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1. Introduction

Originally, “symmetric functions” are thought of as “functions of the roots of some polynomial” 
(Gelfand et al., 1995). The factorization formula

P (X) =
∏

α∈O(P )

(X − α) =
n∑

j=0

Xn− j(−1) j� j(O(P )), (1)

where O(P ) is the (multi-)set of roots of P (a polynomial), invites one to consider � j(.) as a 
“multiset (endo)functor”1 rather than a function K n → K (K is a field where P splits). But, here, 
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�k(X) = 0 whenever k > |X | and one would like to get the universal formulas i.e. which hold true 
whatever the cardinality of |X |. This set of formulas is obtained as soon as the alphabet is infinite 
and, there, this calculus appears as an art of computing symmetric functions without using any vari-
able. With this point of view, one sees that the algebra of symmetric functions (Macdonald, 1979)
comes equipped with many additional structures (comultiplications, λ-ring, transformations of alpha-
bets, internal product, . . . ). As far as we are concerned, the most important of these features is the 
fact that the (commutative) Hopf algebra of symmetric functions is self-dual. With the exception of 
self-duality, many features of the (Hopf) algebra of symmetric functions carry over to the noncommu-
tative level (Gelfand et al., 1995). This loss of self-duality has however a benefit: allowing to separate 
the two sides in the factorization of the diagonal series,2 thus giving a meaning to what could be 
considered a complete system of local coordinates for the Hausdorff group of the quasi-shuffle Hopf 
algebra. Indeed, the elements of the Hausdorff group of the (shuffle or quasi-shuffle) algebras are 
exactly, through the isomorphism k〈 〈Y 〉 〉 � (k〈Y 〉)∗ , the characters of the algebra (Bui et al., 2013a; 
Hoang Ngoc Minh, 2013a, 2013b). Then, letting S be a character and applying S ⊗ Id (necessarily 
continuous3) to the factorization

∑
w∈Y ∗

w ⊗ w =
↘∏

l∈LynY

exp(sl ⊗ pl), (2)

S can be decomposed through this complete system of local coordinates:

S =
∑

w∈Y ∗
〈S|w〉w =

↘∏
l∈LynY

exp(〈S|sl〉pl). (3)

This fact is better understood when one considers Sweedler’s dual of the (shuffle or quasi-shuffle) 
Hopf algebra H, which contains also, here, the group of characters4 and its Lie algebra, the space of 
infinitesimal characters. Such a character is here a series T such that

�∗(T ) = T ⊗ ε + ε ⊗ T (4)

and one sees from this definition that such a series, as well as the characters, satisfies an identity of 
the type

�∗(S) =
N∑

i=1

S(1)
i ⊗ S(2)

i (5)

for some double family (S(1)
i , S(2)

i )1≤i≤N . Then in (3), the character S is factorized as a product of 
elementary exponentials. This shows firstly, that one can reconstruct a character from its projections 
onto the free Lie algebra5 and secondly, that we get a resolution of unity from the process

character → projection → coordinate splitting,

coordinate splitting → exponentials → infinite product.

2 I.e. the left hand side of (2) which is an expression of the identity. Note that, in a “diagonal” tensor w ⊗ w , the left factor 
serves as a linear form whereas the right factor is a vector. This is why the left hand side will be endowed with the convolution 
of linear forms and the right hand side with the concatenation.

3 The series of the form ∑u,v∈Y ∗,gr(u)=gr(v) α(u, v)u ⊗ v where “gr” is a suitable grading (multihomogeneous degree for the 
shuffle, weight for the quasi-shuffle), form a closed subalgebra of k〈 〈Y ∗ ⊗ Y ∗〉 〉 filtered by the “diagonal” valuation griso(u ⊗ v) =
gr(u) = gr(v). Then S ⊗ I , isometric on the monomials, is necessarily continuous.

4 I.e. group-like elements for the dual structure.
5 For each l ∈ LynY the map S �→ 〈S | sl〉 pl is a projection into the free Lie algebra and these projectors are orthogonal 

between themselves.
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The key point of this resolution is precisely the coordinate system provided by the dual family of 
Poincaré–Birkhoff–Witt (PBW) homogeneous bases.

This paper is devoted to a detailed exposition of the machinery and morphisms surrounding this 
resolution (Equation (2)) and it is organized as follows: in Section 2 we give a reminder on noncom-
mutative symmetric and quasi-symmetric functions (Gelfand et al., 1995, Duchamp et al., 1997; Krob 
and Thibon, 1997, 1999; Krob et al., 1997); in Section 3 we focus on the combinatorial aspects of the 
quasi-shuffle Hopf algebra which will be introduced to obtain – via Schützenberger’s monoidal factor-
ization – a pair of bases in duality for the noncommutative symmetric and quasi-symmetric functions, 
encoded by words.6

2. Background

2.1. Notations, statistics about compositions

For any composition I = (i1, . . . , ik) of strictly positive integers,7 called the parts of I , the mirror 
image of I , denoted by Ĩ , is the composition (ik, . . . , i1). Let I = (i1, . . . , ik) ∈ (N+)∗ , the length and the 
weight of the composition I are defined respectively as the numbers l(I) = k and w(I) = i1 + . . . + ik . 
The last part and the product of the partial sum of the entries of I are defined respectively as the 
numbers lp(I) = ik and πu(I) = i1(i1 + i2) . . . (i1 + . . . + ik). One defines also

π(I) =
k∏

p=1

ip and sp(I) = π(I)l(I)!. (6)

Let J be a composition which is finer than I , i.e. J can be decomposed as J = ( J1, . . . , Jk), where 
each composition J p , for p = 1, . . . , k, satisfies w( J p) = ip .8 Let I and J be as above. One defines

l( J , I) =
k∏

i=1

l( J i), lp( J , I) =
k∏

i=1

lp( J i), (7)

πu( J , I) =
k∏

i=1

πu( J i), sp( J , I) =
k∏

i=1

sp( J i). (8)

2.2. Noncommutative symmetric functions

Let k be a commutative associative and unital Q-algebra. The algebra of noncommutative symmet-
ric functions, denoted by Symk = (k〈S1, S2, . . .〉, •, 1), is the free associative algebra generated by an 
infinite sequence {Sn}n≥1 of noncommuting indeterminates also called complete homogeneous sym-
metric functions (Gelfand et al., 1995). Let t be another variable commuting with all the {Sn}n≥1. 
Introducing the ordinary generating series one sets (Gelfand et al., 1995)

σ(t) =
∑
n≥0

Sntn, with S0 = 1, (9)

other noncommutative symmetric functions can be derived by the following relations

λ(t) = σ(−t)−1, σ (t) = exp(	(t)),
d

dt
σ(t) = σ(t)ψ(t) = ψ∗(t)σ (t), (10)

6 We will show how to derive the generating series of an analog of Hall–Littlewood functions (Gelfand et al., 1995), recalled 
in Examples 5 and 6, as a direct application (see (66)) of the factorization of the diagonal series given in (2).

7 I.e. I is an element of the free monoid (N+)∗ and the empty composition will be denoted here by ∅.
8 For example, J = (3, 1, 2, 2) = ((3, 1), (2, 2)) is finer than I = (4, 4). In the sequel, we will use the standard notation J � I .
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where 	, λ, ψ are respectively the following ordinary generating series

	(t) =
∑
n≥1

	n
tn

n
, λ(t) =

∑
n≥0

�ntn, ψ(t) =
∑
n≥1

�ntn−1. (11)

The noncommutative symmetric functions {�n}n≥0 (with �0 = 1) are called elementary functions. The 
elements {�n}n≥1 and {	n}n≥1 are called power sums of first and second kind respectively.

Let I = (i1, . . . , ik) ∈ (N+)∗ , one defines the products of complete and elementary symmetric func-
tions, and the products of power sums as follows (Gelfand et al., 1995)

S I = Si1 . . . Sik , �I = �i1 . . .�ik , � I = �i1 . . .�ik , 	I = 	i1 . . .	ik . (12)

It is established (Gelfand et al., 1995) that

S I =
∑
J�I

(−1)l( J )−w(I)� J , �I =
∑
J�I

(−1)l( J )−w(I)S J ; (13)

S I =
∑
J�I

� J

πu( J , I)
, � I =

∑
J�I

(−1)l( J )−l(I)lp( J , I)S J ; (14)

S I =
∑
J�I

	 J

sp( J , I)
, 	I =

∑
J�I

(−1)l( J )−l(I) π(I)

l( J , I)
S J ; (15)

�I =
∑
J�I

(−1)w( J )−l(I) � J

πu( J̃ , Ĩ)
, � I =

∑
J�I

(−1)w(I)+l( J )lp( J̃ , Ĩ)� J ; (16)

�I =
∑
J�I

(−1)w( J )−l(I) 	 J

sp( J , I)
, 	I =

∑
J�I

(−1)w( J )−l(I) π(I)

l( J , I)
� J . (17)

The k-algebra Symk possesses a finite-dimensional grading by the weight function defined, for any 
composition I = (i1, . . . , ik), by the number w(S I ) = w(I). Its homogeneous component of weight n
(free and finite-dimensional) will be denoted by Symkn and one has

Symk = k1Symk ⊕
⊕
n≥1

Symkn. (18)

The families {S I }I∈(N+)∗ , {�I }I∈(N+)∗ , {� I }I∈(N+)∗ and {	I }I∈(N+)∗ are then homogeneous bases of 
Symk . Recall that S∅ = �∅ = �∅ = 	∅ = 1.

One can also endow Symk with a structure of Hopf algebra, the coproduct �� being defined by 
one of the following equivalent formulas, with the convention that S0 = �0 = 1 (Gelfand et al., 1995)

��Sn =
n∑

i=0

Si ⊗ Sn−i, ���n =
n∑

i=0

�i ⊗ �n−i; (19)

���n = 1 ⊗ �n + �n ⊗ 1, ��	n = 1 ⊗ 	n + 	n ⊗ 1. (20)

In other words, for the coproduct �� , the power sums of the first kind {�n}n≥1 and of the second 
kind {	n}n≥1 are primitive. The noncommutative symmetric function S1 = �1 is primitive but {Sn}n≥2
and {�n}n≥2 are neither primitive nor group-like. Moreover, by (13), (14) and (15), one has

S1 = �1 = 	1 = �1. (21)

With �� , the concatenation and the counit ε defined by

∀I ∈ (N+)∗, ε(S I ) = 〈S I | 1〉, (22)

one gets the bialgebra, (k〈S1, S2, . . .〉, •, 1, ��, ε), over the k-algebra Symk. This algebra, N-graded by 
the weight is, as we will see in Theorem 3.2, the concatenation Hopf algebra.
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2.3. Quasi-symmetric functions

Let us consider also an infinite sequence {Mn}n≥1 of noncommuting indeterminates generating the 
free associative algebra9

QSymk ≡ (k〈M1, M2, . . .〉,•,1) (23)

and define the elements {MI }I∈(N+)∗ as follows10

M∅ = 1,∀I = (i1, . . . , ik) ∈ (N+)∗, MI = Mi1 . . . Mik . (24)

The elements {MI }I∈(N+)∗ of QSymk are also called the monomial quasi-symmetric functions. They are 
homogeneous polynomials of degree w(I). This family is then a homogeneous basis of QSymk .

With the pairing

∀I, J ∈ (N+)∗, 〈S I | M J 〉ext = δI, J , (25)

one endows the k-algebra QSymk with the structure of a bialgebra dual to Symk , (k〈M1, M2, . . .〉,
�, 1, �•, ε). Here,

1. the coproduct �• is defined by

∀I ∈ (N+)∗, �•(MI ) =
∑

I1,I2∈(N+)∗
I1•I2=I

MI1 ⊗ MI2 , (26)

2. the counit ε is defined by

∀I ∈ (N+)∗, ε(MI ) = 〈MI | 1〉, (27)

3. the product � is commutative and is associated, by (external) duality, to the coproduct �� . It can 
also be defined, for any I ∈ (N+)∗ , by

MI � M∅ = M∅ � MI = MI (28)

and for any I = (i, I ′) and J = ( j, J ′) ∈ (N+)∗

MI � M J = Mi(MI ′ � M J ) + M j(MI � M J ′) + Mi+ j(MI ′ � M J ′). (29)

Since the bialgebra QSymk is N-graded by the weight (as the dual of the N-graded bialgebra 
Symk):

QSymk = k.1QSymk ⊕
⊕
n≥1

QSymkn (30)

then it is, in fact, the convolution Hopf algebra. From the definitions, one has, for any K , I, J ∈ (N+)∗ ,

〈��S K | MI ⊗ M J 〉ext = 〈S K | MI � M J 〉ext; (31)

〈�•MK | S I ⊗ S J 〉ext = 〈MK | S I S J 〉ext. (32)

9 We here use the symbol ≡ to warn the reader that the structure of free algebra is used to construct the basis of QSymk
which will be later free as a commutative algebra (with the quasi-shuffle product) and by no means as a noncommutative algebra 
(with the concatenation product).
10 For the readers who are familiar with the standard representation, this (noncommutative) product corresponds to the or-

dered product of series.
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3. Monoidal factorization for Symk and QSymk

3.1. Combinatorics in shuffle Hopf algebras

Let Y = {yi}i≥1 be a totally ordered alphabet.11 The free monoid and the set of Lyndon words, 
over Y , are denoted respectively by Y ∗ and LynY . The neutral element of Y ∗ is denoted by 1Y ∗ . Let 
u = yi1 . . . yik ∈ Y ∗ , the length and the weight of the word u are defined respectively as the numbers 
l(u) = k and w(u) = i1 + . . . + ik . Let us define the commutative product over kY , denoted by μ, as 
follows (Bui et al., 2013b; Enjalbert and Hoang Ngoc Minh, 2012)

∀yn, ym ∈ Y , μ(yn, ym) = yn+m, (33)

or by its associated coproduct, �μ , defined by

∀yn ∈ Y , �μ yn =
n−1∑
i=1

yi ⊗ yn−i (34)

satisfying,

∀x, y, z ∈ Y , 〈�μx | y ⊗ z〉 = 〈x | μ(y, z)〉. (35)

Let k〈Y 〉 be equipped with

1. The concatenation • (or with its associated coproduct, �•).
2. The shuffle product, i.e. the commutative product defined by Reutenauer (1993), for any w ∈ Y ∗ ,

w �� 1Y ∗ = 1Y ∗ �� w = w (36)

and, for any x, y ∈ Y and u, v ∈ Y ∗ ,

xu �� yv = x(u �� yv) + y(xu �� v) (37)

or with its associated coproduct, ��� , defined, on the letters, by

∀yk ∈ Y , ��� yk = yk ⊗ 1 + 1 ⊗ yk (38)

and extended by morphism. It satisfies

∀u, v, w ∈ Y ∗, 〈��� w | u ⊗ v〉 = 〈w | u �� v〉. (39)

3. The quasi-shuffle product, i.e. the commutative product defined by Hoffman (2000), for any w ∈
Y ∗ ,

w 1Y ∗ = 1Y ∗ w = w, (40)

and, for any yi, y j ∈ Y and u, v ∈ Y ∗ ,

yiu y j v = y j(yiu v) + yi(u y j v) + μ(yi, y j)(u v) (41)

or with its associated coproduct, � , defined, on the letters, by

∀yk ∈ Y , � yk = ��� yk + �μ yk (42)

and extended by morphism. It satisfies

∀u, v, w ∈ Y ∗, 〈� w | u ⊗ v〉 = 〈w | u v〉. (43)

11 By y1 > y2 > y3 > . . . .
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Note that � and ��� are morphisms for the concatenation (by definition) whereas their cor-
responding �+ is not a morphism12 for the concatenation (for example, for the two delta(s), one 
has

�+(y2
1) = �(y2

1) − y2
1 ⊗ 1 − 1 ⊗ y2

1 = 2y1 ⊗ y1 , (44)

whereas �+(y1)
2 = 0).

Hence, with the counit e defined by

∀P ∈ k〈Y 〉, e(P ) = 〈P | 1Y ∗ 〉, (45)

one gets two pairs of mutually dual bialgebras

H�� = (k〈Y 〉,•,1,���,e), H∨
�� = (k〈Y 〉, ��,1,�•,e) (46)

H = (k〈Y 〉,•,1,� ,e), H∨ = (k〈Y 〉, ,1,�•,e) (47)

Let us then consider the following diagonal series13

D�� =
∑

w∈Y ∗
w ⊗ w and D =

∑
w∈Y ∗

w ⊗ w. (48)

By the Cartier–Quillen–Milnor and Moore (CQMM in the sequel) theorem (see Bui et al., 2013b), 
the connected N-graded, co-commutative Hopf algebra H�� is isomorphic to the enveloping algebra 
of the Lie algebra of its primitive elements which is equal to Liek〈Y 〉:

H�� ∼= U(Liek〈Y 〉) and H∨
�� ∼= U(Liek〈Y 〉)∨. (49)

Hence, let us consider

1. the PBW–Lyndon basis {pw }w∈Y ∗ for U(Liek〈Y 〉) constructed recursively as follows (Chen et al., 
1958) ⎧⎨

⎩
p y = y for y ∈ Y ,

pl = [ps, pr] for l ∈ LynY \ Y ,

pw = pi1
l1

. . . pik
lk

for w = li1
1 . . . lik

k ,

(50)

where (s, r) is the standard factorization14 of l, l1 . . . , lk belong to LynY such that l1 > . . . > lk ,
2. and, by duality,15 the basis {sw }w∈Y ∗ for (k〈Y 〉, ��), i.e.

∀u, v ∈ Y ∗, 〈pu | sv〉 = δu,v . (51)

It can be shown that this linear basis can be computed recursively as follows (Reutenauer, 1993)⎧⎪⎪⎨
⎪⎪⎩

sy = y, for y ∈ Y ,

sl = ysu, for l = yu ∈ LynY ,

sw = s�� i1
l1

�� . . . �� s�� ik
lk

i1! . . . ik! for w = li1
1 . . . lik

k

(52)

and l1 > . . . > lk, l1 . . . , lk ∈LynY .

12 In a general bialgebra �+(g) = �(g) − g ⊗ 1 − 1 ⊗ g + ε(g)1 ⊗ 1.
13 Here, in D�� and D , the operation on the right factor of the tensor product is the concatenation, and on the left is the 

shuffle and the quasi-shuffle, respectively. One, of course, has D�� = D , but we want to stress the fact the treatment will be 
different.
14 This is the factorization of l = sr in two Lyndon words such that r is of maximal length.
15 The dual family, i.e. the set of coordinate forms of a basis lies in the algebraic dual which is here the space of noncommu-

tative series, but as the enveloping algebra under consideration is graded in finite dimensions (by the multidegree), these series 
are in fact multihomogeneous polynomials.
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Hence, we get Schützenberger’s factorization of D��

D�� =
↘∏

l∈LynY

exp(sl ⊗ pl) ∈ H∨
��⊗̂H��. (53)

Similarly, by the CQMM theorem, the connected N-graded, co-commutative Hopf algebra H is iso-
morphic to the enveloping algebra of its primitive elements:

Prim(H ) = Im(π1) = spank{π1(w)|w ∈ Y ∗}, (54)

where, for any w ∈ Y ∗, π1(w) is obtained as follows (Hoang Ngoc Minh, 2013a, 2013b)

π1(w) = w +
∑
k≥2

(−1)k−1

k

∑
u1,...,uk∈Y +

〈w | u1 . . . uk〉 u1 . . . uk . (55)

Note that (55) is equivalent to the following identity, which will be used later:

w =
∑
k≥0

1

k!
∑

u1,...,uk∈Y ∗
〈w | u1 . . . uk〉 π1(u1) . . . π1(uk). (56)

In particular, for any yk ∈ Y , the primitive polynomial π1(yk) is given by

π1(yk) = yk +
∑
l≥2

(−1)l−1

l

∑
j1,..., jl≥1

j1+...+ jl=k

y j1 . . . y jl . (57)

As previously, (57) is equivalent to

yn =
∑
k≥1

1

k!
∑

s1+···+sk=n

π1(ys1) . . .π1(ysk ). (58)

By introducing the new alphabet Ȳ = { ȳ}y∈Y = {π1(y)}y∈Y , one obtains

H ∼= U(Liek〈Ȳ 〉) ∼= U(Prim(H )), (59)

H∨ ∼= U(Liek〈Ȳ 〉)∨ ∼= U(Prim(H ))∨. (60)

We consider

1. the PBW–Lyndon basis {�w }w∈Y ∗ for U(Prim(H )) constructed recursively as follows (Hoang 
Ngoc Minh, 2013a, 2013b)

⎧⎨
⎩

�y = π1(y) for y ∈ Y ,

�l = [�s,�r] for l ∈ LynY \ Y ,

�w = �
i1
l1

. . .�
ik
lk

for w = li1
1 . . . lik

k ,

(61)

where (s, r) is the standard factorization of l, and l1 . . . , lk ∈LynY such that l1 > . . . > lk ,
2. the basis {�w }w∈Y ∗ within16 k〈Y 〉, obtained by duality, i.e.

∀u, v ∈ Y ∗, 〈�u | �v〉 = δu,v . (62)

It can be shown that this linear basis can be computed recursively as follows (Bui et al., 2013a; 
Hoang Ngoc Minh, 2013a, 2013b)

16 Same remark as previously, the grading being here provided by the weight.
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�y = y, for y ∈ Y ,

�l =
∑
(!)

ysk1 +···+ski

i! �l1···ln , for l = ys1 . . . ysk ∈ LynY ,

�w = �
i1

l1
. . . �

ik
lk

i1! . . . ik! ,
for w = li1

1 . . . lik
k , with

l1 > . . . > lk ∈ LynY .

(63)

In (!), the sum is taken over all subsequences {k1, . . . , ki} ⊂ {1, . . . , k} and all Lyndon words l1 ≥ · · · ≥
ln such that (ys1 , . . . , ysk ) 

∗⇐ (ysk1
, . . . , yski

, l1, . . . , ln), where ∗⇐ denotes the transitive closure of the 
relation on standard sequences, denoted by ⇐ (see Bui et al., 2013a).

Example 1 (of {�w}w∈Y ∗ and {�w}w∈Y ∗ ).

�y1 = y1,

�y2 = y2 − 1
2 y2

1,

�y2 y1 = y2 y1 − y1 y2,

�y3 y1 y2 = y3 y1 y2 − 1
2 y3 y3

1 − y2 y2
1 y2

+ 1
4 y2 y4

1 − y1 y3 y2 + 1
2 y1 y3 y2

1 + 1
2 y2

1 y2
2 − 1

2 y2
1 y2 y2

1
− y2 y3 y1 + 1

2 y2
2 y2

1 + y2 y1 y3 + 1
2 y2

1 y3 y1 − 1
2 y3

1 y3 + 1
4 y4

1 y2,

�y3 y1 y2 y1 = y3 y1 y2 y1 − y3 y2
1 y2 − 1

2 y2 y2
1 y2 y1 − y1 y3 y2 y1 + y1 y3 y1 y2

+ 1
2 y2

1 y2
2 y1 − y2 y1 y3 y1 − 1

2 y2
1 y2 y1 y2 + 1

2 y2 y1 y2 y2
1

+ y2 y2
1 y3 + y1 y2 y3 y1 − 1

2 y1 y2
2 y2

1 − y1 y2 y1 y3 + 1
2 y1 y2 y2

1 y2,

�y1 = y1,

�y2 = y2,

�y2 y1 = y2 y1 + 1
2 y3,

�y3 y1 y2 = y3 y2 y1 + y3 y1 y2 + y2
3 + 1

2 y4 y2 + 1
3 y6 + 1

2 y5 y1,

�y3 y1 y2 y1 = y3 y1 y2 y1 + 2y3 y2 y2
1 + y3 y2

2 + 3
2 y2

3 y1 + 1
2 y3 y1 y3 + 1

2 y3 y4

+ 1
2 y4 y2 y1 + 1

4 y4 y3 + y5 y2
1 + 1

2 y5 y2 + 1
2 y6 y1 + 1

8 y7.

We get the following factorization for D (Bui et al., 2013a; Hoang Ngoc Minh, 2013a, 2013b)

D =
↘∏

l∈LynY

exp(�l ⊗ �l) ∈ H∨ ⊗̂H . (64)

3.2. Encoding noncommutative symmetric and quasi-symmetric functions by words

Proposition 1. Let Y(t) be the following ordinary generating series of {yn}n≥1:

Y(t) = 1 + ∑
n≥1 yn tn ∈ Q〈Y 〉�t �.

Then Y(t) is group-like, for the coproduct � .

Proof. We have successively (here, in order to make complete the correspondence S , we put y0 = 1)

� Y(t) =
∑
n≥0

[ ∑
r+s=n

ys ⊗ yr

]
tn =

∑
n≥0

∑
r+s=n

(ysts) ⊗ (yrtr).

Thus, � Y =Y⊗̂Y meaning Y is group-like (e(Y) = 1). �
Proposition 2. We have G = Prim(H ), where G is the Lie algebra generated by {〈logY | tn〉}n≥1 .
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Proof. The power series logY ∈ Q〈Y 〉�t � is primitive, so by expanding it, we obtain

logY(t) =
∑
k≥1

(−1)k−1

k

( ∑
s1,...,sk≥1

ys1 . . . ysk ts1 . . . tsk

)
.

By (57), we get, for any n ≥ 1, 〈logY | tn〉 = π1(yn) and since {π1(yn)}n≥1 generates freely Prim(H )

(Hoang Ngoc Minh, 2013a, 2013b), the expected results follow. �
Corollary 1.

Y(t) = 1 +
∑
n≥1

∑
k≥1

1

k!
∑

s1+···+sk=n

π1(ys1) . . . π1(ysk )t
n,

Ẏ−1 = −Y−1ẎY−1.

Proof. By virtue of (57) and (58), we get the first result. By using the identities YY−1 = Y−1Y = 1Y ∗
and then by differentiating, we get the second one. �
Corollary 2. Let us write the (group-like) power series Y−1 ∈Q〈Y 〉�t � as follows

Y(t)−1 = 1 +
∑
n≥1

Xn tn.

Then, for any n ≥ 1, one has

n∑
i=0

yi Xn−i = 0 and
n∑

i=0

Xi yn−i = 0.

From this, we obtain an inductive formula of Xn as follows

X0 = 1, ∀n ≥ 1, Xn = −
n∑

i=1

yi Xn−i .

Proof. The results follow immediately by identification of the coefficients of tn in the second identity 
of Corollary 1. �
Corollary 3. There exists a unique generating series L ∈Q〈Y 〉�t � satisfying Ẏ = LY and a unique generating 
series R ∈Q〈Y 〉�t � satisfying Ẏ = YR. Moreover, L and R are primitive and, defining

L(t) =
∑
n≥1

Ln tn−1 and R(t) =
∑
n≥1

Rn tn−1,

one has, for any n ≥ 1,

nyn =
n∑

i=1

Li yn−i and nyn =
n∑

i=1

yi Rn−i,

Ln =
n∑

i=1

iyi Xn−i and Rn =
n∑

i=1

i Xn−i yi .

Proof. On the one hand, by Proposition 1, one has

d

dt
Y(t) =

∑
n≥1

nyn tn−1.
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On the other hand, such generating series exist since

Ẏ = LY and Ẏ = YR,

⇐⇒ L = ẎY−1 and R = Y−1Ẏ.

Hence, identifying the coefficients of tn , the expected results follow. Moreover, since � commutes 
with d/dt and is a morphism for the concatenation,

� L = (Ẏ⊗̂Y +Y⊗̂Ẏ)(Y−1⊗̂Y−1)

= ẎY−1⊗̂YY−1 +YY−1⊗̂ẎY−1

= ẎY−1⊗̂1Y ∗ + 1Y ∗⊗̂ẎY−1,

� R = (Y−1⊗̂Y−1)(Ẏ⊗̂Y +Y⊗̂Ẏ)

= Y−1Ẏ⊗̂Y−1Y +Y−1Y⊗̂Y−1Ẏ

= Y−1Ẏ⊗̂1Y ∗ + 1Y ∗⊗̂Y−1Ẏ.

Hence, � L = 1Y ∗ ⊗̂L + L⊗̂1Y ∗ and � R = 1Y ∗ ⊗̂R + R⊗̂1Y ∗ meaning that L and R are primitive. �
More generally, with the notations of Corollary 3, one has

Proposition 3. For any k ≥ 1, there exists a unique generating series Lk ∈ Q〈Y 〉�t � satisfying Y(k) = LkY
and a unique generating series Rk ∈ Q〈Y 〉�t � satisfying Y(k) = YRk. The families {Lk}k≥1 and {Rk}k≥1 are 
defined recursively as follows

L1 = L and Lk = L̇k−1 +Lk−1L,

R1 = R and Rk = Ṙk−1 + RRk−1.

Proof. (By induction.) For k = 1, it is Corollary 3. Then, suppose that the property holds for any 
1 ≤ n ≤ k − 1, we see that, for n = k, such generating series exist since, by the induction hypothesis,

Y(k) = L̇k−1Y +Lk−1Ẏ = (L̇k−1 +Lk−1L)Y

Y(k) = ẎRk−1 +YṘk−1 = Y(RRk−1 + Ṙk−1).

Hence, Lk = L̇k−1 +Lk−1L and Rk = RRk−1 + Ṙk−1. �
Corollary 4. For any proper power series A, B, let adn

A B be the iterated Lie brackets defined by ad0
A B = B and 

adn+1
A B = [A, adn

A B], for n ≥ 0. Then,

Lk =
∑
n≥0

adn
log Y Rk

n! and Rk =
∑
n≥0

(−1)n
adn

log Y Lk

n! .

Proof. Since LkY =YRk then

Lk = YRkY−1 = exp(logY)Rk exp(− logY) = exp(adlog Y )Rk,

Rk = Y−1LkY = exp(− logY)Lk exp(logY) = exp(ad− log Y )Lk.

Expanding exp, the results follow. �
Proposition 4. Let G be the Lie algebra generated by {Rn}n≥1 (resp. {Ln}n≥1). Then G = Prim(H ).
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Proof. By Corollary 3, one has on the one hand,

∑
n≥1

� Rn tn−1 = 1Y ∗ ⊗
∑
n≥1

Rn tn−1 +
∑
n≥1

Rn tn−1 ⊗ 1Y ∗

=
∑
n≥1

(1Y ∗ ⊗ Rn + Rn ⊗ 1Y ∗)tn−1.

Thus, by identifying the coefficients of tn−1 in the first and last sums, one has � Rn = 1Y ∗ ⊗ Rn +
Rn ⊗ 1Y ∗ , meaning that Rn is primitive. On the other hand, according to basic properties of quasi-
determinants (Gelfand and Retakh, 1991, 1992, see also Gelfand et al., 1995), one has

nyn =

∣∣∣∣∣∣∣∣∣∣∣

R1 R2 . . . Rn−1 Rn

−1 R1 . . . Rn−2 Rn−1
0 −2 . . . Rn−3 Rn−2
...

...
...

...
...

0 0 . . . −n + 1 R1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

R1 R2 . . . Rn−1 Rn

−1 R1 . . . Rn−2 Rn−1

0 −1 . . . 1
2 Rn−3

1
2 Rn−2

...
...

...
...

...

0 0 . . . −1 1
n+1 R1

∣∣∣∣∣∣∣∣∣∣∣
. �

Hence, for any J = ( j1, . . . , jn) ∈ (N+)∗ , by denoting R J = R j1 . . . R jn , one obtains

yn =
∑

w( J )=n

R J

π( J )
= Rn

n
+

∑
w( J )=n,l( J )>1

R J

π( J )
. (65)

It means that yn is triangular and homogeneous in weight w.r.t. {Rk}k≥1. Conversely, Rn is also tri-
angular and homogeneous in weight in {yk}k≥1. The Rk ’s are linearly independent and generating 
and then constitute a new alphabet. In the same way, the Lk ’s are primitive, generating and linearly 
independent. The expected results follow.

Definition 1. For S = L or R , let

1. {�(S)
w }w∈Y ∗ be the families of H defined as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
(S)
yn = Ln if S = L

or Rn if S = R, for yn ∈ Y ,

�
(S)

l = [�(S)
s ,�

(S)
r ], for l = (s, r) ∈ LynY ,

�
(S)
w = (�

(S)

l1
)i1 . . . (�

(S)

lk
)ik , for w = li1

1 . . . lik
k

and l1 > . . . > lk, l1 . . . , lk ∈LynY .
2. {�(S)

w }w∈Y ∗ be the families17 obtained by duality with {�(S)
w }w∈Y ∗ :

∀u, v ∈ Y ∗, 〈�(S)
u | �(S)

v 〉 = δu,v .

Theorem 3.1.

1. The family {�(S)

l }l∈LynY forms a basis of the Lie algebra Prim(H ).

2. The family {�(S)
w }w∈Y ∗ forms a basis of U(Prim(H )) =H .

3. The family {�(S)
w }w∈Y ∗ is a basis of k〈Y 〉.

4. The family {�(S)

l }l∈LynY forms a transcendence basis of (k〈Y 〉, , 1Y ∗ ).

17 A priori they are series but, due to the grading in weight, they are in fact polynomials.
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Proof. The family {�(S)

l }l∈LynY of primitive upper triangular homogeneous in weight polynomials is 
generating and free and the first result follows. The second is a direct consequence of the PBW the-
orem. By duality with the second (and from the fact that the bases are homogeneous in weight), we 
get the third one and the last one is obtained as a consequence of the constructions of {�(S)

l }l∈LynY

and {�(S)
w }w∈Y ∗ . �

Corollary 5. We have, for S = L or R,

D =
↘∏

l∈LynY

exp(�
(S)

l ⊗ �
(S)

l ).

Example 2 (of {�(L)
w }w∈Y ∗ and {�(L)

w }w∈Y ∗ ).

�
(L)
y1 = y1,

�
(L)
y2 = 2y2 − y2

1,

�
(L)
y2 y1 = 2y2 y1 − 2y1 y2,

�
(L)
y3 y1 y2 = 6y3 y1 y2 − 3y3 y3

1 − 3y2
1 y2 y2

1 + 2y2
1 y2

2

− 6y2 y2
1 y2 + 2y2 y4

1 + 2y1 y2 y1 y2 − y1 y2 y3
1

+ 3y1 y3 y2
1 − 6y1 y3 y2 + y3

1 y2 y1 + 3y2
1 y3 y1

+ y4
1 y2 − 3y3

1 y3 − 2y2 y1 y2 y1 + 4y2
2 y2

1 − 6y2 y3 y1 + 6y2 y1 y3,

�
(L)
y3 y1 y2 y1 = 6y3 y1 y2 y1 + 2y2 y3

1 y2 − 6y2 y2
1 y2 y1 + 4y1 y2 y1 y2 y1

− 6y3 y2
1 y2 + 2y2

1 y2
2 y1 − 2y2

1 y2 y1 y2 − 6y1 y3 y2 y1

+ 6y1 y3 y1 y2 + 4y2 y1 y2 y2
1 − 6y2 y1 y3 y1 + 6y2 y2

1 y3

− 4y1 y2
2 y2

1 + 6y1 y2 y3 y1 − 6y1 y2 y1 y3,

�
(L)
y1 = y1,

�
(L)
y2 = 1

2
y2,

�
(L)
y2 y1 = 1

2
y2 y1 + 1

3
y3,

�
(L)
y3 y1 y2 = 1

6
y3 y1 y2 + 1

6
y3 y2 y1 + 1

6
y2

3 + 1

8
y4 y2 + 1

10
y5 y1 + 1

12
y6,

�
(L)
y3 y1 y2 y1 = 1

6
y3 y1 y2 y1 + 1

9
y3 y1 y3 + 1

3
y3 y2 y2

1 + 1

6
y3 y2

2 + 5

18
y2

3 y1 + 1

9
y3 y4

+ 1

8
y4 y2 y1 + 1

12
y4 y3 + 1

5
y5 y2

1 + 1

10
y5 y2 + 5

36
y6 y1 + 1

21
y7.

Example 3 (of {�(R)
w }w∈Y ∗ and {�(R)

w }w∈Y ∗ ).

�
(R)
y1 = y1,

�
(R)
y2 = 2y2 − y2

1,

�
(R)
y2 y1 = 2y2 y1 − 2y1 y2,

�
(R)
y3 y1 y2 = 6y3 y1 y2 + y2 y4

1 − 6y2 y2
1 y2 + y1 y2 y3

1 − 2y1 y2 y1 y2 − 3y3 y3
1
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− 3y2
1 y2 y2

1 + 4y2
1 y2

2 + 3y1 y3 y2
1 − 6y1 y3 y2 + 2y2 y1 y2 y1 − 6y2 y3 y1

− y3
1 y2 y1 + 3y2

1 y3 y1 + 2y4
1 y2 − 3y3

1 y3 + 2y2
2 y2

1 + 6y2 y1 y3,

�
(R)
y3 y1 y2 y1 = 6y3 y1 y2 y1 − 2y2 y3

1 y2 − 4y1 y2 y1 y2 y1 + 6y1 y2 y2
1 y2 − 6y3 y2

1 y2

+ 4y2
1 y2

2 y1 − 4y2
1 y2 y1 y2 − 6y1 y3 y2 y1 + 6y1 y3 y1 y2 + 6y1 y2 y3 y1

+ 2y2 y1 y2 y2
1 − 6y2 y1 y3 y1 + 6y2 y2

1 y3 − 2y1 y2
2 y2

1 − 6y1 y2 y1 y3,

�
(R)
y1 = y1,

�
(R)
y2 = 1

2
y2,

�
(R)
y2 y1 = 1

2
y2 y1 + 1

6
y3,

�
(R)
y3 y1 y2 = 1

6
y3 y1 y2 + 1

40
y6 + 1

15
y5 y1 + 1

24
y4 y2 + 1

6
y2

3 + 1

6
y3 y2 y1,

�
(R)
y3 y1 y2 y1 = 1

6
y3 y1 y2 y1 + 1

18
y3 y1 y3 + 13

2520
y7 + 13

360
y6 y1 + 1

15
y5 y2

+ 1

72
y4 y3 + 1

24
y4 y2 y1 + 1

18
y3 y4 + 2

9
y2

3 y1 + 1

6
y3 y2

2

+ 2

15
y5 y2

1 + 1

3
y3 y2 y2

1.

Note that the u = yi1 . . . yik ∈ Y ∗ are in one-to-one correspondence with the I(u) = (i1, . . . , ik) ∈
(N+)∗ (1Y ∗ corresponding to [], the empty list). Note also that noncommutative symmetric and quasi-
symmetric functions can be indexed by words in Y ∗ instead of compositions in (N+)∗ . Indeed, let J
be a composition, finer than I , associated to the word v and let J = ( J1, . . . , Jk) be the decomposition 
of J such that, for any p = 1, . . . , k, w( J p) = ip and J p is associated to up with w(up) = ip . Then, if 
(s1, . . . , sk) = I(v) � I(u), u has the unique factorization u = u1 . . . uk such that the weight of u j is s j

and this will be denoted as a bracketing of the word u.

Example 4. One has

• (1, 2, 2) � (1, (1, 1), 2) = (1, 1, 1, 2) ←→ y1 y2 y2 � y1(y1 y1)y2 = y1 y1 y1 y2.
• (1, 2, 2) � (1, 2, (1, 1)) = (1, 2, 1, 1) ←→ y1 y2 y2 � y1 y2(y1 y1) = y1 y2 y1 y1.
• (1, 2, 2) � (1, (1, 1), (1, 1)) = (1, 1, 1, 1, 1) ←→ y1 y2 y2 � y1(y1 y1)(y1 y1) = y1 y1 y1 y1 y1.

Hence, we can state the following

Definition 2. Let S and M be the following linear maps

S : (k〈Y 〉,•,1,� ,e) −→ (k〈S1, S2, . . .〉,•,1,��, ε),

u = yi1 . . . yik �−→ S(u) = S(i1,...,ik),

M : (k〈Y 〉, ,1,�•,e) −→ (k〈M1, M2, . . .〉, �,1,�•, ε),

u = yi1 . . . yik �−→ M(u) = M(i1,...,ik).

Theorem 3.2. The maps S and M are isomorphisms of Hopf algebras.

Corollary 6. Let G be the Lie algebra generated by {�y}y∈Y . Then, we have Symk
∼= U(G).
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Corollary 7. The families {M(l)}l∈LynY and {M(�l)}l∈LynY are pure transcendence bases of the free commu-
tative k-algebra QSymk .

Corollary 8. Let w = yi1 . . . yik ∈ Y ∗ be associated to I(w) = (i1, . . . , ik) ∈ (N+)∗ . Then, we have

S I = S(w),
	I

π(I)
= S(π1(yi1) . . . π1(yik )), � I = S(R w).

Proof. On the one hand, the power series Y, logY and L, R ∈ k〈Y 〉�t � are summable. On the other 
hand, by (9) and (10), since S is continuous and commutes with log, one can deduce

σ(t) = S(Y(t)) = 1 +
∑
k≥1

S(yk)t
k,

∑
k≥1

	k

k
tk = logσ(t) = S(logY(t)) =

∑
k≥1

S(π1(yk))t
k,

∑
k≥1

�ktk−1 = ψ(t) = S(R(t)) =
∑
k≥1

S(Rk)t
k−1,

∑
k≥1

tk−1�∗
k = ψ∗(t) = S(L(t)) =

∑
k≥1

S(Lk)t
k−1.

Thus, the expected result follows immediately. �
3.3. Monoidal factorization and dual bases for noncommutative symmetric and quasi-symmetric functions

Definition 3. With the notations of (64), let us consider the following noncommutative generating 
series {M(w)}w∈Y ∗ and {S(w)}w∈Y ∗

M =
∑

w∈Y ∗
M(w) w ∈ QSymk〈〈Y 〉〉,

S =
∑

w∈Y ∗
S(w) w ∈ Symk〈〈Y 〉〉.

Proposition 5. For the coproduct � , using (64), the generating series M is group-like (and then the gener-
ating series log M is primitive).

Proof. The first result follows from Friedrichs’ criterion (Hoang Ngoc Minh, 2013a, 2013b). By using 
the previous result and by applying the log map on the power series M, we get the second result. �
Corollary 9.

M =
↘∏

l∈LynY

exp(M(�l) �l) ∈ QSymk〈〈Y 〉〉,

log M =
∑

w∈Y ∗
M(w) π1(w) ∈ QSymk〈〈Y 〉〉.

Proof. The first identity is equivalent to the image of the diagonal series D by the tensor M ⊗ Id. 
The second one is then equivalent to the image of

logD = Id ⊗ π1(D )

by the tensor M ⊗ Id. �
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Finally, using (64) we deduce the following property which completes formula (120) given in 
Gelfand et al. (1995):

Corollary 10. We have, for S = L or R,

∑
w∈Y ∗

M(w)S(w) =
↘∏

l∈LynY

exp(M(�l) S(�l) =
↘∏

l∈LynY

exp(M(�
(S)

l ) S(�
(S)

l ).

Or equivalently,

∑
w∈Y ∗

Mw S w =
↘∏

l∈LynY

exp(M�l S�l ) =
↘∏

l∈LynY

exp(M
�

(S)

l
S

�
(S)

l
)

Proof. By Theorem 3.2, the first double identity is obtained as the image, by the tensor M ⊗ S , of 
the diagonal series D and the second as the image, by the tensor Id ⊗ π1, of the series M. �

Note that these formulas are universal for any pair of bases in duality one of them being of PBW 
type and they do not depend on the specific (infinite) alphabets, usually denoted by A and X , used 
to define S(A) ∈ Symk(A) and M(X) ∈ QSymk(X).

Example 5 (Cauchy type identity). Let A be a noncommutative alphabet and X a totally ordered com-
mutative alphabet. The symmetric functions of the noncommutative alphabet X A are defined by 
means of

σ(X A; t) =
∑
n≥0

Sn(X A)tn :=
←∏

x∈X

σ(A; xt).

Let {U I }I∈(N+)∗ and {V I }I∈(N+)∗ be linear bases of respectively Symk(A) and QSymk(X). The duality 
of these means that18

σ(X A;1) =
∑

I∈(N+)∗
MI (X)S I (A) =

∑
I∈(N+)∗

V I (X) U I (A).

Typically, the linear basis {U I }I∈(N+)∗ is the basis of ribbon Schur functions {RI }I∈(N+)∗ , and, by 
duality, {V I }I∈(N+)∗ is the basis of quasi-ribbon Schur functions {FI }I∈(N+)∗ :

σ(X A;1) =
∑

I∈(N+)∗
MI (X)

[ ∑
I, J∈(N+)∗

J�I

RI (A)

]

=
∑

J∈(N+)∗

[ ∑
I, J∈(N+)∗

I� J

MI (X)

]
R J (A)

=
∑

J∈(N+)∗
F J (X)R J (A).

Also, if one specializes the alphabets of the quasi-symmetric functions {MI }I∈(N+)∗ and {F I }I∈(N+)∗
to the commutative alphabet Xq = {1, q, q2, . . .} then the generating series σ(Xq A; t) can be viewed 
as the image of the diagonal series D by the tensor f ⊗ S:

σ(Xq A;1) = ( f ⊗ S)D , (66)

18 I.e. the formula (120) given in Gelfand et al. (1995).
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where f is the map defined as follows

f : Q[Y ] −→ Q[Xq][t], yi �−→ qit. (67)

Hence, one has

Example 6 (Generating series of the analog Hall–Littlewood functions). Let Xq = 1/(1 − q) denote the 
totally ordered commutative alphabet Xq = {· · · < qn < · · · < q < 1}. The complete symmetric functions 
of the noncommutative alphabet A/(1 − q) are given by the following ordinary generating series

σ(
A

1 − q
; t) =

∑
n≥0

Sn(
A

1 − q
)tn :=

←∏
n≥0

σ(A;qnt).

Hence, by specializing each letter xi ∈ X to qi in MI (X):

σ(
A

1 − q
;1) =

←∏
n≥0

∑
i≥0

Si qni

=
∑

I=(i1,...,ir )

I∈(N+)∗

[ ∑
n1>...>nr≥1

q
∑r

k=1 nkik

]
S I (A)

=
∑

I∈(N+)∗
MI (X)S I (A).

4. Conclusion

Once again, Schützenberger’s monoidal factorization plays a central rôle in the construction of pairs 
of bases in duality, as exemplified for the (mutually dual) Hopf algebras of quasi-symmetric functions 
(QSymk) and of noncommutative symmetric functions (Symk), obtained as isomorphic images of the 
quasi-shuffle Hopf algebra (H ) and its dual (H∨ ), by M and S respectively.
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