
Theoretical Computer Science 267 (2001) 105–120
www.elsevier.com/locate/tcs

Direct and dual laws for automata with multiplicities�

G. Duchamp ∗, M. Flouret, &E. Laugerotte, J.-G. Luque
LIFAR, Facult�e des Sciences et des Techniques, 76821 Mont-Saint-Aignan Cedex, France

Abstract

We present here theoretical results coming from the implementation of the package called
AMULT (automata with multiplicities). We show that classical formulas are optimal for the
bounds. Especially they are almost everywhere optimal for the 3elds R and C. We characterize
the dual laws preserving rationality and examine compatibility between the geometry of the
K-automata and these laws. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Automata with multiplicities; Rational laws; Dual laws; Geometry of K-automata;
Shu:e compatibility

1. Introduction

Noncommutative formal series (i.e. functions on the free monoid, with values in a
– commutative or not – semiring) encode an in3nity of data. Rational series can be
represented by linear recurrences, corresponding to automata with multiplicities [6], and
therefore they can be generated by 3nite state processes. Literature can be found on
these “weighted automata” (e.g. [15, 24]) and their theoretical (e.g. [12]) and practical
(e.g. [4, 21]) applications (recently one of us solved a conjecture in operator theory
using these tools [5]). The theory was founded by SchButzenberger in 1961 [25] where
the link between recognizable and rational series is shown (see also [26]), extending
to rings (and to semirings [2]) Kleene’s result for languages [14] (corresponding to
boolean coeFcients). In 1974, for the case of 3elds, Fliess extended the proof of the
equivalence of minimal linear representations, using Hankel matrices [7]. All these
results allow us to construct an algorithmic processing for these series and their asso-
ciated operations. In fact, classical constructions of language theory have multiplicity
analogues which can be used in every domain where linear recurrences between words

� Partially supported by the Scienti3c Research Program of MENRT.
∗ Corresponding author.
E-mail addresses: gerard.duchamp@univ-rouen.fr (G. Duchamp), marianne.Kouret@univ-rouen.fr (M.

Flouret), eric.laugerotte@univ-rouen.fr (E. Laugerotte), jean-gabriel.laugerotte@univ-rouen.fr (J.-G. Luque).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00298 -X

106 G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120

are handled (for example these automata have been extensively used in theory of con-
trol [20]).
All these operations can be found in the AMULT package over automata with multi-

plicities. This package is a component of the environment SEA (Symbolic Environment
for Automata [1]) under development at the University of Rouen. Rational series can be
represented on the computer by three ways (formula, rational expressions, K-automata).
The structure of this paper is the following: in Section 3 (the 3rst section after

introductory paragraphs), we recall the classical construction for simple rational laws
(+; ·; ∗;×). The compositions are based on polynomial formulas which has an important
consequence on composition of K-automata choosen at random (K =R or C). In fact,
this 3rst result says that the classical formulas are almost everywhere optimal (which is
clear from experimental tests at random). In the general case, the bounds are reached.
In Section 4, we show that the three laws known to preserve rationality (shu:e,

Hadamard and in3ltration products) are of the same nature: they arise by dualizing
alphabetic morphisms. Moreover, they are, up to a deformation, the only ones of this
kind, which of course, shows immediately in the implemented formulas. The second
and third parts of this section are devoted to show the sharpness of the classical
bounds and to begin the study of the compatibility of these laws with the geometry of
K-automata.

2. De�nitions, notations and basic results

Following Eilenberg ([6, p. 136]), we recall that a K-subset S of E is a mapping
E→K (where K is a semiring). Then, if A is an alphabet, a K-automaton is a triplet
A=(Q; I; T) given by a 3nite set Q (the states of A) with K-subsets I (the initial
states) and T (the 3nal states), and a K-subset E of Q × A × Q (the transitions and
their multiplicities).
The school of SchButzenberger ([6, p. 158]) has introduced the concept of a linear

representation (;
; �) with 	∈K1×n,
 :A→Kn×n and �∈Kn×1 (see [2]). The corre-
spondence between these two data structures is then, up to a relabelling, one to one
and goes as follows. For each letter a∈A, one can construct a Q ×Q-matrix
(a) by

i; j(a)=E(i; a; j) for each pair (i; j)∈Q2. The mapping
 is extended as a morphism
from A∗ to KQ×Q. If we consider the mapping I as a row matrix belonging to KQ×1

and the mapping T as a column matrix belonging to K1×Q, the behaviour of A is
given by

B(A) =
∑

w∈A∗
IE(w)Tw;

that is the series recognized by A. If we de3ne a labelling Q= {q1; : : : ; qn}, we receive
through this correspondence a triplet (;
; �) de3ned by 	∈K1×n,
 :A→Kn×n and
�∈Kn×1, which is called a linear representation of B(A). We will use the terms of
K-automaton and linear representation to denote the same object.

G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120 107

In this paper, we describe a general theory of the laws of K-automata which can
be applied for any semiring K . It uses matrix operations which are implied by the
de3nitions of the linear representations, such as the computation of the coeFcients
of a recognized word or the computation of B(A) for example. Since a lot of ze-
ros appear in the matrices of transition, we take dynamic structures (such as the
tables in Maple) for implementation. When we choose a special semiring (boolean
semiring, 3eld, etc.), some algorithms can certainly be made more eFcient by
specialization.
Let K〈〈A〉〉 be the set of noncommutative formal series with A a 3nite alphabet and K

a semiring (commutative or not). A series denoted S =
∑

w∈A∗〈S|w〉w is recognizable
if and only if there exists a linear representation (;
; �), such that for all w ∈ A∗,
one has 〈S|w〉= 	
(w)�. Throughout the paper, we will denote by S : (;
; �) this
property. The integer n is called the dimension of the linear representation (;
; �)
[7].
Let K rat〈〈A〉〉 be the set of rational noncommutative formal series, that is the set

generated from the letters and the laws · (Cauchy product), ∗ (star operation, partially
de3ned), × (external product) and + (union or sum). The preceding four laws will
be called rational laws of the 3rst kind. The following important theorem for series
[25] is the analogue of Kleene’s theorem for languages. It is remarkable that it holds
whatever K be.

Theorem 1 (SchButzenberger [25]). A formal series is recognizable if and only if it is
rational.

Notice that, in the boolean case, × (the external product) is trivial, but it permits
to take for granted that L= ∅ and then ∅∗=1 are regular (see [14, 13]).

A reduced K-automaton (;
; �) is a K-automaton of minimal dimension among all
the K-automata with behaviour S. 1 This minimum is called the rank of the series S
[25]. In case K is a 3eld, the rank of S is the dimension of the linear span of the
shifts of S. It is the smallest number of states of a K-automaton with behaviour S.
Here, minimization (up to an equivalence) is possible [25] (see also [2]). An explicit
algorithm is given in full details in [10] as well as the construction of intertwining
matrices (Figs. 1and 2).

3. Constructing usual laws

3.1. Operations on linear representations

We expound here universal formulas for constructing linear representations. They can
be applied to any semiring K . Let us recall some classical facts. Classical operations

1 Existence is assumed by de3nition, unicity is proved in case K is B (for deterministic automata) or a
(commutative or not) 3eld [10] and indeed is the automaton of quotients but is problematic in general.

108 G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120

Fig. 1. A Z-automaton for the rational series 1− b + (a + 2b − 2)b∗a.

Fig. 2. Minimal Z-automaton for the automaton of Fig. 1.

on series are sum, Cauchy product and star (unary and partially de3ned). By de3nition,
the sum of two series R and S is

R+ S =
∑

w∈A∗
(〈R|w〉+ 〈S|w〉)w;

their concatenation (or Cauchy product) is

R:S =
∑

w∈A∗

(∑
uv=w

〈R|u〉〈S|v〉
)

w

and the star of a series S is

S∗ =
∑
n¿0

Sn = 1 + SS∗

if its constant term is zero (such a series is said to be proper). The preceding operations
have polynomial counterparts in terms of linear representations. They are well known
[4, 9] and we gather them in the following proposition.

Proposition 2. Let R (resp. S) be a rational series and Ar =(r;
r; �r) (resp. S :As =
(s;
s; �s)) be a K-automaton which recognizes R (resp. S). Let n (resp. m) be the

G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120 109

dimension of Ar (resp. Ar). The linear representations of the sum; the concatenation
and the star are; respectively;
R+ S

Ar �As =

(
(r 	s);

(

r(a) 0n×m

0m×n
s(a)

)
a∈A

;
(

�r

�s

))
; (1)

R:S

Ar �As =

(
(r 01×m);

(

r(a) �r	s
s(a)
0m×n
s(a)

)
a∈A

;
(

�r	s�s

�s

))
; (2)

If 	s�s =0, S∗:

A
∗
s =

(
(01×m 1);

(

s(a) + �s	s
s(a) 0m×1

	s
s(a) 0

)
a∈A

;
(

�s

1

))
: (3)

Proof. Formula (1) is straightforward.
To prove formula (2), let (;
; �)=Ar · As. One proves by induction that

(w) =

r(w)
∑

uw=w
v �=1

r(u)�r	s
s(v)

0m×n
s(w)

and then 	
(w)�=
∑

uv=w 	r
r(u)�r	s
s(v)�s =
∑

uv=w 〈R|u〉〈S|v〉.
Concerning the formula (3), let (∗;
∗; �∗)=A

∗
s . Again,

∗(w) =

 M 0m×1

|w|∑
n=1

∑
u1···un=w;ui �=1

(s
s(u1)�s) · · · (s
s(un−1)�s)(s
s(un)) 0

 ;

where M ∈Km×n. We then have

	∗
∗(w)�∗ =
|w|∑
n=1

∑
u1···un=w; ui �=1

(s
s(u1)�s) · · · (s
s(un)�s)

=
|w|∑
n=1

〈Sn|w|〉 = ∑
n¿0

〈Sn|w|〉 = 〈S∗|w〉:

Remark 3. (1) Formulas (1) and (2) provide associative laws on triplets. They can
be found explicitly in [4].

(2) Formula (3) makes sense even when 	s�s �=0 (this fact will be used in the density
result of Section 3.3.

(3) Of course if S : (;
; �) and �∈K then �× S : (�	;
; �) and S × � : (;
; ��).
(4) For the sum (Ar +As), Ar and As are just placed side by side.

110 G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120

The product Ar · As has the following components:
• States: The union of the sets of states of Ar and As.
• Inputs: Inputs of Ar .
• Transitions: Transitions of Ar and As and, for each letter a, each state ri of Ar and

each state sj of As, a new arc ri
a→ sj is added with the coeFcient (�r)i(s
s(a))j.

• Outputs: The scalar product 	s�s is computed once for all and there is an output on
each qi with the coeFcient (�r)i	s�s, the outputs of AS being unchanged.

For A ∗ , one adds a new state qn+1 with an input and an output bearing coeFcient
1, every coeFcient
i; j(a) is multiplied by (1 + �i	j) and new transitions qn+1

a→ qi

with coeFcient
∑

k	k
k; i(a) (i.e. the “charge” of the state qi after reading a) are
added.
In case K =B, one recovers the classical nondeterministic boolean constructions

implemented in softwares such as Automate [3], AMoRE [18], Grail [23] and SEA
[1].

3.2. Sharpness

Here, we study the eFciency of the formulas of Section 3.1 with respect to the
dimension of the output automaton. We prove that, if we consider the set of algo-
rithms such that the dimension of the output is only function of the dimension of the
input automata, there does not exist such an algorithm more eFcient than the classical
constructions.
Let B=(Si)16i6n be a 3nite sequence of series generating a stable module (i.e. the

linear span of B is stable under all the transition matrices) and S =
∑n

i=1	iSi. It is
well known that the triplet(

n∑
i=1

	iei; ([
i;j(a)]16i;j6n)a∈A;
n∑

i=1
〈Si|1〉e∗i

)

(where ei =(0; : : : ; 1; : : : ; 0) with the entry 1 at place i, e∗i the transpose of ei, and
a−1Si =

∑n
j=1 (
(a))ijSj for any letter a∈A) is a linear representation of S. Here, to

each series of one variable, S =
∑

p¿0 �pap, of rank n, over a 3eld K , we associate
the triplet (S) given by B=(a−pS)06p6n−1.

Remark 4. Of course, if a∈A, we have S ∈K〈〈a〉〉⊂K〈〈A〉〉 and this will neither
aTect the rank nor the following constructions.

First, in the case of one variable, Lemma 5 proves that the classical formulas (of
3rst kind) are optimal (with respect to the dimension of the output automaton).

Lemma 5. Let S�; n =1=(1− �a)n and Tn = an−1=(1− an) be Q-series.
(1) The rank of S�; n; S�; n + S";m (� �= "); and S�; n:S�;m are; respectively; n; n + m

and n+ m.
(2) The rank of Tn is n and that of T∗n is n+ 1.

G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120 111

Proof. Straightforward.

3.3. Density

Indeed, testing our package showed us that almost everytime the compound
K-automaton was minimal when the data were chosen at random. The crucial point in
the proof of Theorem 6 is the fact that certain polynomial indicators are not trivial.
To be – a bit (complete technicality is to be found below) – more precise, for a K-
automaton (K a 3eld), the condition “to be minimal” can be shown to be polynomial
in the sense that there is a polynomial P(i;
j; k(a); �l)16i; j; k; l6n;a∈A in the data which
vanishes only if A=(;
; �) is not minimal. Now we suppose that K =R or C and,
in order to show that, given a – say binary – law ♦, the lifted K-automaton A ♦ B

is almost every time minimal when A and B are chosen at random, it suFces to show
that the big polynomial P(data of A ♦ B) (which is a polynomial as all the laws ♦
under consideration here are) is not trivial.
The following theorem proves that if the data are chosen at random in bounded

domains, the compound K-automaton is almost surely minimal. More precisely:

Theorem 6. Let A be a 9nite alphabet and Ai =(i;
i; �i) two K-automata of dimen-
sion ni (i=1; 2); chosen at random within bounded nontrivial disks of K (K =R or
C). Then the probability that the K-automaton A1 +A2 (resp. A1 · A2; A

∗
1) be

minimal is 1.

Proof. The proof lays on the following lemma.

Lemma 7. There is a polynomial mapping P : K |A|×n2+2n → Ks such that P(;
; �)= 0
if and only if (;
; �) (a K-automaton of dimension n) is not minimal.

Proof. By a theorem of SchButzenberger [25], the representation (;
; �) is minimal
if and only if 	
(K〈A〉)=K1×n (resp.
(K〈A〉)�=Kn×1). As there is a pre3x (resp.
suFx) subset U ⊂A∗ (resp. V ⊂A∗) such that 	
(U) (resp.
(V)�) is a basis, we have
U ⊂A¡n (resp. V ⊂A¡n). Let A¡n = {w1 = 1; w2; : : : ; wm} (m=(|A|n − 1)=(|A| − 1)).
One constructs the m× n (resp. n×m) matrix

L =

	
(w1)
	
(w2)

...
	
(wm)

 (resp: M = (
(w1)� · · ·
(wm)�)):

These matrices have polynomial entries in the data. In view of what precedes, mini-
mality is equivalent to the nonnullity of some n× n-minor of L and of M .
Then, for every choice I ⊂ [1; m] with |I |= n, let (L

I (resp. (M
I) be the corresponding

n× n minor. The mapping P :K |A|×n2+2n →Ks with s=
(m

n

)2
given by the formula

112 G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120

(family of products)

P(;
; �) = ((L
I : (

M
J) I; J ⊂[1;m]

|I |=|J |=n

is polynomial and such that

P(;
; �) = 0 ⇔ A = (;
; �) not minimal:

End of the proof of Theorem 6. (1) For the two 3rst operations, let P+ =P(A1 + A2);
P · =P(A1 · A2), and prove that P+ (resp. P ·) is not trivial using (S�; n)=A1 and
 (S"; n)=A2, � �= " (resp. (S�; n)=A1 and (S�;m)=A2) extended to the alphabet A
in view of Remark 4. For the star operation, prove that P ∗ =P(A ∗

1) is not trivial
using (Tn)=A1.
(2) Now, if * :Kr →Ks is polynomial and not trivial, let + be the uniform probability

measure on the product of disks, then the probability that *(+) �=0 is 1 since *−1{0}
is closed with empty interior.

Corollary 8. Let A be a 9nite alphabet and A=(;
; �) be a K-automaton choosen
at random within bounded nontrivial disks of K (K =R or C). Then the probability
that A be minimal is 1.

Proof. Straightforward, as P is not trivial.

4. Dual laws

In this section, we prove that the laws of second kind which are (traditionally) known
to preserve rationality (Hadamard, shu:e and in3ltration product [22]) are in fact, up
to a deformation, the only ones to be both subalphabet compatible and de3ned by
duality (the general deformation will be denoted ↑ q). The last section is the beginning
of a discussion over the compatibility between the geometry of K-automata and the
dual laws.

4.1. Discussion

Let a; b∈A, u; v∈A∗, and �,; q be the law de3ned recursively by

1�,;q 1 = 1; a�,;q 1 = 1�,;q a = ,a;

au�,;q bv = ,(a(u�,;q bv) + b(au�,;q v)) + q-a;ba(u�,;q v)

with -a; b the Kronecker delta.
One immediately checks that this law is associative if and only if ,∈{0; 1}. We

get, here, the well-known shu:e (=�1;0), in3ltration (↑=�1;1) and Hadamard
(�=�0;1) products ([6, 16]). Then, �1; q is a continuous deformation between shu:e
and in3ltration. These laws can be called “dual laws” as they proceed from the same

G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120 113

template that we now describe. We use an implementable realisation of the lexico-
graphically ordered tensor product. Let us recall that the tensor product of two spaces
U and V with bases (ui)i∈I and (vj)j∈J is U ⊗V , with basis (ui ⊗ vj)(i; j)∈I × J , and for
the sake of computation, we impose that the set I × J be lexicographically ordered.
Let K〈A〉⊗K〈A〉 be the “double” noncommutative polynomial algebra that is the set

of 3nite sums P=
∑

u;v∈A∗〈P|u⊗ v〉u⊗ v, the product being given by (u1 ⊗ v1)(u2 ⊗ v2)
= u1u2 ⊗ v1v2.
The construction of dual laws is based on the following pattern:
Let c :K〈A〉→K〈A〉⊗K〈A〉, if for all w∈A∗, the set {w: 〈u⊗ v|c(w)〉 �=0} is 3nite

(in which case c itself will be called locally 9nite), then the sum

u �v =
∑

w∈A∗
〈u⊗ v|c�(w)〉w

exists and de3nes a (binary) law ��� on K〈A〉, dual to c�. Then, this extends to series
by

〈R �S|w〉 = 〈R⊗ S|c�(w)〉:

One can show easily that the three laws �, and ↑ come from coproducts de3ned
on the words by
(1) c�(a1a2 · · · an)= c�(a1)c�(a2) · · · c�(an),
(2) c
(a)= a⊗ a, c (a)= a⊗ 1 + 1⊗ a, c↑(a)= a⊗ 1 + 1⊗ a+ a⊗ a
and, generally, c,; q(a)= ,(a⊗ 1 + 1⊗ a) + qa⊗ a.
The preceding computation scheme has an immediate consequence on the implemen-

tation of the laws.

Proposition 9. Let R : (r;
r; �r) and S : (s;
s; �s). Then

R �S: (r ⊗ 	s;
r ⊗
s ◦ c�; �r ⊗ �s):

Proof. We verify it by duality. Indeed, for w∈A∗,

〈R⊗ S|c�(w)〉=
∑

u;v∈A∗
〈	r ⊗ 	s(
r ⊗
s(u⊗ v))�r ⊗ �s × u⊗ v|c�(w)〉

=
∑

u;v∈A∗
	r ⊗ 	s(
r ⊗
s(u⊗ v))�r ⊗ �s:〈u⊗ v|c�(w)〉

= 	r ⊗ 	s

(∑
u;v∈A∗

r ⊗
s〈u⊗; v|c�(w)〉(u⊗ v)

)
�r ⊗ �s

= 	r ⊗ 	s

(

r ⊗
s ∑

u;v∈A∗
〈u⊗ v|c�(w)〉(u⊗ v)

)
�r ⊗ �s

= 	r ⊗ 	s(
r ⊗
sc�(w))�r ⊗ �s:

Associated with, let us study among laws which ones are associative.

114 G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120

Proposition 10. Let K be a 9eld; and c� :K〈A〉→K〈A〉⊗K〈A〉 the alphabetic mor-
phism de9ned on the letters of A by

c�(a) =
∑

p;q¿0
�p;qap ⊗ aq

with c�(1)= 1⊗ 1 (�p;q = �p;q(a) may vary from one letter to one another).
(1) The morphism c� is locally 9nite if and only if �0;0 = 0.
(2) Providing �0;0 = 0; the following assertions are equivalent:

(a) The law ��� de9ned by 〈u��� v|w〉= 〈u⊗ v|c�(w)〉 (u; v; w∈A∗) is associative.
(b) The coe<cients �p;q satisfy the relations �p;q =0 for p or q¿2; �0;1; �1;0

∈{0; 1} and �0;1�1;1 = �1;0�1;1.
(3) Providing (2:2b); the element 1A∗ is a unit for ��� if and only if �0;1 = �1;0 = 1.

Proof. (1) We have c�(a)= �0;01⊗ 1 +
∑

p+q¿1�p;qap ⊗ aq, and then for all n¿0,
c�(an)= �n

0;01⊗ 1+
∑

p+q¿1"p;qap ⊗ aq for some "p;q. If �0;0 were not zero, the term
1⊗ 1 would appear in an in3nity of words, and then c� would not be locally 3nite.

Conversely, if �0;0(a)= 0 (for every letter), then c�(a)=
∑

p+q¿1 �p;qap ⊗ aq and
for all word w= a1 · · · an ∈A∗,

c�(w) =
∑

pi+qi¿1
16i6n

(
n∏

i=1
�pi;qi(ai)

)
ap1
1 · · · apn

n ⊗ aq1
1 · · · aqn

n :

As pi + qi¿1, we have
∑n

i=1(pi + qi)¿n, that is to say |w|6|u|+ |v| and Alph(w)=
Alph(u)∪Alph(v) with u= ap1

1 · · · apn
n and v= aq1

1 · · · aqn
n .

To summarize, the set

S = {w=〈u⊗ v|c�(w)〉 �= 0}

has bounded lengths and its alphabet is 3nite, S is then 3nite.
(2) First, remark that (2:2a) is equivalent to the condition

(Id⊗ c�) ◦ c� =(c� ⊗ Id) ◦ c�: (4)

The law ��� is associative if and only if for all words u1; u2; u3 ∈A∗, we have

(u1 �u2) �u3 = u1 �(u2 �u3)

that is to say that, for all w∈A∗,

〈(u1 �u2) �u3|w〉 = 〈u1 �(u2 �u3)|w〉:

But one has

〈(u1 �u2)���u3|w〉= 〈(u1 �u2)⊗ u3|c�(w)〉
= 〈u1 ⊗ u2 ⊗ u3|(c� ⊗ Id) ◦ c�(w)〉

G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120 115

and

〈u1 �(u2 �u3)|w〉= 〈u1 ⊗ (u2 �u3)|c�(w)〉
= 〈u1 ⊗ u2 ⊗ u3|(Id⊗ c�) ◦ c�(w)〉:

As u1, u2, u3, w are arbitrary, we get (c� ⊗ Id) ◦ c� =(Id⊗ c�) ◦ c�.
To show the equivalence between (2:2b) and (4), suppose 3rst that (4) holds. We

endow Nk with the lexicographic order (reading from left to right for instance) which
is compatible with addition and will be denoted ≺ (here, k =2; 3). Then, if it is not
zero, c�(a) can be written as

� Up; Uqa Up ⊗ a Uq +
∑

(p;q)≺(Up; Uq)
�p;qap ⊗ aq;

(Up; Uq) being the highest couple of exponents in the support. Then,

(c� ⊗ Id) ◦ c�(a) = � Up; Uqc�(a Up)⊗ a Uq +
∑

(p;q)≺(Up; Uq)
�p;qc�(ap)⊗ aq

= � Up+1
Up; Uq a(Up)

2 ⊗ a Up Uq ⊗ a Uq +
∑

(p;q;r)≺(Up2 ; Up Uq; Uq)
"p;q;rap ⊗ aq ⊗ ar;

but

(Id⊗ c�) ◦ c�(a) = � Up; Uqa Up ⊗ c�(a Uq) +
∑

(p;q)≺(Up; Uq)
�p;qap ⊗ c�(aq)

= � Uq+1
Up; Uq a Up ⊗ apq ⊗ a(Uq)

2
+

∑
(p;q;r)≺(Up;pq; Uq2)

"p;q;rap ⊗ aq ⊗ ar:

Necessarily, Up= Up2 and Uq= Uq2, which is only possible when Up∈{0; 1} and Uq∈
{0; 1} and then �p;q =0 for p or q¿2. The equality now reads

�1;0a⊗ 1⊗ 1 + �20;11⊗ 1⊗ a+ �0;1�1;1a⊗ 1⊗ a

= �21;0a⊗ 1⊗ 1 + �0;11⊗ 1⊗ a+ �1;0�1;1a⊗ 1⊗ a;

which implies (2:2b). The converse is a straightforward computation.
(3) The condition 1A∗ is a unit for ��� implies that, for a∈A, we have

1 �a = a �1 = a⇔〈1 �a|a〉 = 〈a �1|a〉 = 1

⇔〈1⊗ a|c�(a)〉 = 〈a⊗ 1|c�(a)〉 = 1

⇔

〈
1⊗ a|∑p;q¿0 �p;qap ⊗ aq

〉
= 1〈

a⊗ 1|∑p;q¿0 �p;qap ⊗ aq
〉
= 1

⇔ �0;1 = �1;0 = 1:

Conversely, the latter implies that, for each w∈A∗, 1��� w=w��� 1=w.

116 G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120

Remark 11. As for as commutative laws are concerned, the condition �p;q = �q;p is
suFcient. Moreover, the condition (2:2b) implies �0;1, �1;0 ∈{0; 1}.

In fact, the only dual laws which are associative ones are

c,;q(a) = ,(a⊗ 1 + 1⊗ a) + qa⊗ a

with parameters , and q such that ,∈{0; 1} and q∈K .

4.2. Usual dual laws

(a) Shu:e and in3ltration product (,=1, q∈{0; 1})

Proposition 12. Let R (resp. S) be a rational series and Ar =(r;
r; �r) (resp. As =
(s;
s; �s)) be a K-automaton which recognizes R (resp. S). Let n (resp. m) be the
dimension of Ar (resp. As).
(1) The automata corresponding to shu>e and in9ltration products are; respectively:

R S: (r ⊗ 	s; (
r(a)⊗ Ir + Is ⊗
s(a))a∈A; �r ⊗ �s); (5)

R ↑ S: (r ⊗ 	s; (
r(a)⊗ Is + Ir ⊗
s(a) +
r(a)⊗
s(a))a∈A; �r ⊗ �s): (6)

(2) The bound nm is sharp in both the cases.
(3) The density result of Theorem 6 holds.

Proof. Concerning point (2), an example reaching the bound for any rank is given
by the families of series Sn = an−1 and Tn = bn−1 of rank n. The shu:e product
Sn Tm = an−1 bm−1 (a �= b∈A) has a minimal linear representation of rank nm.
The same example is valid for the in3ltration product since, for a �= b, an ↑ bm =
an bm.
To prove (3), it suFces to consider P =P(A1 A2) which is nontrivial using

 (Sn)=A1 and (Tm)=A2.

The proposition yields the following.

De�nition 13. Let Ai =(i; 0i; �i) with i=1; 2 then we de3ne A1 A2 and A1 ↑ A2

by the formulas 5 and 6.

Remark 14. These laws are already associative at the level of K-automata.

(b) Hadamard product (,=0, q=1)
We recall that the Hadamard product [8, 26] of two series is the pointwise product of

the corresponding functions (on words). We can use the machinery above to describe
a K-automaton for it.

G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120 117

Proposition 15. Let R (resp. S) be a rational series and Ar =(r;
r; �r) (As =(s;
s;
�s)) be a K-automaton which recognizes R (resp. S). Let n (resp. m) be the dimension
of Ar (resp. As). A representation of the Hadamard product is

R� S: (r ⊗ 	s; (
r(a)⊗
s(a))a∈A; �r ⊗ �s)

and the bound is asymptotically sharp.

Proof. Let "(n; m)= sup rank(R) = n
rank(S) =m

rank(R� S). We claim that

lim sup
n;m→+∞

"(n; m)
nm

= 1;

(what we mean by “asymptotically sharp”).
Indeed, supposing K is a 3eld, let us consider the Hadamard product of two series

of the family

Sn =
∑
k¿0

ank =
1

(1− an)
:

The rank of Sn is n, and

Sn � Sm =
∑
k¿0

ank � ∑
k′¿0

amk′ =
∑
p¿0

〈Sn|ap〉〈Sm|ap〉ap

=
∑
k¿0

alcm(n;m)k = Slcm(n;m):

Thus, for n and m coprime, the rank of the product is nm, which proves the claim.

If K =R or C, the theorem of density holds when n and m are coprime.

4.3. Compatibility between the dual laws and the geometry of K-automata

Here we just indicate the beginning of a discussion which will be published at length
in a forthcoming paper. This discussion deals with compatibility between laws and the
geometry of K-automata. Let A be an alphabet and 1 be a dependence graph on it. 2

The following fact is well known. If two automata A1 and A2 are compatible with
the commutations of 1 (that is, for every state q and (a; b)∈ 1, q:ab= q:ba), then so is
their product shu:e A1 A2. We can address the problem in a more general way.

De�nition 16. Let R⊂A∗ ×A∗, we say that a (3nite) K-automaton is R-compatible if
and only if for every q∈Q, (u; v)∈R, q: u= q:v.

Now, due to the fact that for K =B or a 3eld the minimal model is the K-automaton
of quotients, we get the following result [17].

2 This notion has been extensively used in the modellization of parallelism [19] and job shop [11].

118 G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120

Proposition 17. Let K be a semiring and R⊂A∗ ×A∗. Let us consider the two fol-
lowing assertions:
(I) The K-automaton A=(;
; �) is R-compatible.
(II) The behaviour S =

∑
w∈A∗ 	
(w)�w is R-saturated (i.e. for every u; w∈A∗; if

(v1; v2)∈R; we have 〈S|uv1w〉= 〈S|uv2w〉).
Then
(i) Statement I implies II.
(ii) If K =B and A is the minimal DFA or if K is a 9eld and A is minimal; then

statements I and II are equivalent.

Proof. (i) It is easily seen that the fact that A is R-compatible is equivalent to the
fact that
 is R-compatible, that is to say (v1; v2)∈R ⇒
(v1)=
(v2). Then, assuming
(v1; v2) ∈ R, we have

〈S|uv1w〉 = 	
(u)
(v1)
(w)� = 	
(u)
(v2)
(w)� = 〈S|uv2w〉:

(ii) If K is a 3eld (resp. K =B), the minimal K-automaton (resp. the minimal DFA)
is, up to an isomorphism 3 which does not change the conclusion, the automaton of
quotients with
• States: Left quotients qw =(w−1S)w∈F ; F being 3nite.
• Transitions: Given by qw: a= a−1qw, which gives in turn qw: u= u−1qw.
Thus, if (u1; u2)∈R, we have

〈qw: u1|v〉 = 〈qw: u1|v〉 = 〈S|wu1v〉 = 〈S|wu2v〉 = 〈qw: u2|v〉

which proves the compatibility of A.

Now, one can set up informally the compatibility problem in the following general
frame.
Let ♦ be an n-ary law on Krat〈〈A〉〉 and ♦ be its – more nor less – natural lifting

to the level of automata.

Problem. What are the relators R⊂A∗ ×A∗ such that

A1; : : : ;An are R-compatible implies � (A1; : : : ;An) is R-compatible

We begin to review the rational laws, focusing on partial commutations. Table 1
summarizes the 3rst results [17].

3 A set theoretical morphism in the boolean case and a vector space conjugacy in the case of a 3eld.
Then, in every case, K-linear.

G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120 119

Table 1

Kind Rational Compatibility with Compatibility with
laws commutations other congruences

First × Yes All
+ Yes All
: No ?
∗ No ?

Second � Yes All
Yes Depends on K

↑ Yes as
↑q Yes as

Remark 18. Let us consider the automaton A given by the following graph:

The automaton A is compatible with the commutation ab≡ ba. This automaton is the
representation of the series S1 = ab+ ba in K〈〈a; b〉〉 and S2 = ab in K[[a; b]].

More generally, if a K-automaton A is compatible with a congruence ≡, then it
is the linear representation of a series S ∈K[[A∗=≡]] (function space of the quotient
monoid). Of course, according to Proposition 17, the converse holds when K is a 3eld
(or a PID) and A is minimal or K is B and A the minimal DFA.

5. Conclusion

Many computations over rational series can be lifted to the level of K-automata
and these classical constructions have been proved to be generically optimal. The im-
plementation of classical dual laws (shu:e, Hadamard and in3ltration products) has
suggested to us that other laws (which also preserve rationality) could exist. In fact,
we have proved that, under some natural hypothesis, there is no other choice than a
deformation of the classical case.
The study of the shu:e product over K-automata raises the question of the com-

patibility with some geometric patterns of the K-automaton (this is well known for
dependence relations). The answer to this problem is of course coeFcient dependent
and deserves a deeper study which will be the subject of a forthcoming paper.

Acknowledgements

We would like to thank J.M. Champarnaud for fruitful discussions and constructive
remarks.

120 G. Duchamp et al. / Theoretical Computer Science 267 (2001) 105–120

References

[1] P. Andary, P. Caron, J.-M. Champarnaud, G. Duchamp, M. Flouret, &E. Laugerotte, SEA: a symbolic
environement for automata, Proc. WIA’99, Postdam, 1999.

[2] J. Berstel, C. Reutenauer, Rational Series and Their Languages, Springer, Berlin, 1988.
[3] J.-M. Champarnaud, G. Hansel, Automate, a computing package for automata and 3nite semigroups, J.

Symbolic Comput. 12 (1991) 197–220.
[4] K. Culik II, J. Kari, Finite state transformations of images, Proc. ICALP 95, Lecture Notes in Computer

Science, Vol. 944, Springer, Berlin, 1995, pp. 51–62.
[5] G. Duchamp, C. Reutenauer, Un critXere de rationalit&e provenant de la g&eom&etrie noncommutative, Invent.

Math. 128 (1997) 613–622.
[6] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
[7] M. Fliess, Matrices de Hankel, J. Math. Pures Appl. 53 (1974) 197–224.
[8] M. Fliess, Sur divers produits de s&eries formelles, Bull. Sc. Math. 102 (1974) 181–191.
[9] M. Flouret, Contribution Xa l’algorithmique noncommutative, Ph.D. Thesis, Universit&e de Rouen, 1999.
[10] M. Flouret, &E. Laugerotte, Noncommutative minimization algorithms, Inform. Process. Lett. 64 (1997)

123–126.
[11] S. Gaubert, J. Mairesse, Modeling and analysis of timed Petri nets using heap of pieces, IEEE, Trans.

Automat. Control 44 (4) (1999) 683–697.
[12] T. Harju, J. KarhumBaki, The equivalence problem of multitape 3nite automata, Theoret. Comput. Sci.

78 (1991) 347–355.
[13] J. Hopcroft, D. Ullman, Introduction to Automata Theory Languages and Computation, Addison-Wesley,

Reading, MA, 1979.
[14] S.C. Kleene, Representation of Events in Nerve Nets and Finite Automata, in: C.E. Shannon,

J. McCarthy (Eds.), Automata Studies, Princeton, Univ. Press, Princeton, NJ, 1954, Study 34, pp.
3–41.

[15] W. Kuich, A. Salomaa, Semirings, Automata, Languages, Springer, Berlin, 1986.
[16] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
[17] J.G. Luque, MonoBYdes et automates admettant un produit de m&elange, Ph.D. Thesis, Universit&e de Rouen,

1999.
[18] O. Matz, A. Miller, A. PotthoT, W. Thomas, E. Valkena, Report on the Program AMore, Technical

Report, Institut fBur Informatik und Praktische Mathematik, Christian-Albrechts UniversitBat, Kiel, 1995.
[19] A. Mazurkiewicz, Traces, Histories and Graph: Instances of a Process Monoid, Lecture Notes in

Computer Science, Vol. 176, Springer, Berlin, 1984, 115–133.
[20] H.N. Minh, G. Jacob, N. Oussous, Input=output behaviour of non-linear control systems: rational

approximations, nilpotent and structural approximations, Analysis of controlled dynamical systems, in:
Gauthier, Bonnard, Bride, Kupta (Eds.), Progress and Control Theory, Birkhauser, Bessel, 1991, pp.
253–262.

[21] M. Mohri, F. Pereira, M. Riley, A rational design for a weighted 3nite-state transducer library, Proc.
WIA’97 (1997) 43–53.

[22] P. OchsenschlBager, BinomialkoeFtzenten und Shu:e-Zahlen, Technischer Bericht, Fachbereich
Informatik, T.H. Darmstadt, 1981.

[23] D.R. Raymond, D. Wood, Grail: A C++ library for automata and expressions, J. Symbolic Comput.
17 (1994) 341–350.

[24] A. Salomaa, M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer, Berlin, 1978.
[25] M.P. SchButzenberger, On the de3nition of a family of automata, Inform. and Control 4 (1961) 245–270.
[26] M.P. SchButzenberger, On a theorem of R. Jungen, Proc. Amer. Soc. 13 (1962) 885–890.

