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Abstract. Let H be the Hecke algebra of the symmetric group. With each subset S ⊂
[1, n−1], we associate two idempotents S and ∇S which are q-deformations of the symmetrizer
and antisymmetrizer relative to the Young subgroup SIS generated by the simple transpositions
{(i, i+ 1)}i∈S . We give here explicit bases for the intertwining space S1H∇S2 , indexed by the
double classes SIS1 \Sn/SIS2 . We also compute bases and characters of the right ideals

I(I, J) = S1H∇S2H.

Résumé. Soit H, l’algèbre de Hecke du groupe symétrique. À chaque sous ensemble S ⊂
[1, n− 1], on associe deux idempotents S et ∇S qui sont les q-déformations des symétriseur et
antisymétriseur du sous groupe de Young SIS engendré par les transpositions simples {(i, i +
1)}i∈S . Nous donnons ici des bases explicites pour le sous espace d’entrelacement S1H∇S2 ,
indexées par les doubles classes SIS1 \Sn/SIS2 . Nous calculons également des bases et les
caractères des idéaux

I(I, J) = S1H∇S2H.

Introduction. A question of importance, in representation theory of groups, is the
construction of primitive idempotents in a group algebra. For the symmetric group, after
the early construction by A. Young (see [17], [9] for details), several complete sets of
primitive idempotents (i.e. generating irreducible ideals) have been proposed ([10], [14],
[15] and [3], [6], [16] for the Hecke algebra).
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The original idea of Young (see e.g. [5], [9]) for computing a primitive idempotent in
the algebra of the symmetric group consists in starting from a tableau without repetition

5 7
2 4
1 3 6

and deriving two idempotents, the row symmetrizer P (i.e. the sum of the permutations
that preserve each row, in the picture S{1,3,6} ×S{2,4} ×S{5,7}) and the column anti-
symmetrizer N (i.e. the alternating sum of the permutations that preserve each column,
in the picture S{1,2,5}×S{3,4,7}×S{6}). Now, PN is (up to a scalar) an idempotent and
the associated representation is irreducible, of index equal to the shape of the tableau.

The idempotence of PN is due to two facts, the first being that P.C[Sn].N is one
dimensional and the second being that there is a natural isomorphism

P.C[Sn].N ∼= HomSn
(N.Sn, P.Sn)

Let H be the Hecke algebra of the symmetric group with basis (Tw)w∈Sn
. The pre-

ceding construction does not give in general idempotents in this algebra (even in the
simplest case of a tableau of shape (1,2)). However, for a single row (or column), we get
the following q-analogues of Young symmetrizers and antisymmetrizers

=
∑
w∈Sn

Tw and ∇ =
∑
w∈Sn

(−q)lmax−l(w)Tw

with lmax = n(n−1)
2 and l(w) being the length of the permutation w.

We can get also, with the same formulas, analogues of the Young row (resp. column)
symmetrizers providing that the filling of the tableau is done with consecutive numbers
in the rows (resp. columns). This explains why Young’s construction cannot be adapted
trivially. The elements so obtained, denoted by ωI and∇ωI , are particular cases of the µ

and ∇µ, µ ∈ Sn constructed elsewhere using solutions of the Yang-Baxter equation [4].
A complete set of primitive idempotents for the generic Hecke algebra have been de-

fined (see [3], [4], [6]) with q-analogues of Young symmetrizers associated with partitions.
The idempotence of these elements is based (as for the symmetric group) on the

combinatorial fact that, for I and J conjugate, the spaces ωIH∇ωJ and ∇ωJH ωI are
both one-dimensional.

The preceding property still holds when I and J are no longer partitions but com-
positions associated with conjugate partitions. (This fact is characteristic free and inde-
pendent of the choice of q.) Then, when the Hecke algebra is semi-simple, we can derive
primitive idempotents of the form ωIh

′∇ωJh′′ (see Corollary 3 below).
Our main concern here is the combinatorial structure of the spaces ωIH∇ωJ and of

the right ideals
I(I, J) = wIH∇wJH,

i.e. the sum of the ideals wIh∇wJH for h ∈ H (I, J are arbitrary compositions). A
motivation also to the study of these more general spaces is the exploration of alternative
computations for elements of Kazdhan-Lusztig basis as it can be easily checked that the
elements ∇ωI and ωI belong to invariant bases.

The paper is organized as follows. In the first section, we give the classical isomorphism

e.H.f ∼= HomH(f.H, e.H).
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Dimensions and bases of the intertwining space ωI .H.∇ωJ are then given. These bases
are indexed by well-known combinatorial objects, namely matrices with entries in {0, 1}
and prescribed row (and column) sums.

The second part is devoted to the study of the structure of I(I, J) (isotypic decom-
position, bases and characters).

Acknowledgement. The authors are grateful to the referee for many useful remarks
and corrections.

I. Intertwining spaces.
I.1. Intertwining two right direct summand ideals. Let H be a k-algebra (k is a ring)

and U, V two right H-modules. In classical representation theory [2] HomH(U, V ) is called
the intertwining space between U and V . In case U, V are principal (right) ideals of H
generated by idempotents (i.e. factors of decompositions H = I ⊕ J where I and J are
ideals) the space HomH(U, V ) has a concrete realization within H.

Proposition 1. Let e, f be two idempotents of H. Then the mapping

ψ : eHf −→ HomH(fH, eH)

defined by

ψ(ehf) : fx −→ ehfx

is an isomorphism.

P r o o f. It is obvious that ψ(ehf) ∈ HomH(fH, eH). Now, for θ ∈ HomH(fH, eH)
we have θ(f) ∈ eH, but θ(f) = θ(f2) = θ(f)f ∈ eHf . The reader may then easily verify
that

φ : HomH(fH, eH) −→ eHf
defined by φ(θ) = θ(f) is the inverse isomorphism.

I.2. Background for symmetrizers in the Hecke algebra. Let us begin with some stan-
dard facts about combinatorics of partitions.

Let I = (i1, i1, · · · , ik) be a vector with (strictly) positive integral entries. This object
is called a composition of |I| =

∑
1≤r≤k ir whereas the entries (ir) are called the parts

of I. The set

CS(I) = {i1, i1 + i2, · · · , |I|} =
{ ∑

1≤r≤s

ir

}
1≤s≤k

is the set of cumulated sums of I. A decreasing composition J is called a partition of |J |
and we write J ` |J |. Partitions can be represented by plane diagrams of boxes, called
Ferrers’ diagrams. Such a diagram can be transposed (i.e. transformed by the orthogonal
symmetry with axis x = y), the result being the diagram of the conjugate partition I .̃
For example

Partition 322 331, conjugate of 322
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Now, to each composition, there corresponds a unique partition I0 obtained by reordering
the parts and we will say that two compositions I, J are conjugate iff I0 = J0 ˜ (see [1]).

We will also need some well known results about the Hecke algebra of the symmetric
group (which is a deformation of the group algebra).

Let k be a ring, q ∈ k, n ∈ N∗. The Hecke algebra Hkn,q is the associative k-algebra
with unit presented with generators (Ti)1≤i<n and relations

TiTj = TjTi, |i− j| ≥ 2
(Ti − 1)(Ti + q) = 0, 1 ≤ i < n

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i < n− 1.

As a consequence of Murphy and Diper-James papers [15], [16], [3] it turns out that, if
q.[n]!q is invertible in k ([r]q := 1 + q + · · · qr−1 and [n]!q = [1]q.[2]q. · · · [n]q), then Hkn,q
is a direct product of full matrix algebras.

Hkn,q ∼=
∏
λ`n

M(nλ, k) (I.1)

nλ being the dimension of the irreducible representation associated with the partition λ
of the symmetric group (the numbers nλ can be computed directly by the “hook formula”
[5]).

If k is a field, (I.1) implies that Hkn,q is semi-simple and the decomposition (I.1) is
unique. Each component M(nλ, k) is called a block of Hkn,q, its neutral element is a
minimal central idempotent that we will denote by eλ and call the central idempotent of
shape λ. This idempotent splits into indecomposables ones that are primitive idempotents
of shape λ. We here briefly indicate how to construct an exhaustive (this means at least
one for each shape) family of them.

Let I = (i1, i2, · · · ik) be a composition of n. With I we associate a decomposition

[1, n] = I1 ] I2 ] · · · ] Ik
where Is is the interval [1 + i1 + · · ·+ is−1, i1 + i2 + · · · is].

The subgroup
SI = {σ ∈ Sn | ∀s ≤ k σ(Is) = Is}

is also the subgroup generated by the elementary transpositions σi = (i, i + 1) with
i 6∈ CS(I). This subgroup is called the Young subgroup associated with I. SI is naturally
isomorphic (by restrictions) to

Si1 ×Si2 · · · ×Sik (I.2)

and, in particular, its cardinality is I! := i1!i2! · · · ik!. There is a unique longest element
ωI in SI which acts by reversion in every interval Is. More precisely, with 0 ≤ h ≤ is− 1

ωI(1 + i1 + · · · is−1 + h) = i1 + i2 · · ·+ is − h.

Define elements

I :=
∑
µ∈SI

Tµ; ∇I :=
∑
µ∈SI

(−q)l(ωI)−l(µ)Tµ =
∑
µ∈SI

(−q)l(ωIµ)Tµ

In the spirit of [5], they will be called the symmetrizer (resp. antisymmetrizer) relative
to SI . These elements act as scalars on the elementary generators of SI and therefore
define idempotents (see [4]).
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Proposition 2. For i 6∈ CS(I) we have
i) Ti I = ITi = q I

ii) Ti∇I = ∇ITi = −∇I
iii) If q, I! ∈ k∗ then 1

q.I! I and 1
I!∇I are idempotents.

iv) If I, J are conjugate, the spaces I .H.∇J and ∇J .H. I are one-dimensional.

P r o o f. i), ii) For every i 6∈ CS(I) let Ri (resp. Di) be the set of µ ∈ SI such that
l(σiµ) = l(µ) + 1 (resp. l(σiµ) = l(µ) − 1). It is straightforward to see that Di = σi.Ri.
Then

I = (
∑
µ∈Ri

Tµ +
∑
µ∈Di

Tµ) = (1 + Ti)(
∑
µ∈Ri

Tµ),

and the claim follows from the fact that Ti(Ti + 1) = q(Ti + 1). The other identities of i)
and ii) have a similar proof.

iii) is an immediate consequence of i) and ii).
iv) If I, J are conjugate, then it is easy to verify that (see also below Remark 6) there

is only one ν ∈ Sn such that

i 6∈ CS(I), j 6∈ CS(J) =⇒ l(σiν) = l(ν) + 1, l(νσj) = l(ν) + 1.

It follows from i) and ii) that I .Tν .∇J is a generator of I .H.∇J . Now, from the general
theory of Coxeter groups, one has l(ωI .ν.ωJ) = l(ωI) + l(ν) + l(ωJ) = m and then

I .Tν .∇J = TωIνωJ +
∑

l(µ)<m

RµTµ.

This proves that I .Tν .∇J is torsion free and then the claim follows.

By virtue of the general theory of semi-simple algebras, Proposition 2.iv) above implies
the corollary:

Corollary 3. Suppose that k is a field and Hkn,q is semi-simple. Let I, J be two
conjugate compositions. Then there exist elements µ′, µ′′ ∈ Sn such that ITµ′∇JTµ′′ is
a primitive idempotent of shape I.

In the previous case, the elements Ih
′ and ∇Jh′′ can be defined by means of a

solution of the Yang-Baxter equation (see Remark 6.ii) below). Let us say now a word
on this construction.

Recall that the action of Sn from the right on the words of length n, is defined by

(a1a2 · · · an).σ := aσ(1)aσ(2) · · · aσ(n).

Let σi1σi2 · · ·σip be a reduced decomposition of the permutation µ. The fact that this
decomposition is reduced implies that the sequence w0, w1, . . . defined inductively by:{

w0 := 12 · · ·n
wk := wk−1.σik ,

is such that, at each step, wk = uijv and wk+1 = ujiv with i < j. Then supposing that
[r]q ∈ k∗ for r < n and setting sk := [j−i−1]q

[j−i]q we deduce that the products

(∇i1 + s1)(∇i2 + s2) · · · (∇ip + sp)
and ( i1 − s1)( i2 − s2) · · · ( ip − sp)

do not depend on the choice of the reduced decomposition of µ, but only of µ (see [4] for
a complete proof). We will denote the first product by ∇µ and the second one by µ.
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The link with the symmetrizers become transparent with the following formulas [4]

ωI =
∑
h∈SI

Th ∇ωI =
∑
h∈SI

(−q)l(ωIh)Th

R e m a r k 4. It is not hard to see that the leading term of µ (resp. ∇µ) is Tµ. In
other words, we have

µ = Tµ +
∑

l(ν)<l(µ)

Rν(q)Tν ∇µ = Tµ +
∑

l(ν)<l(µ)

Sν(q)Tν

with Rν , Sν ∈ k(q).

From now on, we will write ωI (resp. ∇ωI ) instead of I (resp. ∇I).
I.3. Bases for ωI .H.∇ωJ . In this section, we construct a basis of ωIH∇ωJ con-

sisting of elements of the type ωITσ∇ωJ . This basis is closely related to the minimal
representatives of the double classes SI\Sn/SJ (see [11]). Let us state their properties.

Proposition 5. Let I, J be two compositions of n, and W (I, J) be the set of σ ∈ Sn

such that
l(ωIσωJ) = l(ωI) + l(σ) + l(ωJ). (I.3)

Then
i) W (I, J) is the set of elements of minimal length in each double class SI .µ.SJ and,

hence, W (I, J) is a set of representatives for SI\Sn/SJ .
ii) ( ωITσ∇ωJ )σ∈W (I,J) is a basis of the k-module ωIH∇ωJ .

P r o o f. i) is classical.
ii) The family ( ωITµ∇ωJ )µ∈W (I,J) is linearly independent over k as the dominant

term of ωITµ∇ωJ is TωIµωJ . Now, let M be the linear span of the elements
( ωITµ∇ωJ )µ∈W (I,J). It is sufficient to prove that every ωITν∇ωJ belongs to M for
ν ∈ Sn. Suppose that it is not the case, then there exists α ∈ Sn of minimal length with
ωITα∇ωJ 6∈M . Now, α 6∈ W (I, J) and then α = σiα1 for some i 6∈ CS(I) or α = α2σj

for some j 6∈ CS(J). Then, for example in the first case,

ωITσiα1∇ωJ = ωITσiTα1∇ωJ = q ωITα1∇ωJ
— a contradiction. The other case is similar.

R e m a r k 6. i) Let I = (i1, i2, · · · ir), J = (j1, j2, · · · js). Then the set W (I, J) is
in one-to-one correspondence with the set of r × s-matrices with entries in {0, 1} and
column (resp. row) sums given by I (resp. J). We first need a description of ωI .W (I, J),
the elements of which have a simple characterization in terms of subwords on consecutive
letters and increasing conditions. Namely an element µ belongs to ωI .W (I, J) iff:
(a) µ has the decreasing subwords of ωI .
(b) µ is increasing on each interval defined by J .

We now describe the correspondence on an example (for practical reasons, as the parts
involved here will be less than 10, we will write I = 1311 instead of I = (1, 3, 1, 1)).

For example, with I = 1311, J = 231, the permutations µ are (written as words)
143562, 451362, 461352. The matrices to be found have 3 rows and 4 columns. Index the
columns by the subwords (condition (a) above), here (1, 432, 5, 6) and the rows by the
intervals of places where the permutation has to be increasing (condition (b) above), here
12, 345, 6. For the first permutation we have
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subwords 1 432 5 6 ↓ places

• • − − 12
− • • • 345
− • − − 6

Permutation 143562

And, for the two remaining elements of ω1311.W (1311, 231)

1 432 5 6

− • • − 12
• • − • 345
− • − − 6

Permutation 451362

1 432 5 6

− • − • 12
• • • − 345
− • − − 6

Permutation 461352

ii) For ν ∈W (I, J), the leading term of ωITν∇ωJ is TωIνωJ , because the lengths add
(see Proposition 5). So any family of the form

( ωIBν∇ωJ )ν∈W (I,J)

such that the leading term of Bν is Tν , is also a basis of ωIH∇ωJ . Its transition matrix
with respect to

( ωITν∇ωJ )ν∈W (I,J)

is triangular. In particular, this is the case of ωIν∇ωJ as one has the factorization
ωIν = ωIBν for some Bν with leading term Tν (see [4] for details).

iii) In general, we deduce from Propositions 1 and 5 that

|W (I, J)| =
∑
λ`n

m′λ.m
′′
λ

where m′λ (resp. m′′λ) is the number of irreducible components of shape λ in ωI .H
(resp. ∇ωJH). In particular, if I, J are conjugate compositions then |W (I, J)| = 1 and
ωIH∇ωJ is one-dimensional. In the semi-simple case, this allows to construct primitive

idempotents for all possible shapes (see [4]).
iv) Notice that it can happen that W (I, J) = ∅. This is the case, for example, with

I = J = [n], n ≥ 2.

I.4. Characters. When k is of characteristic 0 and q = 1 one can compute the char-
acteristics of ωIH and ∇ωJH considered as right Sn-modules. Here, we have

char( ωIH) = SI := Si1Si2 · · ·Sik , char(∇ωJH) = ΛJ := Λi1Λi2 · · ·Λik .
If I, J are conjugate, these symmetric functions have only one common irreducible com-
ponent Sλ, λ being the diagram with the row lengths given by I and the column lengths
given by J (in fact, we could write λ = I) [12], [13]. We recover the fact that ωIH∇ωJ
is one-dimensional in this case.

I.5. Permutation of parts. Suppose that the symmetric group Sk acts on compositions
of n into k parts by

Iσ = (i1, i2 · · · ik)σ = (iσ(1), iσ(2), · · · iσ(k)).

Here we show that ωI (resp. ∇ωI ) and ωIσ (resp. ∇ωIσ ) are conjugate.
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Proposition 7. Let I be a composition of n belonging to Nk. For every σ ∈ Sk there
exists τ(σ) ∈ Sn such that

ωIσ = Tτ(σ) ωIT
−1
τ(σ) ∇ωIσ = Tτ(σ)∇ωIT−1

τ(σ).

P r o o f. This is a direct consequence of the fact that the Young subgroups SωIσ and
SωI are conjugate.

Corollary 8. I(Iσ1 , Jσ2) = Tτ(σ1)I(I, J).

This explains how the results for general I, J can be computed from the case when
I, J are partitions.

II. Structure of I(I, J).
II.1. Isotypic decomposition of I(I, J). From now on we suppose that k is a field and

q.[n!]q 6= 0 (this implies that Hn,q is semi-simple). The following result is classical and
can be derived from the thesis of Hoefsmith [7] or the orthogonal family of idempotents
of Jucys-Murphy [10], [16].

Proposition 9. There is a family of orthogonal central idempotents (eλ)λ`n. Hence

Hn,q =
⊕
λ`n

eλ.Hn,q,

each summand being a matrix algebra

eλ.Hn,q ∼=M(nλ, k)

where nλ is the dimension of the representation associated with the partition λ.

We derive the following decomposition of I(I, J).

Theorem 10. I(I, J) =
⊕

λ`n
(Sλ,ΛJ ) 6=0

ωIH.e′λ.H where e′λ is any minimal idempotent

of shape λ. In particular, there exists h′, h′′ ∈ H such that e′λ = ωλh
′∇ωλ̃h′′.

P r o o f. Of course, we have

I(I, J) =
⊕
λ`n

eλ.I(I, J) =
⊕
λ`n

(Sλ,ΛJ )6=0

ωI .H.eλ.∇ωJ .H

as, if (Sλ,ΛJ) = 0, then H.eλ.∇ωJ .H = {0} and H.eλ.I(I, J) = ωI .H.eλ.∇ωJ .H =
{0} (indeed, this is the case also if (Sλ, SJ) = 0). Otherwise, there exists a minimal
idempotent e′λ of shape λ such that ∇ωJ .H ⊃ e′λ.H, and hence

H.eλ.H ⊃ H.eλ∇ωJ .H ⊃ H.e′λ.H = H.eλ.H.
This proves the claim.

R e m a r k 11. Let J be an ideal of H. Then, with the previous notation, we have

Jeλ = Je′λ.H.
This ideal is the sum of the components of “type λ” in J. We will denote this ideal by
Jλ. One has

dim(Jλ) = mλ.nλ

where mλ is the multiplicity of the representation associated with λ and nλ — its dimen-
sion.
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Here, we have
eλ.I(I, J) = ωI .H.e′λ.H = ( ωI .H)λ.

II.2. Character and basis of I(I, J). Let, as above, mλ be the multiplicity of e′λ.H in
I(I, J). From Remark 11 we deduce that, if (Sλ,ΛJ) 6= 0, then

mλ = dim(HomH( ωI .H, e′λ.H)) = dim( ωI .H.e′λ).

This allows us to construct bases of I(I, J).

Proposition 12. Let ( ωI .hie
′
λ)i∈Iλ be a basis in each non-vanishing ωI .H.e′λ and

(e′λ.h
′
j)j∈Jλ a basis of e′λ.H. Then

( ωIhie
′
λh
′
j)(i,j)∈Iλ×Jλ

is a basis of Iλ(I, J).

P r o o f. Let ( ωI .hie
′
λ)i∈Iλ (resp. (e′λ.h

′
j)j∈Jλ) be a basis of ωI .H.e′λ (resp. e′λ.H).

It is obvious that ( ωIhie
′
λh
′
j)(i,j)∈Iλ×Jλ generates Iλ(I, J). But Remark 11 states that

dim(Iλ(I, J)) = card (Iλ × Jλ) and, then, this family is a basis of Iλ(I, J).

R e m a r k 13. Since
I(I, J) =

⊕
λ`n

Iλ(I, J),

the sum being taken over all λ such that (Sλ, SI)(Sλ,ΛJ) 6= 0 (otherwise Iλ(I, J) = {0}),
we get a basis of I(I, J) by union of bases of Proposition 12.

Example. With I = 211, J = 22, we have S211 = S4 + 2S13 + S22 + S112 and
Λ22 = S22 + S112 + S1111 then Iλ(I, J) 6= 0 for λ = 211 and λ = 22. We get a basis of
I211: 2341∇3214 and a basis of I22: 2413∇2143. Then the desired basis of I(211, 22) is

{ 2341∇3214, 2413∇2143}.

III. Conclusion. Bases and characters of the ideal I(I, J) have been described. In
general, bases for an isotypic component are indexed by two indices. For the second
range, we have a nice description for a basis of e′λ.H in case e′λ is chosen to be of the form
ωλh

′∇ωλ̃h′′ [4], [3].
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