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In this paper, we study the free partially commutative Lie K-algebra L(A, t3) 
defined by a commutation relation f3 on an alphabet A. Its behavior is very similar 
to that of the free Lie algebra. Indeed, we obtain in particular a partially com- 
mutative version of Lazard’s elimination process which allows us to prove that the 
K-module L(A, 0) is free and to construct explicitly K-bases for it. We show 
also how the classical Witt’s calculus can be extended to L(A, 0). 0 1992 Academic 

Press, Inc. 

INTRODUCTION 

The free partially commutative monoid was introduced by P. Cartier and 
D. Foata in 1969 [CaFo] for the study of combinatorial problems in con- 
nection with word rearrangements. Since that time, this monoid has been 
the subject of many studies. They were principally motivated by the fact 
that the free partially commutative monoid is a model for concurrent com- 
puting. Indeed, the independance or the simultaneity of two actions can be 
interpreted by the commutation of two letters a and b that code them (see 
[Mz] for instance). 

The rational languages can be studied from the viewpoint of words and 
of automata or from the formal series viewpoint. In the same way, the 
study of the free partially commutative monoid has grown in two direc- 
tions. First, there is a current which is close to usual language theory and 
which tries to investigate how the classical notions can be extended to 
languages of partially commutative words, then called trace languages (see 
[Ch, Cope, Db.1, Db.2, Mt, Oc], for example). In this direction, let us 
recall the fundamental theorem of W. Zielonka (see [Zi] or [Pe]) that 
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characterizes the recognizable traces by introducing the notion of 
asynchronous automaton. On the other hand, a second research direction 
took shape around some algebraic structures related to the free partially 
commutative monoid. For instance, let us cite the studies of the free par- 
tially commutative group [Db.l ] and of the free partially commutative 
associative algebra (cf. [Du.l, Th, Sm]). 

Let us also point out that several results are true in both the com- 
mutative and non-commutative cases. Thus it is very interesting to explore 
what are the theorems that pass through all the commutation lattice in 
order to obtain general statements. In this way, we can give for instance the 
three following recent results: 

- The free partially commutative monoid embeds always in the free 
partially commutative group (see [ Db. 1 ] ). 

- The algebra of partially commutative polynomials on a semiring 
K is an integral domain (resp. left or right regular) if and only if K is also 
an integral domain (resp. left or right regular) (see [Du. 1 I). 

- The free partially commutative associative algebra can be 
naturally equipped with a Hopf algebra structure with antipode leading to 
formulas related to the notion of partially commutative subword and shullle 
(see [Sm]). 

In this direction also goes our paper: indeed, it is devoted to the study 
of the free partially commutative Lie algebra introduced in CDu.1 1. We 
show how to obtain bases of the module underlying this algebra and how 
to realize some computations of ranks. Let us recall that the free partially 
commutative Lie algebra can be defined by the presentation (cf. [Bo.~]) 

w, 8) = (4 c4 a, b, b) E 0 

In this paper, we show that it is possible to obtain information on a 
Lie algebra defined by homogeneous relators of the above kind. Thus, our 
work is to be considered as a contribution to.the “combinatorial Lie algebra 
theory” - that is to say; a study of Lie algebras given by generators and 
relators similar in its spirit to the classical combinatorial group theory (see 
[MKS] or [LySc]) - continuing the pioneer works of M. P. Schtitzenberger 
and of G. Viennot (see [SC.& Sc.2, Vi-l, Vi.21). 

Finally let us end with the structure of this paper. Section I is devoted 
to the definition of the free partially commutative Lie algebra and to the 
study of its enveloping algebra. In Section II, we prove a partially com- 
mutative version of Lazard’s elimination theorem (see [ Lz.21 or [Bo.~] ) 
that allows us to prove by a constructive method that the module L(A, 0) 
is a direct sum of free Lie algebras. This method permits us without any 
difficulty to construct bases for L(A, 0) with the classical methods known 
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for the free Lie algebra (cf. CVi.21). Finally, we devoted Section III to the 
computation of the ranks of the homogeneous components of L(A, 0) for 
the multidegree and the total degree. Owing to the fact that the enveloping 
algebra of L(A, 0) is the algebra of the corresponding partially com- 
mutative polynomials, we show how the classical Witt formulas (see 
[Bo.~]) can be generalized, hence obtaining new combinatorial numbers. 

0. PRELIMINARIES 

(1) The Free Partially Commutative Monoid 
In all this paper, A denotes an alphabet and 19 is a partial commutation 

relation on A, that is to say a symmetric subset of A x A’ which does not 
contain any element of the diagonal d, = {(a, a), a E A} of A x A. We often 
represent 19 by its commutation graph (see [Ch]). We call alphabet of 8 
and we denote Alph(B) the subset of A defined by 

Alph(8) = { y, 32~ A, (Y, Z) E e}. 

We say that a subalphabet B of A is totally commutative (resp. totally non 
commutative) for 8 iff we have 

Vb,cEB, b#c+(b,c)EO (resp. (b,c)$O). 

Then we denote M(A, f3) the free partially commutative monoid on A that 
is associated to 0. Let us recall that it is defined by 

M(A, 0) = A*/= 8, (F9%?.&) 

where =B denotes the finest monoid congruence of A* such that 

v(a, 4 E 4 ab=, ba. 

We denote by W the image of every word w of A* by the projection of A* 
onto M(A, 0) defined by (98%&), i.e., the equivalence class of w for = @. 

We refer to [Be] or to [Ha] for the notions of graph theory we need 
in the sequel. Nevertheless let us recall that a clique in a graph G = (X, U) 
is a complete subgraph C= (Y, V) of G, i.e., such that 

VY, z E y, (Y, z) E v. 

Thus the cliques of the graph of a partial commutation 8 correspond to the 
totally commutative parts of A for 8. The notation %6’(e) will denote here 
the set of the non empty cliques of 0 v A,. 

’ I.e., such that (a. b) E 0 * (b, a) E 0. 
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We need here several notions of degrees on the words of M(A, 0). Let us 
begin to introduce them on usual words: 

DEFINITION 0.1. Let A be an alphabet. Then we define for every w E A * 
and if necessary for every a E A the following notions: 

(i) The partial degree of w in a, denoted IwI,, is the number of a 
in w. 

(ii) The total degree of w is the length of w that we shall denote 1~1. 
(iii) The multidegree of w is the ,4-tuple IwIA = (IwI,),~~ E NCA! 

Observe that the congruence E* is compatible with all the previous 
notions. Indeed, we can easily check that for every U, u E A *, 

Hence this property permits us to speak of the partial degree, of the total 
degree, or of the multidegree of a word WE M(A, 0): one need only define 
it as the corresponding degree of the word w of A*. This allows us also to 
use the notations of Definition 0.1 for the words of M(A, 0). Then we can 
define the following homogeneous components of M(A, 0) for every multi- 
degree o! in NCA) and every total degree n in N: 

w4 e)= {w~w4 e), Iwl,=a> 

Notes. (1) We refer to [Bo,~] for the classical notations on multi- 
degrees we use in Section III of this paper. 

(2) For every letter UEA, we denote by E, the element of NCA) all of 
whose entries are 0 except the ath which is 1. 

(2) The Free Lie Algebra 
We suppose in all this paper that K is a fixed commutative ring not 

reduced to 0. The term “algebra” always means K-algebra. We refer also to 
[Vi.21 or to CBo.23 for the definition of the free Lie K-algebra L(A) con- 
structed on the alphabet A and to [Bo.l ] for the elementary properties of 
a Lie algebra. 

With the universal property of the free Lie algebra (see [Bo.~]), we can 
define the following notion that will be of frequent use in this paper: 

DEFINITION 0.2 [Bo.~]. Let Y be a Lie K-algebra and let T be a subset 
of Y. Let us denote i (resp. iT) the natural injection of T into Q (resp. L(T)) 
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and let j(3, T) be the unique Lie K-algebra morphism such that the 
following diagram becomes commutative: 

T A$? 

Then, the subset Tc $9 is said to be basic if and only if the Lie morphism 
j(%, T) is injective: in this case, the Lie subalgebra j(9, T)(L( T)) is called 
an embedded free Lie subalgebra of 9. 

Note. In the sequel, when T is a basic family of a Lie algebra ‘3, there 
will never be any danger of confusion: hence the Lie subalgebra 
j(S, T)(L( T)) of 93 is denoted by L(T). 

We also use in the whole paper the following convention: for all subsets 
U, V of L(A), [U, P’] denotes the set 

[U, Jq={[u,u], UEU, UE v> 

and not the K-module generated by the above family as it is usually 
defined. 

Let L(A) the free Lie algebra on A. Then, for every word w E A * and 
every element z of L(A), we define ad w.z by the induction relations 

ad l.z=z 

Ifw=xuwithxEAanduEA*,adw.z=[x,adu.z]. 

In the same way, we inductively define the families (dm),, a, of elements 
of the free Lie algebra by 

dl = A and Vn22, &I$= lJ [dp,dJ- (0). 
p+q=n 

For every n 2 1, an element of -01, is called an n-fold Lie monomial or a 
homogeneous Lie monomial of degree n. It is easy to show that the family 
of the Lie monomials of arbitrary degree is a generating family for the 
K-module L(A) (cf. CBo.23 or [Ja]). 

Let L(A) be the free Lie algebra on the alphabet A and let ZZ? be a subset 
of L(A). Then we shall denote (s$)~(~) the Lie ideal of L(A) generated 
by ~44. 

The following result will be essential in order to prove that the K-module 
L(A, 0) is free: it is Lazard’s elimination theorem [Bo.~]. Observe that only 
a very reduced from of this theorem, corresponding to the case JBI = 1, was 
in fact used to construct bases of L(A) (see [Vii, Vi.21 or [Bo.~]). 
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THEOREM 0.1. Let A be an alphabet and let B c A. Then the family 

T= {ad w.z, WEB*, ZEA-B} 

is a basic family of the Lie ideal F generated by A - B. More precisely, the 
Lie algebra morphism rp from L(T) into L(A) defined by 

VwcB*, VZEA-B, q(ad w.z) = ad w.z 

is a bijection from L(T) onto F. Moreover, if F and L(T) are identified, the 
K-module L(A) admits the following decomposition in direct sum: 

L(A) = L(B) 8 L(T). 

Note. Thus, under the hypotheses of Lazard’s elimination theorem, we 
have 

CL(T), L(A)1 =L(T). 

For every alphabet A (not necessarily finite) totally ordered by <, we 
denote by 9’~~ the family of Lyndon words on A (see CVi.21, [Lo], or 
[BePe]). For every word f of 5’gA, there exists a decomposition, 

f=gh with gE9’pA, hEA+, 

where g is of maximal length. It can be shown (see [Vi.2]) that h E 9&. 
This permits us to define a bracketing mapping n from 9’~~ into L(A) by 

VaEA, z(a) = a and for every f = gh E 9~~ as above, 

n(f)= Cdgh W)l 

It can be proved (cf. CVi.21) that ~(3’9~) is a basis of the free K-module 
L(A) called the Lyndon basis. It is obviously not the only way to obtain a 
basis for L(A), but this basis has remarkable properties that are very 
convenient for practical uses (cf. CVi.21). 

I. THE FREE PARTIALLY COMMUTATIVE LIE ALGEBRA 

(1) DEFINITION. We denote by Z, the Lie ideal of L(A) defined by 

lo= <[a, bl, (a, b)E(J). 

Then we can give the following natural definition: 

DEFINITION 1.1. Let A be an alphabet and let 8 be a relation of partial 
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commutation on A. Then we call free partially commutative Lie algebra on 
A the Lie algebra denoted L(A, (3) and defined by 

L(A, 0) = L(A)/Z+ 

Remark. The free partially commutative Lie algebra is of course the 
solution of a universal problem similar to the classical one for the free Lie 
algebra [Du.~]. Indeed, if A is an alphabet equipped with a partial com- 
mutation 8, if 99 is a Lie K-algebra, and if f is a mapping from A into ‘9 
such that 

Vu, b) E 0, [f(a), f(b)1 = 0, 

then there exists a unique Lie algebra morphism f from L( A, 0) into ‘9 that 
extends f, i.e., such that the following diagram is commutative (where i, is 
the natural injection from A into L(A, t9)): 

Notation. Let p/, denote the canonical projection of L(A) on L(A, 0). 
Then we can define the homogeneous components of L(A, 0) from the 
corresponding homogeneous components of L(A) (cf. [Bo.~] ) by 

L&4 0) = ,hW,(A )I and Lz(A, 0) = Pe,(MA)) 

for every multidegree c1 E NCA) and every total degree n E N. 

Remark. Since IO is generated by homogeneous elements, L(A, 0) 
inherits by quotient of the graduations of L(A) for the total degree and the 
multidegree (cf. [Bo.~]). Thus we can write 

WC 0) = 0 L,(A, O)= @ L,(A, 0). 
NE N(A) IlEN 

(2) The Enveloping Algebra of L(A, 0) 
We study in this section the enveloping algebra of L(A, 0). First, let us 

recall the following definition (cf. [Du.l, Du.21): 

DEFINITION 1.2. Let A be an alphabet and let 8 be a partial commuta- 
tion relation on A. Then we call free partially commutative K-algebra and 
we denote K( A, 0) the K-algebra of the monoid M(A, 0) (cf. [Bo.~] ). 
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Notation. We define the homogeneous components of K(A, 6) by 

K,(A, fl)= @ K.m and K,(A, e)= @ K.m 
me M.(A,@ mE M&4,0) 

for every multidegree a E NCA) and every total degree n. 

Let us introduce now JO, the two-sided ideal of K(A), which is 
generated by the following commutators: 

JO= (ab-ba, (a, b)EO). 

Then the following result shows that the free partially commutative 
algebra is the quotient of the free associative algebra by J,: 

PROPOSITION 1.1. Let us take the previous notations. Then the two 
following K-algebras are isomorphic: 

K(A, 0) 1: K(A)fJB. 

Proof Let us consider the unique K-module morphism cp from K( A ) 
into K(A, 0) defined on the words of A* by the relation 

VWEA*, q(w) = c. 

Since cp becomes clearly a K-algebra morphism, it suffices for proving the 
proposition to show that we have 

Kercp=Je. (1) 

Since the inclusion JO c Ker cp is obvious, it suffices to prove that every 
element of Ker cp is in JO to obtain (1). For every P E Ker cp, we have 

P= 1 p,w with 1 p,W=O. (2) 
WEA* W.CA’ 

Let twi)i= kn denote a set of elements in the support of P which is a section 
of the equivalence classes for E e of the elements in the support of P. Then 
we can write 

Then, according to (2), we have for every i in [l, n] 

(3) 
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Let us fix now iE [II, nj and let us work only with the elements of the 
support of P that are equivalent to wi for the congruence E,. Then 
we have 

C PWw= C PWw- 1 pw wi= 1 pw.(W-Wi). 
( > 

(4) 
W’ E w, n’ # W’, W’ # w, II’ # w, 

But, for every w =# wi, there exists a sequence (u,),.= l,m of elements of A* 
such that the relations hold (cf. [Ch]): 

Vje 10, m - 11, 

ug = w, u,=wj 

uj = xjabyj and uj+ i = xjbayj with (a, b) E 8. 

Hence, for every i, we deduce that 

m-l m-1 
w-wi=uO-u,= 1 (u~---u,+~)= c xj(ab-ba)y,EJ,. 

j=O j=O 

Thus, according to (4) and (3), our computation shows that P belongs to 
JO. This is exactly that we wanted to prove. 1 

Then we obtain again a result of CDu.23 which gives the enveloping 
algebra of the free partially commutative Lie algebra. It generalizes the 
classical corresponding theorem for the free Lie algebra (cf. [Bo.~] ). 

COROLLARY 1.2. The enveloping algebra of L(A, 0) is K(A, 0). 

Proof: This is an immediate consequence from Proposition 3 and from 
Corollary 5 of Chap. 2 of [Bo.l 1, from Proposition I.1 and from the fact 
that L(A) is a free K-module (see [Vi.21 or [Bo.~] ). 1 

II. A BASIS OF L(A, 0) 

(1) Preliminaries 

Let X be an alphabet not necessarily finite. Then let us consider a subset 
Y of X and a family Dif = (zj - z;)~~,, where zi, zt are letters of X for 
every i in I. We study the ideal Z of L(X) defined by 

Z= < K DO,,,, 

since in the next section we reduce the study of a K-basis for L(X, 0) to 
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those of a K-basis for a Lie algebra of the kind L(X)/]. For our study, it 
will be useful to introduce the equivalence relation E on X defined by 

x s x’ 0 3,) . . . . i, fz I, 
x=zi, and x’=zi,, 
V’~[l,n-11, f(z,-z,+,)EDif. 

It is clear that = is really an equivalence relation since x = x’ iff there exists 
a chain from x to x’ in the graph constructed on X where we put an edge 
between two vertices z, z’ iff z - z’ E Dif or z’ - z E Dif. For every x E A’, let 
us denote C(x) the equivalence class of x for -. We introduce finally 

9 = tzi)is R9 

a section of the equivalence classes for = which contain a letter z occurring 
in Dif (i.e., such that there exists z’ with f (z - z’) E Dif). Then we can give 
the result: 

PROPOSITION 11.1. With the previous notations, we have 

Proof: In order to simplify our proof, let us set 

Thus we shall show that Z= J. First, let i be in R and z in C(z,). Hence, 
by definition of =, there exists a sequence (x~)~= I,n of letters of X and a 
sewen= (&j)j= I,~ in (-1, l} such that 

VjE [l, n - 11, cj(xj-xj+i)EDif and zi=x,, z=x, 

We deduce from this that 

n-1 
zi-Z=Xl-Xn= 1 (Xj-Xj+l)EZ. 

j=l 

Therefore it follows immediately that Jc I. Conversely, it is clear that for 
every i E Z, z; = zf. Then let us denote z the representative in the family W 
of the equivalence class C(z,‘) = C(zT). Then, we can write 

z;-zf=(zf-z)+(z-zf)d 

This implies easily that Zc J and finally that the equality Z= J holds. m 
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We end this preliminary study by a last reduction of the form of I. Thus, 
let us introduce the subset S of R defined by 

S= (iER, C(z,)n Y#@}. 

Then we can easily establish 

COROLLARY 1.2. With the previous notations, we have 

I= y” U c(zi)3 (Zi-Z)itR-S,;EC(Z,)-{=,} . 
t isS ) 

(PI 

Proof: This is an easy consequence of the previous proposition that we 
let the reader verify. 1 

Note that with this last writing we do have 

This approach and simplification work being done, we can now give our 
main result for this section: 

PROPOSITION 11.3. With the previous notations, let us set 

u u {Zi}. 
isR-S 

Then, the K-module L(X) is a direct sum of Z and of the free Lie subalgebra 
L(Z) of L(X) having Z as basic subset: 

L(X) = Z@ L(Z). 

ProojI First, observe that Z is in fact equal to 

u C(Zi) - {ZJ). 
isR--S 

Since Z is a subalphabet of X, it follows that it is really a basic family that 
generates a free Lie subalgebra of L(X). We now prove that L(X) is the 
sum of Z and of L(Z), i.e., that we have 

L(X) = z+ L(Z). (1) 
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To prove (l), we show by induction on the degree d of a Lie monomial 
a of L(A) that we always have the relation 

a E z+ L(Z). (2) 

First, let us suppose that d = 1. Then, several cases can occur: either a is 
a letter of Y or of C(z,) for some i E S and then a E Z according to IL2; or 
GL is a letter of C(z,) - {zi} for i E R - S, in which case we can write 

by definition of Z and by Corollary 11.2; or, finally, a E Z and then we can 
at once conclude that a E L(Z). Hence this ends proving (2) when d = 1. 
Let us suppose now that the relation (2) is proved for every degree <d 
and let a be a Lie monomial of L(A) of degree d. Then, we can write 

where U, u are Lie monomials of degree <d. Applying the induction 
hypothesis to u and to v, we obtain 

a E [Z+ L(Z), z+ L(Z)] t [I, Z] + [Z, L(Z)] + [L(Z), L(Z)] c z+ L(Z) 

since Z is a Lie ideal of L(A). Therefore this ends our proof of (2) since it 
shows that L(A) is the sum of Z.(Z) and of Z. Thus, we now prove that this 
sum is direct, that is to say that we have 

z+ L(Z) = Z@ L(Z). (3) 

To show this result, it in fact suffices to prove that 

In L(Z) = (0). (4) 

Thus let us consider the Lie algebra endomorphism 1 of L(X) defined on 
the letters of X by 

v.YE y” iJ c(zih A(.Y)=o, VZEZ, i(z)=z 
isS 

ViER-S, VXEC(Z~)- (zi}, Iz(X)=Zi. 

Then it is clear that A induces the identity on L(Z) and the zero morphism 
on Z according to Corollary 11.2. The relation (4) follows now easily. Thus, 
we did show that L(X) was a direct sum of Z and of L(Z). 1 

The following result follows immediately from the previous proposition: 
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COROLLARY 11.4. Let us take the notations of the previous proposition. 
Then we have the following isomorphism of the K-module: 

L(X)/Z N L(Z) 

Note. This shows that we can take any basis of L(Z) and in particular 
the Lyndon basis in order to obtain a basis for L(X)/Z. 

(2) A Partially Commutative Version of Lazard’s Elimination Theorem 
In this central section of our paper, we prove that the underlying 

K-module to every free partially commutative Lie algebra is a direct sum 
of free Lie algebras. But let us begin with some notations. 

Up to now, B has been a fixed non empty subalphabet of a given 
alphabet A. Lazard’s elimination theorem allows us to write 

L(A) = L(B) 63 L(T), (aa 

where T is a basic subset generating the ideal L(T) of L(A) and defined by 

T={adw.z, WEB*, ZEA-B). 

Let us introduce now the two ideals Z, and I, of L(B) and of L(T): 

I, = I, n L(B) and Z,=Z,n L(T). 

Before giving our main result that makes precise the structure of the ideals 
ZB and I,, we prove the following lemma: 

LEMMA 11.5. Let a be a Lie monomial of L(A). Then, we have 

aEL(B) or aE L(T). 

Proof We establish this lemma by induction on the degree d E N * of 
an homogeneous Lie element a. At first, observe that if d = 1, we have 

acBc L(B) or aEA-BcTcL(T). 

Thus this shows our result when d = 1. Now let d be an integer 22 and 
let us suppose that our result is proved at every order cd. Then we can 
write 

a = Cu, ~1, 

where u and u are homogeneous Lie monomials of L(A) of degree cd. 
Hence we obtain by our induction hypothesis applied to u and v 

a c CUB), L(B)1 or aE CUT), L(T)1 or a E CL(B), L(T)]. 
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In the two first cases, we have clearly aE L(B) or aE L(T), and in the last 
case, a E L(T), since L(T) is an ideal of L(A). Thus this ends our proof. 1 

COROLLARY 11.6. With the previous notations, we have 

z(J=zB@zT. 

Proof Indeed, observe that Ze is generated as Lie ideal by Lie 
monomials. Thus it follows that the K-module IO has a generating system 
made up with Lie monomials. But every Lie monomial a of Z, belongs 
either to L(B), or to L(T) according to the previous lemma. This implies 
obviously that 

The corollary follows now easily from this last inclusion since according to 
(89) and to the definition of I, and I,, the sum of the K-modules Z, + I, 
is necessarily direct. Moreover, the converse inclusion is obvious. 1 

Before stating our main theorem, let us introduce some more notations: 

T1={adwb.z, WEB *, bEB, ZEA-B, (b,z)&l} 

T,={adwbcv.z-adwcbv.z, w,z~B*, b,cEB, (b,c)EO,zEA-B} 

SY = {[b, C-J, 6, c E B, (b, c) E O}. 

We can now give our main result that deals with the precise structure of 
generating systems for the two ideals I, and L,: 

THEOREM 11.7. Let A be an alphabet and 8 a partial commutation rela- 
tion on A. Let us consider a non empty subset B of A such that A - B is a 
totally non commutative subset for 8. Then, we have with the previous 
notations 

zIi= e%.,B, and IT= CT, u Tz)L(T). 

Proof We call Lie B-monomial every Lie monomial a of L(A) of the 
form 

a= [ . . . . [a,b] . . . . ] with (a, b) E 8. 

By construction, the ideal Z, is generated as a K-module by the family of 
the Lie O-monomials. But, according to Lemma 11.5, every Lie monomial 
of L(A) and hence every Lie O-monomial belongs either to L(B), or to 
L(T). It follows that the ideal I, (resp. Z,) is generated as a module by the 
Lie &monomials of L(A) which are in IT (resp. in ZB). This remark being 
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done, we can begin to prove our theorem. First, let us establish the part 
concerning B: 

LEMMA 11.8. With the previous notations, we have 

Is = <~)uL?,. 

ProoJ: First, in order to simplify our proof, let us denote 

D = <~)L(B,. 

Then note that it is clear that g is included into L(B). Thus this implies 
the obvious inclusion: D c Is. To prove the converse inclusion, it suffices 
according to the preliminary remark to show that every Lie &monomial LX 
of L(A) that is in I, belongs to D: we establish this result by induction on 
the homogeneous degree d of the Lie B-monomial CI. First, note that for 
the minimal value d = 2 of a Lie Q-monomial in I,, IX can be written as 

a= [b, c] with (b, c) E 8. 

Since a belongs to L(B) that can be identified to the sub-Lie-K-algebra of 
K( A ) generated by B (cf. [Bo.l ] ), we can easily obtain that b, c E B. It 
follows immediately that c1 belongs to g and hence to D. Let us suppose 
now that d > 3 and that our result is proved at every order cd. Then we 
can write 

a= *c&VI, 

where u and v are Lie monomials of degree <d and where it can be sup- 
posed for instance that v is a Lie e-monomial. According to Lemma II.5 
and since L(T) is a Lie ideal of L(A), u and v necessarily belong to L(B). 
Thus VEZ, and hence v E D according to the induction hypothesis. This 
implies that 

aE [L(B), D] c D. 

This ends our induction and proves the lemma. 1 

Before beginning to prove the second part of the theorem, let us intro- 
duce the notation that will simplify our proof: 

H= CT, u Tz)w). 

We now prove some intermediate lemmas: 

LEMMA 11.9. With the previous notations, we have 

CUB), HI = H. 
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ProoJ We show by induction on the degree d of a Lie monomial a of 
L(B) that we have the result 

that will prove our lemma. At first, observe that if d = 1, we have 

a=bEB*[a,H]=adb.HcH, 

since by construction H is obviously ad(b)-stable for every letter b of B. Let 
us consider now d 3 2 and let us suppose that our result is true at every 
order cd. Then we can write 

where u and u are Lie monomials of degree <d in L(B). By Jacobi’s iden- 
tity and from the induction hypothesis applied to u and v, we can write 

[a, HI = CCu, ~1, HI = Cu, Co, WI + Cc Cu, HI1 = Cu, HI + Cv, HI = H. 

This ends our induction and proves the lemma. 1 

Remark. Since H is by definition an ideal of L(T), Lemma II.9 and the 
relation (82) imply immediately that H is an ideal of L(A). 

LEMMA 11.10. Let us consider b and c two letters of B such that (b, c) E 6. 
Then we have with the previous notations 

CUT), Cb, cl I= Z-L 

ProoJ To show this lemma, we prove by induction on the degree d of 
a Lie monomial a of L(T) that under the hypotheses of the lemma, we have 

[a, Cb, cl1 E H. (1) 

First, observe that when d = 1, a is a letter of T. Hence, considered as an 
element of L(A), it has the form 

a=ad w.z with WEB* and ZEA-B, 

Therefore, it follows by Jacobi’s identity that 

[a, [b, c]] = [ad w.z, [b, c]] = [c, [b, ad w.z]] - [b, [c, ad w.z]] 

= ad cbw.z - ad bcw.zE T2 c H. 



108 DUCHAMP AND KROB 

Thus this ends by proving (1) for d = 1. Let us consider now d 2 2 and let 
us suppose that (1) is established at every order cd. Then we can write 

where u and u are Lie monomials of L(T) of degree cd. Then applying 
Jacobi’s identity, we obtain 

C% Cb, cl1 = rcu, ul, Cb, cl1 = II% IIT IIh cl11 - C& [UT [b, clll. 

Thus applying the induction hypothesis to u and v, we deduce 

Ca, Cb, cl1 E Cu, HI + Co, HI = CUT), HI c H. 

This ends our induction and proves our lemma. m 

LEMMA II.1 1. With the previous notations, we have 

Proof We denote here by Lie &monomial of L(B) every Lie monomial 
tl of L(B) that has the following form: 

a= [ . . . . [b, c] . . . . ] with (b, c) E 8 and 6, c E B. 

According to Lemma 11.8, it will suffice to prove by induction on the 
degree d of a Lie &monomial u of L(B) that we have 

CJYT), aI c H (1) 

in order to obtain our lemma. First, observe that when d has its minimal 
value that is 2 according to the Lemma 11.8, we can immediately conclude 
with Lemma 11.10. Let us suppose now that d > 2 and that (1) is proved 
at every order >d. Then we can write a in the form 

a= &Cu,vl, 

where u and v are two Lie monomials of L(B) and where we can suppose 
that v is a Lie &monomial of L(B). Hence, using Jacobi’s identity, we can 
write 

cun al = cun C% VII = CUT cun VII + co, Gun ull. 

Hence, applying the induction hypothesis to v, by Lemma II.9 and since 
L(T) is an ideal of L(A), we obtain 

L-UT), aI= Cu, HI + Cv, CUT), UWII = CUB), HI + L-v, UT)]= H. 

This ends our induction and proves the lemma. 1 



FREE LIE ALGEBRAS WITH COMMUTATIONS 109 

We can now come to the proof of the second claim of our theorem. 
Thus, we shall show that we have 

H=Z,. (1) 

First, observe that H c I, since this can easily be seen by looking at the 
proof of Lemma 11.10 that showed that T2 c le. Thus it will suffice to prove 
the converse inclusion. Therefore we show by induction on the degree d of 
a Lie &monomial a of L(A) that is in L(T) that we have 

acH. W-U 

According to the initial remarks, this sufices to prove (1). First note that 
if d = 2, which is the minimal possible value, we have 

a= [b, c] with (b, c) E 8. 

Since A -B is totally non commutative for 8, the letters b and c cannot 
both belong to A - B. Thus, taking -a if necessary, we can suppose that 
b E B. In this case, if c was belonging to B, we would have a E L(B) which 
is not possible according to (82). It follows that CEA -B and hence that 
a = ad b.c E T1 c H. Let us now consider d > 3 and suppose that (TH) is 
proved at every order <d. Then we can write 

where U, v are Lie monomials of L(A) of degree <d and where we can 
suppose that u is a Lie e-monomial. Then several cases can occur: 

- if vcL(T), then according to the induction hypothesis, we have 
v E H. Since H is an ideal of L(A) according to the remark following 
Lemma 11.9, we can immediately conclude that a E H. 

- if UEL(B), then according to Lemma II.5 and to the fact that 
L(T) is an ideal of L(A), we have u EL(T). Then, we have a E [L(T), ZB] 
and hence a E H by Lemma II.1 1. 

Thus, we have shown that a E H in every case. This ends our induction 
proving (1) and then our theorem. 1 

We now give another more explicit version of our theorem. For that pur- 
pose, let us introduce the definition: 

DEFINITION 11.1. Let A be an alphabet and let 8 be a partial commuta- 
tion relation on A. For every word w of A*, we call final alphabet ofw the 
subalphabet of A denoted FAlph(w) and defined by 

FAlph(w)= (bEA, ~uEA*, wq,ub}. 
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Remark. The reader will easily verify that we have for every w, , w2 E A* 

wi --B w2 * FAlph(w,) = FAlph(w,). 

Thus we also denote FAlph(w) for w E M(A, (3). By definition, this is the 
common value of the FAlph(u) for V= w. 

Let us also denote by S a section of the commutation classes for 19.~ For 
every word w of A*, we denote by b(w) the unique equivalent word for t3 
to w in S. Then let us consider the family 

Y = (ad w.z, w E B* n S, z E A -B, Vb E FAlph(w), (6, z) 4 e}. 

We can now give the following corollary of Theorem 11.7: 

COROLLARY 11.12. Let us take again the previous notations. Then, the 
subset F is basic and generates a free Lie subalgebra L(F) of L(T). 
Moreover, the K-module L(T) has the following direct sum decomposition: 

L(T)=I,@L(F). 

ProoJ According to Theorem 11.7, the Lie ideal I, of L( T) is generated 
by letters of T and by differences of letters of T. Thus we are in the 
framework of part (1) of this section. With Theorem II.7 and the definition 
of --B (see [Ch]), it can be easily checked that the equivalence relation E 
on T used in II.1 can be defined here by 

VW,UEB*, VZ,Z’EA-B, adw.z=adv.z’oz=z’and w=,u. 

Hence, if 9’ denotes a section of the commutation classes for 8, the set 

R=(adw.z, WEB*~Y, ZEA-B} 

is a section of the letters of T for =. Then it is easy to see that if we set 
as in 11.1, taking acount of Theorem 11.7, 

S= {te R, 3u= t, MET}, 

we have the following identity: 

S=(adw.z, w~B*n9’, ZEA-B, 3bEFAlph(w), (b,z)EO). 

Since here every letter of T is equivalent modulo 3 to a letter of R, it 
follows easily from Proposition II.3 that the family R - S, which is exactly 

* We can for instance use the Cartier-Foata normal forms (cf. [CaFo]) or the lexicographic 
normal forms (cf. [Ch, Pe]) to obtain easily such a system. 
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equal to Y, is a basic family generating a Lie subalgebra of L(T) which is 
a supplementary of IT in L(T). Our corollary follows. 1 

Remark. We can also obtain this corollary in a different but equivalent 
way. Indeed let us introduce the families 

%={adw.z, WEB*~S,ZEA-B, SEFAlph(w), (b,z)~e} 

F2= {ad w.z-add(w).z, WEB*, w#d(w), ZEA-B) 

YJ=(adw.z, weB*nS, ZEA-B, VbEFAlph(w), (b,z)$e}. 

Then it can be shown that the ideal I, admits the generating family 

Then since the free K-modules generated by the family 9-l = Y1 v Y* u YS 
and the family T are isomorphic, we can easily prove that the family 9-l is 
a basic family that generates L(T): 

Then our corollary follows in the same way from the preliminary study 
made in 11.1. But we use here only the case where Dif = 0 which is simpler. 

Before giving the next result, we extend the operation “ad” to the free 
partially commutative Lie algebra. To this end, observe at first that we 
have, as can easily be checked, 

w,=~w~*VZEA, adw,.z-adw,.zEZ+ 

Thus, this being done, we can now give the definition: 

DEFINITION 11.2. Let w E M(A, 0) and let z E A. Then we denote ad w.z 
the common value in L(A, 0) of the pl,(ad u.z) for 0 = w. 

We can now deduce from the previous theorem a partially commutative 
version of Lazard’s elimination theorem: 

THEOREM 11.13. Let A be an alphabet and let 8 be a partial commutation 
relation on A. Let us consider a non empty subset B of A such that A - B 
is a totally non commutative part for 8. Then let us denote by 8’ the sub- 
graph of 8 induced by B and let us denote by M(B, 0’) the submonoid of 
M(A, 0) generated by B. Let us introduce finally the family of L(A, 0): 

Y={adw.z, WEM(B,O’), ZEA-B, VbEFAlph(w), (b,z)@}. 
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Then, the Lie subalgebra of L(A, 0) generated by F is isomorphic to a free 
Lie algebra with Y as basic family that we will denote L(Y) and that is an 
ideal of L(A, 0). Moreover the K-module L(A, 0) admits the direct sum 
decomposition 

L(A, e)= L(B, e’)oL(.q. 

Proof. This is an immediate consequence of Corollaries II.6 and 11.12, 
of Theorem 11.7, and of Corollary 11.4. 1 

Remarks. (1) Since L(Y) is a Lie ideal of L(A, f3), the decomposition 
of the previous theorem is in fact a semi-direct product where L(B, 0’) acts 
by derivations on L(Y) (see [Bo.l, Bo.23 or [Lz.~]). 

(2) Observe that the restriction to a totally non commutative part 
A - B in the partially commutative elimination theorem is very important. 
Indeed, it implies that it is not possible to coarsely adapt to L(A, 0) the 
construction of the Lazard’s bases of L(A) (see [Vi.21 or [Lo]) which was 
based on the case lB1 = 1 in the classical elimination theorem. 

(3) The K-module L( A, 0) Is Free 

Thus we deduce the following corollary on the basis of which construc- 
tions for L(A, 0) could now rely 

COROLLARY 11.14. Let 8 be a partial commutation relation on a given 
finite alphabet A. Then there exist a finite number of basic subsets ( Ti)i = ,,N 
in L(A), all made with Lie monomials of L(A), such that the K-module 
L(A, 0) admits the following decomposition in direct sum: 

L(A, 0) = & L( Ti). 
i= 1 

Proof This follows immediately from the previous theorem by an 
immediate induction on IAl or on 161 for instance. 1 

Remarks. (1) The reader will easily verify that the underlying algo- 
rithm to the proof of Corollary II.14 is the slowest on the cliques of 8. 
More precisely, if the above decomposition of L(A, 0) is constructed from 
Theorem 11.13, it can be checked that N is greater or equal to the order of 
the greatest clique of the graph of 8. 

(2) Corollary II.14 leads us naturally to introduce the notion offree 
index of a free partially commutative Lie algebra, 

m, ~(T,),,,,,ES(L(A))~, L(A, e)= & L(T,) , 
i=l 
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which is related in an intrinsic way to 8. It would be interesting to know 
if there exists an explicit expression of ind(8) in connection with 8. For 
instance, the reader can verify that ind(f?) = 1 iff 8 = 0. 

(3) In fact the previous corollary can be easily adapted to the case of 
an infinite alphabet by the use of a transfinite induction. 

Then we can easily show with the previous corollary that the 
homogeneous components of L(A, 6) are free. This was already known 
from [Du.~]. 

COROLLARY 11.15. Let A be an alphabet and let 0 be a partiai commuta- 
tion relation on A. Then, we have 

(1) Vn 3 1, L,(A, 0) is a free K-module. 
(2) VaeN (A) L,(A, 0) is a free K-module. , 

Proof: When the alphabet A is finite, this result comes from the fact 
that a free Lie algebra is a free K-module (cf. [Bo.~]) and from Corollary 
II.14 since the free Lie algebras L( TJ occuring there are graded for the two 
considered graduations since they are generated by Lie monomials. 

In order to treat the case when A is an infinite alphabet, observe first 
that the Lie subalgebra of L(A, 0) generated by a subset B c A can be iden- 
tified by Corollary II.6 with L(B, f?), where 8’ denotes the restriction of 8 
to B. With this identification, we can write for every a E NCA) 

LM 0) = L&W(a), 0;) 

with obvious notations. Since the alphabet of a is finite, we conclude the 
K-module L,(A, 0) is free by the previous case. Then it is elementary to 
deduce from this that the K-module L,( A, 0) is free for every n > 0. 1 

Then we obtain immediately that the K-module L(A, 0) is free: 

COROLLARY 11.16. Let A be an alphabet and let I3 be a partial commuta- 
tion relation. Then, L(A, t3) is a free K-module. 

Proof: This is an obvious consequence of the previous corollary. m 

Remqrks. (1) More explicitly, Corollary II.14 permits us also to con- 
struct bases for L(A, 6). Indeed, Theorem II.13 allows the explicit construc- 
tion of the families ( TJi= l,N that occur in (9@). Hence, to obtain a 
K-basis for L(A, O), it sulIices to use any classical method (see [Vi.2]) to 
construct bases (A?i)i= i N for the free Lie algebras (L( Ti))i= l,N: their union 
will obviously be a basis of L(A, 0). 

(2) Since the families (Ti)i=l,, g iven by Corollary II.14 are made of 
Lie elements which are homogeneous for the multidegree, they also permit 
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us to construct easily bases for the homogeneous components of L(A, 0) 
for the total degree and for the multidegree. 

(3) According to the Poincart-Birkoff-Witt theorem, we also obtain 
again the fact that L(A, 6) embeds into K(A, 8): this was already 
established in [Du.~]. 

EXAMPLES. (1) We give here a generic method of graph “disassem- 
bling” that is suited to our partially commutative elimination theorem. For 
this purpose, we suppose that A is fully ordered by <. Let us consider the 
alphabet Alph(B) = {t,, . . . . r,,,} of 8 ordered by < such that 

t1 <t, < . . . < t,. 

Then let us introduce the following subsets of Alph(B): 

ViE 11, Nu, e(t,)= (t, (Ii, t)Ee, &-a}. 

Let us consider now the subalphabet B c Alph(0) formed of the letters b 
such that B(b) is not empty. Then we denote 

B= (b,, . . . . 6,) with b,<b,< ... <b,. 

It is easy to see that A -B is a totally non commutative part. This allows 
us to apply the elimination theorem in order to obtain a decomposition of 
L(A, 0) convenient for the computation of a K-basis. 

(2) As an example, we use the above method to study the case where 
A = {a, b, c, d, e, f} and where the graph of 0 is the following: 

a 

\ 
c- d 

/ \ 
b f 

The reader will verify that according to the order put on the letters of A, 
we can for instance obtain the parts B = {c, d} or B = {a, 6, c, f, c} of A 
with the method described in (1). We deal here with the first case. Then 
Theorem II.13 allows us to write 

L(A, O)=L(F)@L(c, d, O’)=L(F)@K.c@K.d, 

where Y is a basic family defined by 
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Let us order this family by increasing homogeneous degree: 

a<bcecf <adc.e<adc.f <add.a<add.b< ... 

Using the classical computation technique of the Lyndon basis for L(F), 
which can be adapted without difficulties when the alphabet is infinite, we 
obtain for instance the homogeneous elements of degree 1 and 2 in L(A, 0), 

L,(A,O)=K.aQK.b@K.c@K.d@K.e@K.f 

L2(-4 0) = K. [a, bl0 K. [a, el0 K. [a, fl0 K. [b, el8 K. Cb, fl 
~~.C~,~I~K.C~,~I~~.CC,~I~K.C~, alOK.[d, bl, 

which are here constructed by the computation of the Lyndon basis 
of L&9-). 

(3) We also give here the first elements of a basis of L(A, 0) in the 
case where A = {a, b, c} and where the commutation graph of 8 is given by 

a-b c 

By use of Theorem 11.13, we have 

L(A, 0) = L(a, 0’)O L(F) = K.a@ L(F), 

where we can take the family Y of the form 

Y= {ada”.c, n>O}u {b}. 

Then we can consider the Lyndon basis of L(Y) associated to the natural 
order on Y defined as follows: 

b<c<ada.c<ada2.c< . . . <ada”.c<ada”+‘.c< ... 

In this case, we deduce easily a basis 9’~~ for the K-module L(A, 0); its first 
elements are given below: 

2~~ n LIM 0) = {a, b, C> and -Qt, n L2M 0) = { Cb, cl, [a, cl > 
-@, n LA4 0) = {[a, [a, ~11, Cb, [a, ~11, Cc, [a, ~11, CC& cl, cl, 

Ch Cb, cl1 > 
-%mLM Q= {[a, [a, Cap ~111, Cb, Ca, [a, ~111, Cc, Ca, [a, ~111, 

CCh cl, Cap ~11, CC4 Ca, ~11, cl, Cb, Cb, [a, ~111, 
Cc, Cc, [a, ~111, Ch Cb, Cb, ~111, Cb, CCh cl, ~11, 
CC Ch ~1, ~1, cl 1. 

They are computed by the Lyndon method applied to L(F). 
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III. RANKS OF THE HOMOGENEOUS COMPONENTS OF L(A, 0) 

(1) Counting the Partially Commutative Words 

At first, we interest ourselves in the counting of the partially com- 
mutative words of given total degree n and multidegree CL Indeed, though 
this step is independent from the sequel, it is necessary to compute 
the ranks of the homogeneous components of L(A, 0). At first, before 
beginning the counting, we associate to 6 the commutative series in the 
variables (Xo)crcA (which is a polynomial when A is finite) 

C(O)= c (-l)‘“‘-‘X~EZ[[X,]], 
aE {O,l)(“’ 

Alph( QL(6) 

where X” denotes classically for every M E NcA) the monomial (cf. [Bo.~]) 

Then we define the family (c(a)), E N ,“, of rational numbers with the series 

-log(l -C(O)) = C c(a)Y. 
ZEN(A) 

When the alphabet A is finite, we can define the Q-algebra morphism v 
from QPCCJfJla.a into the Q-algebra Q[ [X]] of the formal series in one 
variable X by extension of the mapping which is defined by v(X,) = X for 
every a in A. Such a morphism does exist since A is finite. In this case, we 
can consider the polynomial of Z[X] defined by 

c,(e) = qz(e)) E z[x]. 

The reader will easily verify that we have 

c,(e)= C (q-1 lue,(e)l.xkzpc], 
nsN 

where %‘G(O) is the set of the cliques of cardinality n in the commutation 
graph of 8. Then we can define the family (c(m)),,, of Q” by 

-10g( 1 - c,(e)) = 1 c(m)Y. 
ITI> 

(44 

These notations being given, the following proposition gives now the 
number of partially commutative words of given length or multidegree: 
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PROPOSITION 111.1. We respectively define for every multidegree TV E N CA) 
when the alphabet A is arbitrary and for every integer n 20 when the 
alphabet is finite, the following positive integers: 

Va E NC’), m, = IM,(A, 0)l and Vn 2 0, m, = IM,(A, 0)l. 

Then these integers have the following generating series: 

and 

C maXa= [l -C(e)]-’ ww 
CZE NC”) 

C mnXn= [l-C,(O)]-‘. (aA?LT) 
HEN 

Proof: At first we treat the case of multidegrees. Thus let us consider 
the generating series of the integers (mor)asN(A): 

S= C m,Y. 
LIE WI(A) 

Let us introduce now the Mobius function of M(A, 0) (see [Rt], [La], 
[CaFo], or [Ch]). It satisfies by definition the relation 

( 1 w)( c P(w)w)= 1 (FM) 
WEM(A,f?) w~M(A,tl) 

in Z(( A, 0)). Observe now that the mapping r: a + X, defines an algebra 
morphism from Z(( A, t?)) in Z[ [X,] I,, A since it is ciear that every 
monomial of Z[ [Xa]lasA has only a finite number of converse images by 
z. Note that 

Indeed, the first equality comes from the definition of S and the second 
from the definition of C(O) according to the explicit value of the Mobius 
function of M(A, 0) (cf. [La], [CaFo], or [Ch]). Applying z to the equa- 
tion (Sd), we obtain the relation S. [l - C(e)] = 1 and then (9d). To 
obtain the formula (9&Y), it sufices now to apply v to (9.&Z) since the 
image by v of S is the generating series of the integers (m,),)O. 1 

EXAMPLE. We take again here the example given in II.3 of the alphabet 
A = {a, b, c} equipped of 8 = {(a, b), (6, a)}. Then we have 

c(e)=x,+x,+x,-x,x,. 



118 DUCHAMPANDKROB 

It follows immediately that 

u-C(B))‘=~,( c (~)(-l)l(x.+x,+x)‘(x,x,)~). (1) 
, p+y=n 

According to 111.1, this relation allows us to compute the numbers m(a) for 
u in NCa). Let us show now for instance how to obtain m( 1, 2, 1). Remark 
that the total degree of the monomial (X0 +X, + X,)P (X,X,)y is p + 2q. 
Thus the monomial X,X:X,. can only appear in (1) for pairs (p, q) such 
that p + 2q = 4, i.e., for 

(P1 4) E ((4, Oh (2, 1 L (0,2)). 

Then an elementary computation permits us to find the coefficient of 
X,X$Y,. in (l), which is equal to m(l,2, 1) according to (94)): 

(2) Homogeneous Components of L(A, 9) for the Multidegree 

We count here the ranks of the homogeneous components for the multi- 
degree of K(A, 19) and L(A, 6). First, observe that it is clear from the 
definition that, for every o! E N (A), the K-module K,( A, t3) is free of rank 
given by 

m,=rg,K,(A,8).3 

Thus, since mz is the number of words in M(A, 0) of multidegree CI, the 
rank of K,(A, t9) is obviously independent from K. Then, according to this 
remark, we can count the ranks of L(A, 0) for the multidegree: 

THEOREM 111.2. For every c1 E N (A’, the K-module L,(A, 0) is free. Thus 
we can give the following definition: 

vu E NCA), e(a) = rg, -MA, 0 

Then, for every c1 E N (“, the rank /(a) is finite and is independent from K. 
Moreover, it is given by the formula 

3 If K is a commutative ring and if L is a free K-module, we denote by rg, L the rank of 
this free K-module. 
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Proof: First, note that for every a E NcA), the K-module L&4, 0) is free 
according to Corollary 11.15. In the same way, the independence from K of 
the rank of &(A, 0) comes also from the proof of 11.15. Thus we can now 
suppose that K= Q in order to show (92) since this will not affect our 
counting. 

In order to prove the formula (BY)), we adapt the argument of CBo.21 
that corresponded to the case 0 = 0. First, let us choose now a Q-basis 
(“(i,a~)l<i~~(c) of &(A, 0) for every tl in N ca) - (0). Then let us consider 
Z the set of all pairs (i, a) such that a E NcA)-- (0) and 1 < i < d(a). We 
may order Z by an arbitrary full order <,. According to the 
PoincarbBirkoff-Witt Theorem (see [Bo.l]) and to Corollary 1.2, the 
elements 

for v = (v(i, a)) running through N (I) form a basis of aS(A, ~9). Each P, is 
a homogeneous element of multidegree 6(v) = a. /vi. Then it follows that 

1 m,Xa= c dim, Q,(A,O)X”= C J?(V)= 1 jp.1~1 
OIE WI(A) 01 E N(A) YE r&I YE N(‘l 

=“L (i~~,(~a)v(i~u)=(i~~~(~o(,.),) 
= n p-Y-‘= fl (1 -/yyw. 

(i,e)sI r+O 

Hence, according to the proof of Proposition 111.1, we deduce that 

[l-c(e)]-‘= n (1 -Xz)-Q? w-9 
I#0 

Taking the logarithm in Q[[.Y,]],,A of the two members of (go), it 
follows that 

-log(l - c(e)) = -log n (l-X’)+)= - 1 e(a)log(l-X”) 
cl#O Z#O 

= 1 &(a) 1 iPz= 1 ( 1 f?(/l)$X’. 
?#O ma1 l#O m/3=z 

Thus, according to (/a), we obtain the relation: 

zo( c W)f) X” = - log( 1 - C(0)) = C c(a)Y 
mfs=r x#O 
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Then we can immediately deduce from this that we have 

vae NCA’- {O}, c(a)= c L(B). (1) mp=zm 
Let us denote by n the gcd of the elements of the support of CI. Then let us 
set a = IE.CI,. Then the formula (1) can be rewritten in the form 

c(n.a,)= C if(cx/m) 
mln 

en.c(n.a,)= 1 if(l,.n/m) 
mln 

that we can also write in the equivalent form 

n.c(n.a,)= C md(cr,.m). (2) 
mln 

Applying the classical Mobius inversion formula in N* to (2), considered 
as a relation between mappings of n and m, we obtain 

n.e(a,.n) = C p(d). ic(R,.n/d). 
dlfl 

Therefore we finally have 

da/d) 

This ends the proof of our theorem. 1 

EXAMPLES. (1) Non commutative case. If 8 = 0, we have clearly 

c(e)= 1 x,* -log(l-C(B))= c 
lZEA n>l 

Applying the multinomial formula, we easily obtain 

t/aENcA)- {0}, c(a)=-$$. 

Thus this gives us again the classical Witt’s formula (cf. [Bo.~], [Wi]): 
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(2) Commutative case. If 0 = A2 - A,, we have easily 

c(e)=i- n (i-x,) 
CJEA 

+ -iog(i-c(e))= 1 1 $q. 
asA n21 

It follows immediately that we have 

{ 
l/n 

c(a)= o 
if a =n~, 
if not. 

Using the formula (99) and the properties of the usual Mobius function, 
we easily obtain that [(s,) = 1 for every a E A and that e(a) = 0 instead. 
Thus we find again that Y(A, 0) N KcA). 

(3) For a really partially commutative case, let us take again the 
example given in II.3 and in III.1 of A = {a, b, c} equipped with 
0 = {(a, b), (b, a)>. A ccording to the expression of C(e) seen in 111.1, we 
easily have 

-hwcw= c t( 
I230 

c (i) (-l)q(x.+x,+x,)p(x,x,)~). (4 
p+q=n 

Thus, with the formula (99) of Theorem III.2 and with a computation 
similar to the one made in 111.1, we have 

since (1,2, 1) can only be divided by 1. Thus, we find again a result that 
can also be verified with the basis of L,(A, 0) given in 11.3. 

(3) Homogeneous Components of L(A, 0) for the Total Degree 

We shall count here the dimensions of the homogeneous components of 
L(A, 0) for the total degree. Thus we are obliged to suppose that the 
alphabet A isfinite. First, remark that the K-module K,,(A, t9) is obviously 
free for any integer n > 0 of rank 

Vn>O, mK,(A, e> =m, 

which is independent of K. The same result holds also for L,(A, 0): 

THEOREM 111.3. Let A be a finite alphabet. Then the K-module L,(A, 0) 
is free for every n E IV. Thus we can define 

VnEN, 0) = rg, Lb4 0 
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Then, for every n E N, the rank e(n) is finite and is independent of K. 
Moreover, it is given by the formula 

c(nlm) f(n) = 1 Am) - 
mln m 

ProoJ: First, the fact that &,(A, 0) is free of rank independent from K 
comes immediately from Corollary II.15 and from its proof. To prove the 
formula (WZ’F), let us transform at first the formula (90) given in the 
proof of Theorem III.2 by the morphism v introduced in 111.1. Then we 
obtain 

1 _ C,(O) = fl (1 - Jky)f(~ = n (1 -X-m)/(m). (1) 
a+0 mro 

Taking the logarithm in Q [ [X]] of the two members of (1), it follows that 

-log(l -c,(e))= -log fl (1 -Xm)/‘m) 
rn#O 

= - C e(m).log(l -Xm)=~o/(m).(~,~*~m) 
rn#O 

Thus we deduce the relation 

X” = - log( 1 - C,(O)) = 1 c(n).X”. 
n+O 

Then we have for every n E N - (0) 

c(n)= C b(m): *n.c(n)= C m./(m)= 1 m.e(m). 
pm=n pm=” mln 

Then the Mobius inversion formula in N* gives easily 

c(nlm) f(n)= 1 Am)---- 
mln m 

Therefore this ends the proof of our theorem. i 

EXAMPLE. Let us take again the example given in 111.1 and in 111.2: it 
is A = {a, 6, c} and 9 = {(a, b), (b, a)}. Then the formula (*) of III.2 gives 

-log(l-C,(B))= 1 ;( c (;)(-1)‘3’X”+Q). (*t) 

?I20 p+q=ll 
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It follows very easily that: 

VtZ>O, c(n)= 1 
1 

- 
( ) 
p+q (-1)“3P 

p+2q=nP+q P 

Then, applying formula (99S), we find 

Ql)=c(1)=3, e(2)=c(2)-c(1)/2=;-;=2 

{(3)=c(3)-c(1)/3=6-$=5 

and 

l(4) = c(4) - c(2)/2 = 4 - 5 = 10. 

We also verify these relations by direct counting from the bases of L,(A, 13), 
of L,(A, O), of &(A, O), and of &,(A, 0) given in 11.3. 

COROLLARY 111.4. Let A and B be two finite alphabets respectively 
equipped with two partial commutation relations 0 and 8’. Then, ly the Lie 
algebras L(A, e) and L(B, 0’) are isomorphic, we have 

Vn> 1, I=xe)l = ww)l 

Proof: Let us recall that the lower eentral series (5Zn(A, O)),, 1 of 
L(A, 0) is inductively defined by relations 

Y’(A, e) = Y(A, e) 
and 

Vn> 1, F+‘(A, e) = [9’(A, e), Y”(A, e)], 

where here [Y(A, e), Y(A, e)] denotes the sub-K-module of L(A, 0) 
generated by the family of the elements [u, v] for u E 6P(A, 0) and 
v E Y’(A, 0). Then we can easily prove that we have for every n 2 1 

L,,(A, e) N Y~(A, e)/zn+ ‘(A, e) a e(n) = rg, zn(A, e)pcn+ ‘(A, e). 

Hence the integer d(n) E N is invariant by Lie algebra isomorphisms for 
every n 2 1. According to the formula (1) given in the proof of Theorem 
111.3, it follows immediately that C,(O) = C,(P). According to the definition 
of these two polynomials of Z[X], the corollary follows, 1 

Remarks. (1) With Theorem 111.3, we can construct commutation 
relations on a same alphabet A with non isomorphic associated Lie 
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algebras, but such that these free partially commutative Lie algebras have 
all their homogeneous components for the total degree isomorphic as 
K-modules. For instance, we can take the alphabet A = {a, b, c, d} and the 
two following graphs: 

d 

/ 
e=a----- b-c- d and el=a -b 

\ 
c 

Since these two graphs have the same numbers of cliques at every order, 
it follows immediately from Theorem III.3 that 

Vn> 1, rg, -UA, e) = rg, u.4 0. 

Therefore the two following free K-modules are always isomorphic: 

Vnb 1, L,(A, e) 1: L,(A, u. 

We now briefly sketch the proof of the fact that the two Lie algebras 
L(A, 0) and L(A, 0’) are not isomorphic. If L(A, 0) and L(A, 0’) were 
isomorphic Lie algebras, their associated graded algebras would also be 
isomorphic (see [ Lz. 1 ] ). 

Grad(L(A, e)) = +& .JP(A, t?)/5Y+‘(A, 0) ‘V Grad(L(A, 0’) 
fl=l 

where we take the notations of Corollary 111.4. But as the graded algebra 
of a free partially commutative Lie algebra is isomorphic to it, it can be 
here easily checked that 

VXE P(A, e)/P(A, e) - to), mAad( b 1 

For 6~ Yi(A, ey92(A, e’), rg,(ad(@) = 0. 

Hence the Lie algebras L(A, 0) and L(A, 6’) are not isomorphic, but all 
their homogeneous components for the total degree are isomorphic as 
K-modules. 
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(2) We do not know if the non isomorphism of the commutation 
graphs suffices to imply the non isomorphism of the corresponding free 
partially commutative Lie algebras. 

Note added in proof The above problem (2) has actually been solved positively in [DK]. 
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