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As an answer to a question of Garsia, we give a universal formula in a “normal form" for the
orthogonal projection of free associative algebra onto free Lie algebra.

1. Introduction

Let X be an alphabet and k a field of characteristic zero. Denote by X*, L(X),
k(X), respectively, the free monoid, the free Lie algebra and the free associative
algebra over X (see Section 2, [1] and [5]).

There is a well-known projection k(X) —> L(X ), called Dinkin’s projection, defined
by substitution of letters and linear extension from the formulas

xtxz, . - - , xn ->1/n[.[[x1,x2].x3], - . -,xn].

Several others have been studied since [4, 8].
Garsia asked for the “form” of the projection k(X)—> L(X) which is orthogonal

for the only bilinear form ( | )X making X* an orthonormal basis of k(X). Of
course, this question makes sense if and only if we know that L(X)EB L(X)i = k(X)
which is the case for char(k) =0 (see Section 4).

In this paper we answer this question and the results can be informally stated as
follows:

(a) For char(k) = 0, the orthogonal projection exists (which is not the case when
char( k) = 2, for instance).

(b) The orthogonal projection can be expressed, for each word length, by a linear
combination of actions on the positions of the letters (the Pélya action), independent
from the alphabet “universal formulas”.
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(c) For each word length, these “universal formulas” can be computed from the
projection of a single word that can be any word without repetition (the U" of
formulas (2.2)).

The first part of this paper (Sections 2, 3 and 4) is devoted to the reduction of
the problem and one will see that the use of an infinite alphabet and a theorem of
Ree allows us to “represent” the orthogonal projection by linear combinations of
actions on the positions of the letters and these actions are independent of the
alphabet X.

In a second part (Sections 5 and 6), devoted to explicit computations, we apply
Gram’s method to two bases: the first one makes use of an idempotent that Klyachko
introduced in a “little known pioneering paper” [4], and another one (D1), Which
we made to suit the problem. We give additional properties of the corresponding
Gram matrices that are both invariant under a natural action of 6,4.

Finally, Section 7 gives the “other term of Ree’s decomposition”. In fact, there
is an algorithm, linear in time, to compute the explicit total decomposition of any
polynomial under the form

polynomial = Lie polynomial+linear combination of proper shuffles.

2. Reduction of the problem

2.1. Graduation of k(X) by multidegrees

Let X be an alphabet, whose elements will be called letters, and X* be the free
monoid over X [5]. For each word we X* and xeX we will denote by lwlx the
number of occurrences of the letter x in w and we will call it the partial degree of
w in x.

Example 2.1. With X = {a, b, c}, w = a3ba“c2 we have |w|a =7, lb =1 and lwl,3 =2.
The multidegree of a word w e X* is the family (with finite support) (lwlx)xex =

,u(w). It is an element of NO“ ={f2X—>Nllsupp(f)| <+00} (mappings with finite
support from X to N).

Remark 2.2. It is often convenient to handle the multidegree as a sequence, for
instance, with the data of Example 2.1, (lwla, |w|b, lwlc) = (7, 1, 2).

The total degree, or length is just the sum ex lwlx = |w]. For example, we have
|a3ba4c2| = 10.

If k is a nontrivial (1 ¢ 0) commutative ring, k(X) will denote the monoid algebra
of X* [1, 5] over k; its elements can be written uniquely as

P: X Aww= Z (l)w.
weX* weX*

k(X) is also called the free associative algebra or the algebra of noncommutative
polynomials.
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For every degree ueN‘X) and n EN, one defines
X"={weX*|;i(w)=V}, X"={weX||w|=n}

and, denoting by (R) the submodule of k(X) spanned by R,

kv(X) = (XV), kn(X) = <X")-
Of course, one clearly has k(X) =63, k,,(X) =63" kn(X).

Definition 2.3. (a) (homogeneous element) Every element of k,,(X) (resp. k,,(X))
is said to be homogeneous of multidegree (resp. degree) 1/ (resp. n).

(b) (graded submodule) One says that a submodule M of k(X) is graded iff it
is generated by its homogeneous elements, or iff M =65 (M n k,,(X)) (resp. M =
(‘9 (M n kn(X)))'

(c) (graded endomorphism) One says that an endomorphism fe End(k(X)) is
graded iff, for each u e N“ ),f( k,,(X)) g k,,(X). Their set is a subalgebra of End(k(X))
denoted Endg,(k(X)).

2.2. Action of the symmetric group on k(X)

Let 0-6 6", w = x13:2 . . . x" e X " and define (cf. [3]) the so-called Polya action of
a- on w as follows:

if "#0, (xl. ..x,,) . a'=(x,,(1)x¢,(2).. 'xa'(n))a

if n =0, 1.Id= 1.

It is straightforward that, for 0-, TE 6", w.(o-r) = (w.a').7- and w.1 = w; this action
then extends by linearity to k[@3,,]. For PE k(X) and every family 1" =(yn)neNe
HneN k[©,,], with y" =Zaeg" yn(0')0‘ it is easy to check that

Z Z Z (PIW)vn(U)W-U (2.1)
neN {w|=n 0-58,,

is a polynomial (see Proposition 2.4(i)). This element will be denoted by R1". The
preceding formula leads to considering the direct product of the group algebras
fl =HnE~ k[©,,]. Therefore (2.1) defines a natural extension to 52¢ of the Polya
action. Let us denote by px(F) the elementf of End(k(X)) defined by p(1")[P] = RF.
With these constructions we have the following proposition.

Proposition 2.4. (i) For every 1" 6 52¢, px(1")e Endg,(k(X)).
(ii) px defines a k-algebra morphism: 52¢ —> Endg,(k(X)) which is into ifX is infinite.

Proof. (i) The sum (2.1) is a well defined element of k(X) because the family of
polynomials

(Z Z (PIW)7n(0)W-0) N
lw|=n 0'66"

has finite support in N. Now if Pe k,,(X), we have P =Zwes (P|w|)w with S; X".
Hence, for Fe of, PIE (U " So); (X") = k,,(X), which proves assertion (i).0'69
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(ii) The formula

P7: 2 Z (PIW)7n(0)W-0 for Pekn(X),76k[@n]
l=n use.

defines the unique bilinear extension of w.a to kn(X)x k[€5,,]; we have R(yr) =
(Ry).r by the universal property of any group algebra. It is then clear that p is a
morphism of algebras.

Let us now examine the relation with the finiteness of X.
If X is finite, set |X| =p. We have dim(kn(X))=p" and dim(End(k,,(X))=p2"

but dim(k[©,,]) = |©n| = M. So, for N (large enough) such that p2N < N!, there is
706 k[©,,] —{0} such that Eye: 0 for all PE kn(X). Set To: (an),,eN with an =0
for all n vé N and em = 70; then px(Fo) = 0 with 13¢ 0. Thus px is not into if X is
finite.

If X is infinite, let (19);?“ be an injective sequence in X. Define inductively U,l
(=x1x2 . . . x,l e X*) precisely by

Uo=1 (the empty word of X*), U,,+1=(U,,)x,,+1 (2,2)

Set also an = ,u(U,,), we can now state a lemma as follows.

Lemma 2.5. For each n e N the family (Un . Ghee" is a basis of ka"(X).

Proof. It is enough to remark that the mapping 0-) Umo- is one-to-one from 6,, to
(X*)a" which is an easy consequence of the definitions. II]

Proof of Proposition 2.4 (conclusion). Suppose F = (”have .9! and p(F) = 0. Then,
for each n 6N we have p(F).U,, = UnJ’ =0; then by Lemma 2.5 we get 7,. =0. El

3. Orthogonal projection on L(X)

In this part we shall prove that the orthogonal projection k(X)-> L(X) is well
defined if k is of characteristic zero. In fact, if k at Q several difliculties can appear
and we will point out some of them with three examples for X = {a, b}.

First example (isotropy): X = {a, b}; k = C; H = C.(ab +iba). One has {0} 75 H Q Hi
and no orthogonal projection can be defined.

Second example (characteristic): X = {a, b}; k = Z/ZZ; H = L1(X) = k.[a, b]. One
has H‘ = H = k(ab+ ba) = k.(a Lu b). There is no orthogonal projection and
moreover Ree’s theorem is no longer true.

Third example (density): Let H = {P e k(X)|Xwex* (l) = 0}; then Hi = {0}.

So, from now on, we make the general assumption that char(k) = 0. The following
theorem establishes the existence of the orthogonal projection on L(X).
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Theorem 3.1. Let S be a subset of k(X) such that
(i) S = UneN (S n kn(X)) (S is homogeneous),
(ii) for every (P, w) e S X X*, (l) E Q (S is rational).

Then, ifH is the subspace spanned by S, one has H 63 Hi = k(X).

Proof. For every subset A of k(X), we will denote by (A).;, the set of linear
combinations of elements of A with coefficients in Q (indeed the Q-subspace of
k(X) generated by A). Then by (ii) one has (5)0; (X*)Q. Now, the form ( | )X is
positive definite in (X*)0. Set S n kn(X) = S"; we then have (Sn)Q g (X")0. As these
spaces have finite dimensions and ( | )x is positive definite, there is an orthogonal
projection 7r" 6 EndQ((X")Q) on (Sum. From the definition of ( | )X, we have
(X*)0 =®iao (X")0. Then we obtain an orthogonal projection in EndQ((X*)Q) by
the formula

Wo(P)= 2 H2 (l)7'r,,(w) for PE<X*)o-
n30 w =n

'n-Q(P) is obviously the projection on the Gil-subspace spanned by S, namely (5)0.
Now 71-0 has the following properties:

(i) 773 = 770;
(ii) Im(7To) = (5)0;
(iii) for every 1;, w e X* (v — 710(v) | 770(w))x = 0.
Let us denote by wk the unique extension of 72-0 to k(X) (uniquely defined by

17k(W) = 770(w) for every word we X*). Now, for all words v, we X* we have
(*) aim) = Wk(7ro(W)) =1 7T3(W) = 770(W) = ”k(w),

(**) ”k(w) E<S>m and
(***) (v — 7“((0) I ”k(WDX = 0-
From (*) one gets that 77% = 77k; (**) implies that we have Im(7rk)_c_ H. Remark

also that (77k(X")).-_. = (7-rc,(X"))cD = Im(7rn) = (5,1).) so that S ; Im(7rk). Finally
Im(7rk) = H. (***) implies, by bilinear extension, that (P— ark(P)|a-rk(Q))X = 0 for
every P, Qe k(X). In conclusion 11k is, in Endk(k(X)), the orthogonal projection
on H. [I

Corollary 3.2. We have L(X) 69* L(X)* = k(X)-

Proof. It is an easy consequence of the theorem when one remarks that L,,(X) =
L(X) n kn(X) is generated by the Lie monomials:

6(XIX-2 ' ' ‘ xn) = [-[[xl 1 x2], X3], ' ' ‘ ’ xn] = Z" C(a)xa(l)x¢r(2) - - ' xa'(n) (3'1)

where c(a-)e{—1,1, 0}. El

Notation. In the sequel, the orthogonal projection on L(X) will be denoted by 7rX.

‘ This equality holds because 7r0(w) e (X*)0.
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4. Alphabetic substitutions

By the universal properties of the free associative algebras [5, p. 16], any mapping
f: X —> Y extends uniquely as a k-algebra morphism sf: k(X) —> k( Y). Such a morph-
ism is called an alphabetic substitution. The set of these substitutions will be denoted
.9’(X; Y) (or 9(X) if X = Y). The orthogonal projection on L(X) has a remarkable
behavior in connection with alphabetic substitutions which is intimately related to
the existence of “universal generating systems” such as (3.1). We point this out as
follows (Theorem 4.1(iv) and (v)).

Theorem 4.1. Let X, Y be alphabets. Then we have the following statements.
(i) The elements of 9(X; Y) are .szl-linear i.e., for every P e k(X), F e at,

se {f(X; Y), we have s(P.F) = s(P).F.
(ii) IfX is infinite,for everyfe Endg,(k(X)), fcommutes with .9’(X) (a) f6 px(.9¢).
(iii) For every s e 9’(X ; Y), s(L(X )) g L( Y) (the restriction to these subspaces will

be denoted by sL).
(iv) One has the following commuting diagram:

k(X) —lx—> L(X)51 (a (.1)
k( Y)L. L( Y)

(v) There is a unique 1"Le 52¢ such that, for every alphabet A, 7rA = pA(I‘L).

Proof. (i) follows from a straightforward computation with formula (2.1).
(ii) As in Theorem 3.1, we make use of an injection N* —> X and keep the notations

Un and an. If fe Endgr(k(X)) one has, for every n, f( U") e kan(X); hence, as
(Un.0')o.eg" is a basis of ka"(X), we can write

f(Un) = 2, Ma, n) U..a. (4.2)
Define I} = (y,,),,e,\I with 7,, = 2065" Ma, n)o- and (pf= px(1‘f). Expression (4.2)
implies that, for every n EN, f( U") = Unff. If, moreover, f commutes with 3’(X)
we have f= (pf from the following lemma.

Lemma 4.2. Iff, g e End(k(X)) commute with {f(X) and coincide on the words U",
then f= g.

Proof. We only have to show that

f(w) = g(w) for every word w, (4.3)

which is straightforward for w = 1 as 1 = U0. Now let w = yly;z . . . y,,. The substitution
defined by s(xi) = y; for 1s i s n and s(x) = x otherwise is such that s. U,, = w. Then
f(W) =f(s.Un)=s-f(Un) =S-(g(U..)) =g(s-Un) =g(W). D



Projection onto the free Lie algebra 233

Proof of Theorem 4.1 (conclusion). We now know that fe px(.9¢). The converse in
(ii) is an easy consequence of (i) with X = Y.

(iii) Consider s e .9’(X ; Y). Then s, being a k-algebra morphism k(X)-> k( Y) is
also a morphism for the Lie structures. Hence s(X) g Y implies s(L(X))§ L( Y).

(iv) We define a bilinear product w (shuffle [6, 7]) on k(X) by induction on
words with the following formulas:

{WLLIIX*=1X*LLIW=W (44)

1mm wy=(vx|.u w)y+(v Lu wy)x.

Denote by SX the subspace generated by the proper shufiles, that is to say, the
elements 0 LLI w with v # 1 and w 75 1. Ree [7] has shown that L(X)i = Sx. Formulas
(4.4) prove that if se 9’(X; Y), we have s(u LLI v) = s(u) LI.I s(v), whence s(Sx) E Sy
(as v ¢1=>s(v)7é1). This shows the claim.

(v) The same formulas (4.4) show that ,u(v Lu w) = u(o)+ ,u,(w) and hence that
Sx is a graded subspace of k(X). L(X) and L(X)*=Sx being graded, one has
Ex 6 Endg,(k(X)). If, moreover, X is infinite, (iv) implies that IIX commutes with
.S”(X) and hence HX =p(1"x) for a TX 6.91.

Remark first that if Y is another infinite alphabet, TX = 1"Y since, if we choose
injections j—> Xi and j—> yj, we can define the corresponding words U" and V" as in
(2.2) and also a substitution 5 e 9’(X; Y) such that s(Un) = V" for all n. Hence,

Vn-FY=HY(Vn)=HY(S(Un))=S(HX(Un))=S(Un'FX)

=s(U,,).FX = Vn.1"x for all neN
Lemma 4.2 shows that py(Fy) = pY(FX) and then FY = Fx as Y is infinite and

then py is injective by Proposition 2.4. Thus FL must be the common value of 1"x
for any infinite X. This proves also the uniqueness of FL.

Finally let A be any finite alphabet and X be an infinite auxiliary alphabet. Take
any surjection s e 9(X; Y) (such elements exist, being defined from any surjection
X—>A). If Qek(A) we can write Q=s(P) for some Pek(X). Then: 71A(Q)=
HA(S(P)) = (by (M) S(Hx(P)) = S(RFL) = S(P).11 = 011- El

5. A “universal” formula for the orthogonal projection

Theorem 4.1 proves that the orthogonal projections can be expressed by FL i.e.
“universal formulas” (independent of the alphabet) computed from any infinite
alphabet. Moreover, one only needs to know the family of Lie polynomials 17X ( U").
For any sequence defined as above, the following proposition shows how to compute
them.

Proposition 5.1. Let X be an infinite alphabet andj —> xj an injection N* —> X. We keep
the definitions of U,l and an as previously. Let 9’ = (Pals-gm be any basis ofLa"(X),
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then (P,-|Pj)ls,-J$m is invertible and the orthogonal projection of U" on L(X) is
HX(U,,) =Xl$ism AiPi where thefamily Owls-gm satisfies

P1.P1P1.P2 "' P1.Pm _l P1.Un A]

P.P P.P --'P.Pm P.U,, )t2: 1 2: 2 2: 2: = :2 (5.1)

1r>,,,.1>1 P,,..P2 Pm.Pm Pm.U,, A",

Proof. Ifwe set FL: (77,.)neN we haveHx(U,.) = Un.I‘,_= U,,.7r,, =Zaeg" 7r,,(a) Un.o-
and hence HX(U,,)e ka,'(X). This is precisely the orthogonal projection of U" on
La"(X). It is well known that La,"(X) has a basis with rational coordinates relative
to X* (any Lyndon or Hall basis as in [5] will do) and hence an orthogonal basis
with rational coordinates (because the Gram—Schmitt process is done within (X*)D ;
k(X) where the form ( | )x is positive definite). Let 93 be such a rational orthogonal
basis and let M be the change matrix from 93 to 9’; the matrix of inner products
(the so-called Gram matrix) (R1Pj)1$i,jsm is then M =' .xttAJtt, where A is the
diagonal matrix of inner products of 93. This shows that M is invertible. As
Hx( U") 6 ka"(X), we can write HX(U,.) =ZISKM MP.- and this polynomial can be
characterized as the solution of the linear system

«(In-(Haw)
whose matrix of coefficients is M, and hence (5.2) has a unique solution expressed
by (5.1). CI

Pj>=0 forlsjsm (5.2)

6. Working up with some particular bases of k(X)

6.1. Klyachko’s basis

In his paper “Lie elements in tensor algebra”, Klyachko [4] introduces an
idempotent of k[@,,] defined by

Kn=— Z emaj(")(r (6.1)

where a is any primitive nth root of unity (it is assumed that k has one) and
maj(0') =20m>w+n i (the “major index”).

Let X be a totally ordered alphabet; X* is then totally ordered with the lexico-
graphic order. Call any word xlxz . . . x,I which is strictly less than all its circular
rearrangements a Lyndon word [5, 6]; that is,

xlxz...x,,<x,-+,x,-+2...xnx1x2...x,- for all 1$iSn—1.
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Denote by L(n) the set of Lyndon words of length 11 (results about Lyndon words
can be found in [5]). Garsia [3] shows that (wxn) wen") is a basis of L,,(X) = L(X) n
k,,(X) (Kn as in (6.1)).

Here, to get the projection of U", we just have to consider the letters x1, x2, . . . , x"
of a supposed infinite alphabet X = {x,} few. If we order them by xl < x2 < - - - < x,1 <
' ' - , the Lyndon words of multidegree oz,1 are the words xlxflm . . . xm") with
B e 6‘23"“. The results are given in the following theorem.

Theorem 6.1. For [3 6 69’3"“, set KB =(x1xm2) . . . xB(,,))K,. = UnBKn. One has

(i) (KB) is a basis of L3,.(X),

i(ii) (K311K32)=(KldiKBT'Bz)= "2
Z 8muj(o’)+maj(B;‘Blo-),

6:5,,

1 mm.)(111) (K,;|U,,)=;e .

Proof. (i) is straightforward from the fact that (wxn)weL(,,) is a basis of L,,(X) and
by counting dimensions.

" l ma'a' ma":-
(11) (K511K32)=?( Z; 5 J( )Un'BlU Z; 8 ’( )Unflzr).

Then (ii) follows from (*): (Unflla'l Unfizr) = 803,0, [327) (Kronecker delta).
(iii) (KfllUn)= n‘l Zaee" emaj(")( Unfia'l U") and formula (*) proves (iii). El

Example 6.2 (Case n = 3). See Table 1; here ilizis stands either for the permutation
k—> ik or for the word xi'xizxia. The arrows stand for the “descents” i.e. the indices
“1‘” such that o-(i)> a(i+1). We denote any element x’ of k such that x’3= 1 also
by j.

The Gram matrix is

( 0 2j2/3)
2j2/3 0

Table 1

Descents l l l l 1 1r
O'Ol'W 123 132 213 231 312 321
Maj(o) o 2 1 2 1 3
Km 1/3 12/3 j/3 j2/3 j/3 1/3
K(2.3) f/3 1/3 1/3 1/3 j/3 12/3
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With (5.1) we get

Hx ( U3) = é‘Kld +%jK(2,3)

__l l l l l l— 3x1x2x3 _6x1x3x2 ~6x2x1x3 _6x2x3xl _6x3x1x2+3x3x2x1

6.2. The (D,) basis

We keep the notations and the lexicographic order as above. Since X* is in fact
totally ordered we will call, for each PE k(X)—{0}, the least word U such that
(Plv)¢0 the valuation monomial. This word will be denoted as m(P). A family
(3).“ in k(X)—{0} will be called triangular ifl the mapping i—> m(P,-) is injective.
Such a family is obviously free. These notions will be used to prove the following
theorem.

Theorem 6.3. (i) (D, basis): For each word w = y,y2 . . . y", let

[W]=[- - -[[y1,y2], ya], - - - ,ynJ-

(ii) If we index the set ([ Unfi]),3€eu_3_m_”) as a family D.=(D,~)ls.~gm such that
D1=[U,,], we have

Hx(Un)=[Det(D.~|D;)lsism]—l( Z (—1)kDet(D.-ID,~)1<.-<k). (6-2)
1sjsm lsksm isjsm

jyék

Proof. (i) It can be easily checked that m([ Um8]) = UnB. Since these words are all
different, the family D. is triangular and hence free. By Witt’s formulas for the
multidegree [1] we have dim La"(X) = (n —1)!. It is also the number of elements in
D], whence (i).

(ii) Formula (6.2) comes from (5.1) in view of the fact that (U,,|D,)=1 if i=1
and 0 otherwise. III

Examples 6.4. (i) (n =3) X“3 is a basis of ka3(X), we have the decompositions

[x1x2x3] +1 0 —1 0 —1 +1
[xlx3x2] 0 +1 —1 +1 —1

The Gram matrix is (:3) and we get

HX( U3) = %[xlx2x3] —%[x1x3x2]

_l l l _l _l l— 3xlx2x3 _6x1x3x2 _6x2xlx3 6x2x3xl 6x3x1x2+3x3x2x1-
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(ii) (n =4) The Gram matrix is

844220
482402
428042
240824
204284
022448

and its inverse is

5 —2 -2 —l —1 2

—2 5 —l 2 —2 —l

l-2—15-2 2-1'

20—12—2 51—2 ’

-1 —2 2 —1 5 —2

2 —1 —1 —2 —2 5

whence

HX ( U4) = flx1x2x3x4] -,—lo[xlx2x4x3] —1—‘0[x,x3x2x4]

_ %)[xlx3x4x2] — 2_lo[x1x4x2x3] + $[x1x4x3x2].

This then yields, by alphabetic substitution, the projections of all the words of length
4. For example, we have

Hx(abca)=7l[abca]—1—‘0[abac]—$[acba]—%[acab].

Note. The Lie monomials in the expression above are linearly dependent because
dim L(2)1.1)(X) = 3.

We also have Hx(abba) =0 (see [2]).

.....

on the left on k(X). It can be easily checked that the basis (KB) and D, are invariant
under this action.

6.3. Fast computation of the inner products

We will now give properties of the inner products arising in the matrices (D,-|D,-)
that will allow easy implementation and fast computation. The first rule to use is
the invariance of ( I )X under the Polya action, that is,

(RO’IQ.O')X = (PIQ)X for every P, QE k,.(X) and (re 6". (R0)

Recall that for any word w=y1y2... y,, the reversal of w is defined by vii:
y,.y,,_1...y,. This involution extends to an anti-automorphism of k(X) given by
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13 =2 (l)vTI. It can be easily shown (cf. [2]) that if PE Ln(X), we have I3 =
(—1)"+1P. The two following rules hold for P, Q E LL,(X) such that a has no repetition
(i.e. such that a(a) e{0, l} for every (1 e X):

ifx#y, ([RX]|[Q,y])=-2(PXIvQ)=-2(xP|Qy), (R1)
ifx=y, ([P,X]|[Q,y])=2(PlQ). (R2)

Now we can see that, using rules (R1) and (R2), one needs less than n steps.
If A; X*, set ProjA(P) =2 (P, w)w. Then we haveweA

PI'iixeClxz e . . x"] = —x1[x1x2 . . . xi_1]x,-+1 . . - x", (R3)

Projx*x.[x1x2 - - - xn] = (—1)n_lxnxn—l - - - xi+l[x1x2 - - - xi—1]xi- (R4)

An easy consequence of these rules is the following corollary.

Corollary 6.5. For n 22 the coefficients in the Gram matrix of (D1) are 0 or 2" with
k 2 1.

7. Total decomposition: a basis for San(X) = kan(X) n Sx (n 2 2)

Theorem 7.1. (DH basis). Let D be the set ofordered pairs (12, w) such that v ¢ 1 and
p.(vw) = an_1. For (12, w) e D, set RM= 1; Lu xnw. Then D“ = (Rv,w)(v,w)eo is a basis
0f SAX).

Proof. The valuation monomial of R“, is vxnw hence (R1,,,v)(t,,w)e D is triangular and
free. We have

dim(s..,.<X>) =dim<k.,,<X>> —dim(L.,,<X>> = (n —1>!~n = IDI;
this proves that (R1,,,.,)(.,,,,,)e D is a basis of San(X). III

Example 7.2 (n = 3)

x1x2x3 x1x3x2 x2x1x3 x2x3x1 x3x1x2 x3x2x1

[x1x2x3] +1 0 —1 0 —1 +1
[x1x3x2] 0 +1 —1 +1 -1 0

xlsux3 +1 +1 0 0 +1 0
x, u.| x3x2 0 +1 0 0 +1 +1
xlLux3 0 0 +1 +1 0 +1
x2u.| x3xl 0 0 0 +1 +1 +1

Once we have computed IIX( U"), the total decomposition of U" can be obtained
by cancelling the valuation monomials of the complement Un—HX(U,.) as in a
division between polynomials.
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Example 7.3 (n = 3)

U3 = %[x1x2x3] _%[xlx3x2] +§x1x2 LU x3

—%x1u.| x3x2+éx2x1m x3.

Further, by alphabetic substitution, we can obtain, for example,

aba =§[aba] —%[aab] +§ab LlJ a —%a Lu ab +éba Lu a
= §[aba] +éa LLI ab +éa Lu ba,

abb =%[abb]+§ab u b —%a IJJ bb+%ba Ll.| b.

8. Conclusion

Here we only applied the method of Sections 1, 2, 3 and 4 to L(X). This method
is however much more powerful, and can be used to establish orthogonal projections
on subspaces that are .S”(X)-spanned by Q-multilinear polynomials with a commut-
ing diagram as (4.1). That is the case, in particular, of the factors L,,(X) of the
lower central series of L(X), on which the corresponding projections 17,, tend to zero.
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