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a b s t r a c t

Nous poursuivons ici le travail commencé dans (Enjalbert and Hoang Ngoc Minh, 2012)
en décrivant des produits de mélanges d’algèbres de plus en plus ‘‘grandes’’ de fonctions
spéciales (issues d’équations différentielles à pôles simples). Les étudier nous conduit à
définir une classe de produits de mélange, que nous nommons ϕ-shuffles. Nous étudions
cette classe d’un point de vue combinatoire, en commençant par étendre (sous conditions)
le théorème de Radford à celle-ci, puis en construisant (toujours sous conditions) sa
bigèbre. Nous analysons les conditions des résultats précités pour les simplifier en les
rendant visible dès la définition du produit de mélange. Nous testons enfin ces conditions
sur les produits introduits en début d’article.

We carry on the investigation initiated in Enjalbert and Hoang Ngoc Minh (2012): we
describe new shuffle products coming from some special functions and group them, along
with other products encountered in the literature, in larger and larger classes of products,
which we name ϕ-shuffle products. Our paper is dedicated to a study of the latter class,
from a combinatorial standpoint. We consider first how to extend Radford’s theorem to
the products in that class, then how to construct their bi-algebras. As some conditions are
necessary to carry that out, we study them closely and simplify them so that they can be
seen directly from the definition of the product. We eventually test these conditions on the
products mentioned above.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a matter of fact, mathematics (in particular number theory), physics and other sciences provide, for their theories,
algebras of special functions indexed by parameters,1 with a product, defined at first as a function X∗

× X∗ to A⟨X⟩ and
satisfying a simple recurrence of the type

∀(a, b) ∈ X2, ∀(u, v) ∈
(
X∗
)2

, au ⊔⊔ϕ vb = a(u ⊔⊔ϕ bv) + b(au ⊔⊔ϕ v) + ϕ(a, b)(u ⊔⊔ϕ v) , (1)

the initialization being provided by the fact that 1X∗ should be a unit. Of course, wewill address the question of the existence
of such a product, and will extend it by linearity to A⟨X⟩.

However, recall that these special functions are indexed by parameters but, unfortunately, sometimes do not exist for
some of their values: the prototype of this case is the Riemann zeta function ζ (s) =

∑
n⩾1

1
ns for s = 1. Nevertheless, if these

* Corresponding author.
E-mail address: jyenjalbert@free.fr (J. Enjalbert).

1 The combinatorial supports of these parameters will finally resolve themselves into words.
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Fig. 1. Hasse diagram of the inclusions between classes.

Table 1

Name Formula (recursion) ϕ Type

Shuffle [21] au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) ϕ ≡ 0 I
Stuffle [18] xiu xjv = xi(u xjv) + xj(xiu v) ϕ(xi, xj) = xi+j I

+xi+j(u v)
Min-stuffle [5] xiu xjv = xi(u xjv) + xj(xiu v) ϕ(xi, xj) = −xi+j III

−xi+j(u v)
Muffle [12] xiu xjv = xi(u xjv) + xj(xiu v) ϕ(xi, xj) = xi×j I

+xi×j(u v)
q-shuffle [2] xiu q xjv = xi(u q xjv) + xj(xiu q v) ϕ(xi, xj) = qxi+j III

+qxi+j(u q v)
q-shuffle2 xiu q xjv = xi(u q xjv) + xj(xiu q v) ϕ(xi, xj) = qi.jxi+j II

+qi.jxi+j(u q v)
LDIAG(1, qs)
[9] (non-crossed, au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) ϕ(a, b) = q|a∥b|

s (a.b) II
non-shifted) +q|a∥b|

s a.b(u ⊔⊔ v)
q-Infiltration au ↑ bv = a(u ↑ bv) + b(au ↑ v) ϕ(a, b) = qδa,ba III
[8] +qδa,ba(u ↑ v)
AC-stuffle au ⊔⊔ ϕ bv = a(u ⊔⊔ ϕ bv) + b(au ⊔⊔ ϕ v) ϕ(a, b) = ϕ(b, a) IV

+ϕ(a, b)(u ⊔⊔ ϕ v) ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c))
Semigroup- xtu ⊔⊔ ⊥ xsv = xt (u ⊔⊔ ⊥ xsv) + xs(xtu ⊔⊔ ⊥ v) ϕ(xt , xs) = xt⊥s I
stuffle +xt⊥s(u ⊔⊔ ⊥ v)
ϕ-shuffle au ⊔⊔ ϕ bv = a(u ⊔⊔ ϕ bv) + b(au ⊔⊔ ϕ v) ϕ(a, b) law of AAU V

+ϕ(a, b)(u ⊔⊔ ϕ v)

‘‘functions’’ are seen formally, one can in many cases,2 define a product on the indices which governs the effective product
on the functions.3

Once the formal identity is obtained, there are many ways to write the divergent quantities as limits of terms which fulfil
the same identities (truncated or power series).4 [19].

Returning to this family of products, we will use a typology based on examples frequently encountered in the literature
as well as new ones that we supply in Section 2.

1. Type I: factor ϕ comes from a product (possibly with zero) between letters (i.e. X ∪ {0} is a semigroup).
2. Type II: factor ϕ comes from the deformation of a semigroup product by a bicharacter.
3. Type III: factor ϕ comes from the deformation of a semigroup product by a colour factor.
4. Type IV: factor ϕ is the commutative law of an associative algebra (CAA) on A.X
5. Type V: factor ϕ is the law of an associative algebra (AA) on A.X

These classes are ordered by the following (strict) inclusion diagram: See Fig. 1
We have collected examples from the literature, with the corresponding formulas, in Table 1.

Of course, the q-shuffle is the (classical) shuffle [3,21] when q = 0. As for the q-infiltration, when q = 1, one recovers the
infiltration product defined in [4].

Many shuffle products arise in number theory when one studies polylogarithms, harmonic sums and polyzêtas: it was in
order to study all these products that two of us introduced Type IV (see above) [10].

On the other hand, in combinatorial physics, one has coproducts with bi-multiplicative (and noncommutative) pertur-
bation factors (see [7]).

The structure of the paper is the following: in part 2,we complete the first products of [10]with thedescription of products
which come from Hurwitz polyzêta functions (the product given in [15] was not valid in all cases) and from generalized
Polylerch functions. We are able to give the complete recursive relation which allows to define all kinds of products; we
verify that it implies the existence and uniqueness of this product, which can be extended to A⟨X⟩. We examine the ‘‘known’’
and the ‘‘new’’ products in order to determine their classes. In part 3, we consider how to extend Radford’s theorem, which

2 That includes in particular all the cases under consideration in our paper
3 That is the domain of symbolic computation in the vein of Euler and Arbogast [13,19].
4 That is the domain of renormalization and asymptotic analysis initiated by Du Bois-Reymond and Hardy [6,14].
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we can prove in all cases (product ⊔⊔ϕ commutative or not commutative, only associativity is required); moreover, we show
that, if the ϕ-shuffle product is commutative, the Lyndon words constitute a pure transcendence basis of the corresponding
commutative algebra (see Corollary 1). In all cases this algebra, endowed with deconcatenation coproduct, admits a Hopf
algebra structure. The basis of Lyndon words is the key to effective computations on the algebra of special functions ruled
by such products5 In part 4, we determine the necessary and sufficient conditions on ϕ so that ϕ belong to the class of
AC-products; we give also necessary and sufficient conditions for such a product to be dualizable (i.e. to be the adjoint of a
comultiplication).

Preliminary remark. It is worth emphasizing at the outset that, although some of the objects/results under review in the
present paper have already been defined/proved elsewhere, we include them in our study to lay out as complete a picture
as possible and to exemplify the rather ‘pedestrian’ approach we have adopted. In particular, we have refrained throughout
the paper from using more sophisticated algebraic techniques.

Notation. In the sequel, X will denote an alphabet, and, except in Section 3, Q ⊂ K ⊂ A is a chain of commutative and
associative algebras with unit (Q-CAAU).

2. Hurwitz Polyzêtas and generalized polylerch functions

We remind the reader of some special functions introduced in [12] and complete their study: we prove that they follow
a product law which we describe.

2.1. Some special functions and their products

The Riemann Polyzêta is the function which maps every composition s = (s1, . . . , sr ) ∈ (N≥1)r , to6

ζ (s) =

∑
n1>···>nr>0

1
ns1
1 . . . nsr

r
. (2)

We now make an observation which, however simple, will appear in different disguises as a building block of many a
construction of the paper: There is a (linear) bijection between the module freely generated by (all) compositions and A⟨Y ⟩

(where Y = {yk}k≥1) defined by

βs : (s1, . . . , sr ) ↦→ ys1 . . . ysr . (3)

So, if s = (s1, . . . , sr ) ∈ (N≥1)r , s1 > 1 and s′
= (s′1, . . . , s

′

r ′ ), s
′

1 > 1 are compositions, one knows [12] that7

ζ (s s′) = ζ (s)ζ (s′). (4)

That function ζ is well-known and is a special case of the following special functions.

2.1.1. Coloured Polyzêtas
The coloured polyzêta is the function which, to a composition s = (s1, . . . , sr ) and a tuple of complex numbers of the

same length ξ = (ξ1, . . . , ξr ) , associates

ζ (s, ξ) =

∑
n1>···>nr>0

ξ
n1
1 . . . ξ

nr
r

ns1
1 . . . nsr

r
. (5)

It should be noted that ζ (s, ξ) appears –with the notation Lis(ξ) –in particle physics [23].
To describe the product here, we will use two alphabets Y = {yi}i∈N∗ , X = {xi}i∈C∗ and M be the (free) submonoid

generated by Y × X . One easily checks that8

M = {(u, v) ∈ Y ∗
× X∗

| |u| = |v|}.

As above, to make things rigorous (but slightly more difficult to read), one considers the (linear) bijection defined, onM , by

βc : ((s1, . . . , sr ), (ξ1, . . . , ξr )) ↦→
(
ys1 . . . ysr , xξ1 . . . xξr

)
.

The duffle product is defined as follows.

5 The decomposition algorithm (which we shall not describe in detail) is based on formula (36) of lemma 4.
6 The following series converges for s1 > 1. Under that condition, the definition can be extended by linearity to the module generated by the set of

so-called admissible compositions.
7 With a slight abuse of language. Strictly speaking, Eq. (4) actually reads

ζ

(
β−1
s

(
βs(s) βs(s′)

))
= ζ (s)ζ (s′) .

8 Throughout the paper |w| stands for the length of the word w.
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Definition 1 ([10]). (Product of coloured polyzêtas) Let Y = {yi}i∈N∗ , X = {xi}i∈C∗ and M be as above.
The duffle is defined as a bilinear product over A[M] = A⟨Y × X⟩ such that

∀w ∈ M∗, w 1M∗ = 1M∗ w = w,

∀yi, yj ∈ Y 2, ∀xk, xl ∈ X2, ∀u, v ∈ M∗2, (yi, xk).u (yj, xl).v = (yi, xk)(u (yj, xl)v)
+ (yj, xl)((yi, xk)u v) + (yi+j, xk×l)(u v).

Again, we will show that, under suitable conditions9

ζ
(
(s, ξ) (s′, ξ′)

)
= ζ (s, ξ)ζ (s′, ξ′) . (6)

2.1.2. Hurwitz Polyzêtas
The Hurwitz polyzêta is the function which, to a composition s = (s1, . . . , sr ) and a tuple of parameters10 of the same

length t = (t1, . . . , tr ), associates

ζ (s, t) =

∑
n1>···>nr>0

1
(n1 − t1)s1 . . . (nr − tr )sr

. (7)

This series converges if and only if s1 > 1 (for a ‘‘global’’ way to expand (7) as a meromorphic function of s ∈ Cr , see [11]).
To be able to cope with the case s1 = 1, we have to use the truncated Hurwitz polyzêtas function given by:

∀N ∈ N>0, ζN (s, t) =

∑
N⩾n1>...>nN>0

1
(n1 − t1)s1 . . . (nr − tr )sr

. (8)

In order to obtain the product law, we will use here two alphabets Y = {yi}i∈N>0 , Z = {zt}t∈K , the (free) submonoid N
generated by Y × Z and, as usual, the bijection

βh : ((s1, . . . , sr ), (t1, . . . , tr )) ↦→
(
ys1 . . . ysr , zt1 . . . ztr

)
(9)

suitably extended by linearity. We have now the following product

Definition 2. (Product of formal Hurwitz polyzêtas) Let Y = {yi}i∈N∗ , Z = {zt}t∈K and N be as above.
The huffle is defined as a bilinear product over A[N] = A⟨Y × Z⟩ such that

∀w ∈ N∗, w 1N∗ = 1N∗ w = w,

∀yi, yj ∈ Y 2, ∀zt , zt ′ ∈ Z2, ∀u, v ∈ N∗2,

t = t ′ ⇒ (yi, zt )u (yj, zt )v
= (yi, zt )(u (yj, zt )v) + (yj, zt )((yi, zt )u v)

+ (yi+j, zt )(u v)
t ̸= t ′ ⇒ (yi, zt ).u (yj, zt ′ ).v

= (yi, zt ).
(
u (yj, zt ′ ).v

)
+ (yj, zt ′ ). ((yi, zt ).u v)

+

i−1∑
n=0

(
j − 1 + n
j − 1

)
(−1)n

(t − t ′)j+n (yi−n, zt ). (u v)

+

j−1∑
n=0

(
i − 1 + n
i − 1

)
(−1)n

(t ′ − t)i+n (yj−n, zt ′ ). (u v) .

We also will show that11 for all integer N

ζN
(
(s, t) (s′, t′)

)
= ζN (s, t)ζN (s′, t′) . (10)

9 Again, rigorously speaking, the left-hand side of the following equation should read

ζ

(
β−1
c

(
βc (s, ξ) βc (s′, ξ′)

))
.

10 All parameters in the tuple are taken in some subring K of C and none of them is a strictly positive integer.
11 Again, rigorously speaking, the left-hand side of the following equation should read

ζN

(
β−1
h

(
βh(s, t) βh(s′, t′)

))
.
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Remark 1. The functions we call ‘Hurwitz polyzêtas’, a term coined in the last century (see for example [15]), must not be
confused with the monocenter polyzêtas, defined only for a composition s and a parameter t by

ζ (s, t) =

∑
n1>···>nr>0

1
(n1 − t)s1 . . . (nr − t)sr

, (11)

which follow a much simpler rule, namely the stuffle product on the compositions.

2.1.3. Generalized Polylerch functions
The generalized Polylerch function is the function which maps a composition s = (s1, . . . , sr ), a tuple ξ = (ξ1, . . . , ξr ) of

complex numbers, and a tuple t = (t1, . . . , tr ) of parameters (see footnote 10), all three of the same length, to

ζ (s, t, ξ) =

∑
n1>···>nr>0

ξ
n1
1 . . . ξ

nr
r

(n1 − t1)s1 . . . (nr − tr )sr
. (12)

Here, wewill need three alphabets Y = {yi}i∈N∗ , X = {xi}i∈C∗ , Z = {zt}t∈K and the (free) submonoid T generated by Y ×Z×X .
The bijection

βl : ((s1, . . . , sr ), (t1, . . . , tr ), (ξ1, . . . , ξr )) ↦→
(
ys1 . . . ysr , zt1 . . . ztr , xξ1 . . . xξr

)
(13)

still extended by linearity. The product is given by the following definition:

Definition 3. (Product of Generalized Polyerch functions)
Let Y = {yi}i∈N∗ , X = {xi}i∈C∗ , Z = {zt}t∈K and T be the (free) submonoid generated by Y × Z × X .
The luffle is defined as the bilinear product over A[T ] = A⟨Y × Z × X⟩ satisfying the following recursive relation:

∀w ∈ A∗, w 1A∗ = 1A∗ w = w,

∀(yi, yj) ∈ Y 2, ∀(zt , zt ′ ) ∈ Z2, ∀(xk, xl) ∈ X2, ∀(u, v) ∈ A∗2,

t = t ′ ⇒ (yi, zt , xk).u (yj, zt , xl).v
= (yi, zt , xk).

(
u (yj, zt ).v

)
+ (yj, zt , xl). ((yi, zt ).u v)

+ (yi+j, zt , xk×l). (u v)

t ̸= t ′ ⇒ (yi, zt , xk).u (yj, zt ′ , xl).v
= (yi, zt , xk).

(
u (yj, zt ′ ).v

)
+ (yj, zt ′ , xl). ((yi, zt ).u v)

+

i−1∑
n=0

(
j − 1 + n
j − 1

)
(−1)n

(t − t ′)j+n (yi−n, zt , xk×l). (u v)

+

j−1∑
n=0

(
i − 1 + n
i − 1

)
(−1)n

(t ′ − t)i+n (yj−n, zt ′ , xk×l). (u v) .

We also show12

ζ
(
(s, t, ξ) (s′, t′, ξ′)

)
= ζ (s, t, ξ)ζ (s′, t′, ξ′) . (15)

2.2. General framework of study

Other products from Table 1 belong to the same family as the examples examined so far, and so pertain to the same kind
of approach. As we aim to offer as comprehensive a framework as possible, we now concentrate on the most general class
of ϕ-products, i.e. class V, which emerges from definition 4 . We will use a unitary ring as the ground set of scalars (and
not a field as it would be expected in combinatorics) because some applications require to work with rings of (analytic or
arithmetic) functions.

Proposition 1. Let A be a unitary commutative ring, X be an alphabet and ϕ : X × X → A⟨X⟩ is an arbitrary mapping. Then
there exists a unique mapping ⋆ : X∗

× X∗
→ A⟨X⟩ satisfying the conditions:

(R)

{for any w ∈ X∗, 1X∗ ⋆ w = w ⋆ 1X∗ = w,

for any a, b ∈ X and u, v ∈ X∗,

au ⋆ bv = a(u ⋆ bv) + b(au ⋆ v) + ϕ(a, b)(u ⋆ v).
(16)

12 Again, rigorously speaking, the left-hand side of Eq. (15) should read

ζ

(
β−1
l

(
βl(s, t, ξ) βl(s′, t′, ξ′)

))
. (14)
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Proof. By recurrence over n = |u| + |v|. □

Definition 4. With the notations of Proposition 1, the unique mapping from X × X to A⟨X⟩ satisfying conditions (R) will be
denoted ⊔⊔ϕ and will be called ϕ-shuffle product.

From now on, we suppose that ϕ takes its values in AX , the space of homogeneous polynomials of degree 1. We still denote
by ϕ its linear extension to AX ⊗ AX given by

ϕ(P,Q ) =

∑
x,y∈X

⟨P|x⟩⟨Q |y⟩ϕ(x, y) (17)

and ⊔⊔ϕ the extension of the mapping of Definition 4 by linearity [1] 13 to A⟨X⟩ ⊗ A⟨X⟩. Then ⊔⊔ϕ becomes a law of algebra
(with 1X∗ as unit) on A⟨X⟩.

2.3. Extending quasi-stuffle relations

The following elementary result can be found in any complex analysis textbook. It is freely used throughout this section.

Lemma 1. For any integers s, r ≥ 1, for any complex numbers a, b ̸= a:

∀x ∈ C \ {a, b},
1

(x − a)s(x − b)r
=

s∑
k=1

ak
(x − a)k

+

r∑
k=1

bk
(x − b)k

(18)

where, for all k ∈ {1, . . . , s}, ak =
( s+r−k−1

r−1

) (−1)s−k

(a−b)s+r−k and, for all k ∈ {1, . . . , r}, bk =
( s+r−k−1

s−1

) (−1)r−k

(b−a)s+r−k .

Let t = (t1, . . . , tr ) be a set of parameters (see footnote 10), s = (s1, . . . , sr ) a composition, and ξ = (ξ1, . . . , ξr ) ∈ Cr . We
define, for N ∈ N>0,

MN
s,ξ,t =

∑
N⩾n1>···>nr>0

r∏
i=1

ξ
ni
i

(ni − ti)si
(19)

and MN
(),(),() = 1.

Of course, it is a truncated series of ζ (s; t; ξ).

Proposition 2. For every composition s, tuple ξ of complex numbers, tuple t of parameters all of the same length l ∈ N, and for
every composition r, tuple ρ of complex numbers, tuple t′ of parameters also of the same length k ∈ N, one has

∀N ∈ N, MN
s,ξ,t M

N
r,ρ,t′ = MN

(s,ξ,t) (r,ρ,t′). (20)

Proof. If l = 0 or k = 0, that is immediate.
Let l ∈ N∗, k ∈ N∗ and s = (s1, . . . , sl) and r = (r1, . . . , rk) two compositions, ξ = (ξ1, . . . , ξl) ∈ Cl, ρ = (ρ1, . . . , ρk) ∈ Ck,

and t = (t1, . . . , tl), t′ = (t ′1, . . . , t
′

k) two sets of parameters and put s2 = (s2, . . . , sl), r2 = (r2, . . . , rk), ξ2 = (ξ2, . . . , ξl),
ρ2 = (ρ2, . . . , ρk), t2 = (t2, . . . , tl) and t′2 = (t ′2, . . . , t ′k),

• If t ′1 = t1,

MN
s,ξ,t M

N
r,ρ,t =

∑
N⩾n1,N⩾n′

1

ξ
n1
1

(n1 − t1)s1
Mn1

s′,ξ′,t2

ρ
n′

1
1

(n′
1 − t1)r1

Mn′
1

r′,ρ′,t2
. (21)

Classically, we decompose the sum
∑

N⩾n1,N⩾n′
1
into three sums corresponding to the simplices n1 > n′

1; n′

1 > n1 and
n1 = n′

1 and get

MN
s,ξ,t M

N
r,ρ,t′ =

∑
N⩾n1

ξ
n1
1

(n1 − t1)s1
Mn1

s2,ξ2,t2
Mn1

r,ρ,t

+

∑
N⩾n′1

ρ
n′

1
1

(n′
1 − t ′1)r1

Mn1
s,ξ,t M

n′
1

r2,ρ2,t2

+

∑
N⩾m

(ξ1ρ1)m

(m − t1)s1
1

(m − t1)r1
Mm

s2,ξ2,t2 M
m
r2,ρ2,t′2

(22)

13 We recall that, all tensor products being supposed over A, AX (resp. A⟨X⟩) admits X (resp. X∗) as linear basis, therefore AX ⊗ AX (resp. A⟨X⟩ ⊗ A⟨X⟩) is
free with basis X × X (resp. X∗

× X∗) or more precisely, the image family (x ⊗ y)x,y∈X (resp. (u ⊗ v)u,v∈X∗ ).
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so that,

∀N ∈ N, MN
s,ξ,t M

N
r,ρ,t = MN

(s,ξ,t) (r,ρ,t′). (23)

• In the same way, when t1 ̸= t ′1

MN
s,ξ,t M

N
r,ρ,t′ =

∑
N⩾n1

ξ
n1
1

(n1 − t1)s1
Mn1

s2,ξ2,t2
Mn1

r,ρ,t′

+

∑
N⩾n′1

ρ
n′

1
1

(n′
1 − t ′1)r1

Mn′
1

s,ξ,t M
n′

1
r2,ρ2,t′2

+

∑
N⩾m

(ξ1ρ1)m
1

(m − t1)s1
1

(m − t ′1)r1
Mm

s2,ξ2,t2 M
m
r2,ρ2,t2

=

∑
N⩾n1

ξ
n1
1

(n1 − t1)s1
Mn1

s2,ξ2,t2
Mn1

r,ρ,t′

+

∑
N⩾n′1

ρ
n′

1
1

(n′
1 − t ′1)r1

Mn′
1

s,ξ,t M
n′

1
r2,ρ2,t2

+

∑
N⩾m

[ s1∑
k=1

(
s1 + r1 − k − 1

r1 − 1

)
(−1)s1−k

(t1 − t ′1)s1+r1−k

(ξ1ρ1)m

(m − t ′1)k

+

r1∑
k=1

(
s1 + r1 − k − 1

s1 − 1

)
(−1)r1−k

(t1 − t ′1)s1+r1−k

]
Mm

s2,ξ2,t M
m
r2,ρ2,t′ (24)

so

∀N ∈ N, MN
s,ξ,t M

N
r,ρ,t′ = MN

(s,ξ,t) (r,ρ,t′). □ (25)

Remark 2. For an integer r , an r-tuple χ = (χ1, . . . , χr ) of multiplicative characters14 and (s, ξ, t as above) let us define

MN
s,ξ,t(χ ) =

∑
N⩾n1>···>nr>0

r∏
i=1

χ
ni
i (ξi)

(ni − ti)si
. (26)

The same proof shows that, for any (s, ξ) ∈ Zl
>0 × Cl and (r, ρ) ∈ Zk

>0 × Ck, for any l-tuple t and k−tuple t′ of parameters
(see footnote 10),

∀N ∈ N, MN
s,ξ,t(χ )MN

r,ρ,t′ (χ ) = MN
(s,ξ,t) (r,ρ,t′)(χ ). (27)

This result allows us to deduce some product relations on the different multi-zêta functions.

Theorem 2.1. Let s = (s1, . . . , sl) and r = (r1, . . . , rk) be two compositions, ξ = (ξ1, . . . , ξl) and ρ = (ρ1, . . . , ρk)
be respectively a l-tuple and a k-tuple of complex numbers of which the first component has a modulus strictly less than 1,
t = (t1, . . . , ts) and t′ = (t ′1, . . . , t

′

k) be two tuples of parameters not in N>0, and N ∈ N

(i) For the coloured polyzêta function:

ζ (s, ξ)ζ (r, ρ) = ζ ((s, ξ) (r, ρ)) (28)

(ii) For the truncated Hurwitz polyzêta function:

ζN (s, t)ζN (r, t
′) = ζN

(
(s, t) (r, t′)

)
(29)

(iii) In particular, for the monocentered polyzêta function:

ζ (s, (t, . . . , t)) ζ (r, (t, . . . , t)) = ζ ((s, (t, . . . , t)) (r, (t, . . . , t))) (30)

where t is a parameter s.t. t ̸∈ N>0.
(iv) For the Polylerch generalized function:

ζ (s, t, ξ)ζ (r, t′, ρ) = ζ
(
(s, t, ξ) (r, t′, ρ)

)
(31)

14 Endomorphisms of the semigroup (C, ×).
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Proof. (ii) comes directly from Proposition 2 because ζN (s, t) = MN
s,(1,...,1),t; for (i), (iii) and (iv), apply Proposition 2 with,

respectively, the functions

MN
s,ξ,(0,...,0), MN

s,(1,...,1),(t,...,t) and MN
s,ξ,t

and take both sides of the equality to the limit as N grows to infinity. □

Remark 3. We cannot use this method for the Hurwitz polyzêtas because in the decomposition, some divergent terms
(which have s1 = 1 !) appear: for example, for t ̸= t ′,

(y2, zt ) (y3, zt ′ ) = (y2y3, ztzt ′ ) + (y3y2, zt ′zt ) +

1∑
n=0

(
2 + n
2

)
(−1)n

(t − t ′)3+n (y2−n, zt )

+

2∑
n=0

(
1 + n
1

)
(−1)n

(t − t ′)2+n (y3−n, zt ′ )

= (y2y3, ztzt ′ ) + (y3y2, zt ′zt ) +
1

(t − t ′)3
(y2, zt ) −

3
(t − t ′)4

(y1, zt )

+
1

(t − t ′)2
(y3, zt ′ ) −

2
(t − t ′)3

(y1, zt ′ ) +
3

(t − t ′)4
(y1, zt ′ ). (32)

Separately, the terms −
3

(t−t ′)4
(y1, zt ) and 3

(t−t ′)4
(y1, zt ′ ), corresponding respectively to −3

(t−t ′)4
1

n−t and 3
(t−t ′)4

1
n−t ′ give a

divergent series although all other terms correspond to convergent series. Of course, the sum of the two

3
(t − t ′)4

(
−

1
n − t

+
1

n − t ′

)
=

3
(t − t ′)4

(
t ′ − t

(n − t)(n − t ′)

)
(33)

is a term of a convergent series, but the series is not a Hurwitz Polyzêta.

3. Radford’s theorem for the AC-stuffle.

In this subsection, A is only supposed to be a ring (with unit); when we need it to be commutative or to contain the set
of rational numbers, we will state it explicitly.

Let< be a total ordering on the alphabet X , andLyn(X) denote the family of Lyndonwords [22] constructed from X∗ w.r.t.
this ordering.Wewill prove that the largest framework inwhich Radford’s theoremholds true [20] iswhenϕ is commutative
(and associative).

3.1. Computing ϕ-shuffle expressions using shuffles

In this subsection A is a ring with unit and ϕ : AX ⊗ AX → AX an associative law.
We can express the result of the ϕ-shuffle product thanks to the shuffle product (and some terms of lower degree). First, we
observe what happens with the product of two words:

Lemma 2. For u, v ∈ X∗, there exists (Cw
u,v)|w|<|u|+|v| ∈ A(N) such that:

u ⊔⊔ϕ v = u⊔⊔v +

∑
|w|<|u|+|v|

Cw
u,vw.

Proof. Omitted. □

Now, because the Lyndon words are candidates to be a transcendence basis [16], we see what happens when they are
ϕ-shuffled.

Definition 5. Let ⋆ : A⟨X⟩ × A⟨X⟩ ↦→ A⟨X⟩ be an associative law with unit. For any α ∈ N(Lyn(X)) and {l1, . . . , lr} ⊃ supp(α) in
strict decreasing order (i.e. l1 > · · · > lr ), we set

X⋆α
= l⋆α1

1 ⋆ · · · ⋆ l⋆αr
r , (34)

where αi = α(li) for all i and, for short, X = Lyn(X).

One easily checks that the product (34) does not depend on the choice of the set {l1, . . . , lr} ⊃ supp(α). We will also need
the following parameter (which will turn out to be the length of the dominant terms in the product)

∥α∥ =

∑
l∈Lyn(X)

α(l)|l| . (35)



2294 G.H.E. Duchamp et al. / Discrete Mathematics 340 (2017) 2286–2300

Lemma 3. If ⊔⊔ϕ is associative,

∀α ∈ N(Lyn(X)), ∃(Cα
β )β ∈ A(N(Lyn(X)))/X⊔⊔ ϕα

= X⊔⊔α
+

∑
β∈N(Lyn(X))
∥β∥<∥α∥

Cα
β X

⊔⊔β .

Proof. Omitted □

3.2. Radford’s theorem in ϕ-shuffle algebras

Lemma 4. If ⊔⊔ϕ is associative,

∀p ∈ N∗, span
(
(X⊔⊔ ϕα)α∈N(Lyn(X)),∥α∥<p

)
= span

(
(X⊔⊔α)α∈N(Lyn(X)),∥α∥<p

)
. (36)

Proof. Lemma 3 give

∀p ∈ N∗, span
(
(X⊔⊔ ϕα)α∈N(Lyn(X)),∥α∥<p

)
⊂ span

(
(X⊔⊔α)α∈N(Lyn(X)),∥α∥<p

)
.

We just have to prove, for any p ∈ N∗, the property P(p):

span
(
(X⊔⊔α)α∈N(Lyn(X)),∥α∥<p

)
⊂ span

(
(X⊔⊔ ϕα)α∈N(Lyn(X)),∥α∥<p

)
(37)

• It is true for p = 1.
• Assume P(p) true for an integer p.

Let α ∈ N(Lyn(X)) such that ∥α∥ < p + 1.
We can find (Cα

β )β ∈ A(N(Lyn(X))) such thatX⊔⊔ ϕα
= X⊔⊔α

+
∑

β∈N(Lyn(X))
∥β∥<∥α∥

Cα
β X⊔⊔β , soX⊔⊔α

= X⊔⊔ ϕα
−
∑

β∈N(Lyn(X))
∥β∥<∥α∥

Cα
β X⊔⊔β .

But every term of the sum is of the form Cα
β X⊔⊔β with β ∈ N(Lyn(X)) and ∥β∥ < ∥α∥ < p + 1 so ∥β∥ < p.

Consequently, they are in span
(
(X⊔⊔ ϕα)α∈N(Lyn(X)),∥α∥<p

)
, and so is the sum. By the induction hypothesis, the sum is

in span
(
(X⊔⊔ϕα)α∈N(Lyn(X)),∥α∥<p

)
, therefore X⊔⊔α

∈ span
(
(X⊔⊔ϕα)α∈N(Lyn(X)),∥α∥<p+1

)
. □

Theorem 3.1. Let A be a commutative ring (with unit) such that15 Q ⊂ A and ⊔⊔ϕ : A⟨X⟩ ⊗ A⟨X⟩ → A⟨X⟩ is associative.
If X is totally ordered by <, then

(
X⊔⊔ ϕα

)
α∈N(Lyn(X)) is a linear basis of A⟨X⟩.

Proof. Since this family is a generating family by Lemma 4, only freeness remains to be proven.
Let
∑

α∈JβαX⊔⊔ ϕα
= 0 be a null linear combination of (X⊔⊔ ϕα)α∈N(Lyn(X)) , with J a nonempty finite subset ofN(Lyn(X)). Thanks

to Lemma 3, for any α ∈ J , we can find a finite family Bα ⊂ N(Lyn(X)) and (Cα
β )β∈Bα ∈ ABα such that

X⊔⊔ ϕα
= X⊔⊔α

+

∑
β∈Bα

∥β∥<∥α∥

Cα
β X

⊔⊔β .

Set B = J ∪

(⋃
α∈J

Bα

)
; B is a finite set. Then (X⊔⊔ ϕα)α∈J is a triangular family for |.| with respect to the family F = (X⊔⊔ ϕα)α∈B

in the vector space span(F), which is of finite dimension. But F is a basis, so (X⊔⊔ ϕα)α∈J is free and ∀α ∈ J, βα = 0. □

Corollary 1. Under the same hypotheses, if in addition ⊔⊔ϕ is commutative in A then

(i) The algebra A = (A⟨X⟩, ⊔⊔ϕ, 1X∗ ) is a polynomial algebra.
(ii) Lyn(X) is a transcendence basis of A.

Remark 4. It is necessary to suppose Q ⊂ A as, in case ϕ ≡ 0, one has

∀n ∈ N>0, an =
1
n!

(a⊔⊔n) (38)

Proof.

(i) Immediate result.
(ii) Comes from Theorems 3.1 and 4.1, which proves in an elementary (so independent) way that the commutativity of ϕ

is equivalent to the commutativity of ⊔⊔ϕ . □

15 This condition amounts to ask that N+.1A ⊂ A×
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3.3. Bialgebra structure

Fromnowon, all tensor products are supposed over A (unless specificallymentioned, see the proof of prop. Proposition 4).

Definition 6. A law ⋆ defined over A⟨X⟩ is a dual law (or dualizable) if there exists a linearmapping∆⋆ : A⟨X⟩ → A⟨X⟩⊗A⟨X⟩

such

∀(u, v, w) ∈ X∗
× X∗

× X∗, ⟨u ⋆ v|w⟩ = ⟨u ⊗ v|∆⋆(w)⟩⊗2 . (39)

In this case, ∆∗ will be called the comultiplication dual to ⋆.

Theorem 3.2. Let A be a commutative ring (with unit). We suppose that the product ⊔⊔ϕ : A⟨X⟩⊗A⟨X⟩ → A⟨X⟩ is an associative
and commutative law on A⟨X⟩, then the algebra (A⟨X⟩, ⊔⊔ϕ, 1X∗ ) can be endowed with the comultiplication ∆conc dual to the
concatenation

∆conc(w) =

∑
uv=w

u ⊗ v (40)

and the ‘‘constant term’’ character ϵ(P) = ⟨P|1X∗⟩.

(i) With this setting

Bϕ = (A⟨X⟩, ⊔⊔ϕ, 1X∗ , ∆conc, ϵ) (41)

is a bialgebra16 .
(ii) The bialgebra (41) is, in fact, a Hopf Algebra.

Proof.

(i) It is a classical combinatorial verification, done in [10]. The following identity remains to be proven:

∀(w1, w2) ∈ X∗, ∆conc(w1 ⊔⊔ϕ w2) = ∆conc(w1)∆conc(w2) (42)

which can be done by a (lengthy) induction or by duality.
(ii) Let, classically, ∆+

conc be defined by

∀w ∈ X∗, ∆+

conc(w) =

∑
uv=w
u,v ̸=1

u ⊗ v.

We remark that ∆+
conc is coassociative and locally nilpotent, i.e.

(∀w ∈ X∗)(∃n ∈ N∗)(
(
∆+

conc

)(n)(w) = 0)

which gives result. □

4. Conditions for AC-shuffle and dualizability

4.1. Commutative and associative conditions

We have obtained an extended version of Radford’s theorem and other properties with conditions stated w.r.t. ⊔⊔ϕ , we
will see in this subsection that these conditions can be set uniquely in terms of properties of ϕ itself.

Definition 7. For P ∈ A⟨X⟩, we denote supp(P) the support of P and

deg(P) = max{|l|, l ∈ supp(P)}

(with this convention deg(0) = −∞).

Lemma 5. Let A be a commutative ring, X be an alphabet and ϕ : X × X → A⟨X⟩ is an arbitrary mapping.
Then

∀(u, v) ∈ (X∗)2, deg(u ⊔⊔ϕ v) ⩽ |u| + |v|. (43)

16 Commutative and, when |X | ≥ 2, noncocommutative.
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Proof. If |u| = 0 or |v| = 0, then u ⊔⊔ϕ v is one of {u, v} so its length is |u| + |v|.
Let X+ be the set of nonempty words. We prove ∀(u, v) ∈ (X+)2, deg(u ⊔⊔ϕ v) = |u| + |v| by induction on |u| + |v|.
For any letters a and b, a ⊔⊔ϕ b = ab + ba + ϕ(a, b)1A∗ so deg(a ⊔⊔ϕ b) = 2 = |a| + |b|.
One assumes the property true for all words u, v ∈ X+ such that |u| + |v| ≤ n, where n is an integer. Let u and v be now

two words of X+ such that |u| + |v| = n + 1.
There exist x, y in X , u′, v′ in X∗ such that u = xu′, v = yv′ (because (u, v) ∈ (X+)2). Then |u| + |v′

| = |u| + |v| − 1 ⩽ n, so
deg(y(u ⊔⊔ϕ v′)) ⩽ n+ 1. Also |u′

| + |v| = |u| − 1+ |v| ⩽ n so deg(x(u′
⊔⊔ϕ v)) ⩽ n+ 1, and |u′

| + |v′
| = |u| − 1+ |v| − 1 ⩽ n

so deg(ϕ(x, y)u′
⊔⊔ϕ v′) ⩽ n + 1. Hence, deg(u ⊔⊔ϕ v) = n + 1: the induction is proved. □

Theorem 4.1. In the context of Definition 4,

(i) The law ⊔⊔ϕ is commutative if and only if the extension ϕ : AX ⊗ AX → AX is commutative.
(ii) The law ⊔⊔ϕ is associative if and only if the extension ϕ : AX ⊗ AX → AX is associative.

Proof. We give an elementary proof.

(i) [⊔⊔ϕ commutative H⇒ ϕ commutative]
Let us suppose ∀(u, v) ∈ (X∗)2, u ⊔⊔ϕ v = v ⊔⊔ϕ u..
In particular, ∀(x, y) ∈ (X∗)2, x ⊔⊔ϕ y = x ⊔⊔ϕ y. But, for any (x, y) ∈ X2 ,

x ⊔⊔ϕ y = xy + yx + ϕ(x, y)andy ⊔⊔ϕ x = yx + xy + ϕ(y, x). (44)

and so (∀x, y ∈ X)(ϕ(x, y) = ϕ(y, x)).
[ϕ commutative H⇒ ⊔⊔ϕ commutative]

Now let us suppose ϕ is commutative then let us prove by recurrence on |uv| that ⊔⊔ϕ is commutative:

– The previous computation proves that the recurrence holds for |u| = |v| = 0.
– Suppose the recurrence holds for any u1, v1 ∈ X∗ such that |u1v1| ≤ n and let u, v ∈ X∗ such that |uv| ≤ n + 1.

If u = 1X∗ or v = 1X∗ it is true, else let u = xu′ and v = yv′ with x, y ∈ X and u′, v′
∈ X∗. Then,

u ⊔⊔ϕ v = x(u′
⊔⊔ϕ yv) + y(xu′

⊔⊔ϕ v) + ϕ(x, y)(u′
⊔⊔ϕ v′)

= x(yv ⊔⊔ϕ u) + y(v′
⊔⊔ϕ xu′) + ϕ(y, x)(v′

⊔⊔ϕ u′)
(by the induction hypothesis)

= v ⊔⊔ϕ u. (45)

(ii) [⊔⊔ϕ associative H⇒ ϕ associative] Let us suppose

∀u, v, w ∈ X∗, (u ⊔⊔ϕ v) ⊔⊔ϕ w = u ⊔⊔ϕ (v ⊔⊔ϕ w). (46)

Then, for any x, y, z ∈ X , one has

(x ⊔⊔ϕ y) ⊔⊔ϕ z = x ⊔⊔ϕ (y ⊔⊔ϕ z). (47)

But

(x ⊔⊔ϕ y) ⊔⊔ϕ z = (xy + yx + ϕ(x, y)) ⊔⊔ϕ z (48)
= xy ⊔⊔ϕ z + yx ⊔⊔ϕ z + ϕ(x, y) ⊔⊔ϕ z
= x(y ⊔⊔ϕ z) + z(xy ⊔⊔ϕ 1) + ϕ(x, z)y

+ y(x ⊔⊔ϕ z) + z(yx ⊔⊔ϕ 1) + ϕ(y, z)x
+ ϕ(x, y)z + zϕ(x, y) + ϕ(ϕ(x, y), z)

= x(yz + zy + ϕ(y, z)) + zxy + ϕ(x, z)y
+ y(xz + zx + ϕ(x, z)) + zyx
+ ϕ(y, z)x + ϕ(x, y)z + zϕ(x, y) + ϕ(ϕ(x, y), z)

x ⊔⊔ϕ (y ⊔⊔ϕ z) = x ⊔⊔ϕ (yz + zy + ϕ(y, z)) (49)

= x ⊔⊔ϕ yz + x ⊔⊔ϕ zy + x ⊔⊔ϕ ϕ(y, z)
= x(1 ⊔⊔ϕ yz) + y(x ⊔⊔ϕ z) + ϕ(x, y)z

+ x(1 ⊔⊔ϕ zy) + z(x ⊔⊔ϕ y) + ϕ(x, z)y
+ xϕ(y, z) + ϕ(y, z)x + ϕ(x, ϕ(y, z))

= xyz + y(xz + zx + ϕ(x, z)) + ϕ(x, y)z
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+ xzy + z(xy + yx + ϕ(x, y)) + ϕ(x, z)y
+ xϕ(y, z) + ϕ(y, z)x + ϕ(x, ϕ(y, z)). (50)

One can then deduce that

(∀x, y, z ∈ X)(x ⊔⊔ϕ (y ⊔⊔ϕ z) = (x ⊔⊔ϕ y) ⊔⊔ϕ z) (51)

⇐⇒ (∀x, y, z ∈ X)(ϕ(x, ϕ(y, z)) = ϕ(ϕ(x, y), z)). (52)

[ϕ associative H⇒ ⊔⊔ϕ associative] Now if ϕ is associative then let us prove by induction on |u| + |v| + |w| that ⊔⊔ϕ is
associative:

– The previous equivalence proves that the induction holds for |u| = |v| = |w| = 1.
– Suppose the recurrence holds for any u, v ∈ X∗ such that 3 ≤ |u| + |v| + |w| ≤ n and |u|, |v|, |w| ̸= 1.
– Let u = xu′, v = yv′ and w = zw′ with x, y, z ∈ X and u′, v′, w′

∈ X∗. Then,

u ⊔⊔ϕ (v ⊔⊔ϕ w)
= u ⊔⊔ϕ

(
y(v′

⊔⊔ϕ w) + z(v ⊔⊔ϕ w′) + ϕ(y, z)(v′
⊔⊔ϕ w′)

)
= x(u′

⊔⊔ϕ y(v′
⊔⊔ϕ w)) + y(u ⊔⊔ϕ (v′

⊔⊔ϕ w)) + ϕ(x, y)(u′
⊔⊔ϕ (v′

⊔⊔ϕ w))
+ x(u′

⊔⊔ϕ z(v ⊔⊔ϕ w′)) + z(u ⊔⊔ϕ (v ⊔⊔ϕ w′)) + ϕ(x, z)(u′
⊔⊔ϕ (v ⊔⊔ϕ w′))

+ x(u′
⊔⊔ϕ ϕ(y, z)(v′

⊔⊔ϕ w′)) + ϕ(y, z)(u ⊔⊔ϕ (v′
⊔⊔ϕ w′))

+ ϕ(x, ϕ(y, z))u′
⊔⊔ϕ (v′

⊔⊔ϕ w′)
= x(u′

⊔⊔ϕ (v ⊔⊔ϕ w))
+ y(u ⊔⊔ϕ (v′

⊔⊔ϕ w)) + ϕ(x, y)(u′
⊔⊔ϕ (v′

⊔⊔ϕ w))
+ z(u ⊔⊔ϕ (v ⊔⊔ϕ w′)) + ϕ(x, z)(u′

⊔⊔ϕ (v ⊔⊔ϕ w′))
+ ϕ(y, z)(u ⊔⊔ϕ (v′

⊔⊔ϕ w′)) + ϕ(x, ϕ(y, z))u′
⊔⊔ϕ (v′

⊔⊔ϕ w′) (53)

and

(u ⊔⊔ϕ v) ⊔⊔ϕ w

= (x(u′
⊔⊔ϕ v) + y(u ⊔⊔ϕ v′) + ϕ(x, y)(u′

⊔⊔ϕ v′)) ⊔⊔ϕ w

= x((u′
⊔⊔ϕ v) ⊔⊔ϕ w) + z(x(u′

⊔⊔ϕ v) ⊔⊔ϕ w′) + ϕ(x, z)((u′
⊔⊔ϕ v) ⊔⊔ϕ w′)

+ y((u ⊔⊔ϕ v′) ⊔⊔ϕ w) + z(y(u ⊔⊔ϕ v′) ⊔⊔ϕ w′) + ϕ(y, z)((u ⊔⊔ϕ v′) ⊔⊔ϕ w′)
+ ϕ(x, y)((u′

⊔⊔ϕ v′) ⊔⊔ϕ w) + z(ϕ(x, y)(u′
⊔⊔ϕ v′) ⊔⊔ϕ w′)

+ ϕ(ϕ(x, y), z)((u′
⊔⊔ϕ v′) ⊔⊔ϕ w′)

= x((u′
⊔⊔ϕ v) ⊔⊔ϕ w) + ϕ(x, z)((u′

⊔⊔ϕ v) ⊔⊔ϕ w′)
+ y((u ⊔⊔ϕ v′) ⊔⊔ϕ w) + ϕ(y, z)((u ⊔⊔ϕ v′) ⊔⊔ϕ w′)
+ ϕ(x, y)((u′

⊔⊔ϕ v′) ⊔⊔ϕ w) + ϕ(ϕ(x, y), z)((u′
⊔⊔ϕ v′) ⊔⊔ϕ w′)

+ z(u ⊔⊔ϕ v) ⊔⊔ϕ w′. (54)

Indeed, thanks to the induction hypothesis and the commutativity ofϕ, the terms u ⊔⊔ϕ (v ⊔⊔ϕ w) and (u ⊔⊔ϕ v) ⊔⊔ϕ w
are equal. □

4.2. Dualizability conditions

Proposition 3. We call γ z
x,y := ⟨ϕ(x, y)|z⟩ the structure constants of ϕ (w.r.t. the basis X).

The product ⊔⊔ϕ is a dual law if and only if (γ z
x,y)x,y,z∈X is dualizable in the following sense

(∀z ∈ X)(#{(x, y) ∈ X2
|γ z

x,y ̸= 0} < +∞) . (55)

Proof. (⊔⊔ϕ dual law H⇒ γ z
x,y dualizable). Let ∆ be the dual of ⊔⊔ϕ , that is, for all u, v, w ∈ X∗

⟨u ⊔⊔ϕ v|w⟩ = ⟨u ⊗ v|∆(w)⟩⊗2 . (56)

For all z ∈ X , one must have ∆(z) =
∑n

i=1αiui ⊗ vi. On the other hand, for all x, y ∈ X , one has (x ⊔⊔ϕ y)− (xy+ yx) = ϕ(x, y).
Hence

γ z
x,y = ⟨ϕ(x, y)|z⟩ = ⟨(x ⊔⊔ϕ y) − (xy + yx)|z⟩ = ⟨(x ⊔⊔ϕ y)|z⟩ − ⟨(xy + yx)|z⟩

= ⟨(x ⊗ y)|∆(z)⟩ = ⟨(x ⊗ y)|
n∑

i=1

αiui ⊗ vi⟩ . (57)
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We can deduce from the preceding argument that

γ z
x,y ̸= 0 H⇒

(
x ∈ ∪

n
i=1Aui and y ∈ ∪

n
i=1Avi

)
which proves the point.

[γ z
x,y dualizable H⇒ ⊔⊔ϕ dual law]). This is, combinatorially speaking, the most interesting point. We first define a

comultiplication ∆ on A⟨X⟩ by transposing the structure constants of ⊔⊔ϕ by

∆(z) := z ⊗ 1 + 1 ⊗ z +

∑
x,y∈X

γ z
x,yx ⊗ y (58)

and, as the sum is finite (see however the comment after this theorem), this quantity belongs to A⟨X⟩ ⊗ A⟨X⟩. One then
has a linear mapping ∆ : AX → A⟨X⟩ ⊗ A⟨X⟩ which is extended, by universal property, into a morphism of algebras
∆ : A⟨X⟩ → A⟨X⟩ ⊗ A⟨X⟩. Explicitly, for all w = z1z2 · · · zn, one has

∆(z1z2 · · · zn) = ∆(z1)∆(z2) · · · ∆(zn) . (59)

Now, we prove that the dual law of the latter coproduct is exactly ⊔⊔ϕ .
First remark: by (58) and (59), one has

∆(w) = w ⊗ 1 + 1 ⊗ w +

∑
u,v∈X+

β(u, v)u ⊗ v (60)

the last sum being finitely supported. This shows by duality that

u⊔⊔∆1 = 1⊔⊔∆u = u (61)

(here, ⊔⊔∆ stands for the dual law of ∆). Moreover

au⊔⊔∆bv =

∑
w∈X∗

⟨au⊔⊔∆bv|w⟩w

=

∑
w∈X∗

⟨au ⊗ bv|∆(w)⟩w

= ⟨au ⊗ bv|1 ⊗ 1⟩1 +

∑
w∈X+

⟨au ⊗ bv|∆(w)⟩w

=

∑
x∈X ;m∈X∗

⟨au ⊗ bv|∆(xm)⟩ xm

=

∑
x∈X ;m∈X∗

⟨au ⊗ bv|∆(x)∆(m)⟩ xm

=

∑
x∈X ;m∈X∗

⟨
au ⊗ bv|

(
x ⊗ 1 + 1 ⊗ x +

∑
y,z∈X

⟨∆(x)|y ⊗ z⟩ y ⊗ z
)
∆(m)

⟩
xm

=

∑
x∈X ;m∈X∗

⟨au ⊗ bv|(x ⊗ 1)∆(m)⟩ xm

+

∑
x∈X ;m∈X∗

⟨au ⊗ bv|(1 ⊗ x)∆(m)⟩ xm

+

∑
x∈X ;m∈X∗

⟨
au ⊗ bv|

∑
y,z∈X

⟨∆(x)|y ⊗ z⟩ y ⊗ z∆(m)

⟩
xm

+

∑
m∈X∗

⟨au ⊗ bv|(a ⊗ 1)∆(m)⟩ am +

∑
m∈X∗

⟨au ⊗ bv|(1 ⊗ b)∆(m)⟩ bm

+

∑
x∈X ;m∈X∗

⟨au ⊗ bv|⟨∆(x)|a ⊗ b⟩ a ⊗ b∆(m)⟩ xm

+

∑
m∈X∗

⟨u ⊗ bv|∆(m)⟩ am +

∑
m∈X∗

⟨au ⊗ v|∆(m)⟩ bm

+

∑
x∈X ;m∈X∗

⟨∆(x)|a ⊗ b⟩⟨u ⊗ v|∆(m)⟩ xm

= a
∑
m∈X∗

⟨u ⊗ bv|∆(m)⟩ m + b
∑
m∈X∗

⟨au ⊗ v|∆(m)⟩ m
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+

∑
m∈X∗

(∑
x∈X

⟨∆(x)|a ⊗ b⟩ x
)
⟨u ⊗ v|∆(m)⟩ m

= a(u⊔⊔∆bv) + b(au⊔⊔∆v) + ϕ(a, b)(u⊔⊔∆v). (62)

This proves that the dual law ⊔⊔∆ equals ⊔⊔ϕ and we are done. □

4.3. The Hopf–Hurwitz algebra

In Section 2.1.2, we provided the law on indices followed by the product of Formal Hurwitz polyzêtas, we now prove that
the law ϕ associated with it is associative. The ‘‘centres’’ will be taken from a subfield K of C and the set of coefficients A is
a K -CAAU.

Proposition 4.

(i) The law ϕ : AN ⊗ AN → AN associated to ◦ is defined, on the basis N, by the multiplication table TFormal Hurwitz

if t = t ′; ϕ((yi, zt ), (yj, zt ′ )) = (yi+j, zt )

if t ̸= t ′; ϕ((yi, zt ), (yj, zt ′ )) =

i−1∑
n=0

(
j − 1 + n
j − 1

)
(−1)n

(t − t ′)j+n (yi−n, zt )

+

j−1∑
n=0

(
i − 1 + n
i − 1

)
(−1)n

(t ′ − t)i+n (yj−n, zt ′ ). (63)

(ii) The product is associative, commutative and unital, making (A⟨N⟩, ◦, 1N ) into a A-CAAU.

Proof. (i) Let first j : KN → K (X) be the linear mapping defined by j((yi, zt )) =
1

(X−t)i
. In fact, as the {

1
(X−t)i

} are linearly
independent, j is injective. On the other hand, j is a morphism of K -AAU due to the fact that the multiplication table is
identical. Hence ϕ is a law of K -CAAU on A⊗K KN . (ii) Is a consequence of the general theorems. □

Now, we have the following bialgebra

HFormal Hurwitz = (A⟨N⟩, ϕ, 1N∗ , ∆conc, ϵ) (64)

which is a Hopf algebra. Note that ϕ is not dualisable which means that the adjoint

∆ ϕ : N∗
→ A⟨⟨N∗

⊗ N∗
⟩⟩ (65)

does not have its image in A⟨N⟩ ⊗ A⟨N⟩. See next paragraph for tools and proofs.

Corollary 2. The product is associative, commutative and unital, making (A⟨N⟩, , 1N ) into a A-CAAU.

Proof. It comes that the product is a direct product of the products ◦ and . □

5. Conclusion

We have been able to give a useful extended version of Radford’s theorem.
Let us observe that:

• For the shuffle product, ϕ⊔⊔ ≡ 0, so the shuffle ⊔⊔ is associative, commutative and dualizable.
• The stuffle product over an alphabet indexed by N is associative and commutative because ϕ (xi, xj) = xi+j is so;

moreover it is dualizable.
• The muffle product over an alphabet indexed by C is associative and commutative because ϕ (xi, xj) = xi×j is so; it

is not dualizable because for all n ∈ N>0, x1 = ϕ (x1/n, xn).
However, there are multiplicative subsemigroups S of C such that ϕ restricted to the alphabet (xi)i∈S is dualizable.

Such an example is given where S is the set of rth root of unity, the case is described in [17] example 2.
• Theduffle product over an alphabet indexedbyN∗

×C∗ is associative and commutative becauseϕ
(
(yi, xk), (yj, xl)

)
=

(yi+j, xk×l) is associative and commutative; it is not dualizable either (for the same reason).
But we can make the same remark as the muffle about the possibility to restrict the alphabet so that ϕ becomes

dualizable.
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• The Formal Polyzêta product is associative, commutative but, for all j ∈ N>0, with t ̸= t ′,

ϕ ◦
(
(y2, zt ), (yj, zt ′ )

)
=

1∑
n=0

(
j − 1 + n
j − 1

)
(−1)n

(t − t ′)j+n (y2−n, zt )

+

j−1∑
n=0

(
1 + n
1

)
(−1)n

(t ′ − t)2+n (yj−n, zt ′ ) (66)

and then ∀j ∈ N>0, ⟨ϕ
◦

(
(y2, zt ), (yj, zt ′ )

)
|(y1, zt )⟩ = −

(
j

j−1

)
1

(t−t ′)j+1 ̸= 0 which implies that ◦ is not dualizable.
• The Lerch product is associative, commutative and not dualizable (for the same reason as ).

So, if we work in the Riemann polyzêta algebra, in the coloured polyzêta algebra, or in the Generalized Lerch polyzêta
algebra, we can use a representation with the Lyndon set as a transcendence basis. Moreover, the Riemann polyzêta algebra
and the truncated Hurwitz polyzêta algebra can both be completed into Hopf algebras.
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