.g. hitting backspace in a + b|): remove transient
markup around the cursor (a + b|), perform the deletion (a + |), again remove all
transient markup around the cursor if we deleted any composite tag (a + |), add
transient box if needed (a + |�).

• “Removal of actual infix operators” (e.g. hitting backspace in a + |b, but not in
−|a): remove transient markup around the cursor (a + |b), perform the deletion
(a|b), add a transient version of the deleted infix operator after the cursor (a|+b),
add transient boxes around the cursor if needed (a|+b).

• “Need to jump over cursor before deletion” (e.g. hitting backspace in
∑∞

k=1 �| ◦
ϕk): jump over the cursor (

∑∞
k=1 |� ◦ ϕk), perform the “deletion” (

∑∞|
k=1 � ◦ ϕk),

add transient boxes around the cursor if needed (
∑∞|

k=1 � ◦ ϕk).

These examples show that the correction schemes have to be implemented with quite
a lot of care. This is due to the fact that it is convenient to design the schemes to
apply with the right level of generality (e.g. not only to the deletion of symbols
for the basic schemes, but also to the deletion of more complex structures, such as
subscripts, fractions, etc.).

4 Problematic Cases and Challenges

Several problems arose during the implementation of the new semantic mathematical
editing mode which preserves syntactic correctness. Some of themwere more or less
expected and have been solved; others require more work and further experimenta-
tion. So far, all problematic cases that we encountered fall into two categories

1. The incorrect treatment of special syntactic forms (and informal content in par-
ticular).

2. Complex editing operations (such as search and replace) that require special
attention.

In this section, we will survey the most interesting issues that came up and highlight
some of the remaining challenges.

4.1 Informal Content Inside Formulas

One difficulty with mathematical formulas in scientific papers with respect to formu-
las in, say, computer algebra systems, is that they may contain punctuation, decora-
tions, typesetting directives, or explicative text. For instance, consider the following
formula:
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Z = {i ∈ I : fi (x) = 0 and gi (x) = 0 almost everywhere}
= {

i ∈ I : ( f 2i + g2i )(x) = 0 almost everywhere
}
.

This formula concentrates three difficulties:

• We used a trailing punctuation period “.” to finish the formula.
• Since the formula does not fit on a single line, we used an “equation array” to
manually break it into two rows. The cells of the underlying table should not be
regarded as separate formulas (in which case the empty lower left cell would be
incorrect), but rather be concatenated from left to right and from top to bottom.

• The formula involves English text “and” and “almost everywhere”. The word
“and” has the same semantics as the “∧” operator, whereas “almost everywhere”
should be interpreted as a “postfix quantification”.

The best approach to these problems is to introduce suitable annotationmarkupwhich
describes the semantics of informal content of this kind. For instance, we might
introduce a tag “punctuation” for annotating the trailing period, and which would be
ignored by the parser. Alternatively, one might use a special symbol “punctuation
period in math mode”. In a similar spirit, AMS-LATEX provides special environments
(split, align, gather, etc.) for typesetting large formulas while preserving
some of the intended semantics. TEXmacs also contains a general purpose tag “syn-
tax”, which may be used to parse an expression according to the rules of another
specified expression. This allows us for instance to parse the word “and” in the same
way as the infix operator “∧”. However, we have no “postfix quantification” rule
in our grammar yet. More generally, the design of a complete DTD for informal
annotations is an interesting challenge.

Assuming suitable markup, the design of user-friendly ways to perform the nec-
essary annotations is another matter. Trailing periods are so common that we actually
would like to enter them simply by pressing . . There are two approaches to this
problem. Our current solution is to adapt the grammar for displayed formulas so as
to accept trailing punctuation (which also means that we do not need any special
annotation semantics). A better solution would be to “requalify” symbols whenever
needed. For instance, in the formula

x + y,

the trailing comma would be interpreted by default as a “punctuation symbol”. How-
ever, as soon as we add a new character z to the line, we remove the annotation
markup and requalify the comma to become a separator.

Of course, for arbitrarily complex informal text (such as the “almost everywhere”
example), it will be hard to completely avoid user feedback on how to insert the
necessary annotations. Nevertheless, some of the most common words (“and”, “or”,
“iff”, etc.) might be annotated automatically.
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4.2 Special Syntactic Constructs

One obvious drawback of our strategy to manually design the necessary correction
schemes is completeness: every additionalmathematical notation potentially requires
one or more new correction schemes. Fortunately, most mathematical notations are
quite simple, so this disadvantage is not as bad as it might seem. General purpose
scientific papers nevertheless involve far more special syntactic constructs than, say,
computer algebra input. Let us illustrate some typical issues that occur on the hand
of a few somewhat unorthodox constructs.

• The “universal grammar” from [11] contains special rules for decorated operators
(as in a +′

E b∗̂c) and big operators (as in
∑∞

k=1 1/k
2 = π2/6). The usual correc-

tion schemes are mostly sufficient for editing this kind of formulas. One example
of a remaining problem is entering a+̂b. In the old, presentation-oriented editing
mode, we would type a Alt-ˆ + → b (insert a, start an empty hat, enter
+, move out of the hat, insert b). However, in the new semantic mode, this succes-
sively yields a|, a |�̂, a ̂� + |�, a ̂� + � b|; a new correction scheme should be
designed to treat this case more smoothly. Notice that an alternative way to enter
a+̂b is to first type a + b, then select “+”, and finally insert a hat.

• The “universal grammar” from [11] also contains a few rules that are uncommon
in programming languages, but crucial for general purpose mathematical texts.
For instance, the formula a ≺≺ b � c = d = e is interpreted as a ≺≺ b ∧ b � c ∧
c = d ∧ d = e, and the formula x1, . . . , xn ∈ E as x1 ∈ E ∧ · · · ∧ xn ∈ E . Less
common is n = 1, . . . , 10;what is the correct semantics? Fortunately, these special
rules do not require any special correction schemes.

• Different authors use wildly varying notations for quantified expressions:

∀x, ∃y, P(x, y)
∀x∃y : P(x, y)
(∀x)(∃y)P(x, y)

...

We already noticed in the introduction that it is “nice” to correct ∀x, ∃ into
∀x, ∃�,�. However, (∀x)might be corrected just as well as (∀x,�) or as (∀x)�,
depending on the author’s preferred style. Our present solution to this kind of
ambiguities is to further relax our grammar, by considering (∀x) to be a correct
expression.

• One of the advantages of the new correctness-preserving editing mode is that
missing expressions are clearly indicated to the user.When entering a 2 × 2matrix(

� �
� �

)

in a computer algebra system, this is indeed quite pleasant. But in the

example
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⎛

⎜
⎝

λ1

. . .

λn

⎞

⎟
⎠

of a diagonal matrix, this also forces users to manually fill out six of the cells with
“invisible zeros”. Our present solution is therefore to only require tables cells to
be explicitly entered inside computer algebra sessions.

• The “universal grammar” from [11] also contains a few rules for “personal use”.
In particular, inside subscripts, we allow for notations such as L×ϕ,+ψ and fn;.
Here ×ϕ has the semantics of “post-multiplication” with ϕ. Given a power series
f = f0 + f1z + f2z2 + · · · , the notation fn; stands for fnzn + fn+1zn+1 + · · · .
Now we are facing a dilemma: on the one hand, we are fond of these notations,
which do not harm anyone. On the other hand, some users might want to be
constrained to input something behind the “;” in fn;�. One solution would be to
depart from the idea from [11] to promote using a “universal grammar”. Instead,
we might provide special style packages for specific notations. Another approach
is to introduce suitable prefix and postfix homoglyphs of × and ;, together with
simple keyboard shortcuts for entering them.

4.3 Special Editing Operations and Markup

Let us finally investigate to which extent existing editing operations have to be
adapted to the new, more semantic editing mode. We will start with a few issues that
are already dealt with and then turn our attention to the remaining challenges.

• TEXmacs provides a special “\-style” input method for people who already know
LATEX. For instance, one may enter α by typing \ a l p h a Enter , or
start a fraction by typing \ f r a c Enter . The fact that a wide variety
of editing actions can be triggered in this way required us to implement special
correction schemes for this input method.

• The main TEXmacs input method for mathematical symbols is particularly pow-
erful and intuitive. For instance, one may enter → and � by typing - > resp.
< = . However, this facility requires a lot of control over the undo-mechanism:
when typing a shortcut - > , TEXmacs “forgets” the incomplete keystroke -
and treats the shortcut - > as an atomic operation. In other words, typing -
> and pressing “undo” will remove the entire arrow and not leave any −. Now
remember from Sect. 3.2 that trying several correction schemes in succession also
makes use of the undo-mechanism insideTEXmacs. Trying correctionswhile enter-
ing shortcuts such as - > necessitates the mechanism to work in a nested way.
We had to further tweak our implementation so as to make that possible.

• Certain editing operations such as “save the current selection as an image” have
side-effects that cannot be undone. Additional care is needed when implementing
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correction schemes for such operations. Fortunately, such operations usually do
not need to be corrected.

• One interesting editing actionwhich is not necessarily local is “search and replace”.
Global editing actions of this kind are harder to support since the corresponding
correction schemes need to track all modifications made throughout the document,
and less indication is provided by the local context which corrections to choose in
case of ambiguities. The “search and replace” operation also raises the question
whether adapting the operation to a semantic context actually involves more than
corrections via the addition or removal of transient markup: if we replace y by
a + b in x · y, do we expect to obtain x · a + b or x · (a + b)?

• For some editing operations, it is not always clear what their semantic counterparts
should be. One good example concerns the facility to compute and inspect the
structured differences between two versions of a document. When applied to the
formulas a + bc − d and a + bcy, the differences are indicated using red and
green colors: a + bc−dy. How should we parse this formula? Both a + bc − d
and a + bcy do make sense, but not a + bc − dy. It is not clear to us yet how the
editor should behave in this situation.
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About Balanced Application of CAS
in Undergraduate Mathematics

Elena Varbanova

Abstract Educational goals and values of the teaching, learning and assessment
of undergraduate mathematics are considered. A partial overview of the author’s
experience is represented and the necessity of balanced application of CAS in under-
graduate mathematics education is discussed. The idea is to make what is important
CAS supported, rather than what is CAS-supported important.

Keywords Undergraduate mathematics · CAS · Educational goals

1 Introduction

Aspire to Inspire … before to Expire.

Inasmuch as the results of humanactivity dependon the environment, the introduction
of new technological tools into the university mathematics education has become a
must over the past 3 decades. The effectiveness, E, of a teaching–learning–assessment
(TLA) process is given [7] by the following: E = f (Human abilities; Technology).

The universal language of Mathematics and its independence of cultural influ-
ences made possible the advent of the Computer Algebra Systems (CAS)—the most
thought-provoking tool we have ever had for teaching and doing mathematics. How-
ever, the great power and potential of CAS cannot automatically transfermathematics
knowledge to learners and enhance their competency and appreciation of mathemat-
ics. Like any other technological tool, CAS requires adequate methodology for its
integration in order to be converted into an effective instrument [1, 5, 10]. The main
point is to find a balanced combination of educational values and successful tradition
in the country and the power of this technology. This is a way of keeping the identity
in mathematics education that can give birth to authentic, unique and adequate new
practices in education. In this sense, technology could serve as a bridge over the ocean
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of a great variety of effective modern practices in education and as an international
platform for exchange of educational know-how and of multitude of approaches. The
latter is a part of the content and sense of the “new ethics in education”: cooperation
and collaboration instead of comparison, competition and confrontation.

2 Tradition Welcomes Technology

Challenge is the energy of life.

Technology exists and mathematics teachers need to be involved in reflecting on its
effect. They have to show wisdom and should not ignore technology, because it is
a strategic challenge for mathematics education. Our students will live in a highly
automated future that will require highly organized, disciplined and creative minds:
the latter can be developed through mastering basic mathematics knowledge and
ideas in a digital environment [4].

It has to be noted that tradition guards knowledge; in its turn, knowledge is an
emanation of tradition. Knowledge creates psychological comfort and forms certain
templates in mind. At the same time, it changes and develops and, thus, enhances
the tradition, and it also instils transformations in the latter.

Why could experienced teachers get the sense of danger or chaos when they come
in contact with CAS? Because their main concern is the impact of this technology not
to become “Deep impact”. This means that the impact should by no means result in
replacing an effective methodology, which is the core of a successful educational tra-
dition, by a pseudo-methodology. A good tradition however enables its development
through new technologies. Development implies disintegration of some old forms
and integration of new ones without destroying some of the beneficial old elements.

3 Technology Salutes Tradition

As long as education can change,
the world can change.

Mathematics teaching and learning is a skill-and-habit-forming process [6] and it
leaves its mark on the learners for life. Technology-meets-tradition activities have
been designed and integrated in our mathematics courses [8–13] to facilitate and
enhance this process. Our work aims at combining effectively the technology and
the powerful tradition to make them go hand in hand in order to achieve a threefold
educational goal:

• make students think better than they did before, e.g. to construct correct mental
models, using CAS to help them see the consistency or inconsistency of their
evolving mental models [5]
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• develop improved student understanding and the right appreciation ofmathematics
and of its role in the everyday life

• help students acquire a life long habit of doing things not just anyhow including
the habit of working smarter not harder.

Our strategy of integrating CAS is based on general methodological principles: sys-
tematization and consistency of subject content; accessibility; visualization; person-
alization; students’ conscious involvement in learning and reflection on the activities.

4 (What+When+Where) · Why: Mathematics
with Less/More CAS

In the methodology of mathematics teaching and learning the main question is
“Why?”. It is about the learning outcomes and educational goals as well as about
educational values. The chain of questions “What–When–Where” are also associated
with it. On one side, they are related to the curricula and courses. On the other side,
they are mostly relevant to the teaching–learning–assessment (TLA) process. In the
past 2–3 decades remarkable creative work with application of Computer Algebra
Systems (CAS) has been done in undergraduate mathematics concerning these three
questions. The care about the Why-question will never end because the world con-
stantly changes. CAS are full of opportunity in this direction for adequate decisions
in correspondence with the educational values and tradition in the country.

After many years of exploring CAS in education, we had to turn back to the main
statement in the European Qualification Framework (EQF) of University Education:
the quality of the education is to be evaluated by its results: Knowledge, Skills
and Competency of the students. In this sense, the principle “Consider All Factors”
introduced by De Bono [2] is to be followed by both teachers and students in their
work with CAS. Otherwise CAS would not be used effectively and would not serve
to the achievement of these results because “One can see as much as one knows”.

There is no doubt that the students’ basic knowledge on properties of elementary
functions, on basic concepts such as sequences, series, functions, limits, integrals,
matrices, simultaneous equations, curves, … is a crucial factor for good results of
CAS-supported activities and for the enhancement of the students’ achievements
in mathematics. So, we face the old question “Knowledge for what?” or “What
knowledge?”

Concerning application of CAS the educational tradition in the country is to be
taken into account. We would like our students to be able to use CAS smarter, to
make an intelligent extraction of information from any format it is represented, to
distinguish structures/patterns, that is to be able to see the “global picture” and the
details at same time, to solve some problems by observation only, to be emotionally
involved doing mathematics, to verify the obtained solutions at least roughly or by
different approaches (analytical, numerical, graphical, mixed) … .
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According to our tradition we require students to develop analytical and critical
thinking, to look for a concise solution, to acquire and connect knowledge from
different topics and areas, to select appropriate prior and newly acquired knowledge
in order to manage with the situation. Here are examples allowing to approach them
with “less computer/CAS”.

(1) Find the critical (stationary) point of the function f (x, y) = 2x2 + y2 + 8x −
6y + 20 and determine its nature.

Comment By means of the Second Partials Test, the student can easily answer the
question with or without using technology.

Such examples however we give to students not for exercising this Test—as it is
in most textbooks. On the contrary, we give it to provoke and develop their sense of
simplicity and conciseness and to impress on them that they should not leave off the
good old ideas as the one of “completing the square” f (x, y) = 2(x + 2)2 + (y −
3)2 + 3. Hence, f (x, y) ≥ f (−2, 3) = 3 = fmin .

In this sense, both teachers and students should not become “captives” of tech-
nology: in cases like the above one its use would be against the role of mathematics
for developing effectiveness of mind. Technology is not to act as a cloak of not good
enough practices in education.

(2) The evaluation of a definite integral on a symmetric interval and of an odd
function. Solving it with CAS is by no means the way students to appreciate the
power and take advantage of CAS.

(3) Calculation of a limit of a function without being able to interpret the result.
This would convince the student that technology is not a panacea for the lack of
knowledge and thinking.

(4) The first derivative of a function is a sum, product or ratio, say, of perfect
squares and exponential functions. Does the student need CAS to decide whether the
function is increasing?

(5) The integrand is equal to the first derivative (obtained by the Chain Rule) of
a function. Do students need CAS or Substitution method? (“Incorrect thoughts of
people are due to their not enough developed ability to distinguish.” Paramahansa
Yogananda).

(6) Calculation of the determinant of a square triangular or diagonal matrix. With
or without CAS?

5 Technology-Meets-Tradition Activities

Small things make perfection
but perfection is not a small thing.

We have been developing our approach having non-mathematics students in mind.
We tried not to hide the difficulties and oversimplify the matters: it would be of no
real help to the students in preparing them for their professional career.
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To overcome the constraints of a technology-free teaching and learning environ-
ment we use CAS to:

• enhance learning of topics and solving problems where graphical illustrations
facilitate the learning process

• introduce new concepts with multiple use in later sections of mathematics courses
• teach topics that are difficult to master, in which conceptual prototypes enhance
the learning

• challenge or extend existing ideas, and encourage students to construct new cog-
nitive models.

During the TLA process we observe “the student’s trajectory of learning” [3],
mainly the kind of material they are able to go into, the sort of components they pick
up or do not pick up, their mathematical ideas and interpretation skills. We try to
provide an appropriate support at the right moment to help students make progress.
Along with acquiring knowledge and developing skills for its application, another
educational goal is to create the habit of verification of the results.

In the next part of the paper, a number of topics and representative examples are
considered to illustrate some aspects of our experience in integrating CAS into under-
graduate mathematics education; one can easily understand why we have selected
them.

5.1 Innovate Not Imitate (“More CAS”)

Appropriately structured systems of questions and problems for each topic and for the
entire course are at the heart of any mathematics course. Examples of the type below
could be discussed in exercises on inverse functions, which precede exercises on
differentiation. At the same time, it is perfect for technology-meets-tradition activity
and it is here that CAS can come to the rescue [10].

Example 1. Find the first derivative of f (x) = arctan(
√

1−sin 2x
1+sin 2x ).

Solution. The graph of the function (Fig. 1) gives the teacher and the student
the cue how to approach the problem: “First simplify!”—to the equivalent periodic
piecewise linear function, and then differentiate:

f (x) =
{

−x + π
4 , x ∈ (− π

4 ,
π
4 ]

x − π
4 , x ∈ ( π

4 ,
3π
4 ]

Such a function is definitely not suitable for exercising the Chain Rule, namely:
y′ = 1

1+(
√

1−sin 2x
1+sin 2x )

2
· 1
2
√

1−sin 2x
1+sin 2x

· ( 1−sin 2x
1+sin 2x )

′ = · · ·
In the twenty-first century, this could be done just to show the digital generations

how they are not supposed to approach such problems. It is tedious, time-wasting
and could put students off mathematics for life.

Thederivative of interest couldbe straightforwardobtainedwithCASbut student’s
reflection on the result needs to approve it, for instance geometrically. The Russian
proverb “Trust but Check Up” proved to be useful in doing mathematics with CAS.
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Fig. 1 Example 1

The above given approach would help student develop the habit

• to solve problems not just anyhow
• to verify the correctness of the result by different means
• to use technology for effective solution of a problem following the Nature Law
“To do More with Less”.

5.2 Challenge Existing Ideas (“More CAS”)

The activities with application of CAS in the teaching and learning of the newly
introduced concepts of Taylor/MacLaurin polynomial approximation, remainder of
a series and error of approximation have been carried out to help students become
aware about the necessity of rigorous knowledge and critical thinking [6]. The work
aims at student’s conceptual understanding of the new mathematical object, namely
Taylor polynomial. The following traditional questions are posed by the teacher [1,
10, 11]:

1. Given the order of approximation and interval of interest, calculate the error of
approximation.

2. Given the order of approximation and desired accuracy, find the appropriate inter-
val for x .

3. Given the interval for x and themaximumerror of approximation, find theminimal
order of approximation.

CAS provide an environment for challenging the fundamental idea of approximation
as they help students visualize the mathematical objects. Expansions of different
orders superimposed on the graph of the approximated function can remove students
misunderstanding of “+…” at the end of Taylor series and facilitate the construction
of their mental models about it [5].

In the general case Question 3 cannot be solved analytically. The graphical oppor-
tunities of CAS make this additional activity possible. Following the rule “From
Known to Unknown” the sine function has been used as a target function.
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Example 2. Forwhich values of n the error in theTaylor polynomial approximation
to the sine function is no greater than 0.001 over the interval [−π

2 ,
π
2 ].

Solution. Figure2 shows the operations performed to find the minimal order of
approximation n. The inequality for n is based on the theoretical truncation error
bound. This type of activities can be used to expose the well-known fact that “Knowl-
edge is power, technology is powerful tool”. Often we use another expression:
“Knowledge is driver, technology is car”.

Fig. 2 Example 2

To demand student reflection on the work done by CAS a discussion with students
about the difference between the actual and approximate values is carried out. The
teacher points out the importance of knowing the properties of the sine function in
order to make correct use of the constructed polynomial.

5.3 Extend Existing Ideas (“Only CAS”)

The example below is given to students to illustrate that CAS can make a valuable
contribution to any aspect of mathematics as a science.

Example3.UseCAS to solve the initial-valueproblem y′ + xy= − x2y2, y(0)=1.
Solution. First approach: The student can use a library function to attempt to find

the required particular solution.
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The CAS response shows that it cannot proceed to the exact solution in closed
form. Using the graphical capabilities of CAS the student can sketch this solution
curve (Fig. 3).

Second approach: Any CAS has available a Taylor series method. An application
of students’ knowledge of Taylor’s series can be thus successfully made for solving
ODE.Approximate Taylor series solutions ofODEhelp the student easier understand
the idea of approximate solution and the important concept of error in (or equivalently,
accuracy of) the approximate solution.

For Example 3 Taylor series solutions of order 3 and 7 are obtained with CAS
and compared to the exact solution. On the basis of their graphs in Fig. 3 the student
is getting visual idea of “geometrical differences” between approximate analytical
solutions and the exact solution before to start discussion on their accuracy and
its improvement. These observations, however, are next thoroughly discussed and
generalized and then further CAS-supported experiments are carried out.

Fig. 3 Example 3
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It is the teacher’s concern for the student not to lose the sight of the main aim
in constructing approximate solutions: to choose an order of approximation that
ensures the “fit” of the approximate solution to the exact one over a given interval of
the independent variable (x).

This kind of CAS-supported activity enhances student’s comprehension of main
concepts related to exact and approximate solutions and promotes links between the
two types of mathematics knowledge: conceptual and procedural.

5.4 Work Smarter Not Harder (“Only CAS”)

Action is Enemy of Thought.

One more example is provided here to illustrate one of the advantages of CAS in
the development of students’ resourcefulness and creativity in case they possess
knowledge of geometrical interpretation of simple integrals.

Example 4. (a) Calculate the value of the integral:
∫ 3
0

√
9 − x2dx .

Solution: Actually, no calculation is needed in this particular case. Plotting the
integrand and shading the area of interest (Fig. 4) the student can compute the value
“by observation”.

To actively and interactively involve the students in their own learning the teacher
can ask them to experiment with similar types of integrals progressing in difficulty
(according to a didactic principle: “From simple to complex, from easy to difficult,
from known to unknown” [1–3]):

Fig. 4 Example 4
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∫ r
0

√
r2 − x2dx ⇒ ∫ r

0

√
2r x − x2dx ⇒ ∫ a+r

a

√
r2 − (x − 2)2dx

⇒ ∫ a+r
a (b + √

r2 − (x − 2)2)dx .
They help the students observe the phenomena of describing different objects by

the same concept of definite integral. They become aware of the meaning and the
importance of its “components”: the integrand and the limits of integration (Fig. 4).

In mathematics textbooks either Substitution Method or Integration by Parts is
usually applied for solving these types of integrals. Having CAS at disposal however,
application of thesemethods simply recall the proverb “ToKill Sparrow byCannon”.
There exists a great number of integrals suitable for their application andwhich cannot
be solved using “conventional weapons”: common sense, definitions, properties,
geometric interpretations of concepts, etc.

(b) Using the approach in (a) calculate

S = ∫ 1
0

√
1 − x2dx = ∫ 1

0

√
1
4 − x2dx in your head. Have you got 3π

16 ?
The “reverse” problem is also used to enhance students’ feel of mathematics.

They are asked to plot and shade the area first and then construct and calculate the
corresponding integral. And CAS is irreplaceable for this purpose. Later, they can
easily “toggle” on double integrals.

5.5 Save Time and Facilitate Problem Solving (“More CAS”)

Imagination is more important than knowledge.
(A. Einstein)

The “reverse” problem mentioned above has been used as an introduction to double
integration. Our teaching of multiple integrals aims at the enhancement of students’
abilities to manipulate mathematical objects rather than notations and to take the
problem in the lump rather than in fragments.

It has to be noted that most students have difficulties in dealing with double
integrals and, consequently, in evaluating triple and surface integrals and their appli-
cations. In our teaching experience [13], we have found out that most students are
poor in dealing with curves’ equations and graphs. The “gaps” in their education
had to be “filled up” without deviating students from the main topic and its final
goals. Another problem we have had to focus on is removing student ‘misconcep-
tions’ associated with the description of the region of integration in terms of double
non-strict inequalities for the variables of integration. To promote the students’ work
we recommend them to perform two steps:

Step 1. Plot the region over which integration is to be done
Step 2. Describe the region through inequalities.
Using CAS students take Step 1 quite happily. They call CAS a “right-hand man”

especially when a complicated curve or complex region confronts them. We have
to mention that without such tools this first step is impossible for most students
and, hence, much time has to be spent for teaching plane curves instead of double
integrals.
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To describe the region, the student has to operate with equations of the bounding
curves. As some students find it difficult to solve equations for one of the variables,
or they solve them wrongly, we recommend CAS as a helpful and reliable assistant.

How to evaluate the constructed double integral—this is a question which math-
ematics teachers are nowadays also confronted by. Only the educational goals and
values can give the answer. Whatever they may be, CAS can considerably contribute
to their achievement. The answer is no more unique as it was “before the age of
CAS”.

5.6 CAS-Supported Environment for Difficult to Master
Topics (“More CAS”)

Every picture tells a story.

The experience has shown that non-mathematics students have a preference for visual
and practical illustrations ofmathematical concepts, objects and results and for learn-
ing from concrete examples before moving on to abstract theory. The lack of a good
visualization forms a gap in students’ learning. The Window Shuttle Method makes
CAS a powerful instrument for learning through “prototypes”: numerical, analyti-
cal and graphical. The two examples below have been chosen to meet the students’
preference.

Example 5. Apply the Second Derivative Test to locate and classify the critical
points of f (x, y) = x3 + 3xy2 − 15x = 12y. Calculate the values of the function at
these points. Plot the surface and use the option of Animation to observe the surface
behaviour making difference between the different types of critical points.

CAS-supported activities have been developed to teach and discuss different types
of limits of functions of two variables (FTV) and interrelations between them as
well as to generate dynamic graphics to give geometrical meaning to definitions,
properties, rules and theorems.The topic has becomeattractive thanks the opportunity
for experimental observations on a variety of selected insightful examples. Through
themmany difficulties in the student comprehension of the concept of limit have been
removed. Plotting the surfaces the student observes the existence or non-existence
of gaps or holes in the graph of the function that hitherto were only possible in
thought. The activities reveal the key aspects of the underpinning theory giving CAS
techniques conceptual dimensions. They support the teaching–learning process in
linking prior (simple limit, level curves) and newly acquired (iterated limit, double
limit) knowledge. This helps teachers find out what mix of which types of learning
environments is better suited for a particular topic or type of problems.

Example 6. (The iterated limits exist and are equal; the function approaches the
same value along any straight line; the limit does not exist)

Show that the iterated limits of the function H(x, y) = x2 y
x4+y2 are equal to zero

when x → 0 and y → 0 and the limit along any direction through the origin is also
zero.
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1. Does the limit L = lim(x,y)→(0,0) H(x, y) exist?
2. Find the limit of H(x, y) as (x, y) → (0, 0) along the parabola y = x2. Is your

conclusion in (1) correct?

Our experience has proved CAS as a powerful and time saving instrument for
students to be quick on the uptake of the diversity of FTV’s behaviour.

6 About the National (Bulgarian) Student Olimpyad
on Computer Mathematics

The participants are free to choose the technology for digital mathematics they prefer
for each single problem.They are allowed to combineCASandExcel aswell as twoor
more CAS. Thirty problems from different mathematics subjects (Algebra, Analytic
Geometry, Calculus, Differential Equations) have to be solved within 4h.

Example 7. Determine the values of the real parameter M so that the polynomial
P3(x) = (m − 2)x3 − 3mx2 − 3mx + 2 − m has a double real root.

Solution. The solution can be determined at least by three different methods.Most
participants have shown good theoretical background and higher order learning: they
have preferred the application of Calculus in Algebra and quickly calculated the
correct answer m = 1

2 .

7 Conclusion

It is very important to properly use an appropriate educational technology (ET)
defined as [7]:

ET=Technology OF Education+Technology IN Education.
Tradition and Technology have to go hand in hand. Technology can “replace”

hundreds of teachers but a powerful tradition and teachers can give thousands of
technologies vitality.

Any CAS itself is not an ordinary tool: it is a thought-provoking tool that requires
knowledge, provides information, and stimulates the acquisition of knowledge and
development of skills and habits.

The proper utilization of technology in mathematics education requires a policy
of support for research in the field of Educational Science, high quality software and
teacher training. We need to go further: from

3T = Teachers Teachingwith Technology

to

4C = ChallengingChanges in Curricula and Courses



About Balanced Application of CAS in Undergraduate Mathematics 485

and
4L = Life LongLove to Learning.

In short, after 17-year teaching experience with application of CAS I can simply
repeat the words said by the Spanish painter Francisco Goya: “I am still studying”.

Acknowledgement to the Developers of CAS

We feel fortunate that we have the rare opportunity to experience through CAS the
dramatic unity of knowledge, capability and tool. Such unity is a guaranty to achieve
one of the main educational goals: Enhancement of Human Development Index.
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Some Remarks on Taylor’s Polynomials
Visualization Using Mathematica in Context
of Function Approximation

Włodzimierz Wojas and Jan Krupa

Abstract In this paper the authors critically analyse popular way of graphic
presentationTaylor’s polynomials in context of function approximation. Theydiscuss
the difficulties of presentation the best local polynomial approximation of function
by Taylor’s polynomials. Proposed by the authors method of graphical presentation
based on table of function and Taylor’s polynomials values in neighbourhood of a
chosen point. For graphical presentation ListPlot and Plot functions with logarithmic
scale in Mathematica System are used.

Keywords Mathematical analysis · Taylor’s theorem · Taylor’s polynomials ·
Higher education · Local approximation · Application of CAS

Mathematics Subject Classification (2010): 97R20 · 97B40 · 97I30 · 97I40 ·
41A10

1 Introduction

Taylor’s theorem is one of the most classic results of university course in calculus or
mathematical analysis. For the case of one variable function y = f (x) and a point
x = x0, Taylor’s polynomial of the nth order is defined as:

Tn(x) = f (x0) + f ′(x0)
1! (x − x0) + f ′′(x0)

2! (x − x0)
2 + · · · + f (n)(x0)

n! (x − x0)
n

where a function f (x) have at a point x0 finite derivatives up to the nth order inclu-
sively.Many academic books e.g. [1, 3, 5, 7] contain graphs presented Taylor’s poly-
nomials for some elementary functions. For example for f (x) = ex or f (x) = sin x
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Fig. 1 Taylor’s polynomials T1(x), T2(x), T3(x), T4(x) for function f (x) = ex at point x0 = 0

Fig. 2 Taylor’s polynomials T1(x), T3(x), . . . , T13(x) for function f (x) = sin x at point x0 = 0

as is shown in Figs. 1 and 2. Often these graphs are presented with comments that it
shows how well these polynomials approximate y = f (x) near a point x = x0 when
n increases.

2 Visualization of Taylor’s Polynomials in Context
of Function Approximation

Visualization of Taylor’s polynomials is easy and comfortable using CAS packages
such as Mathematica, Maple, Derive or others. For one variable functions Math-
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Fig. 3 Function f (x) = ex

and its Taylor’s polynomials
T1(x), T2(x), T3(x), T4(x) in
the reduced right
neighbourhood (0, 0.01) of
the point x0 = 0

Fig. 4 Function
f (x) = sin x and its Taylor’s
polynomials T1(x),
T3(x), . . . , T13(x) in the
reduced right neighbourhood
(0, 0.01) of the point x0 = 0

ematica package contains standard procedure Series[ f, {x, x0, n}] which generates
Taylor’s polynomial of the n-th order for the function f (x) and point x = x0. Using
procedurePlot[{ f1, f2, . . . , fk}, {x, xmin, xmax}]wecanpresent graphs function f (x)
and some its Taylor’s polynomials as is shown in Figs. 1 and 2. In academic books
these graphs are often presented with comments that they show how well these
polynomials approximate y = f (x) near a point x = x0 when n increases. The
question may appear: in which sense these approximation is good? This kind of
presentation can be misleading for students if we do not emphasize the fact of local
character of this approximation. In Figs. 3 and 4 we see that graph of the function
f (x) and graphs of Taylor’s polynomials seem to overlap close point x = x0. On the
base of these figures we cannot settle which Taylor’s polynomial better approximates
the function close to the point x0.

In Figs. 1 and 2we see that graph of the function f (x) and graphs of Taylor’s poly-
nomials seem to overlap close the point x0 = 0. Next, Taylor’s polynomials separate
from the graph of the f (x). Closer to the point x0 separates Taylor’s polynomial of
lower order, further from the point x0 separates Taylor’s polynomial of higher order.
Figures1 and 2 may suggest that overall Taylor’s polynomial of higher order better
approximates the function than Taylor’s polynomial of lower order. But for example,
for the function f (x) = ex , x0 = 0 and the point x = −4 it is easy to check that:
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T2(x) = 1 + x + 1

2! x
2, T3(x) = 1 + x + 1

2! x
2 + 1

3! x
3, | f (−4) − T2(−4)| = |e−4 −

5| < | f (−4) − T3(−4)| = |e−4 + 17/3|. So, T2(x) better approximates the function
f (x) = ex at the point x = −4 than T3(x). Similarly, for the function f (x) = sin x ,
x0 = 0 and the point x = 5

4π we have:
T3(x) = x − 1

3! x
3, T5(x) = x − 1

3! x
3 + 1

5! x
5, and | f ( 54π) − T3(

5
4π)| ≈ 5.46 <

| f ( 54π) − T5(
5
4π)| ≈ 7.88. So, T3(x) better approximates the function f (x) = sin x

at the point x = 5
4π than T5(x). Generally, Taylor’s polynomial of higher order better

approximates the function than Taylor’s polynomial of lower order only locally in
some neighbourhood of the point x0.

3 Theorem of the Best Local Polynomial Approximation

This theorem and corollaries from it are inspired by theorem of the best local approx-
imation presented in [2].

Let P(x) = p0 + p1(x − x0) + p2(x − x0)
2 + · · · + pm(x − x0)

m and Q(x) =
q0 + q1(x − x0) + q2(x − x0)

2 + · · · + qk(x − x0)
k are different polynomials. Let

r be the smallest nonnegative integer among numbers i = 0, 1, 2, . . . which satisfy
pi �= qi (if m > k then we put qk+1 = · · · = qm = 0, if m < k then we put pm+1 =
· · · = pk = 0).

Assume that function f (x) has finite derivative of n order at point x0 and assume
r ≤ n.

Theorem If pi = f (i)(x0)
i ! for all i < r and | f (r)(x0)

r ! − pr | < | f (r)(x0)
r ! − qr | then there

exists such neighbourhood S of point x0 that
∧

x∈S\{x0}
| f (x) − P(x)| < | f (x) −

Q(x)|.
Proof By Taylor’s theorem we have: f (x) − Tn(x) = (x − x0)

nω(x), where
ω(x) is a function continuous at x0 and ω(x0) = 0. Thus:

| f (x) − P(x)|

=
∣∣∣

(
f (r)(x0)

r ! − pr

)
(x − x0)

r + f (r+1)(x0)

(r + 1)! (x − x0)
r+1 + · · · + f (n)(x0)

n! (x − x0)
n

+ (x − x0)
nω(x) − pr+1(x − x0)

r+1 − · · · − pm(x − x0)
m

∣∣∣,

| f (x) − Q(x)|

=
∣∣∣

(
f (r)(x0)

r ! − qr

)
(x − x0)

r + f (r+1)(x0)

(r + 1)! (x − x0)
r+1 + · · · + f (n)(x0)

n! (x − x0)
n

+ (x − x0)
nω(x) − qr+1(x − x0)

r+1 − · · · − qk(x − x0)
k
∣∣∣.
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Taking the factor (x − x0)r out we have:

| f (x) − P(x)|

= |(x − x0)
r | ·

∣∣∣

(
f (r)(x0)

r ! − pr

)
+ f (r+1)(x0)

(r + 1)! (x − x0) + · · · + f (n)(x0)

n! (x − x0)
n−r

+ (x − x0)
n−rω(x) − pr+1(x − x0) − · · · − pm(x − x0)

m−r
∣∣∣.

| f (x) − Q(x)|

= |(x − x0)
r | ·

∣∣∣

(
f (r)(x0)

r ! − qr

)
+ f (r+1)(x0)

(r + 1)! (x − x0) + · · · + f (n)(x0)

n! (x − x0)
n−r

+ (x − x0)
n−rω(x) − qr+1(x − x0) − · · · − qk(x − x0)

k−r
∣∣∣.

The above equalities are true ifm > r and k > r . Ifm ≤ r , then defining pm+1 =
pm+2 = · · · = 0 we have:

| f (x) − P(x)|

=
∣∣∣

(
f (r)(x0)

r ! − pr

)
(x − x0)

r + f (r+1)(x0)

(r + 1)! (x − x0)
r+1 + · · · + f (n)(x0)

n! (x − x0)
n

+ (x − x0)
nω(x)

∣∣∣

= |(x − x0)
r | ·

∣∣∣

(
f (r)(x0)

r ! − pr

)
+ f (r+1)(x0)

(r + 1)! (x − x0) + · · · + f (n)(x0)

n! (x − x0)
n−r

+ (x − x0)
n−rω(x)

∣∣∣

and if k ≤ r then defining qk+1 = qk+2 = · · · = 0 we have:

| f (x) − Q(x)|

=
∣∣∣

(
f (r)(x0)

r ! − qr

)
(x − x0)

r + f (r+1)(x0)

(r + 1)! (x − x0)
r+1 + · · · + f (n)(x0)

n! (x − x0)
n

+ (x − x0)
nω(x)

∣∣∣

= |(x − x0)
r | ·

∣∣∣

(
f (r)(x0)

r ! − qr

)
+ f (r+1)(x0)

(r + 1)! (x − x0) + · · · + f (n)(x0)

n! (x − x0)
n−r

+ (x − x0)
n−rω(x)

∣∣∣

(both numbers k and m cannot be at the same time less than r ).
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As x approaches to x0 we obtain:

lim
x→x0

∣∣∣
( f (r)(x0)

r ! − pr
)

+ f (r+1)(x0)

(r + 1)! (x − x0) + · · · + f (n)(x0)

n! (x − x0)
n−r

+ (x − x0)
n−rω(x) − pr+1(x − x0) − · · · − pm(x − x0)

m−r
∣∣∣

=
∣∣∣
f (r)(x0)

r ! − pr
∣∣∣,

lim
x→x0

∣∣∣
( f (r)(x0)

r ! − qr
)

+ f (r+1)(x0)

(r + 1)! (x − x0) + · · · + f (n)(x0)

n! (x − x0)
n−r

+ (x − x0)
n−rω(x) − qr+1(x − x0) − · · · − qk(x − x0)

k−r
∣∣∣

=
∣∣∣
f (r)(x0)

r ! − qr
∣∣∣.

Because of our assumption
∣∣∣ f (r)(x0)

r ! − pr
∣∣∣ <

∣∣∣ f (r)(x0)
r ! − qr

∣∣∣ and the last two limits we

conclude that there exists such neighbourhood S of point x0 that:

∧

x∈S\{x0}

∣∣∣
( f (r)(x0)

r ! − pr
)

+ f (r+1)(x0)

(r + 1)! (x − x0) + · · · + f (n)(x0)

n! (x − x0)
n−r

+ (x − x0)
n−rω(x) − pr+1(x − x0) − · · · − pm(x − x0)

m−r
∣∣∣

<

∣∣∣
( f (r)(x0)

r ! − qr
)

+ f (r+1)(x0)

(r + 1)! (x − x0) + · · · + f (n)(x0)

n! (x − x0)
n−r

+ (x − x0)
n−rω(x) − qr+1(x − x0) − · · · − qk(x − x0)

k−r
∣∣∣.

Multiplying both sides of the last inequality by |(x − x0)
r | we obtain that∧

x∈S\{x0}
| f (x) − P(x)| < | f (x) − Q(x)|.

In cases m ≤ r or k ≤ r the proof is analogous. �

Corollary 1 Let Q(x) be a polynomial which satisfies: there exists i (i ≤ n) such

that qi �= f (i)(x0)

i ! (if m < n then we define qm+1 = qm+2 = · · · = qn = 0). Then

there exists such neighbourhood S of point x0 that,
∧

x∈S\{x0}
| f (x) − Tn(x)| < | f (x) −

Q(x)|. Particularly Q(x) can be any polynomial of order not greater than n different
than Tn(x).

Corollary 2 There exists such neighbourhood S of point x0 that,∧

x∈S\{x0}
| f (x) − Tn(x)| ≤ | f (x) − Tn−1(x)| ≤ · · · ≤ | f (x) − T1(x)|,
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where every inequality from the last sequence of inequalities becomes equality if and
only if when the two consecutive Taylor’s polynomial of f (x) in both sides of the
inequality are identical.

4 Visualization of the Best Locally Approximation
by Taylor’s Polynomials with Mathematica

Let us visualize Corollarys 1 and 2 for reduced right neighbourhood (0, 0.01) of the
point x0 = 0 using Wolfram Mathematica System [4, 6].

Example 1 For the Corollary 1 we define: f (x) = ex x0 = 0, T2(x) = 1 + x + 1
2! x

2

and P(x) = 1 + x − 1
2! x

2 for x ∈ (0, 0.01). By Taylor’s theorem we get:

ex − T2(x) = ex − (1 + x + 1

2! x
2) = 1

3! (e
x̃ )x3 > 0 and ex − P(x) = 1 + x + 1

2!
x2 + 1

3! (e
x̃ )x3 − (1 + x − 1

2 x
2) = x2 + 1

3! (e
x̃ )x3 > 0 for x̃ ∈ (0, x), x ∈ (0, 0.01).

Hence,wehave: | f (x) − T2(x)| − | f (x) − P(x)| = ex − (1 + x + 1
2 x

2) − ex +
1 + x − 1

2 x
2 = −x2 < 0 and finally

∧

x∈(0,0.01)

| f (x) − T2(x)| < | f (x) − P(x)|.
Let us visualize this inequality by creating a table of numerical values for both

sides of inequality with step 0.001.
We see in Table1 that for all considered points inequality is true. Based on the

Table1 we can prepare Fig. 5 using logarithmic scale. Increasing WorkingPrecision
and Accuracy in Mathematica Plot function we can get the continuous graphs pre-
sented in Fig. 6.

In Figs. 5 and 6 we see that the graphs of | f (x) − T2(x)| and | f (x) − P(x)| are
separated and that | f (x) − T2(x)| < | f (x) − P(x)| for x ∈ (0, 0.01).

Example 2 For the Corollary 2 we define: f (x) = sin x, x0 = 0,
T3(x) = x − 1

3! x
3,

T7(x) = x − 1
3! x

3 + 1
5! x

5 − 1
7! x

7,
T11(x) = x − 1

3! x
3 + 1

5! x
5 − 1

7! x
7 + 1

9! x
9 − 1

11! x
11.

By Taylor’s theorem, for all x ∈ (0, 0.01) we have:
f (x) − T3(x) = ( 1

4! sin x̃)x
4 > 0,

f (x) − T7(x) = ( 1
8! sin ˜̃x)x8 > 0,

f (x) − T11(x) = (
1

12! sin
˜̃̃x)x12 > 0,

where x̃, ˜̃x, ˜̃̃x ∈ (0, x).
Hence, for all x ∈ (0, 0.01) we get:

| f (x) − T3(x)| − | f (x) − T7(x)| = f (x) − T3(x) − f (x) + T7(x) = 1

5! x
5 − 1

7! x
7

= 1

7! x
5(42 − x2) = 1

7! x
5(

√
42 − x)(

√
42 + x) > 0,
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Fig. 5 Discrete graphs of
| f (x) − T2(x)| and
| f (x) − P(x)| in reduced
right neighbourhood
(0, 0.01) of the point x0 = 0
with logarithmic scale using
Mathematica Plot function

Fig. 6 Continuous graphs of
| f (x) − T2(x)| and
| f (x) − P(x)| in reduced
right neighbourhood
(0, 0.01) of the point x0 = 0
with logarithmic scale using
Mathematica Plot function

| f (x) − T7(x)| − | f (x)−T11(x)| = f (x) − T7(x) − f (x) + T11(x) = 1

9! x
9 − 1

11! x
11

= 1

11! x
9(110 − x2) = 1

11! x
9(

√
110 − x)(

√
110 + x) > 0.

So, finally
∧

x∈(0,0.01)

| f (x) − T3(x)| > | f (x) − T7(x)| > | f (x) − T11(x)|.
Let us visualize this double inequality by create a table of values for all sides of

inequality with step 0.001.
We see in Table2 that for all considered points double inequality is true. Based

on the Table2 we can prepare Fig. 7 using logarithmic scale.
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Fig. 7 Discrete graphs of | f (x) − T3(x)|, | f (x) − T7(x)| and | f (x) − T11(x)| in reduced right
neighbourhood (0, 0.01) of the point x0 = 0 with logarithmic scale using Mathematica ListPlot
function

Fig. 8 Continous graphs of | f (x) − T3(x)|, | f (x) − T7(x)| and | f (x) − T11(x)| in reduced right
neighbourhood (0, 0.4) of the point x0 = 0 with logarithmic scale using Mathematica Plot function

In Figs. 7 and 8we see that graphs of | f (x) − T3(x)|, | f (x) − T7(x)| and | f (x) −
T11(x)| are separated.
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5 Summary

In this paper the authors discuss graphic presentation of Taylor’s polynomials in con-
text of local approximation of a function. Taylor’s polynomial of higher order better
approximates the function than Taylor’s polynomial of lower order only locally in
some neighbourhood of the point x0. In popular way of graphic presentation Tay-
lor’s polynomials, graph of the function f (x) and graphs of its Taylor’s polynomials
seem to overlap in a neighbourhood of the point x = x0. Using logarithmic scale
to present graphs we can separate graphs of differences between function and its
Taylor’s polynomials. To prepare graphs Mathematica System was used. Presented
theorem of the best local approximation, corollaries from it and visualisation of these
corollaries seem to be useful for students for deeper understanding the problem of
Taylor’s polynomials in the context of function approximation.
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Zooming Algorithms for Accurate Plotting
of Functions of Two Real Variables

David G. Zeitoun and Thierry Dana-Picard

Abstract The study of a real function of two real variables can be supported by
visualization using a Computer Algebra System (CAS). One type of constraints of
the system is due to the implemented algorithms, yielding continuous approximations
of the given function by interpolation. This masks often discontinuities of the given
function and its curvature at small scales. It can also provide strange plots, rather
inaccurate. In recent years, point based geometry associated with grid approximation
has gained increasing attention as an alternative surface representation, both for
efficient rendering and for flexible geometry processing of complex surfaces. In
this paper we present different visualisation techniques used for 2D plots of a real
function and propose two new zooming algorithms for accurate visualisation near
discontinuities. First we show the limitations of the classical zooming procedure
used in current software, then a mathematical analysis of the zooming process leads
to two different treatment of the images. A first algorithm stores representations
of the function at different scales, which enables different plots, depending of the
screen scale. The second algorithm uses a unique high level grid with quadratic
representation. The two algorithms are illustrated and a comparison is performed.

Keywords CAS · Zooming algorithms · Surface plots · Discontinuities · Linear
interpolation · Meshing

1 General Frame of Study

With the introduction of the computer into the learning environment the way Math-
ematics is conveyed has changed. The traditional sequence Definition–Theorem–
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Proof has received a complement with examples where visualization plays an
important role. This is true in numerous mathematical domains, such as Geometry,
using the so-called Dynamical Geometry Packages, and also Analysis and Algebra
with Computer Algebra Systems (CAS). Questions about the study of functions and
curve discussion have been studied by [11, 12, 20] and others. In particular, various
limitations of the usage of the computer have been discussed. Many educators have
replaced the traditional sequence mentioned above by another one, beginning with
computer assisted experimentation; see [14] as an example.

A well known case of CAS experimentation prior to theoretical study is curve
discussion. It happens that a discontinuity of the function or the non-existence of a
limit at some point are not shown by the display, despite the fact that a proof is easy
to write. Such a cognitive conflict can appear, in a stronger form, when studying
functions of two real variables. In order for the eye to catch the situation, most
Computer Algebra Systems enable a dynamical point of view, using the mouse to
turn the surface around. This can help to discover discontinuities or points where
partial derivatives cannot exist, but how to be sure that the visual impression is
correct? As we will see, discontinuities can be hidden.

Functions of two real variables are generally introduced in an Advanced Calculus
course, where the students discover generalizations of notions learnt in their first
Calculus course. The respective roles of the first and second derivatives are extended
in the new frame to discover extrema and saddle points. When arriving at the visu-
alization stage, drawings are harder to obtain by hand-work and computerized help
is welcome.

Students learning towards a degree in a STEM related domain learn quite early
a course in Advanced Calculus, i.e. a course where the main objects under study
are multivariable functions. It happens that students cannot see how these objects
behave. In particular, difficulties appear in classroom for functions having different
limits at a point, according to the path approaching the point. Therefore dynamical
visualization techniques are important.

The studyof functions of two real variables canbe supported byvisualizationusing
a Computer Algebra System (CAS). Contour plots were the first type of graphic rep-
resentations.With the development of scientific computing, 3Dplotswere introduced
and plotting the graph of a two-variable function has been made possible, including
parametric plotting and implicit plotting.

Depending both on the hardware and on the software, constraints exist, making
sometimes the plots non accurate. For example, the choice of the mesh (using a tri-
angulation of the domain, or geodesics on the surface, etc.) has a great influence on
the representation. Actual values of the function are computed on the border of the
cells, then interpolations are performed; these interpolations may hide discontinu-
ities. Other constraints come from the need to control the geometric transformations
of the plotted surface: transformations such as zooming, rotation around a given axis,
displacement along a given path are examples where the visualization device needs
to understand the mathematical behavior of the function.

Let us consider the function f given by f (x, y) = 1
1−(x2+y2) . The first plots dis-

played in Fig. 1 are examples of non-accurate plots, obtained with a brute force usage
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Fig. 1 Strange plots

of commands, without a suitable analysis of the function. The command differed only
in the given x-intervals and y-intervals, [−2, 2] in (a) and [−3, 3] in (b). The right-
most plot is quite accurate, it uses other techniques.

In the inaccurate plots, interpolations hide the actual discontinuities in different
ways. Regular zooming cannot solve this problem, as it inflates the cells but does not
recompute the needed numerical data.

Rotation around a given axis often masks discontinuities of the function and can
also provide strange plots, not compatible with the hand-made analysis. In recent
years, point based geometry has gained increasing attention as an alternative surface
representation, both for efficient rendering and for flexible geometry processing of
complex surfaces. More sophisticated representations that use lighting effects and
virtual reality are available. We analyze the efficiency of the different representations
with respect to the mathematical behavior of a function of two real variables.

An interface written in Matlab 14 has been developed for producing different
representations of a given explicit function of two variables; see Fig. 2. After having
received an analytic expression for the function, the software produces four types of
representation, namely:

1. A color contour map of the function.
2. A three dimensional plot of function.
3. A relief terrain map, colors corresponding to the “height” of the function above

the (x, y)-plane.
4. A virtual reality scene where the function is a terrain and the user is flying over

it.

The first three representations are shown for f (x, y) = (x2 − y2)/(x2 + y2) in
Fig. 3. Note that this function has a discontinuity at (0, 0). The virtual reality scene
is shown for the same function in Figs. 4 and 5. Comparison between the different
kinds of representation has to be done with respect to the accuracy of:

1. The global plotting of the function.
2. The appearance of the existing discontinuities and the non-appearance of non-

existing discontinuities.
3. The visualization of directional derivatives.
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Fig. 2 Interface

Fig. 3 Color plottings

4. The different types of optima, i.e. extrema and saddle points.

Some of the issues that are to be discussed are as follows, all of them having an
influence on the joint work of the students and the educator:

• The domain of the given function may be unbounded. Nevertheless, the plotting
domain is always bounded; this is one of the constraints mentioned previously.

• Meshing techniques versus isoclines plotting.

This comparison and its outcome were an incitement to the usage of virtual reality
in order to represent a function of two variables. In particular, the VR device under
development is designed to generate paths on the surface under study and to replace
classical zoomingwith advanced zooming. Zooming algorithms have been developed
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Fig. 4 Virtual scene

Fig. 5 Path along a discontinuity

as an image processing tool that allows to reveal small details by improving the
resolution. The purpose of this work is different. Classical zoom inflates the existing
cells of the mesh and no re-computation of the data are performed, therefore new
details may not be revealed. Such a zooming does not improve the plot accuracy,
especially near discontinuities and different types of extrema.

In this paper, we present new algorithms in order to overcome the above problems.
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2 Principles of Zooming Algorithms for Surface Plotting

When dealing with functions of one or two real variables, the accuracy of the
Cartesian grid used for the interpolation influences the graph quality, especially near
points of discontinuity. Onemay understand the zooming process by introducing two
different scales:

• The scales screen. These are a series of scales starting from S1 and Si ; i = 1 . . . n,
that corresponds to length of the screen at a given view.During the zooming process
Si = αi S1. When we enlarge the view αi < 1 and at the opposite we reduce the
view αi > 1.

• The grid size, currently denoted by h; it corresponds to the size of the discretization
patches used in the interpolation process.

2.1 Zooming of a Cartesian Mesh

When using a cartesian mesh, the basic size of the patch is h; however, the relative
size of the mesh with respect to the scale of the screen Si is ti = h

Si
. Also, the size

of the patch in a visualisation of the surface at a given screen size is ti = h
Si
(and not

h). Then the general approximation of the view of function f (x, y) at a screen scale
Si is denoted by fi (x, y). When using linear rectangular patches, the approximation
of the function on the basic rectangular patch is linear and is given by the following
formula:

fi (x0 + ti , y0 + ti ) = f (x0, y0) + ti
∂ f

∂x
|(x0,y0) + ti

∂ f

∂y
|(x0,y0) + O(t2i )

In this case, the error in the viewing of the plot at a screen scale Si is at an order
of magnitude O(t2i ). One can write that the error at a scale screen Si is given by
εi L = K1t2i (index L for linear patches).

When using quadratic rectangular patches, the approximation of the function on
the basic rectangular patch is quadratic and is given as follows:

fi (x0 + ti , y0 + ti ) = f (x0, y0) + ti
∂ f

∂x
|(x0,y0) + ti

∂ f

∂y
|(x0,y0)

+ t2i /2

[
∂2 f

∂2x
|(x0,y0) + ∂2 f

∂2y
|(x0,y0)2

∂2 f

∂x
∂y|(x0,y0) + O(t3i )

]

In this case, the error in the viewing of the plot at a screen scale Si is in an order
of magnitude O(t3i ). One can write that the error at a scale screen Si is given by
εi Q = K2t3i (index Q for quadratic patches).

In a classical zooming algorithm the patch size h stay constant and therefore the
relative size of the patch at a screen size Si is given by ti = 1

αi

h
S1
, where S1 is the initial
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screen size. During a view enlargement, we have 1
αi

> 1, therefore the error for linear

patches may be very large: εi L = K1t2i >> K1(
h
S1

)2. When the graph is smooth, the
function is at least continuous, then the view is approximately correct. However,
when the function has a discontinuity the plot is not mathematically correct. Note
also that for small view enlargement, the mathematical correctness of the view is not
altered.

When using quadratic patches, the error at a scale screen Si is given by εi Q =
K2t3i = K2(

1
αi

)3( h
S1

)3. In this case, most of the enlargement may have an accurate

representation. In order to understand this point, consider the case where αi = 1
2i

and the mesh is chosen such as h
S1

= 2−p. Then for i = p, the screen view contains
only a basic patch of the surface. Therefore,we will consider enlargement processes
for 1 ≤ i ≤ p − 1. Now suppose that we are working at a resolution of 2−q , then the
quadratic interpolation will be correct till i = p − q

3 . However, when using linear
interpolation, the interpolation is correct till i = p − q

2 . For example, for q = 6,
linear patches allow an accurate visualisation till i = p − 3, while for quadratic
patches, the accuracy of the visualization is till i = p − 2 which is almost all the
ranges of allowed view enlargement.

In most of the current scientific software, linear patches are used and therefore
classical zooming does not permit an accurate visualisation at small scales.

We propose another strategy for a zooming algorithm: to maintain the ratio ti
constant. For example ti = h

S1
. This requires that different grids are stored for different

scale screens hi = αi h.

3 Techniques of Visualization of Plots of Surfaces
Using Mesh Generators

Triangular meshes are the most common surface representation in computer graph-
ical applications. Because of their simplicity and flexibility, they replace traditional
CAD surface representations, like NURBS surfaces (see [23]), in many areas where
processing performance is an important issue. The reason for this is that triangle
meshes are significantly more flexible, since surfaces of any shape and topology can
be represented by a single mesh without the need to satisfy complicated interpatch
smoothness conditions. The simplicity of the triangle primitive allows for easier and
more efficient geometry generation and geometry processing algorithms.

Obviously, since the triangle primitive is mathematically much simpler compared
to a NURBS patch, more of them have to be used to obtain the same approxima-
tion quality. However, if a smooth surface has to be represented by a triangle mesh
(a piecewise linear surface), the approximation order is quadratic, i.e., halving the
edge lengths reduces the error by a factor of 4 which means the number of triangles
is inversely proportional to the approximation error. Hence, even with the weaker
asymptotic behavior, a good approximation (for the typical precision requirements
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in graphics applications) can be achieved with a moderately fine mesh whose ver-
tex density and distribution is adapted to the surface curvature, i.e., to the shape
complexity.

Despite their being more flexible than NURBS, triangular meshes can also have
restrictions and disadvantages in some special applications.Most algorithmsworking
on triangular meshes require topologically consistent surfaces. As a consequence,
manifold extraction or topology cleanup steps are necessary for mesh generation
methods (see [2, 3]).

Representing sharp features, like edges or corners in technical data sets, is a well
studied problem for triangle meshes. Because the surface is no longer differentiable,
the approximation power breaks down to linear order. Moreover, alias artifacts are
introduced by insufficient sampling, which cannot be removed by increasing the
sampling density (see [23]). In order to remove these artifacts and reduce normal
noise, the sampling has to be aligned to the principal curvature directions (see [24]). If
surface splats are to represent sharp features, all splats that sample these features have
to be clipped against one or two clipping lines (for edges and corners respectively)
that are specified in their local tangent frames. Therefore, for 2D plots, an accurate
representation may be achieved when building the mesh on the isoclines of the
function.

Three-dimensional plot commands represent a real function of two real variables
in a three dimensional view by approximating the function on a Cartesian grid. The
two dimensional domain is discretized in a series of rectangular lagrangian elements,
and on each element, the approximation is used. As an example, the two-dimensional
Lagrangian interpolation arising out of linear bases defined on a rectangular element
of size hx × hy are built as follows. Denote ξ = x

hx
; ν = y

hy
, the four bases functions

of the element are given by:

φ1(ξ, ν) =
[
1

2
(1 − ξ)

] [
1

2
(1 − ν)

]
,

φ2(ξ, ν) =
[
1

2
(1 + ξ)

] [
1

2
(1 − ν)

]
,

φ3(ξ, ν) =
[
1

2
(1 + ξ)

] [
1

2
(1 + ν)

]
,

φ4(ξ, ν) =
[
1

2
(1 − ξ)

] [
1

2
(1 + ν)

]
.

Referring to the previous section, the error at a scale screen Si of such an element
is given by εi L = K1t2i . For a quadratic bases defined on a rectangular lagrangian
element, the nine bases functions of the element given by:
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Corner nodes ψi (ξ, ν) = 1

4
[ξ ξi (1 + ξ ξi )][ν νi (1 + ν νi )], i = 1, 2, 3, 4

Side nodes ξ j = 0 ψ j (ξ, ν) =
[
1

2
[ν ν j (1 + ν ν j )](1 − ξ 2)

]
, j = 5, 6

Side nodes νk = 0

psik(ξ, ν) =
[
1

2
[ξ ξk(1 + ξ ξk)][(1 − ν2)]

]
, k = 7, 8

Interior node ψ9(ξ, ν) =
[
1

4
(1 − ξ 2)

]
[(1 − ν2)].

Referring to the previous section, the error at a scale screen Si of such element is
given by εi Q = K2t3i .

More sophisticated and accurate interpolations such as cubic, andHermitian cubic
2-dimensional interpolation functions may be used (see [23], Section2). These inter-
polations are often used in computational software. In order to build a graph of a
function, the domain is decomposed into a finite number of elements based on a
collection of n + 1 points P0(x0, y0), P1(x1, y1), . . . , Pn(xn, yn) for each element
[xk, xk+1] × [y j , y j+1]. On this element the function is approximated by a function
built in a way similar to what has been described in the previous subsection. For a
given function f of the two real variables x and y, the interpolation used may be
written as a double sum: a first summation over all the elements of the discretization
of the domain, and a second one for the interpolation over the given element:

• For linear element:

Fapp(x, y) =
∑
Cells

i=4∑
i=1

f (xi , yi )φi

(
x

hix
,

y

hiy

)
. (1)

• For quadratic element:

Fapp(x, y) =
∑
Cells

i=9∑
i=1

f (xi , yi )ψi

(
x

hix
,

y

hiy

)
. (2)

3.1 Visualization Based on a Parametric Representation
of the Curve

In this type of plotting the Cartesian coordinates are functions of two real parameters
x = x(s, t); y = y(s, t).1 Then the discretization of the domain is performed in the

1Polar coordinates x = r cos t; y = r sin t , where s ≥ 0; t ∈ R, are often used but tens of other
kinds of coordinates are available in most of the CAS. We illustrate the case of polar coordinates
in Sect. 3.4.
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(s, t)-plane. The domain in this plane is separated into a finite number of elements
based on a collection of n + 1 points

P0(x(s0, t0), y(s0, t0)), P1(x(s1, t1), y(s1, t1)), . . . , Pn(x(sn, tn), y(sn, tn)) (3)

for each cell [sk, sk+1] × [t j , t j+1]. On this cell the function is approximated by a
function built as above. For a given function f , the interpolation is given as follows:

fapp(x, y) =
∑
Cells

i=4∑
i=1

f (x(si , ti ), y(si , ti ))φ

(
s

hix
,

t

hiy

)
. (4)

3.2 Discontinuities and Critical Points of a Function
of Two Variables on a Cartesian Mesh

The plot command yields visualization as a surface plotting. The main difference
between the two situations described above is in the mathematical treatment of the
discontinuity2 and of the critical points of the function. For a function f defined on
a domain D in the (x, y)-plane, local maxima, local minima or saddle points can
occur either at boundary points of R, or at interior points (x0, y0) of D where the first
partial derivatives vanish, i.e. fx (x0, y0) = fy(x0, y0) = 0, or at points where fx or
fy fail to exist.
Here is the core of the strange apparitions in Fig. 4 (the needles): depending on

the type of interpolation, the condition

fx (x0, y0) = fy(x0, y0) = 0 (5)

is different from the condition

fappx (x1, y1) = fappy(x1, y1) = 0. (6)

Moreover, these extrema conditions may appear at different points (x0, y0) �=
(x1, y1).

For polynomial quadratic interpolation functions (Hermite and cubic basis func-
tions), these last conditions request the solution of a system of linear equations in
order to determine the (possible) local extrema. Such critical points may exist on
each discretization cell of the domain. This simple analysis permits to understand
why we are viewing plots with local extrema without any connection with the known
mathematical behavior of the function: the local extrema plotted by the software

2In certain situations, an option has to be added to the command in order to force it to consider the
discontinuity.



Zooming Algorithms for Accurate Plotting … 509

correspond to extrema of the approximation function and not of the actually given
function.

For linear interpolation functions of cubic type (most frequently used in mathe-
matical software), it could be shown that the condition given byEq. (6) is independent
from the discretization steps hix and hiy for a command based on a Cartesian grid
(plot3d). In this case, the local extremum of the discretization is obtained on the
corner of the elements.

To illustrate (and understand) the creation of needles in the plot of a function of
two variables, consider the rational function defined by

f (x, y) = 1

x + y − 1
.

A MatLab 7 plot of this function for −4 ≤ x ≤ 4 and −2 ≤ y ≤ 2 is displayed in
Fig. 6.

The needles appear near the discontinuity line whose equation is x + y = 1. In
order to understand this effect consider a Cartesian discretization for the square
given by 0 ≤ x ≤ 2; 0 ≤ y ≤ 2, using n2 points. We have h = hx = hy = 2

n . The
approximated function for plotting is determined by the values of the points x =
ih; y = jh and an interpolation function

fapp(i, j, h) = 1

h(i + j) − 1
.

Using a linear interpolation, one may estimate the plotting value along a line close
to the discontinuity line x + y = 1, let’s say the line whose equation is x + y =
1 + ε, where ε is an arbitrary small real number. Along the line whose equation is

Fig. 6 MatLab plot of
f (x, y) = 1/(x + y − 1)
with mesh discretization
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Fig. 7 Numerical solution of f (x, y) = 1/(x + y − 1) along the line whose equation is x + y −
1 = ε

x + y = 1 + ε, the function should be constant and equal to f(x+y=1+ε) = 1
ε
; ε > 0.

However, because of the Cartesian grid discretization, the plotting software uses
approximate values of the function at the relevant corner of the grid. Figure7 shows
plots of the approximated function along a line close to the discontinuity line for
constant h and different values of ε.

3.3 Discontinuities of a Function of Two Variables
Using a Parametric Representation of the Surface

The condition given by Eq. (6) for polar coordinates leads to a solution dependent on
the grid discretization steps. Then, the viewing of local extrema on the graph based
on Cartesian grid cannot be repaired by playing with the size of the mesh but may be
repaired by playing with the discretization size and the domain range for plots based
on parametric representations (e.g. Maple’s command parametricplot3d).

3.4 Transforming the Question from Cartesian Coordinates
into Polar Coordinates

An illustration of the problem may be seen for the different plots obtained for the
given function. Figure8 shows a partial plot of the graph of the function defined in
Sect. 2, constructed using polar coordinates. In Fig. 1, no discontinuity appears near
the unit circle, but the plot in polar coordinates (Fig. 8) shows clearly the discontinuity
of the function and the asymptotic behavior.
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Fig. 8 A plot in polar
coordinates

The use of isoclines of the function for the definition of the parametrization of the
function is a very efficient solution for the reduction of artifacts. Unfortunately, the
determination of isoclines for any function may be very difficult and require special
algorithms for automatic meshing.

4 Zooming Algorithms

As mentioned earlier, the basic principle of the different algorithms proposed is to
maintain the ratio h

S1
constant during any enlargement process. This requires to work

with a finite series of meshes (Mk); k = 1, . . . , p. For the mesh (Mk), the size of the
rectangular patch is hk = αk h. The different zoom algorithms proposed here request
to store in the memory of the graphic card the series of meshes (Mk); k = 1, . . . , p.
Also, the loading of each mesh has to be done interactively. This task is heavy and
therefore, the number of stored meshes p has to be maintained as small as possible.
In what follows,we propose two similar algorithms: the first one is based on linear
lagrangian meshes, while the second one uses quadratic lagrangian mesh.
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4.1 Multi Scale Zoom Algorithm

In the first algorithm, we first define the number of stored meshes p1 and we store in
memory all the Linear lagrangian meshes (Mk); k = 1, . . . , p1. Then the zooming
process:

• Load S1.
• Zoom at a resolution Si = αi S1.
• Find k0 such that αk0 ≤ αi ≤ αk0+1.
• Load (Mk0).
• View.

4.2 Quadratic Patches

In the second algorithm, we first define the number of stored meshes p2 and we
store in memory all the quadratic lagrangian meshes (Mk); k = 1, . . . , p2. Then the
zooming process:

Fig. 9 View of discontinuity at a large scale
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Fig. 10 View of discontinuity at a smaller scale

• Load S1.
• Zoom at a resolution Si = αi S1.
• Find k0 such that αk0 ≤ αi ≤ αk0+1.
• Load (Mk0).
• View.

The interest of this second algorithm is that p2 < p1.

4.3 Viewing

In Figs. 9 and 10 the multi scale zooming is shown around a point of discontinuity
of the function. The angle of the view is changing with the scaling view.

5 Conclusion

Today, most of the 3D plot technologies use basic zooming procedure that are an
enlargement of the view. This may lead to plots of mathematical surfaces that are not
accurate. Moreover, strange plots have been shown when using continuous element
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at singular points of the function. Zooming algorithm have been developed in image
processing for getting accurate edges at low scales. The algorithms used in image
processing are based on pixel generation using neighboring rules. When dealing
with zooming of a mathematical function the purpose of the zooming is to get an
accurate plot of the function at any plots. In this contribution we present a general
methodology based on relative scales and lagrangian linear and quadratic elements.
The algorithms have already been implemented by the authors in concrete situations.
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